aboutsummaryrefslogtreecommitdiff
path: root/gprof/ns532.c
AgeCommit message (Expand)AuthorFilesLines
1994-07-13ns532 support from Ian DallKen Raeburn1-0/+13
'>776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
/* Convert function calls to rtl insns, for GNU C compiler.
   Copyright (C) 1989, 92-97, 1998 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#ifdef __STDC__
#include <stdarg.h>
#else
#include <varargs.h>
#endif
#include "system.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "expr.h"
#include "regs.h"
#include "insn-flags.h"

/* Decide whether a function's arguments should be processed
   from first to last or from last to first.

   They should if the stack and args grow in opposite directions, but
   only if we have push insns.  */

#ifdef PUSH_ROUNDING

#if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
#define PUSH_ARGS_REVERSED	/* If it's last to first */
#endif

#endif

/* Like STACK_BOUNDARY but in units of bytes, not bits.  */
#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)

/* Data structure and subroutines used within expand_call.  */

struct arg_data
{
  /* Tree node for this argument.  */
  tree tree_value;
  /* Mode for value; TYPE_MODE unless promoted.  */
  enum machine_mode mode;
  /* Current RTL value for argument, or 0 if it isn't precomputed.  */
  rtx value;
  /* Initially-compute RTL value for argument; only for const functions.  */
  rtx initial_value;
  /* Register to pass this argument in, 0 if passed on stack, or an
     PARALLEL if the arg is to be copied into multiple non-contiguous
     registers.  */
  rtx reg;
  /* If REG was promoted from the actual mode of the argument expression,
     indicates whether the promotion is sign- or zero-extended.  */
  int unsignedp;
  /* Number of registers to use.  0 means put the whole arg in registers.
     Also 0 if not passed in registers.  */
  int partial;
  /* Non-zero if argument must be passed on stack.
     Note that some arguments may be passed on the stack
     even though pass_on_stack is zero, just because FUNCTION_ARG says so.
     pass_on_stack identifies arguments that *cannot* go in registers.  */
  int pass_on_stack;
  /* Offset of this argument from beginning of stack-args.  */
  struct args_size offset;
  /* Similar, but offset to the start of the stack slot.  Different from
     OFFSET if this arg pads downward.  */
  struct args_size slot_offset;
  /* Size of this argument on the stack, rounded up for any padding it gets,
     parts of the argument passed in registers do not count.
     If REG_PARM_STACK_SPACE is defined, then register parms
     are counted here as well.  */
  struct args_size size;
  /* Location on the stack at which parameter should be stored.  The store
     has already been done if STACK == VALUE.  */
  rtx stack;
  /* Location on the stack of the start of this argument slot.  This can
     differ from STACK if this arg pads downward.  This location is known
     to be aligned to FUNCTION_ARG_BOUNDARY.  */
  rtx stack_slot;
#ifdef ACCUMULATE_OUTGOING_ARGS
  /* Place that this stack area has been saved, if needed.  */
  rtx save_area;
#endif
  /* If an argument's alignment does not permit direct copying into registers,
     copy in smaller-sized pieces into pseudos.  These are stored in a
     block pointed to by this field.  The next field says how many
     word-sized pseudos we made.  */
  rtx *aligned_regs;
  int n_aligned_regs;
};

#ifdef ACCUMULATE_OUTGOING_ARGS
/* A vector of one char per byte of stack space.  A byte if non-zero if
   the corresponding stack location has been used.
   This vector is used to prevent a function call within an argument from
   clobbering any stack already set up.  */
static char *stack_usage_map;

/* Size of STACK_USAGE_MAP.  */
static int highest_outgoing_arg_in_use;

/* stack_arg_under_construction is nonzero when an argument may be
   initialized with a constructor call (including a C function that
   returns a BLKmode struct) and expand_call must take special action
   to make sure the object being constructed does not overlap the
   argument list for the constructor call.  */
int stack_arg_under_construction;
#endif

static int calls_function	PROTO((tree, int));
static int calls_function_1	PROTO((tree, int));
static void emit_call_1		PROTO((rtx, tree, tree, HOST_WIDE_INT,
				       HOST_WIDE_INT, rtx, rtx,
				       int, rtx, int));
static void store_one_arg	PROTO ((struct arg_data *, rtx, int, int,
					tree, int));

/* If WHICH is 1, return 1 if EXP contains a call to the built-in function
   `alloca'.

   If WHICH is 0, return 1 if EXP contains a call to any function.
   Actually, we only need return 1 if evaluating EXP would require pushing
   arguments on the stack, but that is too difficult to compute, so we just
   assume any function call might require the stack.  */

static tree calls_function_save_exprs;

static int
calls_function (exp, which)
     tree exp;
     int which;
{
  int val;
  calls_function_save_exprs = 0;
  val = calls_function_1 (exp, which);
  calls_function_save_exprs = 0;
  return val;
}

static int
calls_function_1 (exp, which)
     tree exp;
     int which;
{
  register int i;
  enum tree_code code = TREE_CODE (exp);
  int type = TREE_CODE_CLASS (code);
  int length = tree_code_length[(int) code];

  /* If this code is language-specific, we don't know what it will do.  */
  if ((int) code >= NUM_TREE_CODES)
    return 1;

  /* Only expressions and references can contain calls.  */
  if (type != 'e' && type != '<' && type != '1' && type != '2' && type != 'r'
      && type != 'b')
    return 0;

  switch (code)
    {
    case CALL_EXPR:
      if (which == 0)
	return 1;
      else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
	       && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
		   == FUNCTION_DECL))
	{
	  tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);

	  if ((DECL_BUILT_IN (fndecl)
	       && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA)
	      || (DECL_SAVED_INSNS (fndecl)
		  && (FUNCTION_FLAGS (DECL_SAVED_INSNS (fndecl))
		      & FUNCTION_FLAGS_CALLS_ALLOCA)))
	    return 1;
	}

      /* Third operand is RTL.  */
      length = 2;
      break;

    case SAVE_EXPR:
      if (SAVE_EXPR_RTL (exp) != 0)
	return 0;
      if (value_member (exp, calls_function_save_exprs))
	return 0;
      calls_function_save_exprs = tree_cons (NULL_TREE, exp,
					     calls_function_save_exprs);
      return (TREE_OPERAND (exp, 0) != 0
	      && calls_function_1 (TREE_OPERAND (exp, 0), which));

    case BLOCK:
      {
	register tree local;

	for (local = BLOCK_VARS (exp); local; local = TREE_CHAIN (local))
	  if (DECL_INITIAL (local) != 0
	      && calls_function_1 (DECL_INITIAL (local), which))
	    return 1;
      }
      {
	register tree subblock;

	for (subblock = BLOCK_SUBBLOCKS (exp);
	     subblock;
	     subblock = TREE_CHAIN (subblock))
	  if (calls_function_1 (subblock, which))
	    return 1;
      }
      return 0;

    case METHOD_CALL_EXPR:
      length = 3;
      break;

    case WITH_CLEANUP_EXPR:
      length = 1;
      break;

    case RTL_EXPR:
      return 0;
      
    default:
      break;
    }

  for (i = 0; i < length; i++)
    if (TREE_OPERAND (exp, i) != 0
	&& calls_function_1 (TREE_OPERAND (exp, i), which))
      return 1;

  return 0;
}

/* Force FUNEXP into a form suitable for the address of a CALL,
   and return that as an rtx.  Also load the static chain register
   if FNDECL is a nested function.

   CALL_FUSAGE points to a variable holding the prospective
   CALL_INSN_FUNCTION_USAGE information.  */

rtx
prepare_call_address (funexp, fndecl, call_fusage, reg_parm_seen)
     rtx funexp;
     tree fndecl;
     rtx *call_fusage;
     int reg_parm_seen;
{
  rtx static_chain_value = 0;

  funexp = protect_from_queue (funexp, 0);

  if (fndecl != 0)
    /* Get possible static chain value for nested function in C.  */
    static_chain_value = lookup_static_chain (fndecl);

  /* Make a valid memory address and copy constants thru pseudo-regs,
     but not for a constant address if -fno-function-cse.  */
  if (GET_CODE (funexp) != SYMBOL_REF)
    /* If we are using registers for parameters, force the
       function address into a register now.  */
    funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen)
	      ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
	      : memory_address (FUNCTION_MODE, funexp));
  else
    {
#ifndef NO_FUNCTION_CSE
      if (optimize && ! flag_no_function_cse)
#ifdef NO_RECURSIVE_FUNCTION_CSE
	if (fndecl != current_function_decl)
#endif
	  funexp = force_reg (Pmode, funexp);
#endif
    }

  if (static_chain_value != 0)
    {
      emit_move_insn (static_chain_rtx, static_chain_value);

      if (GET_CODE (static_chain_rtx) == REG)
	use_reg (call_fusage, static_chain_rtx);
    }

  return funexp;
}

/* Generate instructions to call function FUNEXP,
   and optionally pop the results.
   The CALL_INSN is the first insn generated.

   FNDECL is the declaration node of the function.  This is given to the
   macro RETURN_POPS_ARGS to determine whether this function pops its own args.

   FUNTYPE is the data type of the function.  This is given to the macro
   RETURN_POPS_ARGS to determine whether this function pops its own args.
   We used to allow an identifier for library functions, but that doesn't
   work when the return type is an aggregate type and the calling convention
   says that the pointer to this aggregate is to be popped by the callee.

   STACK_SIZE is the number of bytes of arguments on the stack,
   rounded up to STACK_BOUNDARY; zero if the size is variable.
   This is both to put into the call insn and
   to generate explicit popping code if necessary.

   STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
   It is zero if this call doesn't want a structure value.

   NEXT_ARG_REG is the rtx that results from executing
     FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1)
   just after all the args have had their registers assigned.
   This could be whatever you like, but normally it is the first
   arg-register beyond those used for args in this call,
   or 0 if all the arg-registers are used in this call.
   It is passed on to `gen_call' so you can put this info in the call insn.

   VALREG is a hard register in which a value is returned,
   or 0 if the call does not return a value.

   OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
   the args to this call were processed.
   We restore `inhibit_defer_pop' to that value.

   CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
   denote registers used by the called function.

   IS_CONST is true if this is a `const' call.  */

static void
emit_call_1 (funexp, fndecl, funtype, stack_size, struct_value_size, 
             next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
	     is_const)
     rtx funexp;
     tree fndecl;
     tree funtype;
     HOST_WIDE_INT stack_size;
     HOST_WIDE_INT struct_value_size;
     rtx next_arg_reg;
     rtx valreg;
     int old_inhibit_defer_pop;
     rtx call_fusage;
     int is_const;
{
  rtx stack_size_rtx = GEN_INT (stack_size);
  rtx struct_value_size_rtx = GEN_INT (struct_value_size);
  rtx call_insn;
#ifndef ACCUMULATE_OUTGOING_ARGS
  int already_popped = 0;
#endif

  /* Ensure address is valid.  SYMBOL_REF is already valid, so no need,
     and we don't want to load it into a register as an optimization,
     because prepare_call_address already did it if it should be done.  */
  if (GET_CODE (funexp) != SYMBOL_REF)
    funexp = memory_address (FUNCTION_MODE, funexp);

#ifndef ACCUMULATE_OUTGOING_ARGS
#if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
  if (HAVE_call_pop && HAVE_call_value_pop
      && (RETURN_POPS_ARGS (fndecl, funtype, stack_size) > 0 
          || stack_size == 0))
    {
      rtx n_pop = GEN_INT (RETURN_POPS_ARGS (fndecl, funtype, stack_size));
      rtx pat;

      /* If this subroutine pops its own args, record that in the call insn
	 if possible, for the sake of frame pointer elimination.  */

      if (valreg)
	pat = gen_call_value_pop (valreg,
				  gen_rtx_MEM (FUNCTION_MODE, funexp),
				  stack_size_rtx, next_arg_reg, n_pop);
      else
	pat = gen_call_pop (gen_rtx_MEM (FUNCTION_MODE, funexp),
			    stack_size_rtx, next_arg_reg, n_pop);

      emit_call_insn (pat);
      already_popped = 1;
    }
  else
#endif
#endif

#if defined (HAVE_call) && defined (HAVE_call_value)
  if (HAVE_call && HAVE_call_value)
    {
      if (valreg)
	emit_call_insn (gen_call_value (valreg,
					gen_rtx_MEM (FUNCTION_MODE, funexp),
					stack_size_rtx, next_arg_reg,
					NULL_RTX));
      else
	emit_call_insn (gen_call (gen_rtx_MEM (FUNCTION_MODE, funexp),
				  stack_size_rtx, next_arg_reg,
				  struct_value_size_rtx));
    }
  else
#endif
    abort ();

  /* Find the CALL insn we just emitted.  */
  for (call_insn = get_last_insn ();
       call_insn && GET_CODE (call_insn) != CALL_INSN;
       call_insn = PREV_INSN (call_insn))
    ;

  if (! call_insn)
    abort ();

  /* Put the register usage information on the CALL.  If there is already
     some usage information, put ours at the end.  */
  if (CALL_INSN_FUNCTION_USAGE (call_insn))
    {
      rtx link;

      for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
	   link = XEXP (link, 1))
	;

      XEXP (link, 1) = call_fusage;
    }
  else
    CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;

  /* If this is a const call, then set the insn's unchanging bit.  */
  if (is_const)
    CONST_CALL_P (call_insn) = 1;

  /* Restore this now, so that we do defer pops for this call's args
     if the context of the call as a whole permits.  */
  inhibit_defer_pop = old_inhibit_defer_pop;

#ifndef ACCUMULATE_OUTGOING_ARGS
  /* If returning from the subroutine does not automatically pop the args,
     we need an instruction to pop them sooner or later.
     Perhaps do it now; perhaps just record how much space to pop later.

     If returning from the subroutine does pop the args, indicate that the
     stack pointer will be changed.  */

  if (stack_size != 0 && RETURN_POPS_ARGS (fndecl, funtype, stack_size) > 0)
    {
      if (!already_popped)
	CALL_INSN_FUNCTION_USAGE (call_insn)
	  = gen_rtx_EXPR_LIST (VOIDmode,
			       gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
			       CALL_INSN_FUNCTION_USAGE (call_insn));
      stack_size -= RETURN_POPS_ARGS (fndecl, funtype, stack_size);
      stack_size_rtx = GEN_INT (stack_size);
    }

  if (stack_size != 0)
    {
      if (flag_defer_pop && inhibit_defer_pop == 0 && !is_const)
	pending_stack_adjust += stack_size;
      else
	adjust_stack (stack_size_rtx);
    }
#endif
}

/* Generate all the code for a function call
   and return an rtx for its value.
   Store the value in TARGET (specified as an rtx) if convenient.
   If the value is stored in TARGET then TARGET is returned.
   If IGNORE is nonzero, then we ignore the value of the function call.  */

rtx
expand_call (exp, target, ignore)
     tree exp;
     rtx target;
     int ignore;
{
  /* List of actual parameters.  */
  tree actparms = TREE_OPERAND (exp, 1);
  /* RTX for the function to be called.  */
  rtx funexp;
  /* Data type of the function.  */
  tree funtype;
  /* Declaration of the function being called,
     or 0 if the function is computed (not known by name).  */
  tree fndecl = 0;
  char *name = 0;

  /* Register in which non-BLKmode value will be returned,
     or 0 if no value or if value is BLKmode.  */
  rtx valreg;
  /* Address where we should return a BLKmode value;
     0 if value not BLKmode.  */
  rtx structure_value_addr = 0;
  /* Nonzero if that address is being passed by treating it as
     an extra, implicit first parameter.  Otherwise,
     it is passed by being copied directly into struct_value_rtx.  */
  int structure_value_addr_parm = 0;
  /* Size of aggregate value wanted, or zero if none wanted
     or if we are using the non-reentrant PCC calling convention
     or expecting the value in registers.  */
  HOST_WIDE_INT struct_value_size = 0;
  /* Nonzero if called function returns an aggregate in memory PCC style,
     by returning the address of where to find it.  */
  int pcc_struct_value = 0;

  /* Number of actual parameters in this call, including struct value addr.  */
  int num_actuals;
  /* Number of named args.  Args after this are anonymous ones
     and they must all go on the stack.  */
  int n_named_args;
  /* Count arg position in order args appear.  */
  int argpos;

  /* Vector of information about each argument.
     Arguments are numbered in the order they will be pushed,
     not the order they are written.  */
  struct arg_data *args;

  /* Total size in bytes of all the stack-parms scanned so far.  */
  struct args_size args_size;
  /* Size of arguments before any adjustments (such as rounding).  */
  struct args_size original_args_size;
  /* Data on reg parms scanned so far.  */
  CUMULATIVE_ARGS args_so_far;
  /* Nonzero if a reg parm has been scanned.  */
  int reg_parm_seen;
  /* Nonzero if this is an indirect function call.  */

  /* Nonzero if we must avoid push-insns in the args for this call. 
     If stack space is allocated for register parameters, but not by the
     caller, then it is preallocated in the fixed part of the stack frame.
     So the entire argument block must then be preallocated (i.e., we
     ignore PUSH_ROUNDING in that case).  */

#ifdef PUSH_ROUNDING
  int must_preallocate = 0;
#else
  int must_preallocate = 1;
#endif

  /* Size of the stack reserved for parameter registers.  */
  int reg_parm_stack_space = 0;

  /* 1 if scanning parms front to back, -1 if scanning back to front.  */
  int inc;
  /* Address of space preallocated for stack parms
     (on machines that lack push insns), or 0 if space not preallocated.  */
  rtx argblock = 0;

  /* Nonzero if it is plausible that this is a call to alloca.  */
  int may_be_alloca;
  /* Nonzero if this is a call to malloc or a related function. */
  int is_malloc;
  /* Nonzero if this is a call to setjmp or a related function.  */
  int returns_twice;
  /* Nonzero if this is a call to `longjmp'.  */
  int is_longjmp;
  /* Nonzero if this is a call to an inline function.  */
  int is_integrable = 0;
  /* Nonzero if this is a call to a `const' function.
     Note that only explicitly named functions are handled as `const' here.  */
  int is_const = 0;
  /* Nonzero if this is a call to a `volatile' function.  */
  int is_volatile = 0;
#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
  /* Define the boundary of the register parm stack space that needs to be
     save, if any.  */
  int low_to_save = -1, high_to_save;
  rtx save_area = 0;		/* Place that it is saved */
#endif

#ifdef ACCUMULATE_OUTGOING_ARGS
  int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
  char *initial_stack_usage_map = stack_usage_map;
  int old_stack_arg_under_construction;
#endif

  rtx old_stack_level = 0;
  int old_pending_adj = 0;
  int old_inhibit_defer_pop = inhibit_defer_pop;
  rtx call_fusage = 0;
  register tree p;
  register int i, j;

  /* The value of the function call can be put in a hard register.  But
     if -fcheck-memory-usage, code which invokes functions (and thus
     damages some hard registers) can be inserted before using the value.
     So, target is always a pseudo-register in that case.  */
  if (flag_check_memory_usage)
    target = 0;

  /* See if we can find a DECL-node for the actual function.
     As a result, decide whether this is a call to an integrable function.  */

  p = TREE_OPERAND (exp, 0);
  if (TREE_CODE (p) == ADDR_EXPR)
    {
      fndecl = TREE_OPERAND (p, 0);
      if (TREE_CODE (fndecl) != FUNCTION_DECL)
	fndecl = 0;
      else
	{
	  if (!flag_no_inline
	      && fndecl != current_function_decl
	      && DECL_INLINE (fndecl)
	      && DECL_SAVED_INSNS (fndecl)
	      && RTX_INTEGRATED_P (DECL_SAVED_INSNS (fndecl)))
	    is_integrable = 1;
	  else if (! TREE_ADDRESSABLE (fndecl))
	    {
	      /* In case this function later becomes inlinable,
		 record that there was already a non-inline call to it.

		 Use abstraction instead of setting TREE_ADDRESSABLE
		 directly.  */
	      if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline
		  && optimize > 0)
		{
		  warning_with_decl (fndecl, "can't inline call to `%s'");
		  warning ("called from here");
		}
	      mark_addressable (fndecl);
	    }

	  if (TREE_READONLY (fndecl) && ! TREE_THIS_VOLATILE (fndecl)
	      && TYPE_MODE (TREE_TYPE (exp)) != VOIDmode)
	    is_const = 1;

	  if (TREE_THIS_VOLATILE (fndecl))
	    is_volatile = 1;
	}
    }

  /* If we don't have specific function to call, see if we have a 
     constant or `noreturn' function from the type.  */
  if (fndecl == 0)
    {
      is_const = TREE_READONLY (TREE_TYPE (TREE_TYPE (p)));
      is_volatile = TREE_THIS_VOLATILE (TREE_TYPE (TREE_TYPE (p)));
    }

#ifdef REG_PARM_STACK_SPACE
#ifdef MAYBE_REG_PARM_STACK_SPACE
  reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
#else
  reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
#endif
#endif

#if defined(PUSH_ROUNDING) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
  if (reg_parm_stack_space > 0)
    must_preallocate = 1;
#endif

  /* Warn if this value is an aggregate type,
     regardless of which calling convention we are using for it.  */
  if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp)))
    warning ("function call has aggregate value");

  /* Set up a place to return a structure.  */

  /* Cater to broken compilers.  */
  if (aggregate_value_p (exp))
    {
      /* This call returns a big structure.  */
      is_const = 0;

#ifdef PCC_STATIC_STRUCT_RETURN
      {
	pcc_struct_value = 1;
	/* Easier than making that case work right.  */
	if (is_integrable)
	  {
	    /* In case this is a static function, note that it has been
	       used.  */
	    if (! TREE_ADDRESSABLE (fndecl))
	      mark_addressable (fndecl);
	    is_integrable = 0;
	  }
      }
#else /* not PCC_STATIC_STRUCT_RETURN */
      {
	struct_value_size = int_size_in_bytes (TREE_TYPE (exp));

	if (target && GET_CODE (target) == MEM)
	  structure_value_addr = XEXP (target, 0);
	else
	  {
	    /* Assign a temporary to hold the value.  */
	    tree d;

	    /* For variable-sized objects, we must be called with a target
	       specified.  If we were to allocate space on the stack here,
	       we would have no way of knowing when to free it.  */

	    if (struct_value_size < 0)
	      abort ();

	    /* This DECL is just something to feed to mark_addressable;
	       it doesn't get pushed.  */
	    d = build_decl (VAR_DECL, NULL_TREE, TREE_TYPE (exp));
	    DECL_RTL (d) = assign_temp (TREE_TYPE (exp), 1, 0, 1);
	    mark_addressable (d);
	    structure_value_addr = XEXP (DECL_RTL (d), 0);
	    TREE_USED (d) = 1;
	    target = 0;
	  }
      }
#endif /* not PCC_STATIC_STRUCT_RETURN */
    }

  /* If called function is inline, try to integrate it.  */

  if (is_integrable)
    {
      rtx temp;
#ifdef ACCUMULATE_OUTGOING_ARGS
      rtx before_call = get_last_insn ();
#endif

      temp = expand_inline_function (fndecl, actparms, target,
				     ignore, TREE_TYPE (exp),
				     structure_value_addr);

      /* If inlining succeeded, return.  */
      if (temp != (rtx) (HOST_WIDE_INT) -1)
	{
#ifdef ACCUMULATE_OUTGOING_ARGS
	  /* If the outgoing argument list must be preserved, push
	     the stack before executing the inlined function if it
	     makes any calls.  */

	  for (i = reg_parm_stack_space - 1; i >= 0; i--)
	    if (i < highest_outgoing_arg_in_use && stack_usage_map[i] != 0)
	      break;

	  if (stack_arg_under_construction || i >= 0)
	    {
	      rtx first_insn
		= before_call ? NEXT_INSN (before_call) : get_insns ();
	      rtx insn, seq;

	      /* Look for a call in the inline function code.
		 If OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)) is
		 nonzero then there is a call and it is not necessary
		 to scan the insns.  */

	      if (OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl)) == 0)
		for (insn = first_insn; insn; insn = NEXT_INSN (insn))
		  if (GET_CODE (insn) == CALL_INSN)
		    break;

	      if (insn)
		{
		  /* Reserve enough stack space so that the largest
		     argument list of any function call in the inline
		     function does not overlap the argument list being
		     evaluated.  This is usually an overestimate because
		     allocate_dynamic_stack_space reserves space for an
		     outgoing argument list in addition to the requested
		     space, but there is no way to ask for stack space such
		     that an argument list of a certain length can be
		     safely constructed. 

		     Add the stack space reserved for register arguments, if
		     any, in the inline function.  What is really needed is the
		     largest value of reg_parm_stack_space in the inline
		     function, but that is not available.  Using the current
		     value of reg_parm_stack_space is wrong, but gives
		     correct results on all supported machines.  */

		  int adjust = (OUTGOING_ARGS_SIZE (DECL_SAVED_INSNS (fndecl))
				+ reg_parm_stack_space);

		  start_sequence ();
		  emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
		  allocate_dynamic_stack_space (GEN_INT (adjust),
						NULL_RTX, BITS_PER_UNIT);
		  seq = get_insns ();
		  end_sequence ();
		  emit_insns_before (seq, first_insn);
		  emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
		}
	    }
#endif

	  /* If the result is equivalent to TARGET, return TARGET to simplify
	     checks in store_expr.  They can be equivalent but not equal in the
	     case of a function that returns BLKmode.  */
	  if (temp != target && rtx_equal_p (temp, target))
	    return target;
	  return temp;
	}

      /* If inlining failed, mark FNDECL as needing to be compiled
	 separately after all.  If function was declared inline,
	 give a warning.  */
      if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline
	  && optimize > 0 && ! TREE_ADDRESSABLE (fndecl))
	{
	  warning_with_decl (fndecl, "inlining failed in call to `%s'");
	  warning ("called from here");
	}
      mark_addressable (fndecl);
    }

  /* When calling a const function, we must pop the stack args right away,
     so that the pop is deleted or moved with the call.  */
  if (is_const)
    NO_DEFER_POP;

  function_call_count++;

  if (fndecl && DECL_NAME (fndecl))
    name = IDENTIFIER_POINTER (DECL_NAME (fndecl));

#if 0
  /* Unless it's a call to a specific function that isn't alloca,
     if it has one argument, we must assume it might be alloca.  */

  may_be_alloca
    = (!(fndecl != 0 && strcmp (name, "alloca"))
       && actparms != 0
       && TREE_CHAIN (actparms) == 0);
#else
  /* We assume that alloca will always be called by name.  It
     makes no sense to pass it as a pointer-to-function to
     anything that does not understand its behavior.  */
  may_be_alloca
    = (name && ((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
		 && name[0] == 'a'
		 && ! strcmp (name, "alloca"))
		|| (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
		    && name[0] == '_'
		    && ! strcmp (name, "__builtin_alloca"))));
#endif

  /* See if this is a call to a function that can return more than once
     or a call to longjmp.  */

  returns_twice = 0;
  is_longjmp = 0;
  is_malloc = 0;

  if (name != 0 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 15
      /* Exclude functions not at the file scope, or not `extern',
	 since they are not the magic functions we would otherwise
	 think they are.  */
      && DECL_CONTEXT (fndecl) == NULL_TREE && TREE_PUBLIC (fndecl))
    {
      char *tname = name;

      /* Disregard prefix _, __ or __x.  */
      if (name[0] == '_')
	{
	  if (name[1] == '_' && name[2] == 'x')
	    tname += 3;
	  else if (name[1] == '_')
	    tname += 2;
	  else
	    tname += 1;
	}

      if (tname[0] == 's')
	{
	  returns_twice
	    = ((tname[1] == 'e'
		&& (! strcmp (tname, "setjmp")
		    || ! strcmp (tname, "setjmp_syscall")))
	       || (tname[1] == 'i'
		   && ! strcmp (tname, "sigsetjmp"))
	       || (tname[1] == 'a'
		   && ! strcmp (tname, "savectx")));
	  if (tname[1] == 'i'
	      && ! strcmp (tname, "siglongjmp"))
	    is_longjmp = 1;
	}
      else if ((tname[0] == 'q' && tname[1] == 's'
		&& ! strcmp (tname, "qsetjmp"))
	       || (tname[0] == 'v' && tname[1] == 'f'
		   && ! strcmp (tname, "vfork")))
	returns_twice = 1;

      else if (tname[0] == 'l' && tname[1] == 'o'
	       && ! strcmp (tname, "longjmp"))
	is_longjmp = 1;
      /* XXX should have "malloc" attribute on functions instead
	 of recognizing them by name.  */
      else if (! strcmp (tname, "malloc")
	       || ! strcmp (tname, "calloc")
	       || ! strcmp (tname, "realloc")
	       || ! strcmp (tname, "__builtin_new")
	       || ! strcmp (tname, "__builtin_vec_new"))
	is_malloc = 1;
    }

  if (may_be_alloca)
    current_function_calls_alloca = 1;

  /* Don't let pending stack adjusts add up to too much.
     Also, do all pending adjustments now
     if there is any chance this might be a call to alloca.  */

  if (pending_stack_adjust >= 32
      || (pending_stack_adjust > 0 && may_be_alloca))
    do_pending_stack_adjust ();

  /* Operand 0 is a pointer-to-function; get the type of the function.  */
  funtype = TREE_TYPE (TREE_OPERAND (exp, 0));
  if (TREE_CODE (funtype) != POINTER_TYPE)
    abort ();
  funtype = TREE_TYPE (funtype);

  /* Push the temporary stack slot level so that we can free any temporaries
     we make.  */
  push_temp_slots ();

  /* Start updating where the next arg would go.

     On some machines (such as the PA) indirect calls have a different
     calling convention than normal calls.  The last argument in
     INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
     or not.  */
  INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, (fndecl == 0));

  /* If struct_value_rtx is 0, it means pass the address
     as if it were an extra parameter.  */
  if (structure_value_addr && struct_value_rtx == 0)
    {
      /* If structure_value_addr is a REG other than
	 virtual_outgoing_args_rtx, we can use always use it.  If it
	 is not a REG, we must always copy it into a register.
	 If it is virtual_outgoing_args_rtx, we must copy it to another
	 register in some cases.  */
      rtx temp = (GET_CODE (structure_value_addr) != REG
#ifdef ACCUMULATE_OUTGOING_ARGS
		  || (stack_arg_under_construction
		      && structure_value_addr == virtual_outgoing_args_rtx)
#endif
		  ? copy_addr_to_reg (structure_value_addr)
		  : structure_value_addr);

      actparms
	= tree_cons (error_mark_node,
		     make_tree (build_pointer_type (TREE_TYPE (funtype)),
				temp),
		     actparms);
      structure_value_addr_parm = 1;
    }

  /* Count the arguments and set NUM_ACTUALS.  */
  for (p = actparms, i = 0; p; p = TREE_CHAIN (p)) i++;
  num_actuals = i;

  /* Compute number of named args.
     Normally, don't include the last named arg if anonymous args follow.
     We do include the last named arg if STRICT_ARGUMENT_NAMING is nonzero.
     (If no anonymous args follow, the result of list_length is actually
     one too large.  This is harmless.)

     If SETUP_INCOMING_VARARGS is defined and STRICT_ARGUMENT_NAMING is zero,
     this machine will be able to place unnamed args that were passed in
     registers into the stack.  So treat all args as named.  This allows the
     insns emitting for a specific argument list to be independent of the
     function declaration.

     If SETUP_INCOMING_VARARGS is not defined, we do not have any reliable
     way to pass unnamed args in registers, so we must force them into
     memory.  */

  if ((STRICT_ARGUMENT_NAMING
#ifndef SETUP_INCOMING_VARARGS
       || 1
#endif
       )
      && TYPE_ARG_TYPES (funtype) != 0)
    n_named_args
      = (list_length (TYPE_ARG_TYPES (funtype))
	 /* Don't include the last named arg.  */
	 - (STRICT_ARGUMENT_NAMING ? 0 : -1)
	 /* Count the struct value address, if it is passed as a parm.  */
	 + structure_value_addr_parm);
  else
    /* If we know nothing, treat all args as named.  */
    n_named_args = num_actuals;

  /* Make a vector to hold all the information about each arg.  */
  args = (struct arg_data *) alloca (num_actuals * sizeof (struct arg_data));
  bzero ((char *) args, num_actuals * sizeof (struct arg_data));

  args_size.constant = 0;
  args_size.var = 0;

  /* In this loop, we consider args in the order they are written.
     We fill up ARGS from the front or from the back if necessary
     so that in any case the first arg to be pushed ends up at the front.  */

#ifdef PUSH_ARGS_REVERSED
  i = num_actuals - 1, inc = -1;
  /* In this case, must reverse order of args
     so that we compute and push the last arg first.  */
#else
  i = 0, inc = 1;
#endif

  /* I counts args in order (to be) pushed; ARGPOS counts in order written.  */
  for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++)
    {
      tree type = TREE_TYPE (TREE_VALUE (p));
      int unsignedp;
      enum machine_mode mode;

      args[i].tree_value = TREE_VALUE (p);

      /* Replace erroneous argument with constant zero.  */
      if (type == error_mark_node || TYPE_SIZE (type) == 0)
	args[i].tree_value = integer_zero_node, type = integer_type_node;

      /* If TYPE is a transparent union, pass things the way we would
	 pass the first field of the union.  We have already verified that
	 the modes are the same.  */
      if (TYPE_TRANSPARENT_UNION (type))
	type = TREE_TYPE (TYPE_FIELDS (type));

      /* Decide where to pass this arg.

	 args[i].reg is nonzero if all or part is passed in registers.

	 args[i].partial is nonzero if part but not all is passed in registers,
	 and the exact value says how many words are passed in registers.

	 args[i].pass_on_stack is nonzero if the argument must at least be
	 computed on the stack.  It may then be loaded back into registers
	 if args[i].reg is nonzero.

	 These decisions are driven by the FUNCTION_... macros and must agree
	 with those made by function.c.  */

      /* See if this argument should be passed by invisible reference.  */
      if ((TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
	   && contains_placeholder_p (TYPE_SIZE (type)))
	  || TREE_ADDRESSABLE (type)
#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
	  || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, TYPE_MODE (type),
					     type, argpos < n_named_args)
#endif
	  )
	{
	  /* If we're compiling a thunk, pass through invisible
             references instead of making a copy.  */
	  if (current_function_is_thunk
#ifdef FUNCTION_ARG_CALLEE_COPIES
	      || (FUNCTION_ARG_CALLEE_COPIES (args_so_far, TYPE_MODE (type),
					     type, argpos < n_named_args)
		  /* If it's in a register, we must make a copy of it too.  */
		  /* ??? Is this a sufficient test?  Is there a better one? */
		  && !(TREE_CODE (args[i].tree_value) == VAR_DECL
		       && REG_P (DECL_RTL (args[i].tree_value)))
		  && ! TREE_ADDRESSABLE (type))
#endif
	      )
	    {
	      args[i].tree_value = build1 (ADDR_EXPR,
					   build_pointer_type (type),
					   args[i].tree_value);
	      type = build_pointer_type (type);
	    }
	  else
	    {
	      /* We make a copy of the object and pass the address to the
		 function being called.  */
	      rtx copy;

	      if (TYPE_SIZE (type) == 0
		  || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
		  || (flag_stack_check && ! STACK_CHECK_BUILTIN
		      && (TREE_INT_CST_HIGH (TYPE_SIZE (type)) != 0
			  || (TREE_INT_CST_LOW (TYPE_SIZE (type))
			      > STACK_CHECK_MAX_VAR_SIZE * BITS_PER_UNIT))))
		{
		  /* This is a variable-sized object.  Make space on the stack
		     for it.  */
		  rtx size_rtx = expr_size (TREE_VALUE (p));

		  if (old_stack_level == 0)
		    {
		      emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
		      old_pending_adj = pending_stack_adjust;
		      pending_stack_adjust = 0;
		    }

		  copy = gen_rtx_MEM (BLKmode,
				      allocate_dynamic_stack_space (size_rtx,
								    NULL_RTX,
								    TYPE_ALIGN (type)));
		}
	      else
		{
		  int size = int_size_in_bytes (type);
		  copy = assign_stack_temp (TYPE_MODE (type), size, 0);
		}

	      MEM_IN_STRUCT_P (copy) = AGGREGATE_TYPE_P (type);

	      store_expr (args[i].tree_value, copy, 0);
	      is_const = 0;

	      args[i].tree_value = build1 (ADDR_EXPR,
					   build_pointer_type (type),
					   make_tree (type, copy));
	      type = build_pointer_type (type);
	    }
	}

      mode = TYPE_MODE (type);
      unsignedp = TREE_UNSIGNED (type);

#ifdef PROMOTE_FUNCTION_ARGS
      mode = promote_mode (type, mode, &unsignedp, 1);
#endif

      args[i].unsignedp = unsignedp;
      args[i].mode = mode;
      args[i].reg = FUNCTION_ARG (args_so_far, mode, type,
				  argpos < n_named_args);
#ifdef FUNCTION_ARG_PARTIAL_NREGS
      if (args[i].reg)
	args[i].partial
	  = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, type,
					argpos < n_named_args);
#endif

      args[i].pass_on_stack = MUST_PASS_IN_STACK (mode, type);

      /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
	 it means that we are to pass this arg in the register(s) designated
	 by the PARALLEL, but also to pass it in the stack.  */
      if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
	  && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
	args[i].pass_on_stack = 1;

      /* If this is an addressable type, we must preallocate the stack
	 since we must evaluate the object into its final location.

	 If this is to be passed in both registers and the stack, it is simpler
	 to preallocate.  */
      if (TREE_ADDRESSABLE (type)
	  || (args[i].pass_on_stack && args[i].reg != 0))
	must_preallocate = 1;

      /* If this is an addressable type, we cannot pre-evaluate it.  Thus,
	 we cannot consider this function call constant.  */
      if (TREE_ADDRESSABLE (type))
	is_const = 0;

      /* Compute the stack-size of this argument.  */
      if (args[i].reg == 0 || args[i].partial != 0
	  || reg_parm_stack_space > 0
	  || args[i].pass_on_stack)
	locate_and_pad_parm (mode, type,
#ifdef STACK_PARMS_IN_REG_PARM_AREA
			     1,
#else
			     args[i].reg != 0,
#endif
			     fndecl, &args_size, &args[i].offset,
			     &args[i].size);

#ifndef ARGS_GROW_DOWNWARD
      args[i].slot_offset = args_size;
#endif

      /* If a part of the arg was put into registers,
	 don't include that part in the amount pushed.  */
      if (reg_parm_stack_space == 0 && ! args[i].pass_on_stack)
	args[i].size.constant -= ((args[i].partial * UNITS_PER_WORD)
				  / (PARM_BOUNDARY / BITS_PER_UNIT)
				  * (PARM_BOUNDARY / BITS_PER_UNIT));
      
      /* Update ARGS_SIZE, the total stack space for args so far.  */

      args_size.constant += args[i].size.constant;
      if (args[i].size.var)
	{
	  ADD_PARM_SIZE (args_size, args[i].size.var);
	}

      /* Since the slot offset points to the bottom of the slot,
	 we must record it after incrementing if the args grow down.  */
#ifdef ARGS_GROW_DOWNWARD
      args[i].slot_offset = args_size;

      args[i].slot_offset.constant = -args_size.constant;
      if (args_size.var)
	{
	  SUB_PARM_SIZE (args[i].slot_offset, args_size.var);
	}
#endif

      /* Increment ARGS_SO_FAR, which has info about which arg-registers
	 have been used, etc.  */

      FUNCTION_ARG_ADVANCE (args_so_far, TYPE_MODE (type), type,
			    argpos < n_named_args);
    }

#ifdef FINAL_REG_PARM_STACK_SPACE
  reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
						     args_size.var);
#endif
      
  /* Compute the actual size of the argument block required.  The variable
     and constant sizes must be combined, the size may have to be rounded,
     and there may be a minimum required size.  */

  original_args_size = args_size;
  if (args_size.var)
    {
      /* If this function requires a variable-sized argument list, don't try to
	 make a cse'able block for this call.  We may be able to do this
	 eventually, but it is too complicated to keep track of what insns go
	 in the cse'able block and which don't.  */

      is_const = 0;
      must_preallocate = 1;

      args_size.var = ARGS_SIZE_TREE (args_size);
      args_size.constant = 0;

#ifdef STACK_BOUNDARY
      if (STACK_BOUNDARY != BITS_PER_UNIT)
	args_size.var = round_up (args_size.var, STACK_BYTES);
#endif

      if (reg_parm_stack_space > 0)
	{
	  args_size.var
	    = size_binop (MAX_EXPR, args_size.var,
			  size_int (reg_parm_stack_space));

#ifndef OUTGOING_REG_PARM_STACK_SPACE
	  /* The area corresponding to register parameters is not to count in
	     the size of the block we need.  So make the adjustment.  */
	  args_size.var
	    = size_binop (MINUS_EXPR, args_size.var,
			  size_int (reg_parm_stack_space));
#endif
	}
    }
  else
    {
#ifdef STACK_BOUNDARY
      args_size.constant = (((args_size.constant + (STACK_BYTES - 1))
			     / STACK_BYTES) * STACK_BYTES);
#endif

      args_size.constant = MAX (args_size.constant,
				reg_parm_stack_space);

#ifdef MAYBE_REG_PARM_STACK_SPACE
      if (reg_parm_stack_space == 0)
	args_size.constant = 0;
#endif

#ifndef OUTGOING_REG_PARM_STACK_SPACE
      args_size.constant -= reg_parm_stack_space;
#endif
    }

  /* See if we have or want to preallocate stack space.

     If we would have to push a partially-in-regs parm
     before other stack parms, preallocate stack space instead.

     If the size of some parm is not a multiple of the required stack
     alignment, we must preallocate.

     If the total size of arguments that would otherwise create a copy in
     a temporary (such as a CALL) is more than half the total argument list
     size, preallocation is faster.

     Another reason to preallocate is if we have a machine (like the m88k)
     where stack alignment is required to be maintained between every
     pair of insns, not just when the call is made.  However, we assume here
     that such machines either do not have push insns (and hence preallocation
     would occur anyway) or the problem is taken care of with
     PUSH_ROUNDING.  */

  if (! must_preallocate)
    {
      int partial_seen = 0;
      int copy_to_evaluate_size = 0;

      for (i = 0; i < num_actuals && ! must_preallocate; i++)
	{
	  if (args[i].partial > 0 && ! args[i].pass_on_stack)
	    partial_seen = 1;
	  else if (partial_seen && args[i].reg == 0)
	    must_preallocate = 1;

	  if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
	      && (TREE_CODE (args[i].tree_value) == CALL_EXPR
		  || TREE_CODE (args[i].tree_value) == TARGET_EXPR
		  || TREE_CODE (args[i].tree_value) == COND_EXPR
		  || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
	    copy_to_evaluate_size
	      += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
	}

      if (copy_to_evaluate_size * 2 >= args_size.constant
	  && args_size.constant > 0)
	must_preallocate = 1;
    }

  /* If the structure value address will reference the stack pointer, we must
     stabilize it.  We don't need to do this if we know that we are not going
     to adjust the stack pointer in processing this call.  */

  if (structure_value_addr
      && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
       || reg_mentioned_p (virtual_outgoing_args_rtx, structure_value_addr))
      && (args_size.var
#ifndef ACCUMULATE_OUTGOING_ARGS
	  || args_size.constant
#endif
	  ))
    structure_value_addr = copy_to_reg (structure_value_addr);

  /* If this function call is cse'able, precompute all the parameters.
     Note that if the parameter is constructed into a temporary, this will
     cause an additional copy because the parameter will be constructed
     into a temporary location and then copied into the outgoing arguments.
     If a parameter contains a call to alloca and this function uses the
     stack, precompute the parameter.  */

  /* If we preallocated the stack space, and some arguments must be passed
     on the stack, then we must precompute any parameter which contains a
     function call which will store arguments on the stack.
     Otherwise, evaluating the parameter may clobber previous parameters
     which have already been stored into the stack.  */

  for (i = 0; i < num_actuals; i++)
    if (is_const
	|| ((args_size.var != 0 || args_size.constant != 0)
	    && calls_function (args[i].tree_value, 1))
	|| (must_preallocate && (args_size.var != 0 || args_size.constant != 0)
	    && calls_function (args[i].tree_value, 0)))
      {
	/* If this is an addressable type, we cannot pre-evaluate it.  */
	if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))
	  abort ();

	push_temp_slots ();

	args[i].initial_value = args[i].value
	  = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0);

	preserve_temp_slots (args[i].value);
	pop_temp_slots ();

	/* ANSI doesn't require a sequence point here,
	   but PCC has one, so this will avoid some problems.  */
	emit_queue ();

	args[i].initial_value = args[i].value
	  = protect_from_queue (args[i].initial_value, 0);

	if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) != args[i].mode)
	  args[i].value
	    = convert_modes (args[i].mode, 
			     TYPE_MODE (TREE_TYPE (args[i].tree_value)),
			     args[i].value, args[i].unsignedp);
      }

  /* Now we are about to start emitting insns that can be deleted
     if a libcall is deleted.  */
  if (is_const || is_malloc)
    start_sequence ();

  /* If we have no actual push instructions, or shouldn't use them,
     make space for all args right now.  */

  if (args_size.var != 0)
    {
      if (old_stack_level == 0)
	{
	  emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
	  old_pending_adj = pending_stack_adjust;
	  pending_stack_adjust = 0;
#ifdef ACCUMULATE_OUTGOING_ARGS
	  /* stack_arg_under_construction says whether a stack arg is
	     being constructed at the old stack level.  Pushing the stack
	     gets a clean outgoing argument block.  */
	  old_stack_arg_under_construction = stack_arg_under_construction;
	  stack_arg_under_construction = 0;
#endif
	}
      argblock = push_block (ARGS_SIZE_RTX (args_size), 0, 0);
    }
  else
    {
      /* Note that we must go through the motions of allocating an argument
	 block even if the size is zero because we may be storing args
	 in the area reserved for register arguments, which may be part of
	 the stack frame.  */

      int needed = args_size.constant;

      /* Store the maximum argument space used.  It will be pushed by
	 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
	 checking).  */

      if (needed > current_function_outgoing_args_size)
	current_function_outgoing_args_size = needed;

      if (must_preallocate)
	{
#ifdef ACCUMULATE_OUTGOING_ARGS
	  /* Since the stack pointer will never be pushed, it is possible for
	     the evaluation of a parm to clobber something we have already
	     written to the stack.  Since most function calls on RISC machines
	     do not use the stack, this is uncommon, but must work correctly.

	     Therefore, we save any area of the stack that was already written
	     and that we are using.  Here we set up to do this by making a new
	     stack usage map from the old one.  The actual save will be done
	     by store_one_arg. 

	     Another approach might be to try to reorder the argument
	     evaluations to avoid this conflicting stack usage.  */

#ifndef OUTGOING_REG_PARM_STACK_SPACE
	  /* Since we will be writing into the entire argument area, the
	     map must be allocated for its entire size, not just the part that
	     is the responsibility of the caller.  */
	  needed += reg_parm_stack_space;
#endif

#ifdef ARGS_GROW_DOWNWARD
	  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
					     needed + 1);
#else
	  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
					     needed);
#endif
	  stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use);

	  if (initial_highest_arg_in_use)
	    bcopy (initial_stack_usage_map, stack_usage_map,
		   initial_highest_arg_in_use);

	  if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
	    bzero (&stack_usage_map[initial_highest_arg_in_use],
		   highest_outgoing_arg_in_use - initial_highest_arg_in_use);
	  needed = 0;

	  /* The address of the outgoing argument list must not be copied to a
	     register here, because argblock would be left pointing to the
	     wrong place after the call to allocate_dynamic_stack_space below.
	     */

	  argblock = virtual_outgoing_args_rtx;

#else /* not ACCUMULATE_OUTGOING_ARGS */
	  if (inhibit_defer_pop == 0)
	    {
	      /* Try to reuse some or all of the pending_stack_adjust
		 to get this space.  Maybe we can avoid any pushing.  */
	      if (needed > pending_stack_adjust)
		{
		  needed -= pending_stack_adjust;
		  pending_stack_adjust = 0;
		}
	      else
		{
		  pending_stack_adjust -= needed;
		  needed = 0;
		}
	    }
	  /* Special case this because overhead of `push_block' in this
	     case is non-trivial.  */
	  if (needed == 0)
	    argblock = virtual_outgoing_args_rtx;
	  else
	    argblock = push_block (GEN_INT (needed), 0, 0);

	  /* We only really need to call `copy_to_reg' in the case where push
	     insns are going to be used to pass ARGBLOCK to a function
	     call in ARGS.  In that case, the stack pointer changes value
	     from the allocation point to the call point, and hence
	     the value of VIRTUAL_OUTGOING_ARGS_RTX changes as well.
	     But might as well always do it.  */
	  argblock = copy_to_reg (argblock);
#endif /* not ACCUMULATE_OUTGOING_ARGS */
	}
    }

#ifdef ACCUMULATE_OUTGOING_ARGS
  /* The save/restore code in store_one_arg handles all cases except one:
     a constructor call (including a C function returning a BLKmode struct)
     to initialize an argument.  */
  if (stack_arg_under_construction)
    {
#ifndef OUTGOING_REG_PARM_STACK_SPACE
      rtx push_size = GEN_INT (reg_parm_stack_space + args_size.constant);
#else
      rtx push_size = GEN_INT (args_size.constant);
#endif
      if (old_stack_level == 0)
	{
	  emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
	  old_pending_adj = pending_stack_adjust;
	  pending_stack_adjust = 0;
	  /* stack_arg_under_construction says whether a stack arg is
	     being constructed at the old stack level.  Pushing the stack
	     gets a clean outgoing argument block.  */
	  old_stack_arg_under_construction = stack_arg_under_construction;
	  stack_arg_under_construction = 0;
	  /* Make a new map for the new argument list.  */
	  stack_usage_map = (char *)alloca (highest_outgoing_arg_in_use);
	  bzero (stack_usage_map, highest_outgoing_arg_in_use);
	  highest_outgoing_arg_in_use = 0;
	}
      allocate_dynamic_stack_space (push_size, NULL_RTX, BITS_PER_UNIT);
    }
  /* If argument evaluation might modify the stack pointer, copy the
     address of the argument list to a register.  */
  for (i = 0; i < num_actuals; i++)
    if (args[i].pass_on_stack)
      {
	argblock = copy_addr_to_reg (argblock);
	break;
      }
#endif


  /* If we preallocated stack space, compute the address of each argument.
     We need not ensure it is a valid memory address here; it will be 
     validized when it is used.  */
  if (argblock)
    {
      rtx arg_reg = argblock;
      int arg_offset = 0;

      if (GET_CODE (argblock) == PLUS)
	arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));

      for (i = 0; i < num_actuals; i++)
	{
	  rtx offset = ARGS_SIZE_RTX (args[i].offset);
	  rtx slot_offset = ARGS_SIZE_RTX (args[i].slot_offset);
	  rtx addr;

	  /* Skip this parm if it will not be passed on the stack.  */
	  if (! args[i].pass_on_stack && args[i].reg != 0)
	    continue;

	  if (GET_CODE (offset) == CONST_INT)
	    addr = plus_constant (arg_reg, INTVAL (offset));
	  else
	    addr = gen_rtx_PLUS (Pmode, arg_reg, offset);

	  addr = plus_constant (addr, arg_offset);
	  args[i].stack = gen_rtx_MEM (args[i].mode, addr);
	  MEM_IN_STRUCT_P (args[i].stack)
	    = AGGREGATE_TYPE_P (TREE_TYPE (args[i].tree_value));

	  if (GET_CODE (slot_offset) == CONST_INT)
	    addr = plus_constant (arg_reg, INTVAL (slot_offset));
	  else
	    addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);

	  addr = plus_constant (addr, arg_offset);
	  args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
	}
    }
					       
#ifdef PUSH_ARGS_REVERSED
#ifdef STACK_BOUNDARY
  /* If we push args individually in reverse order, perform stack alignment
     before the first push (the last arg).  */
  if (argblock == 0)
    anti_adjust_stack (GEN_INT (args_size.constant
				- original_args_size.constant));
#endif
#endif

  /* Don't try to defer pops if preallocating, not even from the first arg,
     since ARGBLOCK probably refers to the SP.  */
  if (argblock)
    NO_DEFER_POP;

  /* Get the function to call, in the form of RTL.  */
  if (fndecl)
    {
      /* If this is the first use of the function, see if we need to
	 make an external definition for it.  */
      if (! TREE_USED (fndecl))
	{
	  assemble_external (fndecl);
	  TREE_USED (fndecl) = 1;
	}

      /* Get a SYMBOL_REF rtx for the function address.  */
      funexp = XEXP (DECL_RTL (fndecl), 0);
    }
  else
    /* Generate an rtx (probably a pseudo-register) for the address.  */
    {
      push_temp_slots ();
      funexp = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
      pop_temp_slots ();	/* FUNEXP can't be BLKmode */

      /* Check the function is executable.  */
      if (flag_check_memory_usage)
	emit_library_call (chkr_check_exec_libfunc, 1,
			   VOIDmode, 1,
			   funexp, ptr_mode);
      emit_queue ();
    }

  /* Figure out the register where the value, if any, will come back.  */
  valreg = 0;
  if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode
      && ! structure_value_addr)
    {
      if (pcc_struct_value)
	valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)),
				      fndecl);
      else
	valreg = hard_function_value (TREE_TYPE (exp), fndecl);
    }

  /* Precompute all register parameters.  It isn't safe to compute anything
     once we have started filling any specific hard regs.  */
  reg_parm_seen = 0;
  for (i = 0; i < num_actuals; i++)
    if (args[i].reg != 0 && ! args[i].pass_on_stack)
      {
	reg_parm_seen = 1;

	if (args[i].value == 0)
	  {
	    push_temp_slots ();
	    args[i].value = expand_expr (args[i].tree_value, NULL_RTX,
					 VOIDmode, 0);
	    preserve_temp_slots (args[i].value);
	    pop_temp_slots ();

	    /* ANSI doesn't require a sequence point here,
	       but PCC has one, so this will avoid some problems.  */
	    emit_queue ();
	  }

	/* If we are to promote the function arg to a wider mode,
	   do it now.  */

	if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
	  args[i].value
	    = convert_modes (args[i].mode,
			     TYPE_MODE (TREE_TYPE (args[i].tree_value)),
			     args[i].value, args[i].unsignedp);

	/* If the value is expensive, and we are inside an appropriately 
	   short loop, put the value into a pseudo and then put the pseudo
	   into the hard reg.

	   For small register classes, also do this if this call uses
	   register parameters.  This is to avoid reload conflicts while
	   loading the parameters registers.  */

	if ((! (GET_CODE (args[i].value) == REG
		|| (GET_CODE (args[i].value) == SUBREG
		    && GET_CODE (SUBREG_REG (args[i].value)) == REG)))
	    && args[i].mode != BLKmode
	    && rtx_cost (args[i].value, SET) > 2
	    && ((SMALL_REGISTER_CLASSES && reg_parm_seen)
		|| preserve_subexpressions_p ()))
	  args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
      }

#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)

  /* The argument list is the property of the called routine and it
     may clobber it.  If the fixed area has been used for previous
     parameters, we must save and restore it.

     Here we compute the boundary of the that needs to be saved, if any.  */

#ifdef ARGS_GROW_DOWNWARD
  for (i = 0; i < reg_parm_stack_space + 1; i++)
#else
  for (i = 0; i < reg_parm_stack_space; i++)
#endif
    {
      if (i >=  highest_outgoing_arg_in_use
	  || stack_usage_map[i] == 0)
	continue;

      if (low_to_save == -1)
	low_to_save = i;

      high_to_save = i;
    }

  if (low_to_save >= 0)
    {
      int num_to_save = high_to_save - low_to_save + 1;
      enum machine_mode save_mode
	= mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
      rtx stack_area;

      /* If we don't have the required alignment, must do this in BLKmode.  */
      if ((low_to_save & (MIN (GET_MODE_SIZE (save_mode),
			       BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
	save_mode = BLKmode;

#ifdef ARGS_GROW_DOWNWARD
      stack_area = gen_rtx_MEM (save_mode,
				memory_address (save_mode,
						plus_constant (argblock,
							       - high_to_save)));
#else
      stack_area = gen_rtx_MEM (save_mode,
				memory_address (save_mode,
						plus_constant (argblock,
							       low_to_save)));
#endif
      if (save_mode == BLKmode)
	{
	  save_area = assign_stack_temp (BLKmode, num_to_save, 0);
	  MEM_IN_STRUCT_P (save_area) = 0;
	  emit_block_move (validize_mem (save_area), stack_area,
			   GEN_INT (num_to_save),
			   PARM_BOUNDARY / BITS_PER_UNIT);
	}
      else
	{
	  save_area = gen_reg_rtx (save_mode);
	  emit_move_insn (save_area, stack_area);
	}
    }
#endif
	  

  /* Now store (and compute if necessary) all non-register parms.
     These come before register parms, since they can require block-moves,
     which could clobber the registers used for register parms.
     Parms which have partial registers are not stored here,
     but we do preallocate space here if they want that.  */

  for (i = 0; i < num_actuals; i++)
    if (args[i].reg == 0 || args[i].pass_on_stack)
      store_one_arg (&args[i], argblock, may_be_alloca,
		     args_size.var != 0, fndecl, reg_parm_stack_space);

  /* If we have a parm that is passed in registers but not in memory
     and whose alignment does not permit a direct copy into registers,
     make a group of pseudos that correspond to each register that we
     will later fill.  */

  if (STRICT_ALIGNMENT)
    for (i = 0; i < num_actuals; i++)
      if (args[i].reg != 0 && ! args[i].pass_on_stack
	&& args[i].mode == BLKmode
	  && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value))
	      < MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
	{
	  int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
	  int big_endian_correction = 0;

	  args[i].n_aligned_regs
	    = args[i].partial ? args[i].partial
	      : (bytes + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;

	  args[i].aligned_regs = (rtx *) alloca (sizeof (rtx)
						 * args[i].n_aligned_regs);

	  /* Structures smaller than a word are aligned to the least
	     significant byte (to the right).  On a BYTES_BIG_ENDIAN machine,
	     this means we must skip the empty high order bytes when
	     calculating the bit offset.  */
	  if (BYTES_BIG_ENDIAN && bytes < UNITS_PER_WORD)
	    big_endian_correction = (BITS_PER_WORD  - (bytes * BITS_PER_UNIT));

	  for (j = 0; j < args[i].n_aligned_regs; j++)
	    {
	      rtx reg = gen_reg_rtx (word_mode);
	      rtx word = operand_subword_force (args[i].value, j, BLKmode);
	      int bitsize = TYPE_ALIGN (TREE_TYPE (args[i].tree_value));
	      int bitpos;

	      args[i].aligned_regs[j] = reg;

	      /* Clobber REG and move each partword into it.  Ensure we don't
		 go past the end of the structure.  Note that the loop below
		 works because we've already verified that padding
		 and endianness are compatible.

		 We use to emit a clobber here but that doesn't let later
		 passes optimize the instructions we emit.  By storing 0 into
		 the register later passes know the first AND to zero out the
		 bitfield being set in the register is unnecessary.  The store
		 of 0 will be deleted as will at least the first AND.  */

	      emit_move_insn (reg, const0_rtx);

	      for (bitpos = 0;
		   bitpos < BITS_PER_WORD && bytes > 0;
		   bitpos += bitsize, bytes -= bitsize / BITS_PER_UNIT)
		{
		  int xbitpos = bitpos + big_endian_correction;

		  store_bit_field (reg, bitsize, xbitpos, word_mode,
				   extract_bit_field (word, bitsize, bitpos, 1,
						      NULL_RTX, word_mode,
						      word_mode,
						      bitsize / BITS_PER_UNIT,
						      BITS_PER_WORD),
				   bitsize / BITS_PER_UNIT, BITS_PER_WORD);
		}
	    }
	}

  /* Now store any partially-in-registers parm.
     This is the last place a block-move can happen.  */
  if (reg_parm_seen)
    for (i = 0; i < num_actuals; i++)
      if (args[i].partial != 0 && ! args[i].pass_on_stack)
	store_one_arg (&args[i], argblock, may_be_alloca,
		       args_size.var != 0, fndecl, reg_parm_stack_space);

#ifndef PUSH_ARGS_REVERSED
#ifdef STACK_BOUNDARY
  /* If we pushed args in forward order, perform stack alignment
     after pushing the last arg.  */
  if (argblock == 0)
    anti_adjust_stack (GEN_INT (args_size.constant
				- original_args_size.constant));
#endif
#endif

  /* If register arguments require space on the stack and stack space
     was not preallocated, allocate stack space here for arguments
     passed in registers.  */
#if ! defined(ACCUMULATE_OUTGOING_ARGS) && defined(OUTGOING_REG_PARM_STACK_SPACE)
  if (must_preallocate == 0 && reg_parm_stack_space > 0)
    anti_adjust_stack (GEN_INT (reg_parm_stack_space));
#endif

  /* Pass the function the address in which to return a structure value.  */
  if (structure_value_addr && ! structure_value_addr_parm)
    {
      emit_move_insn (struct_value_rtx,
		      force_reg (Pmode,
				 force_operand (structure_value_addr,
						NULL_RTX)));

      /* Mark the memory for the aggregate as write-only.  */
      if (flag_check_memory_usage)
	emit_library_call (chkr_set_right_libfunc, 1,
			   VOIDmode, 3,
			   structure_value_addr, ptr_mode, 
			   GEN_INT (struct_value_size), TYPE_MODE (sizetype),
			   GEN_INT (MEMORY_USE_WO),
			   TYPE_MODE (integer_type_node));

      if (GET_CODE (struct_value_rtx) == REG)
	  use_reg (&call_fusage, struct_value_rtx);
    }

  funexp = prepare_call_address (funexp, fndecl, &call_fusage, reg_parm_seen);

  /* Now do the register loads required for any wholly-register parms or any
     parms which are passed both on the stack and in a register.  Their
     expressions were already evaluated. 

     Mark all register-parms as living through the call, putting these USE
     insns in the CALL_INSN_FUNCTION_USAGE field.  */

#ifdef LOAD_ARGS_REVERSED
  for (i = num_actuals - 1; i >= 0; i--)
#else
  for (i = 0; i < num_actuals; i++)
#endif
    {
      rtx reg = args[i].reg;
      int partial = args[i].partial;
      int nregs;

      if (reg)
	{
	  /* Set to non-negative if must move a word at a time, even if just
	     one word (e.g, partial == 1 && mode == DFmode).  Set to -1 if
	     we just use a normal move insn.  This value can be zero if the
	     argument is a zero size structure with no fields.  */
	  nregs = (partial ? partial
		   : (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
		      ? ((int_size_in_bytes (TREE_TYPE (args[i].tree_value))
			  + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
		      : -1));

	  /* Handle calls that pass values in multiple non-contiguous
	     locations.  The Irix 6 ABI has examples of this.  */

	  if (GET_CODE (reg) == PARALLEL)
	    emit_group_load (reg, args[i].value);

	  /* If simple case, just do move.  If normal partial, store_one_arg
	     has already loaded the register for us.  In all other cases,
	     load the register(s) from memory.  */

	  else if (nregs == -1)
	    emit_move_insn (reg, args[i].value);

	  /* If we have pre-computed the values to put in the registers in
	     the case of non-aligned structures, copy them in now.  */

	  else if (args[i].n_aligned_regs != 0)
	    for (j = 0; j < args[i].n_aligned_regs; j++)
	      emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
			      args[i].aligned_regs[j]);

	  else if (partial == 0 || args[i].pass_on_stack)
	    move_block_to_reg (REGNO (reg),
			       validize_mem (args[i].value), nregs,
			       args[i].mode);

	  /* Handle calls that pass values in multiple non-contiguous
	     locations.  The Irix 6 ABI has examples of this.  */
	  if (GET_CODE (reg) == PARALLEL)
	    use_group_regs (&call_fusage, reg);
	  else if (nregs == -1)
	    use_reg (&call_fusage, reg);
	  else
	    use_regs (&call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs);
	}
    }

  /* Perform postincrements before actually calling the function.  */
  emit_queue ();

  /* All arguments and registers used for the call must be set up by now!  */

  /* Generate the actual call instruction.  */
  emit_call_1 (funexp, fndecl, funtype, args_size.constant, struct_value_size,
	       FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
	       valreg, old_inhibit_defer_pop, call_fusage, is_const);

  /* If call is cse'able, make appropriate pair of reg-notes around it.
     Test valreg so we don't crash; may safely ignore `const'
     if return type is void.  Disable for PARALLEL return values, because
     we have no way to move such values into a pseudo register.  */
  if (is_const && valreg != 0 && GET_CODE (valreg) != PARALLEL)
    {
      rtx note = 0;
      rtx temp = gen_reg_rtx (GET_MODE (valreg));
      rtx insns;

      /* Mark the return value as a pointer if needed.  */
      if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
	{
	  tree pointed_to = TREE_TYPE (TREE_TYPE (exp));
	  mark_reg_pointer (temp, TYPE_ALIGN (pointed_to) / BITS_PER_UNIT);
	}

      /* Construct an "equal form" for the value which mentions all the
	 arguments in order as well as the function name.  */
#ifdef PUSH_ARGS_REVERSED
      for (i = 0; i < num_actuals; i++)
	note = gen_rtx_EXPR_LIST (VOIDmode, args[i].initial_value, note);
#else
      for (i = num_actuals - 1; i >= 0; i--)
	note = gen_rtx_EXPR_LIST (VOIDmode, args[i].initial_value, note);
#endif
      note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note);

      insns = get_insns ();
      end_sequence ();

      emit_libcall_block (insns, temp, valreg, note);

      valreg = temp;
    }
  else if (is_const)
    {
      /* Otherwise, just write out the sequence without a note.  */
      rtx insns = get_insns ();

      end_sequence ();
      emit_insns (insns);
    }
  else if (is_malloc)
    {
      rtx temp = gen_reg_rtx (GET_MODE (valreg));
      rtx last, insns;

      /* The return value from a malloc-like function is a pointer. */
      if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE)
	mark_reg_pointer (temp, BIGGEST_ALIGNMENT / BITS_PER_UNIT);

      emit_move_insn (temp, valreg);

      /* The return value from a malloc-like function can not alias
	 anything else.  */
      last = get_last_insn ();
      REG_NOTES (last) = 
	gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last));

      /* Write out the sequence.  */
      insns = get_insns ();
      end_sequence ();
      emit_insns (insns);
      valreg = temp;
    }

  /* For calls to `setjmp', etc., inform flow.c it should complain
     if nonvolatile values are live.  */

  if (returns_twice)
    {
      emit_note (name, NOTE_INSN_SETJMP);
      current_function_calls_setjmp = 1;
    }

  if (is_longjmp)
    current_function_calls_longjmp = 1;

  /* Notice functions that cannot return.
     If optimizing, insns emitted below will be dead.
     If not optimizing, they will exist, which is useful
     if the user uses the `return' command in the debugger.  */

  if (is_volatile || is_longjmp)
    emit_barrier ();

  /* If value type not void, return an rtx for the value.  */

  /* If there are cleanups to be called, don't use a hard reg as target.
     We need to double check this and see if it matters anymore.  */
  if (any_pending_cleanups (1)
      && target && REG_P (target)
      && REGNO (target) < FIRST_PSEUDO_REGISTER)
    target = 0;

  if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode
      || ignore)
    {
      target = const0_rtx;
    }
  else if (structure_value_addr)
    {
      if (target == 0 || GET_CODE (target) != MEM)
	{
	  target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
				memory_address (TYPE_MODE (TREE_TYPE (exp)),
						structure_value_addr));
	  MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp));
	}
    }
  else if (pcc_struct_value)
    {
      /* This is the special C++ case where we need to
	 know what the true target was.  We take care to
	 never use this value more than once in one expression.  */
      target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)),
			    copy_to_reg (valreg));
      MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp));
    }
  /* Handle calls that return values in multiple non-contiguous locations.
     The Irix 6 ABI has examples of this.  */
  else if (GET_CODE (valreg) == PARALLEL)
    {
      if (target == 0)
	{
	  int bytes = int_size_in_bytes (TREE_TYPE (exp));
	  target = assign_stack_temp (TYPE_MODE (TREE_TYPE (exp)), bytes, 0);
	  MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp));
	  preserve_temp_slots (target);
	}

      emit_group_store (target, valreg);
    }
  else if (target && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp))
	   && GET_MODE (target) == GET_MODE (valreg))
    /* TARGET and VALREG cannot be equal at this point because the latter
       would not have REG_FUNCTION_VALUE_P true, while the former would if
       it were referring to the same register.

       If they refer to the same register, this move will be a no-op, except
       when function inlining is being done.  */
    emit_move_insn (target, valreg);
  else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
    {
      /* Some machines (the PA for example) want to return all small
	 structures in registers regardless of the structure's alignment.
	 
	 Deal with them explicitly by copying from the return registers
	 into the target MEM locations.  */
      int bytes = int_size_in_bytes (TREE_TYPE (exp));
      rtx src, dst;
      int bitsize = MIN (TYPE_ALIGN (TREE_TYPE (exp)), BITS_PER_WORD);
      int bitpos, xbitpos, big_endian_correction = 0;
      
      if (target == 0)
	{
	  target = assign_stack_temp (BLKmode, bytes, 0);
	  MEM_IN_STRUCT_P (target) = AGGREGATE_TYPE_P (TREE_TYPE (exp));
	  preserve_temp_slots (target);
	}

      /* This code assumes valreg is at least a full word.  If it isn't,
	 copy it into a new pseudo which is a full word.  */
      if (GET_MODE (valreg) != BLKmode
	  && GET_MODE_SIZE (GET_MODE (valreg)) < UNITS_PER_WORD)
	valreg = convert_to_mode (word_mode, valreg,
				  TREE_UNSIGNED (TREE_TYPE (exp)));

      /* Structures whose size is not a multiple of a word are aligned
	 to the least significant byte (to the right).  On a BYTES_BIG_ENDIAN
	 machine, this means we must skip the empty high order bytes when
	 calculating the bit offset.  */
      if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD)
	big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
						  * BITS_PER_UNIT));

      /* Copy the structure BITSIZE bites at a time.

	 We could probably emit more efficient code for machines
	 which do not use strict alignment, but it doesn't seem
	 worth the effort at the current time.  */
      for (bitpos = 0, xbitpos = big_endian_correction;
	   bitpos < bytes * BITS_PER_UNIT;
	   bitpos += bitsize, xbitpos += bitsize)
	{

	  /* We need a new source operand each time xbitpos is on a 
	     word boundary and when xbitpos == big_endian_correction
	     (the first time through).  */
	  if (xbitpos % BITS_PER_WORD == 0
	      || xbitpos == big_endian_correction)
	    src = operand_subword_force (valreg,
					 xbitpos / BITS_PER_WORD, 
					 BLKmode);

	  /* We need a new destination operand each time bitpos is on
	     a word boundary.  */
	  if (bitpos % BITS_PER_WORD == 0)
	    dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, BLKmode);
	      
	  /* Use xbitpos for the source extraction (right justified) and
	     xbitpos for the destination store (left justified).  */
	  store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
			   extract_bit_field (src, bitsize,
					      xbitpos % BITS_PER_WORD, 1,
					      NULL_RTX, word_mode,
					      word_mode,
					      bitsize / BITS_PER_UNIT,
					      BITS_PER_WORD),
			   bitsize / BITS_PER_UNIT, BITS_PER_WORD);
	}
    }
  else
    target = copy_to_reg (valreg);

#ifdef PROMOTE_FUNCTION_RETURN
  /* If we promoted this return value, make the proper SUBREG.  TARGET
     might be const0_rtx here, so be careful.  */
  if (GET_CODE (target) == REG
      && TYPE_MODE (TREE_TYPE (exp)) != BLKmode
      && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
    {
      tree type = TREE_TYPE (exp);
      int unsignedp = TREE_UNSIGNED (type);

      /* If we don't promote as expected, something is wrong.  */
      if (GET_MODE (target)
	  != promote_mode (type, TYPE_MODE (type), &unsignedp, 1))
	abort ();

      target = gen_rtx_SUBREG (TYPE_MODE (type), target, 0);
      SUBREG_PROMOTED_VAR_P (target) = 1;
      SUBREG_PROMOTED_UNSIGNED_P (target) = unsignedp;
    }
#endif

  /* If size of args is variable or this was a constructor call for a stack
     argument, restore saved stack-pointer value.  */

  if (old_stack_level)
    {
      emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
      pending_stack_adjust = old_pending_adj;
#ifdef ACCUMULATE_OUTGOING_ARGS
      stack_arg_under_construction = old_stack_arg_under_construction;
      highest_outgoing_arg_in_use = initial_highest_arg_in_use;
      stack_usage_map = initial_stack_usage_map;
#endif
    }
#ifdef ACCUMULATE_OUTGOING_ARGS
  else
    {
#ifdef REG_PARM_STACK_SPACE
      if (save_area)
	{
	  enum machine_mode save_mode = GET_MODE (save_area);
#ifdef ARGS_GROW_DOWNWARD
	  rtx stack_area
	    = gen_rtx_MEM (save_mode,
			   memory_address (save_mode,
					   plus_constant (argblock,
							  - high_to_save)));
#else
	  rtx stack_area
	    = gen_rtx_MEM (save_mode,
			   memory_address (save_mode,
					   plus_constant (argblock,
							  low_to_save)));
#endif

	  if (save_mode != BLKmode)
	    emit_move_insn (stack_area, save_area);
	  else
	    emit_block_move (stack_area, validize_mem (save_area),
			     GEN_INT (high_to_save - low_to_save + 1),
			     PARM_BOUNDARY / BITS_PER_UNIT);
	}
#endif
	  
      /* If we saved any argument areas, restore them.  */
      for (i = 0; i < num_actuals; i++)
	if (args[i].save_area)
	  {
	    enum machine_mode save_mode = GET_MODE (args[i].save_area);
	    rtx stack_area
	      = gen_rtx_MEM (save_mode,
			     memory_address (save_mode,
					     XEXP (args[i].stack_slot, 0)));

	    if (save_mode != BLKmode)
	      emit_move_insn (stack_area, args[i].save_area);
	    else
	      emit_block_move (stack_area, validize_mem (args[i].save_area),
			       GEN_INT (args[i].size.constant),
			       PARM_BOUNDARY / BITS_PER_UNIT);
	  }

      highest_outgoing_arg_in_use = initial_highest_arg_in_use;
      stack_usage_map = initial_stack_usage_map;
    }
#endif

  /* If this was alloca, record the new stack level for nonlocal gotos.  
     Check for the handler slots since we might not have a save area
     for non-local gotos.  */

  if (may_be_alloca && nonlocal_goto_handler_slot != 0)
    emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);

  pop_temp_slots ();

  return target;
}

/* Output a library call to function FUN (a SYMBOL_REF rtx)
   (emitting the queue unless NO_QUEUE is nonzero),
   for a value of mode OUTMODE,
   with NARGS different arguments, passed as alternating rtx values
   and machine_modes to convert them to.
   The rtx values should have been passed through protect_from_queue already.

   NO_QUEUE will be true if and only if the library call is a `const' call
   which will be enclosed in REG_LIBCALL/REG_RETVAL notes; it is equivalent
   to the variable is_const in expand_call.

   NO_QUEUE must be true for const calls, because if it isn't, then
   any pending increment will be emitted between REG_LIBCALL/REG_RETVAL notes,
   and will be lost if the libcall sequence is optimized away.

   NO_QUEUE must be false for non-const calls, because if it isn't, the
   call insn will have its CONST_CALL_P bit set, and it will be incorrectly
   optimized.  For instance, the instruction scheduler may incorrectly
   move memory references across the non-const call.  */

void
emit_library_call VPROTO((rtx orgfun, int no_queue, enum machine_mode outmode,
			  int nargs, ...))
{
#ifndef __STDC__
  rtx orgfun;
  int no_queue;
  enum machine_mode outmode;
  int nargs;
#endif
  va_list p;
  /* Total size in bytes of all the stack-parms scanned so far.  */
  struct args_size args_size;
  /* Size of arguments before any adjustments (such as rounding).  */
  struct args_size original_args_size;
  register int argnum;
  rtx fun;
  int inc;
  int count;
  rtx argblock = 0;
  CUMULATIVE_ARGS args_so_far;
  struct arg { rtx value; enum machine_mode mode; rtx reg; int partial;
	       struct args_size offset; struct args_size size; rtx save_area; };
  struct arg *argvec;
  int old_inhibit_defer_pop = inhibit_defer_pop;
  rtx call_fusage = 0;
  int reg_parm_stack_space = 0;
#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
  /* Define the boundary of the register parm stack space that needs to be
     save, if any.  */
  int low_to_save = -1, high_to_save;
  rtx save_area = 0;            /* Place that it is saved */
#endif

#ifdef ACCUMULATE_OUTGOING_ARGS
  int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
  char *initial_stack_usage_map = stack_usage_map;
  int needed;
#endif

#ifdef REG_PARM_STACK_SPACE
  /* Size of the stack reserved for parameter registers.  */
#ifdef MAYBE_REG_PARM_STACK_SPACE
  reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
#else
  reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
#endif
#endif

  VA_START (p, nargs);

#ifndef __STDC__
  orgfun = va_arg (p, rtx);
  no_queue = va_arg (p, int);
  outmode = va_arg (p, enum machine_mode);
  nargs = va_arg (p, int);
#endif

  fun = orgfun;

  /* Copy all the libcall-arguments out of the varargs data
     and into a vector ARGVEC.

     Compute how to pass each argument.  We only support a very small subset
     of the full argument passing conventions to limit complexity here since
     library functions shouldn't have many args.  */

  argvec = (struct arg *) alloca (nargs * sizeof (struct arg));
  bzero ((char *) argvec, nargs * sizeof (struct arg));


  INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0);

  args_size.constant = 0;
  args_size.var = 0;

  push_temp_slots ();

  for (count = 0; count < nargs; count++)
    {
      rtx val = va_arg (p, rtx);
      enum machine_mode mode = va_arg (p, enum machine_mode);

      /* We cannot convert the arg value to the mode the library wants here;
	 must do it earlier where we know the signedness of the arg.  */
      if (mode == BLKmode
	  || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
	abort ();

      /* On some machines, there's no way to pass a float to a library fcn.
	 Pass it as a double instead.  */
#ifdef LIBGCC_NEEDS_DOUBLE
      if (LIBGCC_NEEDS_DOUBLE && mode == SFmode)
	val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode;
#endif

      /* There's no need to call protect_from_queue, because
	 either emit_move_insn or emit_push_insn will do that.  */

      /* Make sure it is a reasonable operand for a move or push insn.  */
      if (GET_CODE (val) != REG && GET_CODE (val) != MEM
	  && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
	val = force_operand (val, NULL_RTX);

#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
      if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1))
	{
	  /* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can
	     be viewed as just an efficiency improvement.  */
	  rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
	  emit_move_insn (slot, val);
	  val = force_operand (XEXP (slot, 0), NULL_RTX);
	  mode = Pmode;
	}
#endif

      argvec[count].value = val;
      argvec[count].mode = mode;

      argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
      if (argvec[count].reg && GET_CODE (argvec[count].reg) == PARALLEL)
	abort ();
#ifdef FUNCTION_ARG_PARTIAL_NREGS
      argvec[count].partial
	= FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
#else
      argvec[count].partial = 0;
#endif

      locate_and_pad_parm (mode, NULL_TREE,
			   argvec[count].reg && argvec[count].partial == 0,
			   NULL_TREE, &args_size, &argvec[count].offset,
			   &argvec[count].size);

      if (argvec[count].size.var)
	abort ();

      if (reg_parm_stack_space == 0 && argvec[count].partial)
	argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD;

      if (argvec[count].reg == 0 || argvec[count].partial != 0
	  || reg_parm_stack_space > 0)
	args_size.constant += argvec[count].size.constant;

      FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
    }
  va_end (p);

#ifdef FINAL_REG_PARM_STACK_SPACE
  reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
						     args_size.var);
#endif
      
  /* If this machine requires an external definition for library
     functions, write one out.  */
  assemble_external_libcall (fun);

  original_args_size = args_size;
#ifdef STACK_BOUNDARY
  args_size.constant = (((args_size.constant + (STACK_BYTES - 1))
			 / STACK_BYTES) * STACK_BYTES);
#endif

  args_size.constant = MAX (args_size.constant,
			    reg_parm_stack_space);

#ifndef OUTGOING_REG_PARM_STACK_SPACE
  args_size.constant -= reg_parm_stack_space;
#endif

  if (args_size.constant > current_function_outgoing_args_size)
    current_function_outgoing_args_size = args_size.constant;

#ifdef ACCUMULATE_OUTGOING_ARGS
  /* Since the stack pointer will never be pushed, it is possible for
     the evaluation of a parm to clobber something we have already
     written to the stack.  Since most function calls on RISC machines
     do not use the stack, this is uncommon, but must work correctly.

     Therefore, we save any area of the stack that was already written
     and that we are using.  Here we set up to do this by making a new
     stack usage map from the old one.

     Another approach might be to try to reorder the argument
     evaluations to avoid this conflicting stack usage.  */

  needed = args_size.constant;

#ifndef OUTGOING_REG_PARM_STACK_SPACE
  /* Since we will be writing into the entire argument area, the
     map must be allocated for its entire size, not just the part that
     is the responsibility of the caller.  */
  needed += reg_parm_stack_space;
#endif

#ifdef ARGS_GROW_DOWNWARD
  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
				     needed + 1);
#else
  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
				     needed);
#endif
  stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use);

  if (initial_highest_arg_in_use)
    bcopy (initial_stack_usage_map, stack_usage_map,
	   initial_highest_arg_in_use);

  if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
    bzero (&stack_usage_map[initial_highest_arg_in_use],
	   highest_outgoing_arg_in_use - initial_highest_arg_in_use);
  needed = 0;

  /* The address of the outgoing argument list must not be copied to a
     register here, because argblock would be left pointing to the
     wrong place after the call to allocate_dynamic_stack_space below.
     */

  argblock = virtual_outgoing_args_rtx;
#else /* not ACCUMULATE_OUTGOING_ARGS */
#ifndef PUSH_ROUNDING
  argblock = push_block (GEN_INT (args_size.constant), 0, 0);
#endif
#endif

#ifdef PUSH_ARGS_REVERSED
#ifdef STACK_BOUNDARY
  /* If we push args individually in reverse order, perform stack alignment
     before the first push (the last arg).  */
  if (argblock == 0)
    anti_adjust_stack (GEN_INT (args_size.constant
				- original_args_size.constant));
#endif
#endif

#ifdef PUSH_ARGS_REVERSED
  inc = -1;
  argnum = nargs - 1;
#else
  inc = 1;
  argnum = 0;
#endif

#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
  /* The argument list is the property of the called routine and it
     may clobber it.  If the fixed area has been used for previous
     parameters, we must save and restore it.

     Here we compute the boundary of the that needs to be saved, if any.  */

#ifdef ARGS_GROW_DOWNWARD
  for (count = 0; count < reg_parm_stack_space + 1; count++)
#else
  for (count = 0; count < reg_parm_stack_space; count++)
#endif
    {
      if (count >=  highest_outgoing_arg_in_use
	  || stack_usage_map[count] == 0)
	continue;

      if (low_to_save == -1)
	low_to_save = count;

      high_to_save = count;
    }

  if (low_to_save >= 0)
    {
      int num_to_save = high_to_save - low_to_save + 1;
      enum machine_mode save_mode
	= mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
      rtx stack_area;

      /* If we don't have the required alignment, must do this in BLKmode.  */
      if ((low_to_save & (MIN (GET_MODE_SIZE (save_mode),
			       BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
	save_mode = BLKmode;

#ifdef ARGS_GROW_DOWNWARD
      stack_area = gen_rtx_MEM (save_mode,
				memory_address (save_mode,
						plus_constant (argblock,
							       - high_to_save)));
#else
      stack_area = gen_rtx_MEM (save_mode,
				memory_address (save_mode,
						plus_constant (argblock,
							       low_to_save)));
#endif
      if (save_mode == BLKmode)
	{
	  save_area = assign_stack_temp (BLKmode, num_to_save, 0);
	  MEM_IN_STRUCT_P (save_area) = 0;
	  emit_block_move (validize_mem (save_area), stack_area,
			   GEN_INT (num_to_save),
			   PARM_BOUNDARY / BITS_PER_UNIT);
	}
      else
	{
	  save_area = gen_reg_rtx (save_mode);
	  emit_move_insn (save_area, stack_area);
	}
    }
#endif
	  
  /* Push the args that need to be pushed.  */

  /* ARGNUM indexes the ARGVEC array in the order in which the arguments
     are to be pushed.  */
  for (count = 0; count < nargs; count++, argnum += inc)
    {
      register enum machine_mode mode = argvec[argnum].mode;
      register rtx val = argvec[argnum].value;
      rtx reg = argvec[argnum].reg;
      int partial = argvec[argnum].partial;
#ifdef ACCUMULATE_OUTGOING_ARGS
      int lower_bound, upper_bound, i;
#endif

      if (! (reg != 0 && partial == 0))
	{
#ifdef ACCUMULATE_OUTGOING_ARGS
	  /* If this is being stored into a pre-allocated, fixed-size, stack
	     area, save any previous data at that location.  */

#ifdef ARGS_GROW_DOWNWARD
	  /* stack_slot is negative, but we want to index stack_usage_map
	     with positive values.  */
	  upper_bound = -argvec[argnum].offset.constant + 1;
	  lower_bound = upper_bound - argvec[argnum].size.constant;
#else
	  lower_bound = argvec[argnum].offset.constant;
	  upper_bound = lower_bound + argvec[argnum].size.constant;
#endif

	  for (i = lower_bound; i < upper_bound; i++)
	    if (stack_usage_map[i]
		/* Don't store things in the fixed argument area at this point;
		   it has already been saved.  */
		&& i > reg_parm_stack_space)
	      break;

	  if (i != upper_bound)
	    {
	      /* We need to make a save area.  See what mode we can make it. */
	      enum machine_mode save_mode
		= mode_for_size (argvec[argnum].size.constant * BITS_PER_UNIT,
				 MODE_INT, 1);
	      rtx stack_area
		= gen_rtx_MEM (save_mode,
			       memory_address (save_mode,
					       plus_constant (argblock, argvec[argnum].offset.constant)));
	      argvec[argnum].save_area = gen_reg_rtx (save_mode);
	      emit_move_insn (argvec[argnum].save_area, stack_area);
	    }
#endif
	  emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0,
			  argblock, GEN_INT (argvec[argnum].offset.constant),
			  reg_parm_stack_space);

#ifdef ACCUMULATE_OUTGOING_ARGS
	  /* Now mark the segment we just used.  */
	  for (i = lower_bound; i < upper_bound; i++)
	    stack_usage_map[i] = 1;
#endif

	  NO_DEFER_POP;
	}
    }

#ifndef PUSH_ARGS_REVERSED
#ifdef STACK_BOUNDARY
  /* If we pushed args in forward order, perform stack alignment
     after pushing the last arg.  */
  if (argblock == 0)
    anti_adjust_stack (GEN_INT (args_size.constant
				- original_args_size.constant));
#endif
#endif

#ifdef PUSH_ARGS_REVERSED
  argnum = nargs - 1;
#else
  argnum = 0;
#endif

  fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0);

  /* Now load any reg parms into their regs.  */

  /* ARGNUM indexes the ARGVEC array in the order in which the arguments
     are to be pushed.  */
  for (count = 0; count < nargs; count++, argnum += inc)
    {
      register rtx val = argvec[argnum].value;
      rtx reg = argvec[argnum].reg;
      int partial = argvec[argnum].partial;

      if (reg != 0 && partial == 0)
	emit_move_insn (reg, val);
      NO_DEFER_POP;
    }

  /* For version 1.37, try deleting this entirely.  */
  if (! no_queue)
    emit_queue ();

  /* Any regs containing parms remain in use through the call.  */
  for (count = 0; count < nargs; count++)
    if (argvec[count].reg != 0)
       use_reg (&call_fusage, argvec[count].reg);

  /* Don't allow popping to be deferred, since then
     cse'ing of library calls could delete a call and leave the pop.  */
  NO_DEFER_POP;

  /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
     will set inhibit_defer_pop to that value.  */

  /* The return type is needed to decide how many bytes the function pops.
     Signedness plays no role in that, so for simplicity, we pretend it's
     always signed.  We also assume that the list of arguments passed has
     no impact, so we pretend it is unknown.  */

  emit_call_1 (fun, 
               get_identifier (XSTR (orgfun, 0)), 
	       build_function_type (outmode == VOIDmode ? void_type_node
				    : type_for_mode (outmode, 0), NULL_TREE),
               args_size.constant, 0,
	       FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
	       outmode != VOIDmode ? hard_libcall_value (outmode) : NULL_RTX,
	       old_inhibit_defer_pop + 1, call_fusage, no_queue);

  pop_temp_slots ();

  /* Now restore inhibit_defer_pop to its actual original value.  */
  OK_DEFER_POP;

#ifdef ACCUMULATE_OUTGOING_ARGS
#ifdef REG_PARM_STACK_SPACE
  if (save_area)
    {
      enum machine_mode save_mode = GET_MODE (save_area);
#ifdef ARGS_GROW_DOWNWARD
      rtx stack_area
	= gen_rtx_MEM (save_mode,
		       memory_address (save_mode,
				       plus_constant (argblock,
						       - high_to_save)));
#else
      rtx stack_area
	= gen_rtx_MEM (save_mode,
		       memory_address (save_mode,
				       plus_constant (argblock, low_to_save)));
#endif

      if (save_mode != BLKmode)
	emit_move_insn (stack_area, save_area);
      else
	emit_block_move (stack_area, validize_mem (save_area),
			 GEN_INT (high_to_save - low_to_save + 1),
			 PARM_BOUNDARY / BITS_PER_UNIT);
    }
#endif
	  
  /* If we saved any argument areas, restore them.  */
  for (count = 0; count < nargs; count++)
    if (argvec[count].save_area)
      {
	enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
	rtx stack_area
	  = gen_rtx_MEM (save_mode,
			 memory_address (save_mode,
					 plus_constant (argblock, argvec[count].offset.constant)));

	emit_move_insn (stack_area, argvec[count].save_area);
      }

  highest_outgoing_arg_in_use = initial_highest_arg_in_use;
  stack_usage_map = initial_stack_usage_map;
#endif
}

/* Like emit_library_call except that an extra argument, VALUE,
   comes second and says where to store the result.
   (If VALUE is zero, this function chooses a convenient way
   to return the value.

   This function returns an rtx for where the value is to be found.
   If VALUE is nonzero, VALUE is returned.  */

rtx
emit_library_call_value VPROTO((rtx orgfun, rtx value, int no_queue,
				enum machine_mode outmode, int nargs, ...))
{
#ifndef __STDC__
  rtx orgfun;
  rtx value;
  int no_queue;
  enum machine_mode outmode;
  int nargs;
#endif
  va_list p;
  /* Total size in bytes of all the stack-parms scanned so far.  */
  struct args_size args_size;
  /* Size of arguments before any adjustments (such as rounding).  */
  struct args_size original_args_size;
  register int argnum;
  rtx fun;
  int inc;
  int count;
  rtx argblock = 0;
  CUMULATIVE_ARGS args_so_far;
  struct arg { rtx value; enum machine_mode mode; rtx reg; int partial;
	       struct args_size offset; struct args_size size; rtx save_area; };
  struct arg *argvec;
  int old_inhibit_defer_pop = inhibit_defer_pop;
  rtx call_fusage = 0;
  rtx mem_value = 0;
  int pcc_struct_value = 0;
  int struct_value_size = 0;
  int is_const;
  int reg_parm_stack_space = 0;
#ifdef ACCUMULATE_OUTGOING_ARGS
  int needed;
#endif

#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
  /* Define the boundary of the register parm stack space that needs to be
     save, if any.  */
  int low_to_save = -1, high_to_save;
  rtx save_area = 0;            /* Place that it is saved */
#endif

#ifdef ACCUMULATE_OUTGOING_ARGS
  /* Size of the stack reserved for parameter registers.  */
  int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
  char *initial_stack_usage_map = stack_usage_map;
#endif

#ifdef REG_PARM_STACK_SPACE
#ifdef MAYBE_REG_PARM_STACK_SPACE
  reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
#else
  reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
#endif
#endif

  VA_START (p, nargs);

#ifndef __STDC__
  orgfun = va_arg (p, rtx);
  value = va_arg (p, rtx);
  no_queue = va_arg (p, int);
  outmode = va_arg (p, enum machine_mode);
  nargs = va_arg (p, int);
#endif

  is_const = no_queue;
  fun = orgfun;

  /* If this kind of value comes back in memory,
     decide where in memory it should come back.  */
  if (aggregate_value_p (type_for_mode (outmode, 0)))
    {
#ifdef PCC_STATIC_STRUCT_RETURN
      rtx pointer_reg
	= hard_function_value (build_pointer_type (type_for_mode (outmode, 0)),
			       0);
      mem_value = gen_rtx_MEM (outmode, pointer_reg);
      pcc_struct_value = 1;
      if (value == 0)
	value = gen_reg_rtx (outmode);
#else /* not PCC_STATIC_STRUCT_RETURN */
      struct_value_size = GET_MODE_SIZE (outmode);
      if (value != 0 && GET_CODE (value) == MEM)
	mem_value = value;
      else
	mem_value = assign_stack_temp (outmode, GET_MODE_SIZE (outmode), 0);
#endif

      /* This call returns a big structure.  */
      is_const = 0;
    }

  /* ??? Unfinished: must pass the memory address as an argument.  */

  /* Copy all the libcall-arguments out of the varargs data
     and into a vector ARGVEC.

     Compute how to pass each argument.  We only support a very small subset
     of the full argument passing conventions to limit complexity here since
     library functions shouldn't have many args.  */

  argvec = (struct arg *) alloca ((nargs + 1) * sizeof (struct arg));
  bzero ((char *) argvec, (nargs + 1) * sizeof (struct arg));

  INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0);

  args_size.constant = 0;
  args_size.var = 0;

  count = 0;

  push_temp_slots ();

  /* If there's a structure value address to be passed,
     either pass it in the special place, or pass it as an extra argument.  */
  if (mem_value && struct_value_rtx == 0 && ! pcc_struct_value)
    {
      rtx addr = XEXP (mem_value, 0);
      nargs++;

      /* Make sure it is a reasonable operand for a move or push insn.  */
      if (GET_CODE (addr) != REG && GET_CODE (addr) != MEM
	  && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
	addr = force_operand (addr, NULL_RTX);

      argvec[count].value = addr;
      argvec[count].mode = Pmode;
      argvec[count].partial = 0;

      argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1);
#ifdef FUNCTION_ARG_PARTIAL_NREGS
      if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1))
	abort ();
#endif

      locate_and_pad_parm (Pmode, NULL_TREE,
			   argvec[count].reg && argvec[count].partial == 0,
			   NULL_TREE, &args_size, &argvec[count].offset,
			   &argvec[count].size);


      if (argvec[count].reg == 0 || argvec[count].partial != 0
	  || reg_parm_stack_space > 0)
	args_size.constant += argvec[count].size.constant;

      FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1);

      count++;
    }

  for (; count < nargs; count++)
    {
      rtx val = va_arg (p, rtx);
      enum machine_mode mode = va_arg (p, enum machine_mode);

      /* We cannot convert the arg value to the mode the library wants here;
	 must do it earlier where we know the signedness of the arg.  */
      if (mode == BLKmode
	  || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode))
	abort ();

      /* On some machines, there's no way to pass a float to a library fcn.
	 Pass it as a double instead.  */
#ifdef LIBGCC_NEEDS_DOUBLE
      if (LIBGCC_NEEDS_DOUBLE && mode == SFmode)
	val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode;
#endif

      /* There's no need to call protect_from_queue, because
	 either emit_move_insn or emit_push_insn will do that.  */

      /* Make sure it is a reasonable operand for a move or push insn.  */
      if (GET_CODE (val) != REG && GET_CODE (val) != MEM
	  && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
	val = force_operand (val, NULL_RTX);

#ifdef FUNCTION_ARG_PASS_BY_REFERENCE
      if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1))
	{
	  /* We do not support FUNCTION_ARG_CALLEE_COPIES here since it can
	     be viewed as just an efficiency improvement.  */
	  rtx slot = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
	  emit_move_insn (slot, val);
	  val = XEXP (slot, 0);
	  mode = Pmode;
	}
#endif

      argvec[count].value = val;
      argvec[count].mode = mode;

      argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
      if (argvec[count].reg && GET_CODE (argvec[count].reg) == PARALLEL)
	abort ();
#ifdef FUNCTION_ARG_PARTIAL_NREGS
      argvec[count].partial
	= FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1);
#else
      argvec[count].partial = 0;
#endif

      locate_and_pad_parm (mode, NULL_TREE,
			   argvec[count].reg && argvec[count].partial == 0,
			   NULL_TREE, &args_size, &argvec[count].offset,
			   &argvec[count].size);

      if (argvec[count].size.var)
	abort ();

      if (reg_parm_stack_space == 0 && argvec[count].partial)
	argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD;

      if (argvec[count].reg == 0 || argvec[count].partial != 0
	  || reg_parm_stack_space > 0)
	args_size.constant += argvec[count].size.constant;

      FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1);
    }
  va_end (p);

#ifdef FINAL_REG_PARM_STACK_SPACE
  reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant,
						     args_size.var);
#endif
  /* If this machine requires an external definition for library
     functions, write one out.  */
  assemble_external_libcall (fun);

  original_args_size = args_size;
#ifdef STACK_BOUNDARY
  args_size.constant = (((args_size.constant + (STACK_BYTES - 1))
			 / STACK_BYTES) * STACK_BYTES);
#endif

  args_size.constant = MAX (args_size.constant,
			    reg_parm_stack_space);

#ifndef OUTGOING_REG_PARM_STACK_SPACE
  args_size.constant -= reg_parm_stack_space;
#endif

  if (args_size.constant > current_function_outgoing_args_size)
    current_function_outgoing_args_size = args_size.constant;

#ifdef ACCUMULATE_OUTGOING_ARGS
  /* Since the stack pointer will never be pushed, it is possible for
     the evaluation of a parm to clobber something we have already
     written to the stack.  Since most function calls on RISC machines
     do not use the stack, this is uncommon, but must work correctly.

     Therefore, we save any area of the stack that was already written
     and that we are using.  Here we set up to do this by making a new
     stack usage map from the old one.

     Another approach might be to try to reorder the argument
     evaluations to avoid this conflicting stack usage.  */

  needed = args_size.constant;

#ifndef OUTGOING_REG_PARM_STACK_SPACE
  /* Since we will be writing into the entire argument area, the
     map must be allocated for its entire size, not just the part that
     is the responsibility of the caller.  */
  needed += reg_parm_stack_space;
#endif

#ifdef ARGS_GROW_DOWNWARD
  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
				     needed + 1);
#else
  highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
				     needed);
#endif
  stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use);

  if (initial_highest_arg_in_use)
    bcopy (initial_stack_usage_map, stack_usage_map,
	   initial_highest_arg_in_use);

  if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
    bzero (&stack_usage_map[initial_highest_arg_in_use],
	   highest_outgoing_arg_in_use - initial_highest_arg_in_use);
  needed = 0;

  /* The address of the outgoing argument list must not be copied to a
     register here, because argblock would be left pointing to the
     wrong place after the call to allocate_dynamic_stack_space below.
     */

  argblock = virtual_outgoing_args_rtx;
#else /* not ACCUMULATE_OUTGOING_ARGS */
#ifndef PUSH_ROUNDING
  argblock = push_block (GEN_INT (args_size.constant), 0, 0);
#endif
#endif

#ifdef PUSH_ARGS_REVERSED
#ifdef STACK_BOUNDARY
  /* If we push args individually in reverse order, perform stack alignment
     before the first push (the last arg).  */
  if (argblock == 0)
    anti_adjust_stack (GEN_INT (args_size.constant
				- original_args_size.constant));
#endif
#endif

#ifdef PUSH_ARGS_REVERSED
  inc = -1;
  argnum = nargs - 1;
#else
  inc = 1;
  argnum = 0;
#endif

#if defined(ACCUMULATE_OUTGOING_ARGS) && defined(REG_PARM_STACK_SPACE)
  /* The argument list is the property of the called routine and it
     may clobber it.  If the fixed area has been used for previous
     parameters, we must save and restore it.

     Here we compute the boundary of the that needs to be saved, if any.  */

#ifdef ARGS_GROW_DOWNWARD
  for (count = 0; count < reg_parm_stack_space + 1; count++)
#else
  for (count = 0; count < reg_parm_stack_space; count++)
#endif
    {
      if (count >=  highest_outgoing_arg_in_use
	  || stack_usage_map[count] == 0)
	continue;

      if (low_to_save == -1)
	low_to_save = count;

      high_to_save = count;
    }

  if (low_to_save >= 0)
    {
      int num_to_save = high_to_save - low_to_save + 1;
      enum machine_mode save_mode
	= mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
      rtx stack_area;

      /* If we don't have the required alignment, must do this in BLKmode.  */
      if ((low_to_save & (MIN (GET_MODE_SIZE (save_mode),
			       BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
	save_mode = BLKmode;

#ifdef ARGS_GROW_DOWNWARD
      stack_area = gen_rtx_MEM (save_mode,
				memory_address (save_mode,
						plus_constant (argblock,
							       - high_to_save)));
#else
      stack_area = gen_rtx_MEM (save_mode,
				memory_address (save_mode,
						plus_constant (argblock,
							       low_to_save)));
#endif
      if (save_mode == BLKmode)
	{
	  save_area = assign_stack_temp (BLKmode, num_to_save, 0);
	  MEM_IN_STRUCT_P (save_area) = 0;
	  emit_block_move (validize_mem (save_area), stack_area,
			   GEN_INT (num_to_save),
			   PARM_BOUNDARY / BITS_PER_UNIT);
	}
      else
	{
	  save_area = gen_reg_rtx (save_mode);
	  emit_move_insn (save_area, stack_area);
	}
    }
#endif
	  
  /* Push the args that need to be pushed.  */

  /* ARGNUM indexes the ARGVEC array in the order in which the arguments
     are to be pushed.  */
  for (count = 0; count < nargs; count++, argnum += inc)
    {
      register enum machine_mode mode = argvec[argnum].mode;
      register rtx val = argvec[argnum].value;
      rtx reg = argvec[argnum].reg;
      int partial = argvec[argnum].partial;
#ifdef ACCUMULATE_OUTGOING_ARGS
      int lower_bound, upper_bound, i;
#endif

      if (! (reg != 0 && partial == 0))
	{
#ifdef ACCUMULATE_OUTGOING_ARGS
	  /* If this is being stored into a pre-allocated, fixed-size, stack
	     area, save any previous data at that location.  */

#ifdef ARGS_GROW_DOWNWARD
	  /* stack_slot is negative, but we want to index stack_usage_map
	     with positive values.  */
	  upper_bound = -argvec[argnum].offset.constant + 1;
	  lower_bound = upper_bound - argvec[argnum].size.constant;
#else
	  lower_bound = argvec[argnum].offset.constant;
	  upper_bound = lower_bound + argvec[argnum].size.constant;
#endif

	  for (i = lower_bound; i < upper_bound; i++)
	    if (stack_usage_map[i]
		/* Don't store things in the fixed argument area at this point;
		   it has already been saved.  */
		&& i > reg_parm_stack_space)
	      break;

	  if (i != upper_bound)
	    {
	      /* We need to make a save area.  See what mode we can make it. */
	      enum machine_mode save_mode
		= mode_for_size (argvec[argnum].size.constant * BITS_PER_UNIT,
				 MODE_INT, 1);
	      rtx stack_area
		= gen_rtx_MEM (save_mode,
			       memory_address (save_mode,
					       plus_constant (argblock,
							      argvec[argnum].offset.constant)));
	      argvec[argnum].save_area = gen_reg_rtx (save_mode);
	      emit_move_insn (argvec[argnum].save_area, stack_area);
	    }
#endif
	  emit_push_insn (val, mode, NULL_TREE, NULL_RTX, 0, partial, reg, 0,
			  argblock, GEN_INT (argvec[argnum].offset.constant),
			  reg_parm_stack_space);

#ifdef ACCUMULATE_OUTGOING_ARGS
	  /* Now mark the segment we just used.  */
	  for (i = lower_bound; i < upper_bound; i++)
	    stack_usage_map[i] = 1;
#endif

	  NO_DEFER_POP;
	}
    }

#ifndef PUSH_ARGS_REVERSED
#ifdef STACK_BOUNDARY
  /* If we pushed args in forward order, perform stack alignment
     after pushing the last arg.  */
  if (argblock == 0)
    anti_adjust_stack (GEN_INT (args_size.constant
				- original_args_size.constant));
#endif
#endif

#ifdef PUSH_ARGS_REVERSED
  argnum = nargs - 1;
#else
  argnum = 0;
#endif

  fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0);

  /* Now load any reg parms into their regs.  */

  /* ARGNUM indexes the ARGVEC array in the order in which the arguments
     are to be pushed.  */
  for (count = 0; count < nargs; count++, argnum += inc)
    {
      register rtx val = argvec[argnum].value;
      rtx reg = argvec[argnum].reg;
      int partial = argvec[argnum].partial;

      if (reg != 0 && partial == 0)
	emit_move_insn (reg, val);
      NO_DEFER_POP;
    }

#if 0
  /* For version 1.37, try deleting this entirely.  */
  if (! no_queue)
    emit_queue ();
#endif

  /* Any regs containing parms remain in use through the call.  */
  for (count = 0; count < nargs; count++)
    if (argvec[count].reg != 0)
       use_reg (&call_fusage, argvec[count].reg);

  /* Pass the function the address in which to return a structure value.  */
  if (mem_value != 0 && struct_value_rtx != 0 && ! pcc_struct_value)
    {
      emit_move_insn (struct_value_rtx,
		      force_reg (Pmode,
				 force_operand (XEXP (mem_value, 0),
						NULL_RTX)));
      if (GET_CODE (struct_value_rtx) == REG)
	  use_reg (&call_fusage, struct_value_rtx);
    }

  /* Don't allow popping to be deferred, since then
     cse'ing of library calls could delete a call and leave the pop.  */
  NO_DEFER_POP;

  /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
     will set inhibit_defer_pop to that value.  */
  /* See the comment in emit_library_call about the function type we build
     and pass here.  */

  emit_call_1 (fun, 
               get_identifier (XSTR (orgfun, 0)),
	       build_function_type (type_for_mode (outmode, 0), NULL_TREE),
               args_size.constant, struct_value_size,
	       FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1),
	       mem_value == 0 ? hard_libcall_value (outmode) : NULL_RTX,
	       old_inhibit_defer_pop + 1, call_fusage, is_const);

  /* Now restore inhibit_defer_pop to its actual original value.  */
  OK_DEFER_POP;

  pop_temp_slots ();

  /* Copy the value to the right place.  */
  if (outmode != VOIDmode)
    {
      if (mem_value)
	{
	  if (value == 0)
	    value = mem_value;
	  if (value != mem_value)
	    emit_move_insn (value, mem_value);
	}
      else if (value != 0)
	emit_move_insn (value, hard_libcall_value (outmode));
      else
	value = hard_libcall_value (outmode);
    }

#ifdef ACCUMULATE_OUTGOING_ARGS
#ifdef REG_PARM_STACK_SPACE
  if (save_area)
    {
      enum machine_mode save_mode = GET_MODE (save_area);
#ifdef ARGS_GROW_DOWNWARD
      rtx stack_area
	= gen_rtx_MEM (save_mode,
		       memory_address (save_mode,
				       plus_constant (argblock,
						      - high_to_save)));
#else
      rtx stack_area
	= gen_rtx_MEM (save_mode,
		       memory_address (save_mode,
				       plus_constant (argblock, low_to_save)));
#endif
      if (save_mode != BLKmode)
	emit_move_insn (stack_area, save_area);
      else
	emit_block_move (stack_area, validize_mem (save_area),
			 GEN_INT (high_to_save - low_to_save + 1),
			     PARM_BOUNDARY / BITS_PER_UNIT);
    }
#endif
	  
  /* If we saved any argument areas, restore them.  */
  for (count = 0; count < nargs; count++)
    if (argvec[count].save_area)
      {
	enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
	rtx stack_area
	  = gen_rtx_MEM (save_mode,
		     memory_address (save_mode, plus_constant (argblock,
				     argvec[count].offset.constant)));

	emit_move_insn (stack_area, argvec[count].save_area);
      }

  highest_outgoing_arg_in_use = initial_highest_arg_in_use;
  stack_usage_map = initial_stack_usage_map;
#endif

  return value;
}

#if 0
/* Return an rtx which represents a suitable home on the stack
   given TYPE, the type of the argument looking for a home.
   This is called only for BLKmode arguments.

   SIZE is the size needed for this target.
   ARGS_ADDR is the address of the bottom of the argument block for this call.
   OFFSET describes this parameter's offset into ARGS_ADDR.  It is meaningless
   if this machine uses push insns.  */

static rtx
target_for_arg (type, size, args_addr, offset)
     tree type;
     rtx size;
     rtx args_addr;
     struct args_size offset;
{
  rtx target;
  rtx offset_rtx = ARGS_SIZE_RTX (offset);

  /* We do not call memory_address if possible,
     because we want to address as close to the stack
     as possible.  For non-variable sized arguments,
     this will be stack-pointer relative addressing.  */
  if (GET_CODE (offset_rtx) == CONST_INT)
    target = plus_constant (args_addr, INTVAL (offset_rtx));
  else
    {
      /* I have no idea how to guarantee that this
	 will work in the presence of register parameters.  */
      target = gen_rtx_PLUS (Pmode, args_addr, offset_rtx);
      target = memory_address (QImode, target);
    }

  return gen_rtx_MEM (BLKmode, target);
}
#endif

/* Store a single argument for a function call
   into the register or memory area where it must be passed.
   *ARG describes the argument value and where to pass it.

   ARGBLOCK is the address of the stack-block for all the arguments,
   or 0 on a machine where arguments are pushed individually.

   MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
   so must be careful about how the stack is used. 

   VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
   argument stack.  This is used if ACCUMULATE_OUTGOING_ARGS to indicate
   that we need not worry about saving and restoring the stack.

   FNDECL is the declaration of the function we are calling.  */

static void
store_one_arg (arg, argblock, may_be_alloca, variable_size, fndecl,
	       reg_parm_stack_space)
     struct arg_data *arg;
     rtx argblock;
     int may_be_alloca;
     int variable_size;
     tree fndecl;
     int reg_parm_stack_space;
{
  register tree pval = arg->tree_value;
  rtx reg = 0;
  int partial = 0;
  int used = 0;
#ifdef ACCUMULATE_OUTGOING_ARGS
  int i, lower_bound, upper_bound;
#endif

  if (TREE_CODE (pval) == ERROR_MARK)
    return;

  /* Push a new temporary level for any temporaries we make for
     this argument.  */
  push_temp_slots ();

#ifdef ACCUMULATE_OUTGOING_ARGS
  /* If this is being stored into a pre-allocated, fixed-size, stack area,
     save any previous data at that location.  */
  if (argblock && ! variable_size && arg->stack)
    {
#ifdef ARGS_GROW_DOWNWARD
      /* stack_slot is negative, but we want to index stack_usage_map
         with positive values.  */
      if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
	upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
      else
	upper_bound = 0;

      lower_bound = upper_bound - arg->size.constant;
#else
      if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
	lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
      else
	lower_bound = 0;

      upper_bound = lower_bound + arg->size.constant;
#endif

      for (i = lower_bound; i < upper_bound; i++)
	if (stack_usage_map[i]
	    /* Don't store things in the fixed argument area at this point;
	       it has already been saved.  */
	    && i > reg_parm_stack_space)
	  break;

      if (i != upper_bound)
	{
	  /* We need to make a save area.  See what mode we can make it.  */
	  enum machine_mode save_mode
	    = mode_for_size (arg->size.constant * BITS_PER_UNIT, MODE_INT, 1);
	  rtx stack_area
	    = gen_rtx_MEM (save_mode,
			   memory_address (save_mode,
					   XEXP (arg->stack_slot, 0)));

	  if (save_mode == BLKmode)
	    {
	      arg->save_area = assign_stack_temp (BLKmode,
						  arg->size.constant, 0);
	      MEM_IN_STRUCT_P (arg->save_area)
		= AGGREGATE_TYPE_P (TREE_TYPE (arg->tree_value));
	      preserve_temp_slots (arg->save_area);
	      emit_block_move (validize_mem (arg->save_area), stack_area,
			       GEN_INT (arg->size.constant),
			       PARM_BOUNDARY / BITS_PER_UNIT);
	    }
	  else
	    {
	      arg->save_area = gen_reg_rtx (save_mode);
	      emit_move_insn (arg->save_area, stack_area);
	    }
	}
    }
#endif

  /* If this isn't going to be placed on both the stack and in registers,
     set up the register and number of words.  */
  if (! arg->pass_on_stack)
    reg = arg->reg, partial = arg->partial;

  if (reg != 0 && partial == 0)
    /* Being passed entirely in a register.  We shouldn't be called in
       this case.   */
    abort ();

  /* If this arg needs special alignment, don't load the registers
     here.  */
  if (arg->n_aligned_regs != 0)
    reg = 0;
  
  /* If this is being passed partially in a register, we can't evaluate
     it directly into its stack slot.  Otherwise, we can.  */
  if (arg->value == 0)
    {
#ifdef ACCUMULATE_OUTGOING_ARGS
      /* stack_arg_under_construction is nonzero if a function argument is
	 being evaluated directly into the outgoing argument list and
	 expand_call must take special action to preserve the argument list
	 if it is called recursively.

	 For scalar function arguments stack_usage_map is sufficient to
	 determine which stack slots must be saved and restored.  Scalar
	 arguments in general have pass_on_stack == 0.

	 If this argument is initialized by a function which takes the
	 address of the argument (a C++ constructor or a C function
	 returning a BLKmode structure), then stack_usage_map is
	 insufficient and expand_call must push the stack around the
	 function call.  Such arguments have pass_on_stack == 1.

	 Note that it is always safe to set stack_arg_under_construction,
	 but this generates suboptimal code if set when not needed.  */

      if (arg->pass_on_stack)
	stack_arg_under_construction++;
#endif
      arg->value = expand_expr (pval,
				(partial
				 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
				? NULL_RTX : arg->stack,
				VOIDmode, 0);

      /* If we are promoting object (or for any other reason) the mode
	 doesn't agree, convert the mode.  */

      if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
	arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
				    arg->value, arg->unsignedp);

#ifdef ACCUMULATE_OUTGOING_ARGS
      if (arg->pass_on_stack)
	stack_arg_under_construction--;
#endif
    }

  /* Don't allow anything left on stack from computation
     of argument to alloca.  */
  if (may_be_alloca)
    do_pending_stack_adjust ();

  if (arg->value == arg->stack)
    {
      /* If the value is already in the stack slot, we are done.  */
      if (flag_check_memory_usage && GET_CODE (arg->stack) == MEM)
	{
	  if (arg->mode == BLKmode)
	    abort ();

	  emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
			     XEXP (arg->stack, 0), ptr_mode, 
			     GEN_INT (GET_MODE_SIZE (arg->mode)),
			     TYPE_MODE (sizetype),
			     GEN_INT (MEMORY_USE_RW),
			     TYPE_MODE (integer_type_node));
	}
    }
  else if (arg->mode != BLKmode)
    {
      register int size;

      /* Argument is a scalar, not entirely passed in registers.
	 (If part is passed in registers, arg->partial says how much
	 and emit_push_insn will take care of putting it there.)
	 
	 Push it, and if its size is less than the
	 amount of space allocated to it,
	 also bump stack pointer by the additional space.
	 Note that in C the default argument promotions
	 will prevent such mismatches.  */

      size = GET_MODE_SIZE (arg->mode);
      /* Compute how much space the push instruction will push.
	 On many machines, pushing a byte will advance the stack
	 pointer by a halfword.  */
#ifdef PUSH_ROUNDING
      size = PUSH_ROUNDING (size);
#endif
      used = size;

      /* Compute how much space the argument should get:
	 round up to a multiple of the alignment for arguments.  */
      if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
	used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
		 / (PARM_BOUNDARY / BITS_PER_UNIT))
		* (PARM_BOUNDARY / BITS_PER_UNIT));

      /* This isn't already where we want it on the stack, so put it there.
	 This can either be done with push or copy insns.  */
      emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX, 0,
		      partial, reg, used - size, argblock,
		      ARGS_SIZE_RTX (arg->offset), reg_parm_stack_space);
    }
  else
    {
      /* BLKmode, at least partly to be pushed.  */

      register int excess;
      rtx size_rtx;

      /* Pushing a nonscalar.
	 If part is passed in registers, PARTIAL says how much
	 and emit_push_insn will take care of putting it there.  */

      /* Round its size up to a multiple
	 of the allocation unit for arguments.  */

      if (arg->size.var != 0)
	{
	  excess = 0;
	  size_rtx = ARGS_SIZE_RTX (arg->size);
	}
      else
	{
	  /* PUSH_ROUNDING has no effect on us, because
	     emit_push_insn for BLKmode is careful to avoid it.  */
	  excess = (arg->size.constant - int_size_in_bytes (TREE_TYPE (pval))
		    + partial * UNITS_PER_WORD);
	  size_rtx = expr_size (pval);
	}

      emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
		      TYPE_ALIGN (TREE_TYPE (pval)) / BITS_PER_UNIT, partial,
		      reg, excess, argblock, ARGS_SIZE_RTX (arg->offset),
		      reg_parm_stack_space);
    }


  /* Unless this is a partially-in-register argument, the argument is now
     in the stack. 

     ??? Note that this can change arg->value from arg->stack to
     arg->stack_slot and it matters when they are not the same.
     It isn't totally clear that this is correct in all cases.  */
  if (partial == 0)
    arg->value = arg->stack_slot;

  /* Once we have pushed something, pops can't safely
     be deferred during the rest of the arguments.  */
  NO_DEFER_POP;

  /* ANSI doesn't require a sequence point here,
     but PCC has one, so this will avoid some problems.  */
  emit_queue ();

  /* Free any temporary slots made in processing this argument.  Show
     that we might have taken the address of something and pushed that
     as an operand.  */
  preserve_temp_slots (NULL_RTX);
  free_temp_slots ();
  pop_temp_slots ();

#ifdef ACCUMULATE_OUTGOING_ARGS
  /* Now mark the segment we just used.  */
  if (argblock && ! variable_size && arg->stack)
    for (i = lower_bound; i < upper_bound; i++)
      stack_usage_map[i] = 1;
#endif
}