aboutsummaryrefslogtreecommitdiff
path: root/gdb/exec.h
AgeCommit message (Collapse)AuthorFilesLines
2024-10-08[gdb/contrib] Add more separators in spellcheck.shTom de Vries1-1/+1
Add two more separators in spellcheck.sh: colon and comma. Doing so triggers the "inbetween->between" rule, which gives an incorrect result. Override this with "inbetween->between, in between, in-between" [1], in a new file gdb/contrib/common-misspellings.txt. Fix the following common misspellings: ... everytime -> every time sucess -> success thru -> through transfered -> transferred inbetween -> between, in between, in-between ... Verified with spellcheck.sh. Tested on x86_64-linux. [1] https://www.grammarly.com/blog/commonly-confused-words/in-between-or-inbetween/
2024-06-07gdb: remove get_exec_fileSimon Marchi1-0/+5
I believe that the get_exec_file function is unnecessary, and the code can be simplified if we remove it. Consider for instance when you "run" a program on Linux with native debugging. 1. run_command_1 obtains the executable file from `current_program_space->exec_filename ()` 2. it passes it to `run_target->create_inferior()`, which is `inf_ptrace_target::create_inferior()` in this case, which then passes it to `fork_inferior()` 3. `fork_inferior()` then has a fallback, where if the passed exec file is nullptr, it gets its from `get_exec_file()`. 4. `get_exec_file()` returns `current_program_space->exec_filename ()` - just like the things we started with - or errors out if the current program space doesn't have a specified executable. If there's no exec filename passed in step 1, there's not going to be any in step 4, so it seems pointless to call `get_exec_file()`, we could just error out when `exec_file` is nullptr. But we can't error out directly in `fork_inferior()`, since the error is GDB-specific, and that function is shared with GDBserver. Speaking of GDBserver, all code paths that lead to `fork_inferior()` provide a non-nullptr exec file. Therefore, to simplify things: - Make `fork_inferior()` assume that the passed exec file is not nullptr, don't call `get_exec_file()` - Change some targets (darwin-nat, go32-nat, gnu-nat, inf-ptrace, nto-procfs, procfs) to error out when the exec file passed to their create_inferior method is nullptr. Some targets are fine with a nullptr exec file, so we can't check that in `run_command_1()`. - Add the `no_executable_specified_error()` function, which re-uses the error message that `get_exec_file()` had. - Change some targets (go32-nat, nto-procfs) to not call `get_exec_file()`, since it's pointless for the same reason as in the example above, if it returns, it's going the be the same value as the `exec_file` parameter. Just rely on `exec_file`. - Remove the final use of `get_exec_file()`, in `load_command()`. - Remove the `get_exec_file()` implementations in GDB and GDBserver and remove the shared declaration. Change-Id: I601c16498e455f7baa1f111a179da2f6c913baa3 Approved-By: Tom Tromey <tom@tromey.com>
2024-01-12Update copyright year range in header of all files managed by GDBAndrew Burgess1-1/+1
This commit is the result of the following actions: - Running gdb/copyright.py to update all of the copyright headers to include 2024, - Manually updating a few files the copyright.py script told me to update, these files had copyright headers embedded within the file, - Regenerating gdbsupport/Makefile.in to refresh it's copyright date, - Using grep to find other files that still mentioned 2023. If these files were updated last year from 2022 to 2023 then I've updated them this year to 2024. I'm sure I've probably missed some dates. Feel free to fix them up as you spot them.
2023-10-19gdb: remove target_section_table typedefSimon Marchi1-3/+3
Remove this typedef. I think that hiding the real type (std::vector) behind a typedef just hinders readability. Change-Id: I80949da3392f60a2826c56c268e0ec6f503ad79f Approved-By: Pedro Alves <pedro@palves.net> Reviewed-By: Reviewed-By: Lancelot Six <lancelot.six@amd.com>
2023-01-01Update copyright year range in header of all files managed by GDBJoel Brobecker1-1/+1
This commit is the result of running the gdb/copyright.py script, which automated the update of the copyright year range for all source files managed by the GDB project to be updated to include year 2023.
2022-01-01Automatic Copyright Year update after running gdb/copyright.pyJoel Brobecker1-1/+1
This commit brings all the changes made by running gdb/copyright.py as per GDB's Start of New Year Procedure. For the avoidance of doubt, all changes in this commits were performed by the script.
2021-08-03gdb: follow-fork: push target and add thread in target_follow_forkSimon Marchi1-5/+4
In the context of ROCm-gdb [1], the ROCm target sits on top of the linux-nat target. when a process forks, it needs to carry over some data from the forking inferior to the fork child inferior. Ideally, the ROCm target would implement the follow_fork target_ops method, but there are some small problems. This patch fixes these, which helps the ROCm target, but also makes things more consistent and a bit nicer in general, I believe. The main problem is: when follow-fork-mode is "parent", target_follow_fork is called with the parent as the current inferior. When it's "child", target_follow_fork is called with the child as the current inferior. This means that target_follow_fork is sometimes called on the parent's target stack and sometimes on the child's target stack. The parent's target stack may contain targets above the process target, such as the ROCm target. So if follow-fork-child is "parent", the ROCm target would get notified of the fork and do whatever is needed. But the child's target stack, at that moment, only contains the exec and process target copied over from the parent. The child's target stack is set up by follow_fork_inferior, before calling target_follow_fork. In that case, the ROCm target wouldn't get notified of the fork. For consistency, I think it would be good to always call target_follow_fork on the parent inferior's target stack. I think it makes sense as a way to indicate "this inferior has called fork, do whatever is needed". The desired outcome of the fork (whether an inferior is created for the child, do we need to detach from the child) can be indicated by passed parameter. I therefore propose these changes: - make follow_fork_inferior always call target_follow_fork with the parent as the current inferior. That lets all targets present on the parent's target stack do some fork-related handling and push themselves on the fork child's target stack if needed. For this purpose, pass the child inferior down to target_follow_fork and follow_fork implementations. This is nullptr if no inferior is created for the child, because we want to detach from it. - as a result, in follow_fork_inferior, detach from the parent inferior (if needed) only after the target_follow_fork call. This is needed because we want to call target_follow_fork before the parent's target stack is torn down. - hand over to the targets in the parent's target stack (including the process target) the responsibility to push themselves, if needed, to the child's target stack. Also hand over the responsibility to the process target, at the same time, to create the child's initial thread (just like we do for follow_exec). - pass the child inferior to exec_on_vfork, so we don't need to swap the current inferior between parent and child. Nothing in exec_on_vfork depends on the current inferior, after this change. Although this could perhaps be replaced with just having the exec target implement follow_fork and push itself in the child's target stack, like the process target does... We would just need to make sure the process target calls beneath()->follow_fork(...). I'm not sure about this one. gdb/ChangeLog: * target.h (struct target_ops) <follow_fork>: Add inferior* parameter. (target_follow_fork): Likewise. * target.c (default_follow_fork): Likewise. (target_follow_fork): Likewise. * fbsd-nat.h (class fbsd_nat_target) <follow_fork>: Likewise. (fbsd_nat_target::follow_fork): Likewise, and call inf_ptrace_target::follow_fork. * linux-nat.h (class linux_nat_target) <follow_fork>: Likewise. * linux-nat.c (linux_nat_target::follow_fork): Likewise, and call inf_ptrace_target::follow_fork. * obsd-nat.h (obsd_nat_target) <follow_fork>: Likewise. * obsd-nat.c (obsd_nat_target::follow_fork): Likewise, and call inf_ptrace_target::follow_fork. * remote.c (class remote_target) <follow_fork>: Likewise. (remote_target::follow_fork): Likewise, and call process_stratum_target::follow_fork. * process-stratum-target.h (class process_stratum_target) <follow_fork>: New. * process-stratum-target.c (process_stratum_target::follow_fork): New. * target-delegates.c: Re-generate. [1] https://github.com/ROCm-Developer-Tools/ROCgdb Change-Id: I460bd0af850f0485e8aed4b24c6d8262a4c69929
2021-02-24gdb: spread a little 'const' through the target_section_table codeAndrew Burgess1-1/+1
The code to access the target section table can be made more const, so lets do that. There should be no user visible changes after this commit. gdb/ChangeLog: * gdb/bfd-target.c (class target_bfd) <get_section_table>: Make return type const. * gdb/exec.c (struct exec_target) <get_section_table>: Likewise. (section_table_read_available_memory): Make local const. (exec_target::xfer_partial): Make local const. (print_section_info): Make parameter const. * gdb/exec.h (print_section_info): Likewise. * gdb/ppc64-tdep.c (ppc64_convert_from_func_ptr_addr): Make local const. * gdb/record-btrace.c (record_btrace_target::xfer_partial): Likewise. * gdb/remote.c (remote_target::remote_xfer_live_readonly_partial): Likewise. * gdb/s390-tdep.c (s390_load): Likewise. * gdb/solib-dsbt.c (scan_dyntag): Likewise. * gdb/solib-svr4.c (scan_dyntag): Likewise. * gdb/target-debug.h (target_debug_print_target_section_table_p): Rename to... (target_debug_print_const_target_section_table_p): ...this. * gdb/target-delegates.c: Regenerate. * gdb/target.c (target_get_section_table): Make return type const. (target_section_by_addr): Likewise. Also make some locals const. (memory_xfer_partial_1): Make some locals const. * gdb/target.h (struct target_ops) <get_section_table>: Make return type const. (target_section_by_addr): Likewise. (target_get_section_table): Likewise.
2021-01-01Update copyright year range in all GDB filesJoel Brobecker1-1/+1
This commits the result of running gdb/copyright.py as per our Start of New Year procedure... gdb/ChangeLog Update copyright year range in copyright header of all GDB files.
2020-11-02gdb, gdbserver, gdbsupport: fix leading space vs tabs issuesSimon Marchi1-1/+1
Many spots incorrectly use only spaces for indentation (for example, there are a lot of spots in ada-lang.c). I've always found it awkward when I needed to edit one of these spots: do I keep the original wrong indentation, or do I fix it? What if the lines around it are also wrong, do I fix them too? I probably don't want to fix them in the same patch, to avoid adding noise to my patch. So I propose to fix as much as possible once and for all (hopefully). One typical counter argument for this is that it makes code archeology more difficult, because git-blame will show this commit as the last change for these lines. My counter counter argument is: when git-blaming, you often need to do "blame the file at the parent commit" anyway, to go past some other refactor that touched the line you are interested in, but is not the change you are looking for. So you already need a somewhat efficient way to do this. Using some interactive tool, rather than plain git-blame, makes this trivial. For example, I use "tig blame <file>", where going back past the commit that changed the currently selected line is one keystroke. It looks like Magit in Emacs does it too (though I've never used it). Web viewers of Github and Gitlab do it too. My point is that it won't really make archeology more difficult. The other typical counter argument is that it will cause conflicts with existing patches. That's true... but it's a one time cost, and those are not conflicts that are difficult to resolve. I have also tried "git rebase --ignore-whitespace", it seems to work well. Although that will re-introduce the faulty indentation, so one needs to take care of fixing the indentation in the patch after that (which is easy). gdb/ChangeLog: * aarch64-linux-tdep.c: Fix indentation. * aarch64-ravenscar-thread.c: Fix indentation. * aarch64-tdep.c: Fix indentation. * aarch64-tdep.h: Fix indentation. * ada-lang.c: Fix indentation. * ada-lang.h: Fix indentation. * ada-tasks.c: Fix indentation. * ada-typeprint.c: Fix indentation. * ada-valprint.c: Fix indentation. * ada-varobj.c: Fix indentation. * addrmap.c: Fix indentation. * addrmap.h: Fix indentation. * agent.c: Fix indentation. * aix-thread.c: Fix indentation. * alpha-bsd-nat.c: Fix indentation. * alpha-linux-tdep.c: Fix indentation. * alpha-mdebug-tdep.c: Fix indentation. * alpha-nbsd-tdep.c: Fix indentation. * alpha-obsd-tdep.c: Fix indentation. * alpha-tdep.c: Fix indentation. * amd64-bsd-nat.c: Fix indentation. * amd64-darwin-tdep.c: Fix indentation. * amd64-linux-nat.c: Fix indentation. * amd64-linux-tdep.c: Fix indentation. * amd64-nat.c: Fix indentation. * amd64-obsd-tdep.c: Fix indentation. * amd64-tdep.c: Fix indentation. * amd64-windows-tdep.c: Fix indentation. * annotate.c: Fix indentation. * arc-tdep.c: Fix indentation. * arch-utils.c: Fix indentation. * arch/arm-get-next-pcs.c: Fix indentation. * arch/arm.c: Fix indentation. * arm-linux-nat.c: Fix indentation. * arm-linux-tdep.c: Fix indentation. * arm-nbsd-tdep.c: Fix indentation. * arm-pikeos-tdep.c: Fix indentation. * arm-tdep.c: Fix indentation. * arm-tdep.h: Fix indentation. * arm-wince-tdep.c: Fix indentation. * auto-load.c: Fix indentation. * auxv.c: Fix indentation. * avr-tdep.c: Fix indentation. * ax-gdb.c: Fix indentation. * ax-general.c: Fix indentation. * bfin-linux-tdep.c: Fix indentation. * block.c: Fix indentation. * block.h: Fix indentation. * blockframe.c: Fix indentation. * bpf-tdep.c: Fix indentation. * break-catch-sig.c: Fix indentation. * break-catch-syscall.c: Fix indentation. * break-catch-throw.c: Fix indentation. * breakpoint.c: Fix indentation. * breakpoint.h: Fix indentation. * bsd-uthread.c: Fix indentation. * btrace.c: Fix indentation. * build-id.c: Fix indentation. * buildsym-legacy.h: Fix indentation. * buildsym.c: Fix indentation. * c-typeprint.c: Fix indentation. * c-valprint.c: Fix indentation. * c-varobj.c: Fix indentation. * charset.c: Fix indentation. * cli/cli-cmds.c: Fix indentation. * cli/cli-decode.c: Fix indentation. * cli/cli-decode.h: Fix indentation. * cli/cli-script.c: Fix indentation. * cli/cli-setshow.c: Fix indentation. * coff-pe-read.c: Fix indentation. * coffread.c: Fix indentation. * compile/compile-cplus-types.c: Fix indentation. * compile/compile-object-load.c: Fix indentation. * compile/compile-object-run.c: Fix indentation. * completer.c: Fix indentation. * corefile.c: Fix indentation. * corelow.c: Fix indentation. * cp-abi.h: Fix indentation. * cp-namespace.c: Fix indentation. * cp-support.c: Fix indentation. * cp-valprint.c: Fix indentation. * cris-linux-tdep.c: Fix indentation. * cris-tdep.c: Fix indentation. * darwin-nat-info.c: Fix indentation. * darwin-nat.c: Fix indentation. * darwin-nat.h: Fix indentation. * dbxread.c: Fix indentation. * dcache.c: Fix indentation. * disasm.c: Fix indentation. * dtrace-probe.c: Fix indentation. * dwarf2/abbrev.c: Fix indentation. * dwarf2/attribute.c: Fix indentation. * dwarf2/expr.c: Fix indentation. * dwarf2/frame.c: Fix indentation. * dwarf2/index-cache.c: Fix indentation. * dwarf2/index-write.c: Fix indentation. * dwarf2/line-header.c: Fix indentation. * dwarf2/loc.c: Fix indentation. * dwarf2/macro.c: Fix indentation. * dwarf2/read.c: Fix indentation. * dwarf2/read.h: Fix indentation. * elfread.c: Fix indentation. * eval.c: Fix indentation. * event-top.c: Fix indentation. * exec.c: Fix indentation. * exec.h: Fix indentation. * expprint.c: Fix indentation. * f-lang.c: Fix indentation. * f-typeprint.c: Fix indentation. * f-valprint.c: Fix indentation. * fbsd-nat.c: Fix indentation. * fbsd-tdep.c: Fix indentation. * findvar.c: Fix indentation. * fork-child.c: Fix indentation. * frame-unwind.c: Fix indentation. * frame-unwind.h: Fix indentation. * frame.c: Fix indentation. * frv-linux-tdep.c: Fix indentation. * frv-tdep.c: Fix indentation. * frv-tdep.h: Fix indentation. * ft32-tdep.c: Fix indentation. * gcore.c: Fix indentation. * gdb_bfd.c: Fix indentation. * gdbarch.sh: Fix indentation. * gdbarch.c: Re-generate * gdbarch.h: Re-generate. * gdbcore.h: Fix indentation. * gdbthread.h: Fix indentation. * gdbtypes.c: Fix indentation. * gdbtypes.h: Fix indentation. * glibc-tdep.c: Fix indentation. * gnu-nat.c: Fix indentation. * gnu-nat.h: Fix indentation. * gnu-v2-abi.c: Fix indentation. * gnu-v3-abi.c: Fix indentation. * go32-nat.c: Fix indentation. * guile/guile-internal.h: Fix indentation. * guile/scm-cmd.c: Fix indentation. * guile/scm-frame.c: Fix indentation. * guile/scm-iterator.c: Fix indentation. * guile/scm-math.c: Fix indentation. * guile/scm-ports.c: Fix indentation. * guile/scm-pretty-print.c: Fix indentation. * guile/scm-value.c: Fix indentation. * h8300-tdep.c: Fix indentation. * hppa-linux-nat.c: Fix indentation. * hppa-linux-tdep.c: Fix indentation. * hppa-nbsd-nat.c: Fix indentation. * hppa-nbsd-tdep.c: Fix indentation. * hppa-obsd-nat.c: Fix indentation. * hppa-tdep.c: Fix indentation. * hppa-tdep.h: Fix indentation. * i386-bsd-nat.c: Fix indentation. * i386-darwin-nat.c: Fix indentation. * i386-darwin-tdep.c: Fix indentation. * i386-dicos-tdep.c: Fix indentation. * i386-gnu-nat.c: Fix indentation. * i386-linux-nat.c: Fix indentation. * i386-linux-tdep.c: Fix indentation. * i386-nto-tdep.c: Fix indentation. * i386-obsd-tdep.c: Fix indentation. * i386-sol2-nat.c: Fix indentation. * i386-tdep.c: Fix indentation. * i386-tdep.h: Fix indentation. * i386-windows-tdep.c: Fix indentation. * i387-tdep.c: Fix indentation. * i387-tdep.h: Fix indentation. * ia64-libunwind-tdep.c: Fix indentation. * ia64-libunwind-tdep.h: Fix indentation. * ia64-linux-nat.c: Fix indentation. * ia64-linux-tdep.c: Fix indentation. * ia64-tdep.c: Fix indentation. * ia64-tdep.h: Fix indentation. * ia64-vms-tdep.c: Fix indentation. * infcall.c: Fix indentation. * infcmd.c: Fix indentation. * inferior.c: Fix indentation. * infrun.c: Fix indentation. * iq2000-tdep.c: Fix indentation. * language.c: Fix indentation. * linespec.c: Fix indentation. * linux-fork.c: Fix indentation. * linux-nat.c: Fix indentation. * linux-tdep.c: Fix indentation. * linux-thread-db.c: Fix indentation. * lm32-tdep.c: Fix indentation. * m2-lang.c: Fix indentation. * m2-typeprint.c: Fix indentation. * m2-valprint.c: Fix indentation. * m32c-tdep.c: Fix indentation. * m32r-linux-tdep.c: Fix indentation. * m32r-tdep.c: Fix indentation. * m68hc11-tdep.c: Fix indentation. * m68k-bsd-nat.c: Fix indentation. * m68k-linux-nat.c: Fix indentation. * m68k-linux-tdep.c: Fix indentation. * m68k-tdep.c: Fix indentation. * machoread.c: Fix indentation. * macrocmd.c: Fix indentation. * macroexp.c: Fix indentation. * macroscope.c: Fix indentation. * macrotab.c: Fix indentation. * macrotab.h: Fix indentation. * main.c: Fix indentation. * mdebugread.c: Fix indentation. * mep-tdep.c: Fix indentation. * mi/mi-cmd-catch.c: Fix indentation. * mi/mi-cmd-disas.c: Fix indentation. * mi/mi-cmd-env.c: Fix indentation. * mi/mi-cmd-stack.c: Fix indentation. * mi/mi-cmd-var.c: Fix indentation. * mi/mi-cmds.c: Fix indentation. * mi/mi-main.c: Fix indentation. * mi/mi-parse.c: Fix indentation. * microblaze-tdep.c: Fix indentation. * minidebug.c: Fix indentation. * minsyms.c: Fix indentation. * mips-linux-nat.c: Fix indentation. * mips-linux-tdep.c: Fix indentation. * mips-nbsd-tdep.c: Fix indentation. * mips-tdep.c: Fix indentation. * mn10300-linux-tdep.c: Fix indentation. * mn10300-tdep.c: Fix indentation. * moxie-tdep.c: Fix indentation. * msp430-tdep.c: Fix indentation. * namespace.h: Fix indentation. * nat/fork-inferior.c: Fix indentation. * nat/gdb_ptrace.h: Fix indentation. * nat/linux-namespaces.c: Fix indentation. * nat/linux-osdata.c: Fix indentation. * nat/netbsd-nat.c: Fix indentation. * nat/x86-dregs.c: Fix indentation. * nbsd-nat.c: Fix indentation. * nbsd-tdep.c: Fix indentation. * nios2-linux-tdep.c: Fix indentation. * nios2-tdep.c: Fix indentation. * nto-procfs.c: Fix indentation. * nto-tdep.c: Fix indentation. * objfiles.c: Fix indentation. * objfiles.h: Fix indentation. * opencl-lang.c: Fix indentation. * or1k-tdep.c: Fix indentation. * osabi.c: Fix indentation. * osabi.h: Fix indentation. * osdata.c: Fix indentation. * p-lang.c: Fix indentation. * p-typeprint.c: Fix indentation. * p-valprint.c: Fix indentation. * parse.c: Fix indentation. * ppc-linux-nat.c: Fix indentation. * ppc-linux-tdep.c: Fix indentation. * ppc-nbsd-nat.c: Fix indentation. * ppc-nbsd-tdep.c: Fix indentation. * ppc-obsd-nat.c: Fix indentation. * ppc-ravenscar-thread.c: Fix indentation. * ppc-sysv-tdep.c: Fix indentation. * ppc64-tdep.c: Fix indentation. * printcmd.c: Fix indentation. * proc-api.c: Fix indentation. * producer.c: Fix indentation. * producer.h: Fix indentation. * prologue-value.c: Fix indentation. * prologue-value.h: Fix indentation. * psymtab.c: Fix indentation. * python/py-arch.c: Fix indentation. * python/py-bpevent.c: Fix indentation. * python/py-event.c: Fix indentation. * python/py-event.h: Fix indentation. * python/py-finishbreakpoint.c: Fix indentation. * python/py-frame.c: Fix indentation. * python/py-framefilter.c: Fix indentation. * python/py-inferior.c: Fix indentation. * python/py-infthread.c: Fix indentation. * python/py-objfile.c: Fix indentation. * python/py-prettyprint.c: Fix indentation. * python/py-registers.c: Fix indentation. * python/py-signalevent.c: Fix indentation. * python/py-stopevent.c: Fix indentation. * python/py-stopevent.h: Fix indentation. * python/py-threadevent.c: Fix indentation. * python/py-tui.c: Fix indentation. * python/py-unwind.c: Fix indentation. * python/py-value.c: Fix indentation. * python/py-xmethods.c: Fix indentation. * python/python-internal.h: Fix indentation. * python/python.c: Fix indentation. * ravenscar-thread.c: Fix indentation. * record-btrace.c: Fix indentation. * record-full.c: Fix indentation. * record.c: Fix indentation. * reggroups.c: Fix indentation. * regset.h: Fix indentation. * remote-fileio.c: Fix indentation. * remote.c: Fix indentation. * reverse.c: Fix indentation. * riscv-linux-tdep.c: Fix indentation. * riscv-ravenscar-thread.c: Fix indentation. * riscv-tdep.c: Fix indentation. * rl78-tdep.c: Fix indentation. * rs6000-aix-tdep.c: Fix indentation. * rs6000-lynx178-tdep.c: Fix indentation. * rs6000-nat.c: Fix indentation. * rs6000-tdep.c: Fix indentation. * rust-lang.c: Fix indentation. * rx-tdep.c: Fix indentation. * s12z-tdep.c: Fix indentation. * s390-linux-tdep.c: Fix indentation. * score-tdep.c: Fix indentation. * ser-base.c: Fix indentation. * ser-mingw.c: Fix indentation. * ser-uds.c: Fix indentation. * ser-unix.c: Fix indentation. * serial.c: Fix indentation. * sh-linux-tdep.c: Fix indentation. * sh-nbsd-tdep.c: Fix indentation. * sh-tdep.c: Fix indentation. * skip.c: Fix indentation. * sol-thread.c: Fix indentation. * solib-aix.c: Fix indentation. * solib-darwin.c: Fix indentation. * solib-frv.c: Fix indentation. * solib-svr4.c: Fix indentation. * solib.c: Fix indentation. * source.c: Fix indentation. * sparc-linux-tdep.c: Fix indentation. * sparc-nbsd-tdep.c: Fix indentation. * sparc-obsd-tdep.c: Fix indentation. * sparc-ravenscar-thread.c: Fix indentation. * sparc-tdep.c: Fix indentation. * sparc64-linux-tdep.c: Fix indentation. * sparc64-nbsd-tdep.c: Fix indentation. * sparc64-obsd-tdep.c: Fix indentation. * sparc64-tdep.c: Fix indentation. * stabsread.c: Fix indentation. * stack.c: Fix indentation. * stap-probe.c: Fix indentation. * stubs/ia64vms-stub.c: Fix indentation. * stubs/m32r-stub.c: Fix indentation. * stubs/m68k-stub.c: Fix indentation. * stubs/sh-stub.c: Fix indentation. * stubs/sparc-stub.c: Fix indentation. * symfile-mem.c: Fix indentation. * symfile.c: Fix indentation. * symfile.h: Fix indentation. * symmisc.c: Fix indentation. * symtab.c: Fix indentation. * symtab.h: Fix indentation. * target-float.c: Fix indentation. * target.c: Fix indentation. * target.h: Fix indentation. * tic6x-tdep.c: Fix indentation. * tilegx-linux-tdep.c: Fix indentation. * tilegx-tdep.c: Fix indentation. * top.c: Fix indentation. * tracefile-tfile.c: Fix indentation. * tracepoint.c: Fix indentation. * tui/tui-disasm.c: Fix indentation. * tui/tui-io.c: Fix indentation. * tui/tui-regs.c: Fix indentation. * tui/tui-stack.c: Fix indentation. * tui/tui-win.c: Fix indentation. * tui/tui-winsource.c: Fix indentation. * tui/tui.c: Fix indentation. * typeprint.c: Fix indentation. * ui-out.h: Fix indentation. * unittests/copy_bitwise-selftests.c: Fix indentation. * unittests/memory-map-selftests.c: Fix indentation. * utils.c: Fix indentation. * v850-tdep.c: Fix indentation. * valarith.c: Fix indentation. * valops.c: Fix indentation. * valprint.c: Fix indentation. * valprint.h: Fix indentation. * value.c: Fix indentation. * value.h: Fix indentation. * varobj.c: Fix indentation. * vax-tdep.c: Fix indentation. * windows-nat.c: Fix indentation. * windows-tdep.c: Fix indentation. * xcoffread.c: Fix indentation. * xml-syscall.c: Fix indentation. * xml-tdesc.c: Fix indentation. * xstormy16-tdep.c: Fix indentation. * xtensa-config.c: Fix indentation. * xtensa-linux-nat.c: Fix indentation. * xtensa-linux-tdep.c: Fix indentation. * xtensa-tdep.c: Fix indentation. gdbserver/ChangeLog: * ax.cc: Fix indentation. * dll.cc: Fix indentation. * inferiors.h: Fix indentation. * linux-low.cc: Fix indentation. * linux-nios2-low.cc: Fix indentation. * linux-ppc-ipa.cc: Fix indentation. * linux-ppc-low.cc: Fix indentation. * linux-x86-low.cc: Fix indentation. * linux-xtensa-low.cc: Fix indentation. * regcache.cc: Fix indentation. * server.cc: Fix indentation. * tracepoint.cc: Fix indentation. gdbsupport/ChangeLog: * common-exceptions.h: Fix indentation. * event-loop.cc: Fix indentation. * fileio.cc: Fix indentation. * filestuff.cc: Fix indentation. * gdb-dlfcn.cc: Fix indentation. * gdb_string_view.h: Fix indentation. * job-control.cc: Fix indentation. * signals.cc: Fix indentation. Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
2020-10-29Change add_target_sections_of_objfile to method on program_spaceTom Tromey1-5/+0
This changes add_target_sections_of_objfile to be a method on program_space. It is renamed to be another overload of add_target_sections, because they are semantically equivalent in a sense. gdb/ChangeLog 2020-10-29 Tom Tromey <tom@tromey.com> * symfile.c (add_symbol_file_command): Update. * exec.c (program_space::add_target_sections): Rename. * symfile-mem.c (symbol_file_add_from_memory): Update. * progspace.h (struct program_space) <add_target_sections>: Declare new overload. * exec.h (add_target_sections_of_objfile): Don't declare.
2020-10-29Change add_target_sections to method on program_spaceTom Tromey1-6/+0
This changes add_target_sections to be a method on program_space. Like the earlier change to remove_target_sections, this makes sense because this function is manipulating data that is stored on the program space. gdb/ChangeLog 2020-10-29 Tom Tromey <tom@tromey.com> * solib.c (solib_map_sections): Update. * exec.c (program_space::add_target_sections): Now a method. (exec_file_attach): Update. * exec.h (add_target_sections): Don't declare. * progspace.h (struct program_space) <add_target_sections>: Declare.
2020-10-29Change remove_target_sections to method on program_spaceTom Tromey1-4/+0
This changes remove_target_sections to be a method on program_space. This makes sense because this function manipulates data that is attached to the program space. gdb/ChangeLog 2020-10-29 Tom Tromey <tom@tromey.com> * progspace.h (struct program_space) <remove_target_sections>: Declare. * exec.c (program_space::remove_target_sections): Now a method. * exec.h (remove_target_sections): Don't declare.
2020-10-29Remove the exec_bfd macroTom Tromey1-2/+0
This removes the exec_bfd macro, in favor of new accessors on program_space. In one spot the accessor can't be used; but this is still a big improvement over the macro, IMO. gdb/ChangeLog 2020-10-29 Tom Tromey <tom@tromey.com> * windows-tdep.c (windows_solib_create_inferior_hook): Update. * symfile.c (reread_symbols): Update. * symfile-mem.c (add_symbol_file_from_memory_command) (add_vsyscall_page): Update. * source-cache.c (source_cache::get_plain_source_lines): Update. * solib-svr4.c (find_program_interpreter, elf_locate_base) (svr4_current_sos_direct, svr4_exec_displacement) (svr4_relocate_main_executable): Update. (svr4_iterate_over_objfiles_in_search_order): Update. * solib-frv.c (enable_break2, enable_break): Update. * solib-dsbt.c (lm_base, enable_break): Update. * solib-darwin.c (find_program_interpreter) (darwin_solib_create_inferior_hook): Update. * sol-thread.c (rw_common, ps_pdmodel): Update. * rs6000-nat.c (rs6000_nat_target::create_inferior): Update. * remote.c (compare_sections_command) (remote_target::trace_set_readonly_regions): Update. * remote-sim.c (get_sim_inferior_data) (gdbsim_target::create_inferior, gdbsim_target::create_inferior): Update. (gdbsim_target_open, gdbsim_target::files_info): Update. * exec.h (exec_bfd): Remove macro. * progspace.c (initialize_progspace): Update. * proc-service.c (ps_addr_to_core_addr, core_addr_to_ps_addr): Update. * nto-procfs.c (nto_procfs_target::post_attach) (nto_procfs_target::create_inferior): Update. * maint.c (maintenance_info_sections): Update. * linux-thread-db.c (thread_db_target::get_thread_local_address): Update. * infcmd.c (post_create_inferior): Update. * gcore.c (default_gcore_arch, default_gcore_target): Update. (objfile_find_memory_regions): Update. * exec.c (validate_exec_file, exec_file_attach) (exec_read_partial_read_only, print_section_info): Update. * corelow.c (core_target_open): Update. * corefile.c (reopen_exec_file, validate_files): Update. * arm-tdep.c (gdb_print_insn_arm): Update. * arch-utils.c (gdbarch_update_p, default_print_insn): Update. * progspace.h (struct program_space) <exec_bfd, set_exec_bfd>: New methods.
2020-10-29Remove exec_bfd_mtime defineTom Tromey1-1/+0
This removes the exec_bfd_mtime define, in favor of directly using the appropriate member of the current program space. gdb/ChangeLog 2020-10-29 Tom Tromey <tom@tromey.com> * source-cache.c (source_cache::get_plain_source_lines): Use current_program_space. * corefile.c (reopen_exec_file): Use current_program_space. * exec.c (exec_file_attach): Use current_program_space. * exec.h (exec_bfd_mtime): Remove.
2020-10-29Change exec_close to be a method on program_spaceTom Tromey1-2/+0
exec_close uses the current program space, so it seemed cleaner to change it to be a method on program_space. This patch makes this change. gdb/ChangeLog 2020-10-29 Tom Tromey <tom@tromey.com> * progspace.c (program_space::exec_close): New method, from exec_close in exec.c. * exec.c (exec_close): Move to progspace.c. (exec_target::close, exec_file_attach): Update. * progspace.h (struct program_space) <exec_close>: Declare method.
2020-10-29Remove exec_filename macroTom Tromey1-1/+0
This removes the exec_filename macro, replacing it with uses of the member of current_program_space. This also renames that member, and changes it to be a unique pointer. gdb/ChangeLog 2020-10-29 Tom Tromey <tom@tromey.com> * progspace.h (struct program_space) <exec_filename>: Rename from pspace_exec_filename. Now a unique_xmalloc_ptr. * inferior.c (print_selected_inferior): Update. (print_inferior): Update. * mi/mi-main.c (print_one_inferior): Update. * exec.h (exec_filename): Remove macro. * corefile.c (get_exec_file): Update. * exec.c (exec_close): Update. (exec_file_attach): Update. * progspace.c (clone_program_space): Update. (print_program_space): Update.
2020-10-12Change target_section_table to std::vector aliasTom Tromey1-1/+1
Because target_section_table only holds a vector, and because it is used in an "open" way, this patch makes it just be an alias for the std::vector specialization. This makes the code less wordy. If we do ever want to add more specialized behavior to this type, it's simple enough to convert it back to a struct with the few needed methods implied by this change. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * target.h (struct target_ops) <get_section_table>: Update. (target_get_section_table): Update. * target.c (target_get_section_table, target_section_by_addr) (memory_xfer_partial_1): Update. * target-section.h (target_section_table): Now an alias. * target-delegates.c: Rebuild. * target-debug.h (target_debug_print_target_section_table_p): Rename from target_debug_print_struct_target_section_table_p. * symfile.c (build_section_addr_info_from_section_table): Update. * solib.c (solib_map_sections, solib_contains_address_p): Update. * solib-svr4.c (scan_dyntag): Update. * solib-dsbt.c (scan_dyntag): Update. * remote.c (remote_target::remote_xfer_live_readonly_partial): Update. * record-full.c (record_full_core_target::xfer_partial): Update. * progspace.h (struct program_space) <target_sections>: Update. * exec.h (print_section_info): Update. * exec.c (exec_target::close, build_section_table) (add_target_sections, add_target_sections_of_objfile) (remove_target_sections, exec_on_vfork) (section_table_available_memory) (section_table_xfer_memory_partial) (exec_target::get_section_table, exec_target::xfer_partial) (print_section_info, set_section_command) (exec_set_section_address, exec_target::has_memory): Update. * corelow.c (core_target::build_file_mappings) (core_target::xfer_partial, core_target::info_proc_mappings) (core_target::info_proc_mappings): Update. * bfd-target.c (class target_bfd): Update
2020-10-12Remove clear_section_tableTom Tromey1-4/+0
The call to clear_section_table in ~program_space is now clearly not needed -- the section table will clear itself. This patch removes this call and then inlines the one remaining call to clear_section_table. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * progspace.c (program_space::~program_space): Don't call clear_section_table. * exec.h (clear_section_table): Don't declare. * exec.c (exec_target::close): Update. (clear_section_table): Remove.
2020-10-12build_section_table cannot failTom Tromey1-3/+2
I noticed that build_section_table cannot fail. This patch changes it to return a target_section_table and then removes the dead code. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * solib.c (solib_map_sections): Update. * record-full.c (record_full_core_open_1): Update. * exec.h (build_section_table): Return a target_section_table. * exec.c (exec_file_attach): Update. (build_section_table): Return a target_section_table. * corelow.c (core_target::core_target): Update. * bfd-target.c (target_bfd::target_bfd): Update.
2020-10-12Use a std::vector in target_section_tableTom Tromey1-6/+3
This changes target_section_table to wrap a std::vector. This simplifies some code, and also enables the simplifications coming in the subsequent patches. Note that for solib, I chose to have it use a pointer to a target_section_table. This is more convoluted than would be ideal, but I didn't want to convert solib to new/delete as a prerequisite for this series. gdb/ChangeLog 2020-10-12 Tom Tromey <tom@tromey.com> * target.c (target_section_by_addr, memory_xfer_partial_1): Update. * target-section.h (struct target_section_table): Use std::vector. * symfile.h (build_section_addr_info_from_section_table): Take a target_section_table. * symfile.c (build_section_addr_info_from_section_table): Take a target_section_table. * solist.h (struct so_list) <sections>: Change type. <sections_end>: Remove. * solib.c (solib_map_sections, clear_so, solib_read_symbols) (solib_contains_address_p): Update. * solib-svr4.c (scan_dyntag): Update. * solib-dsbt.c (scan_dyntag): Update. * remote.c (remote_target::remote_xfer_live_readonly_partial): Update. * record-full.c (record_full_core_start, record_full_core_end): Remove. (record_full_core_sections): New global. (record_full_core_open_1, record_full_core_target::xfer_partial): Update. * exec.h (build_section_table, section_table_xfer_memory_partial) (add_target_sections): Take a target_section_table. * exec.c (exec_file_attach, clear_section_table): Update. (resize_section_table): Remove. (build_section_table, add_target_sections): Take a target_section_table. (add_target_sections_of_objfile, remove_target_sections) (exec_on_vfork): Update. (section_table_available_memory): Take a target_section_table. (section_table_read_available_memory): Update. (section_table_xfer_memory_partial): Take a target_section_table. (print_section_info, set_section_command) (exec_set_section_address, exec_target::has_memory): Update. * corelow.c (class core_target) <m_core_section_table, m_core_file_mappings>: Remove braces. <~core_target>: Remove. (core_target::core_target): Update. (core_target::~core_target): Remove. (core_target::build_file_mappings) (core_target::xfer_memory_via_mappings) (core_target::xfer_partial, core_target::info_proc_mappings): Update. * bfd-target.c (target_bfd::xfer_partial): Update. (target_bfd::target_bfd): Update. (target_bfd::~target_bfd): Remove.
2020-07-22section_table_xfer_memory: Replace section name with callback predicateKevin Buettner1-3/+10
This patch is motivated by the need to be able to select sections that section_table_xfer_memory_partial should consider for memory transfers. I'll use this facility in the next patch in this series. section_table_xfer_memory_partial() can currently be passed a section name which may be used to make name-based selections. This is similar to what I want to do, except that I want to be able to consider section flags instead of the name. I'm replacing the section name parameter with a predicate that, when passed a pointer to a target_section struct, will return true if that section should be further considered, or false which indicates that it shouldn't. I've converted the one existing use where a non-NULL section name is passed to section_table_xfer_memory_partial(). Instead of passing the section name, it now looks like this: auto match_cb = [=] (const struct target_section *s) { return (strcmp (section_name, s->the_bfd_section->name) == 0); }; return section_table_xfer_memory_partial (readbuf, writebuf, memaddr, len, xfered_len, table->sections, table->sections_end, match_cb); The other callers all passed NULL; they've been simplified somewhat in that they no longer need to pass NULL. gdb/ChangeLog: * exec.h (section_table_xfer_memory): Revise declaration, replacing section name parameter with an optional callback predicate. * exec.c (section_table_xfer_memory): Likewise. * bfd-target.c, exec.c, target.c, corelow.c: Adjust all callers of section_table_xfer_memory.
2020-01-10Multi-target supportPedro Alves1-0/+7
This commit adds multi-target support to GDB. What this means is that with this commit, GDB can now be connected to different targets at the same time. E.g., you can debug a live native process and a core dump at the same time, connect to multiple gdbservers, etc. Actually, the word "target" is overloaded in gdb. We already have a target stack, with pushes several target_ops instances on top of one another. We also have "info target" already, which means something completely different to what this patch does. So from here on, I'll be using the "target connections" term, to mean an open process_stratum target, pushed on a target stack. This patch makes gdb have multiple target stacks, and multiple process_stratum targets open simultaneously. The user-visible changes / commands will also use this terminology, but of course it's all open to debate. User-interface-wise, not that much changes. The main difference is that each inferior may have its own target connection. A target connection (e.g., a target extended-remote connection) may support debugging multiple processes, just as before. Say you're debugging against gdbserver in extended-remote mode, and you do "add-inferior" to prepare to spawn a new process, like: (gdb) target extended-remote :9999 ... (gdb) start ... (gdb) add-inferior Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) file a.out ... (gdb) start ... At this point, you have two inferiors connected to the same gdbserver. With this commit, GDB will maintain a target stack per inferior, instead of a global target stack. To preserve the behavior above, by default, "add-inferior" makes the new inferior inherit a copy of the target stack of the current inferior. Same across a fork - the child inherits a copy of the target stack of the parent. While the target stacks are copied, the targets themselves are not. Instead, target_ops is made a refcounted_object, which means that target_ops instances are refcounted, which each inferior counting for a reference. What if you want to create an inferior and connect it to some _other_ target? For that, this commit introduces a new "add-inferior -no-connection" option that makes the new inferior not share the current inferior's target. So you could do: (gdb) target extended-remote :9999 Remote debugging using :9999 ... (gdb) add-inferior -no-connection [New inferior 2] Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 <null> (gdb) tar extended-remote :10000 Remote debugging using :10000 ... (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 process 18450 target:/home/pedro/tmp/main (gdb) A following patch will extended "info inferiors" to include a column indicating which connection an inferior is bound to, along with a couple other UI tweaks. Other than that, debugging is the same as before. Users interact with inferiors and threads as before. The only difference is that inferiors may be bound to processes running in different machines. That's pretty much all there is to it in terms of noticeable UI changes. On to implementation. Since we can be connected to different systems at the same time, a ptid_t is no longer a unique identifier. Instead a thread can be identified by a pair of ptid_t and 'process_stratum_target *', the later being the instance of the process_stratum target that owns the process/thread. Note that process_stratum_target inherits from target_ops, and all process_stratum targets inherit from process_stratum_target. In earlier patches, many places in gdb were converted to refer to threads by thread_info pointer instead of ptid_t, but there are still places in gdb where we start with a pid/tid and need to find the corresponding inferior or thread_info objects. So you'll see in the patch many places adding a process_stratum_target parameter to functions that used to take only a ptid_t. Since each inferior has its own target stack now, we can always find the process_stratum target for an inferior. That is done via a inf->process_target() convenience method. Since each inferior has its own target stack, we need to handle the "beneath" calls when servicing target calls. The solution I settled with is just to make sure to switch the current inferior to the inferior you want before making a target call. Not relying on global context is just not feasible in current GDB. Fortunately, there aren't that many places that need to do that, because generally most code that calls target methods already has the current context pointing to the right inferior/thread. Note, to emphasize -- there's no method to "switch to this target stack". Instead, you switch the current inferior, and that implicitly switches the target stack. In some spots, we need to iterate over all inferiors so that we reach all target stacks. Native targets are still singletons. There's always only a single instance of such targets. Remote targets however, we'll have one instance per remote connection. The exec target is still a singleton. There's only one instance. I did not see the point of instanciating more than one exec_target object. After vfork, we need to make sure to push the exec target on the new inferior. See exec_on_vfork. For type safety, functions that need a {target, ptid} pair to identify a thread, take a process_stratum_target pointer for target parameter instead of target_ops *. Some shared code in gdb/nat/ also need to gain a target pointer parameter. This poses an issue, since gdbserver doesn't have process_stratum_target, only target_ops. To fix this, this commit renames gdbserver's target_ops to process_stratum_target. I think this makes sense. There's no concept of target stack in gdbserver, and gdbserver's target_ops really implements a process_stratum-like target. The thread and inferior iterator functions also gain process_stratum_target parameters. These are used to be able to iterate over threads and inferiors of a given target. Following usual conventions, if the target pointer is null, then we iterate over threads and inferiors of all targets. I tried converting "add-inferior" to the gdb::option framework, as a preparatory patch, but that stumbled on the fact that gdb::option does not support file options yet, for "add-inferior -exec". I have a WIP patchset that adds that, but it's not a trivial patch, mainly due to need to integrate readline's filename completion, so I deferred that to some other time. In infrun.c/infcmd.c, the main change is that we need to poll events out of all targets. See do_target_wait. Right after collecting an event, we switch the current inferior to an inferior bound to the target that reported the event, so that target methods can be used while handling the event. This makes most of the code transparent to multi-targets. See fetch_inferior_event. infrun.c:stop_all_threads is interesting -- in this function we need to stop all threads of all targets. What the function does is send an asynchronous stop request to all threads, and then synchronously waits for events, with target_wait, rinse repeat, until all it finds are stopped threads. Now that we have multiple targets, it's not efficient to synchronously block in target_wait waiting for events out of one target. Instead, we implement a mini event loop, with interruptible_select, select'ing on one file descriptor per target. For this to work, we need to be able to ask the target for a waitable file descriptor. Such file descriptors already exist, they are the descriptors registered in the main event loop with add_file_handler, inside the target_async implementations. This commit adds a new target_async_wait_fd target method that just returns the file descriptor in question. See wait_one / stop_all_threads in infrun.c. The 'threads_executing' global is made a per-target variable. Since it is only relevant to process_stratum_target targets, this is where it is put, instead of in target_ops. You'll notice that remote.c includes some FIXME notes. These refer to the fact that the global arrays that hold data for the remote packets supported are still globals. For example, if we connect to two different servers/stubs, then each might support different remote protocol features. They might even be different architectures, like e.g., one ARM baremetal stub, and a x86 gdbserver, to debug a host/controller scenario as a single program. That isn't going to work correctly today, because of said globals. I'm leaving fixing that for another pass, since it does not appear to be trivial, and I'd rather land the base work first. It's already useful to be able to debug multiple instances of the same server (e.g., a distributed cluster, where you have full control over the servers installed), so I think as is it's already reasonable incremental progress. Current limitations: - You can only resume more that one target at the same time if all targets support asynchronous debugging, and support non-stop mode. It should be possible to support mixed all-stop + non-stop backends, but that is left for another time. This means that currently in order to do multi-target with gdbserver you need to issue "maint set target-non-stop on". I would like to make that mode be the default, but we're not there yet. Note that I'm talking about how the target backend works, only. User-visible all-stop mode works just fine. - As explained above, connecting to different remote servers at the same time is likely to produce bad results if they don't support the exact set of RSP features. FreeBSD updates courtesy of John Baldwin. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> John Baldwin <jhb@FreeBSD.org> * aarch64-linux-nat.c (aarch64_linux_nat_target::thread_architecture): Adjust. * ada-tasks.c (print_ada_task_info): Adjust find_thread_ptid call. (task_command_1): Likewise. * aix-thread.c (sync_threadlists, aix_thread_target::resume) (aix_thread_target::wait, aix_thread_target::fetch_registers) (aix_thread_target::store_registers) (aix_thread_target::thread_alive): Adjust. * amd64-fbsd-tdep.c: Include "inferior.h". (amd64fbsd_get_thread_local_address): Pass down target. * amd64-linux-nat.c (ps_get_thread_area): Use ps_prochandle thread's gdbarch instead of target_gdbarch. * break-catch-sig.c (signal_catchpoint_print_it): Adjust call to get_last_target_status. * break-catch-syscall.c (print_it_catch_syscall): Likewise. * breakpoint.c (breakpoints_should_be_inserted_now): Consider all inferiors. (update_inserted_breakpoint_locations): Skip if inferiors with no execution. (update_global_location_list): When handling moribund locations, find representative inferior for location's pspace, and use thread count of its process_stratum target. * bsd-kvm.c (bsd_kvm_target_open): Pass target down. * bsd-uthread.c (bsd_uthread_target::wait): Use as_process_stratum_target and adjust thread_change_ptid and add_thread calls. (bsd_uthread_target::update_thread_list): Use as_process_stratum_target and adjust find_thread_ptid, thread_change_ptid and add_thread calls. * btrace.c (maint_btrace_packet_history_cmd): Adjust find_thread_ptid call. * corelow.c (add_to_thread_list): Adjust add_thread call. (core_target_open): Adjust add_thread_silent and thread_count calls. (core_target::pid_to_str): Adjust find_inferior_ptid call. * ctf.c (ctf_target_open): Adjust add_thread_silent call. * event-top.c (async_disconnect): Pop targets from all inferiors. * exec.c (add_target_sections): Push exec target on all inferiors sharing the program space. (remove_target_sections): Remove the exec target from all inferiors sharing the program space. (exec_on_vfork): New. * exec.h (exec_on_vfork): Declare. * fbsd-nat.c (fbsd_add_threads): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::update_thread_list): Adjust. (fbsd_nat_target::resume): Adjust. (fbsd_handle_debug_trap): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::wait, fbsd_nat_target::post_attach): Adjust. * fbsd-tdep.c (fbsd_corefile_thread): Adjust get_thread_arch_regcache call. * fork-child.c (gdb_startup_inferior): Pass target down to startup_inferior and set_executing. * gdbthread.h (struct process_stratum_target): Forward declare. (add_thread, add_thread_silent, add_thread_with_info) (in_thread_list): Add process_stratum_target parameter. (find_thread_ptid(inferior*, ptid_t)): New overload. (find_thread_ptid, thread_change_ptid): Add process_stratum_target parameter. (all_threads()): Delete overload. (all_threads, all_non_exited_threads): Add process_stratum_target parameter. (all_threads_safe): Use brace initialization. (thread_count): Add process_stratum_target parameter. (set_resumed, set_running, set_stop_requested, set_executing) (threads_are_executing, finish_thread_state): Add process_stratum_target parameter. (switch_to_thread): Use is_current_thread. * i386-fbsd-tdep.c: Include "inferior.h". (i386fbsd_get_thread_local_address): Pass down target. * i386-linux-nat.c (i386_linux_nat_target::low_resume): Adjust. * inf-child.c (inf_child_target::maybe_unpush_target): Remove have_inferiors check. * inf-ptrace.c (inf_ptrace_target::create_inferior) (inf_ptrace_target::attach): Adjust. * infcall.c (run_inferior_call): Adjust. * infcmd.c (run_command_1): Pass target to scoped_finish_thread_state. (proceed_thread_callback): Skip inferiors with no execution. (continue_command): Rename 'all_threads' local to avoid hiding 'all_threads' function. Adjust get_last_target_status call. (prepare_one_step): Adjust set_running call. (signal_command): Use user_visible_resume_target. Compare thread pointers instead of inferior_ptid. (info_program_command): Adjust to pass down target. (attach_command): Mark target's 'thread_executing' flag. (stop_current_target_threads_ns): New, factored out from ... (interrupt_target_1): ... this. Switch inferior before making target calls. * inferior-iter.h (struct all_inferiors_iterator, struct all_inferiors_range) (struct all_inferiors_safe_range) (struct all_non_exited_inferiors_range): Filter on process_stratum_target too. Remove explicit. * inferior.c (inferior::inferior): Push dummy target on target stack. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors): Add process_stratum_target parameter, and pass it down. (have_live_inferiors): Adjust. (switch_to_inferior_and_push_target): New. (add_inferior_command, clone_inferior_command): Handle "-no-connection" parameter. Use switch_to_inferior_and_push_target. (_initialize_inferior): Mention "-no-connection" option in the help of "add-inferior" and "clone-inferior" commands. * inferior.h: Include "process-stratum-target.h". (interrupt_target_1): Use bool. (struct inferior) <push_target, unpush_target, target_is_pushed, find_target_beneath, top_target, process_target, target_at, m_stack>: New. (discard_all_inferiors): Delete. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors) (all_inferiors, all_non_exited_inferiors): Add process_stratum_target parameter. * infrun.c: Include "gdb_select.h" and <unordered_map>. (target_last_proc_target): New global. (follow_fork_inferior): Push target on new inferior. Pass target to add_thread_silent. Call exec_on_vfork. Handle target's reference count. (follow_fork): Adjust get_last_target_status call. Also consider target. (follow_exec): Push target on new inferior. (struct execution_control_state) <target>: New field. (user_visible_resume_target): New. (do_target_resume): Call target_async. (resume_1): Set target's threads_executing flag. Consider resume target. (commit_resume_all_targets): New. (proceed): Also consider resume target. Skip threads of inferiors with no execution. Commit resumtion in all targets. (start_remote): Pass current inferior to wait_for_inferior. (infrun_thread_stop_requested): Consider target as well. Pass thread_info pointer to clear_inline_frame_state instead of ptid. (infrun_thread_thread_exit): Consider target as well. (random_pending_event_thread): New inferior parameter. Use it. (do_target_wait): Rename to ... (do_target_wait_1): ... this. Add inferior parameter, and pass it down. (threads_are_resumed_pending_p, do_target_wait): New. (prepare_for_detach): Adjust calls. (wait_for_inferior): New inferior parameter. Handle it. Use do_target_wait_1 instead of do_target_wait. (fetch_inferior_event): Adjust. Switch to representative inferior. Pass target down. (set_last_target_status): Add process_stratum_target parameter. Save target in global. (get_last_target_status): Add process_stratum_target parameter and handle it. (nullify_last_target_wait_ptid): Clear 'target_last_proc_target'. (context_switch): Check inferior_ptid == null_ptid before calling inferior_thread(). (get_inferior_stop_soon): Pass down target. (wait_one): Rename to ... (poll_one_curr_target): ... this. (struct wait_one_event): New. (wait_one): New. (stop_all_threads): Adjust. (handle_no_resumed, handle_inferior_event): Adjust to consider the event's target. (switch_back_to_stepped_thread): Also consider target. (print_stop_event): Update. (normal_stop): Update. Also consider the resume target. * infrun.h (wait_for_inferior): Remove declaration. (user_visible_resume_target): New declaration. (get_last_target_status, set_last_target_status): New process_stratum_target parameter. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter, and use it. (clear_inline_frame_state (thread_info*)): New. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter. (clear_inline_frame_state (thread_info*)): Declare. * linux-fork.c (delete_checkpoint_command): Pass target down to find_thread_ptid. (checkpoint_command): Adjust. * linux-nat.c (linux_nat_target::follow_fork): Switch to thread instead of just tweaking inferior_ptid. (linux_nat_switch_fork): Pass target down to thread_change_ptid. (exit_lwp): Pass target down to find_thread_ptid. (attach_proc_task_lwp_callback): Pass target down to add_thread/set_running/set_executing. (linux_nat_target::attach): Pass target down to thread_change_ptid. (get_detach_signal): Pass target down to find_thread_ptid. Consider last target status's target. (linux_resume_one_lwp_throw, resume_lwp) (linux_handle_syscall_trap, linux_handle_extended_wait, wait_lwp) (stop_wait_callback, save_stop_reason, linux_nat_filter_event) (linux_nat_wait_1, resume_stopped_resumed_lwps): Pass target down. (linux_nat_target::async_wait_fd): New. (linux_nat_stop_lwp, linux_nat_target::thread_address_space): Pass target down. * linux-nat.h (linux_nat_target::async_wait_fd): Declare. * linux-tdep.c (get_thread_arch_regcache): Pass target down. * linux-thread-db.c (struct thread_db_info::process_target): New field. (add_thread_db_info): Save target. (get_thread_db_info): New process_stratum_target parameter. Also match target. (delete_thread_db_info): New process_stratum_target parameter. Also match target. (thread_from_lwp): Adjust to pass down target. (thread_db_notice_clone): Pass down target. (check_thread_db_callback): Pass down target. (try_thread_db_load_1): Always push the thread_db target. (try_thread_db_load, record_thread): Pass target down. (thread_db_target::detach): Pass target down. Always unpush the thread_db target. (thread_db_target::wait, thread_db_target::mourn_inferior): Pass target down. Always unpush the thread_db target. (find_new_threads_callback, thread_db_find_new_threads_2) (thread_db_target::update_thread_list): Pass target down. (thread_db_target::pid_to_str): Pass current inferior down. (thread_db_target::get_thread_local_address): Pass target down. (thread_db_target::resume, maintenance_check_libthread_db): Pass target down. * nto-procfs.c (nto_procfs_target::update_thread_list): Adjust. * procfs.c (procfs_target::procfs_init_inferior): Declare. (proc_set_current_signal, do_attach, procfs_target::wait): Adjust. (procfs_init_inferior): Rename to ... (procfs_target::procfs_init_inferior): ... this and adjust. (procfs_target::create_inferior, procfs_notice_thread) (procfs_do_thread_registers): Adjust. * ppc-fbsd-tdep.c: Include "inferior.h". (ppcfbsd_get_thread_local_address): Pass down target. * proc-service.c (ps_xfer_memory): Switch current inferior and program space as well. (get_ps_regcache): Pass target down. * process-stratum-target.c (process_stratum_target::thread_address_space) (process_stratum_target::thread_architecture): Pass target down. * process-stratum-target.h (process_stratum_target::threads_executing): New field. (as_process_stratum_target): New. * ravenscar-thread.c (ravenscar_thread_target::update_inferior_ptid): Pass target down. (ravenscar_thread_target::wait, ravenscar_add_thread): Pass target down. * record-btrace.c (record_btrace_target::info_record): Adjust. (record_btrace_target::record_method) (record_btrace_target::record_is_replaying) (record_btrace_target::fetch_registers) (get_thread_current_frame_id, record_btrace_target::resume) (record_btrace_target::wait, record_btrace_target::stop): Pass target down. * record-full.c (record_full_wait_1): Switch to event thread. Pass target down. * regcache.c (regcache::regcache) (get_thread_arch_aspace_regcache, get_thread_arch_regcache): Add process_stratum_target parameter and handle it. (current_thread_target): New global. (get_thread_regcache): Add process_stratum_target parameter and handle it. Switch inferior before calling target method. (get_thread_regcache): Pass target down. (get_thread_regcache_for_ptid): Pass target down. (registers_changed_ptid): Add process_stratum_target parameter and handle it. (registers_changed_thread, registers_changed): Pass target down. (test_get_thread_arch_aspace_regcache): New. (current_regcache_test): Define a couple local test_target_ops instances and use them for testing. (readwrite_regcache): Pass process_stratum_target parameter. (cooked_read_test, cooked_write_test): Pass mock_target down. * regcache.h (get_thread_regcache, get_thread_arch_regcache) (get_thread_arch_aspace_regcache): Add process_stratum_target parameter. (regcache::target): New method. (regcache::regcache, regcache::get_thread_arch_aspace_regcache) (regcache::registers_changed_ptid): Add process_stratum_target parameter. (regcache::m_target): New field. (registers_changed_ptid): Add process_stratum_target parameter. * remote.c (remote_state::supports_vCont_probed): New field. (remote_target::async_wait_fd): New method. (remote_unpush_and_throw): Add remote_target parameter. (get_current_remote_target): Adjust. (remote_target::remote_add_inferior): Push target. (remote_target::remote_add_thread) (remote_target::remote_notice_new_inferior) (get_remote_thread_info): Pass target down. (remote_target::update_thread_list): Skip threads of inferiors bound to other targets. (remote_target::close): Don't discard inferiors. (remote_target::add_current_inferior_and_thread) (remote_target::process_initial_stop_replies) (remote_target::start_remote) (remote_target::remote_serial_quit_handler): Pass down target. (remote_target::remote_unpush_target): New remote_target parameter. Unpush the target from all inferiors. (remote_target::remote_unpush_and_throw): New remote_target parameter. Pass it down. (remote_target::open_1): Check whether the current inferior has execution instead of checking whether any inferior is live. Pass target down. (remote_target::remote_detach_1): Pass down target. Use remote_unpush_target. (extended_remote_target::attach): Pass down target. (remote_target::remote_vcont_probe): Set supports_vCont_probed. (remote_target::append_resumption): Pass down target. (remote_target::append_pending_thread_resumptions) (remote_target::remote_resume_with_hc, remote_target::resume) (remote_target::commit_resume): Pass down target. (remote_target::remote_stop_ns): Check supports_vCont_probed. (remote_target::interrupt_query) (remote_target::remove_new_fork_children) (remote_target::check_pending_events_prevent_wildcard_vcont) (remote_target::remote_parse_stop_reply) (remote_target::process_stop_reply): Pass down target. (first_remote_resumed_thread): New remote_target parameter. Pass it down. (remote_target::wait_as): Pass down target. (unpush_and_perror): New remote_target parameter. Pass it down. (remote_target::readchar, remote_target::remote_serial_write) (remote_target::getpkt_or_notif_sane_1) (remote_target::kill_new_fork_children, remote_target::kill): Pass down target. (remote_target::mourn_inferior): Pass down target. Use remote_unpush_target. (remote_target::core_of_thread) (remote_target::remote_btrace_maybe_reopen): Pass down target. (remote_target::pid_to_exec_file) (remote_target::thread_handle_to_thread_info): Pass down target. (remote_target::async_wait_fd): New. * riscv-fbsd-tdep.c: Include "inferior.h". (riscv_fbsd_get_thread_local_address): Pass down target. * sol2-tdep.c (sol2_core_pid_to_str): Pass down target. * sol-thread.c (sol_thread_target::wait, ps_lgetregs, ps_lsetregs) (ps_lgetfpregs, ps_lsetfpregs, sol_update_thread_list_callback): Adjust. * solib-spu.c (spu_skip_standalone_loader): Pass down target. * solib-svr4.c (enable_break): Pass down target. * spu-multiarch.c (parse_spufs_run): Pass down target. * spu-tdep.c (spu2ppu_sniffer): Pass down target. * target-delegates.c: Regenerate. * target.c (g_target_stack): Delete. (current_top_target): Return the current inferior's top target. (target_has_execution_1): Refer to the passed-in inferior's top target. (target_supports_terminal_ours): Check whether the initial inferior was already created. (decref_target): New. (target_stack::push): Incref/decref the target. (push_target, push_target, unpush_target): Adjust. (target_stack::unpush): Defref target. (target_is_pushed): Return bool. Adjust to refer to the current inferior's target stack. (dispose_inferior): Delete, and inline parts ... (target_preopen): ... here. Only dispose of the current inferior. (target_detach): Hold strong target reference while detaching. Pass target down. (target_thread_name): Add assertion. (target_resume): Pass down target. (target_ops::beneath, find_target_at): Adjust to refer to the current inferior's target stack. (get_dummy_target): New. (target_pass_ctrlc): Pass the Ctrl-C to the first inferior that has a thread running. (initialize_targets): Rename to ... (_initialize_target): ... this. * target.h: Include "gdbsupport/refcounted-object.h". (struct target_ops): Inherit refcounted_object. (target_ops::shortname, target_ops::longname): Make const. (target_ops::async_wait_fd): New method. (decref_target): Declare. (struct target_ops_ref_policy): New. (target_ops_ref): New typedef. (get_dummy_target): Declare function. (target_is_pushed): Return bool. * thread-iter.c (all_matching_threads_iterator::m_inf_matches) (all_matching_threads_iterator::all_matching_threads_iterator): Handle filter target. * thread-iter.h (struct all_matching_threads_iterator, struct all_matching_threads_range, class all_non_exited_threads_range): Filter by target too. Remove explicit. * thread.c (threads_executing): Delete. (inferior_thread): Pass down current inferior. (clear_thread_inferior_resources): Pass down thread pointer instead of ptid_t. (add_thread_silent, add_thread_with_info, add_thread): Add process_stratum_target parameter. Use it for thread and inferior searches. (is_current_thread): New. (thread_info::deletable): Use it. (find_thread_ptid, thread_count, in_thread_list) (thread_change_ptid, set_resumed, set_running): New process_stratum_target parameter. Pass it down. (set_executing): New process_stratum_target parameter. Pass it down. Adjust reference to 'threads_executing'. (threads_are_executing): New process_stratum_target parameter. Adjust reference to 'threads_executing'. (set_stop_requested, finish_thread_state): New process_stratum_target parameter. Pass it down. (switch_to_thread): Also match inferior. (switch_to_thread): New process_stratum_target parameter. Pass it down. (update_threads_executing): Reimplement. * top.c (quit_force): Pop targets from all inferior. (gdb_init): Don't call initialize_targets. * windows-nat.c (windows_nat_target) <get_windows_debug_event>: Declare. (windows_add_thread, windows_delete_thread): Adjust. (get_windows_debug_event): Rename to ... (windows_nat_target::get_windows_debug_event): ... this. Adjust. * tracefile-tfile.c (tfile_target_open): Pass down target. * gdbsupport/common-gdbthread.h (struct process_stratum_target): Forward declare. (switch_to_thread): Add process_stratum_target parameter. * mi/mi-interp.c (mi_on_resume_1): Add process_stratum_target parameter. Use it. (mi_on_resume): Pass target down. * nat/fork-inferior.c (startup_inferior): Add process_stratum_target parameter. Pass it down. * nat/fork-inferior.h (startup_inferior): Add process_stratum_target parameter. * python/py-threadevent.c (py_get_event_thread): Pass target down. gdb/gdbserver/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * fork-child.c (post_fork_inferior): Pass target down to startup_inferior. * inferiors.c (switch_to_thread): Add process_stratum_target parameter. * lynx-low.c (lynx_target_ops): Now a process_stratum_target. * nto-low.c (nto_target_ops): Now a process_stratum_target. * linux-low.c (linux_target_ops): Now a process_stratum_target. * remote-utils.c (prepare_resume_reply): Pass the target to switch_to_thread. * target.c (the_target): Now a process_stratum_target. (done_accessing_memory): Pass the target to switch_to_thread. (set_target_ops): Ajust to use process_stratum_target. * target.h (struct target_ops): Rename to ... (struct process_stratum_target): ... this. (the_target, set_target_ops): Adjust. (prepare_to_access_memory): Adjust comment. * win32-low.c (child_xfer_memory): Adjust to use process_stratum_target. (win32_target_ops): Now a process_stratum_target.
2020-01-01Update copyright year range in all GDB files.Joel Brobecker1-1/+1
gdb/ChangeLog: Update copyright year range in all GDB files.
2019-04-06Revert the header-sorting patchTom Tromey1-2/+2
Andreas Schwab and John Baldwin pointed out some bugs in the header sorting patch; and I noticed that the output was not correct when limited to a subset of files (a bug in my script). So, I'm reverting the patch. I may try again after fixing the issues pointed out. gdb/ChangeLog 2019-04-05 Tom Tromey <tom@tromey.com> Revert the header-sorting patch. * ft32-tdep.c: Revert. * frv-tdep.c: Revert. * frv-linux-tdep.c: Revert. * frame.c: Revert. * frame-unwind.c: Revert. * frame-base.c: Revert. * fork-child.c: Revert. * findvar.c: Revert. * findcmd.c: Revert. * filesystem.c: Revert. * filename-seen-cache.h: Revert. * filename-seen-cache.c: Revert. * fbsd-tdep.c: Revert. * fbsd-nat.h: Revert. * fbsd-nat.c: Revert. * f-valprint.c: Revert. * f-typeprint.c: Revert. * f-lang.c: Revert. * extension.h: Revert. * extension.c: Revert. * extension-priv.h: Revert. * expprint.c: Revert. * exec.h: Revert. * exec.c: Revert. * exceptions.c: Revert. * event-top.c: Revert. * event-loop.c: Revert. * eval.c: Revert. * elfread.c: Revert. * dwarf2read.h: Revert. * dwarf2read.c: Revert. * dwarf2loc.c: Revert. * dwarf2expr.h: Revert. * dwarf2expr.c: Revert. * dwarf2-frame.c: Revert. * dwarf2-frame-tailcall.c: Revert. * dwarf-index-write.h: Revert. * dwarf-index-write.c: Revert. * dwarf-index-common.c: Revert. * dwarf-index-cache.h: Revert. * dwarf-index-cache.c: Revert. * dummy-frame.c: Revert. * dtrace-probe.c: Revert. * disasm.h: Revert. * disasm.c: Revert. * disasm-selftests.c: Revert. * dictionary.c: Revert. * dicos-tdep.c: Revert. * demangle.c: Revert. * dcache.h: Revert. * dcache.c: Revert. * darwin-nat.h: Revert. * darwin-nat.c: Revert. * darwin-nat-info.c: Revert. * d-valprint.c: Revert. * d-namespace.c: Revert. * d-lang.c: Revert. * ctf.c: Revert. * csky-tdep.c: Revert. * csky-linux-tdep.c: Revert. * cris-tdep.c: Revert. * cris-linux-tdep.c: Revert. * cp-valprint.c: Revert. * cp-support.c: Revert. * cp-namespace.c: Revert. * cp-abi.c: Revert. * corelow.c: Revert. * corefile.c: Revert. * continuations.c: Revert. * completer.h: Revert. * completer.c: Revert. * complaints.c: Revert. * coffread.c: Revert. * coff-pe-read.c: Revert. * cli-out.h: Revert. * cli-out.c: Revert. * charset.c: Revert. * c-varobj.c: Revert. * c-valprint.c: Revert. * c-typeprint.c: Revert. * c-lang.c: Revert. * buildsym.c: Revert. * buildsym-legacy.c: Revert. * build-id.h: Revert. * build-id.c: Revert. * btrace.c: Revert. * bsd-uthread.c: Revert. * breakpoint.h: Revert. * breakpoint.c: Revert. * break-catch-throw.c: Revert. * break-catch-syscall.c: Revert. * break-catch-sig.c: Revert. * blockframe.c: Revert. * block.c: Revert. * bfin-tdep.c: Revert. * bfin-linux-tdep.c: Revert. * bfd-target.c: Revert. * bcache.c: Revert. * ax-general.c: Revert. * ax-gdb.h: Revert. * ax-gdb.c: Revert. * avr-tdep.c: Revert. * auxv.c: Revert. * auto-load.c: Revert. * arm-wince-tdep.c: Revert. * arm-tdep.c: Revert. * arm-symbian-tdep.c: Revert. * arm-pikeos-tdep.c: Revert. * arm-obsd-tdep.c: Revert. * arm-nbsd-tdep.c: Revert. * arm-nbsd-nat.c: Revert. * arm-linux-tdep.c: Revert. * arm-linux-nat.c: Revert. * arm-fbsd-tdep.c: Revert. * arm-fbsd-nat.c: Revert. * arm-bsd-tdep.c: Revert. * arch-utils.c: Revert. * arc-tdep.c: Revert. * arc-newlib-tdep.c: Revert. * annotate.h: Revert. * annotate.c: Revert. * amd64-windows-tdep.c: Revert. * amd64-windows-nat.c: Revert. * amd64-tdep.c: Revert. * amd64-sol2-tdep.c: Revert. * amd64-obsd-tdep.c: Revert. * amd64-obsd-nat.c: Revert. * amd64-nbsd-tdep.c: Revert. * amd64-nbsd-nat.c: Revert. * amd64-nat.c: Revert. * amd64-linux-tdep.c: Revert. * amd64-linux-nat.c: Revert. * amd64-fbsd-tdep.c: Revert. * amd64-fbsd-nat.c: Revert. * amd64-dicos-tdep.c: Revert. * amd64-darwin-tdep.c: Revert. * amd64-bsd-nat.c: Revert. * alpha-tdep.c: Revert. * alpha-obsd-tdep.c: Revert. * alpha-nbsd-tdep.c: Revert. * alpha-mdebug-tdep.c: Revert. * alpha-linux-tdep.c: Revert. * alpha-linux-nat.c: Revert. * alpha-bsd-tdep.c: Revert. * alpha-bsd-nat.c: Revert. * aix-thread.c: Revert. * agent.c: Revert. * addrmap.c: Revert. * ada-varobj.c: Revert. * ada-valprint.c: Revert. * ada-typeprint.c: Revert. * ada-tasks.c: Revert. * ada-lang.c: Revert. * aarch64-tdep.c: Revert. * aarch64-ravenscar-thread.c: Revert. * aarch64-newlib-tdep.c: Revert. * aarch64-linux-tdep.c: Revert. * aarch64-linux-nat.c: Revert. * aarch64-fbsd-tdep.c: Revert. * aarch64-fbsd-nat.c: Revert. * aarch32-linux-nat.c: Revert.
2019-04-05Sort includes for files gdb/[a-f]*.[chyl].Tom Tromey1-2/+2
This patch sorts the include files for the files [a-f]*.[chyl]. The patch was written by a script. Tested by the buildbot. I will follow up with patches to sort the remaining files, by sorting a subset, testing them, and then checking them in. gdb/ChangeLog 2019-04-05 Tom Tromey <tom@tromey.com> * ft32-tdep.c: Sort headers. * frv-tdep.c: Sort headers. * frv-linux-tdep.c: Sort headers. * frame.c: Sort headers. * frame-unwind.c: Sort headers. * frame-base.c: Sort headers. * fork-child.c: Sort headers. * findvar.c: Sort headers. * findcmd.c: Sort headers. * filesystem.c: Sort headers. * filename-seen-cache.h: Sort headers. * filename-seen-cache.c: Sort headers. * fbsd-tdep.c: Sort headers. * fbsd-nat.h: Sort headers. * fbsd-nat.c: Sort headers. * f-valprint.c: Sort headers. * f-typeprint.c: Sort headers. * f-lang.c: Sort headers. * extension.h: Sort headers. * extension.c: Sort headers. * extension-priv.h: Sort headers. * expprint.c: Sort headers. * exec.h: Sort headers. * exec.c: Sort headers. * exceptions.c: Sort headers. * event-top.c: Sort headers. * event-loop.c: Sort headers. * eval.c: Sort headers. * elfread.c: Sort headers. * dwarf2read.h: Sort headers. * dwarf2read.c: Sort headers. * dwarf2loc.c: Sort headers. * dwarf2expr.h: Sort headers. * dwarf2expr.c: Sort headers. * dwarf2-frame.c: Sort headers. * dwarf2-frame-tailcall.c: Sort headers. * dwarf-index-write.h: Sort headers. * dwarf-index-write.c: Sort headers. * dwarf-index-common.c: Sort headers. * dwarf-index-cache.h: Sort headers. * dwarf-index-cache.c: Sort headers. * dummy-frame.c: Sort headers. * dtrace-probe.c: Sort headers. * disasm.h: Sort headers. * disasm.c: Sort headers. * disasm-selftests.c: Sort headers. * dictionary.c: Sort headers. * dicos-tdep.c: Sort headers. * demangle.c: Sort headers. * dcache.h: Sort headers. * dcache.c: Sort headers. * darwin-nat.h: Sort headers. * darwin-nat.c: Sort headers. * darwin-nat-info.c: Sort headers. * d-valprint.c: Sort headers. * d-namespace.c: Sort headers. * d-lang.c: Sort headers. * ctf.c: Sort headers. * csky-tdep.c: Sort headers. * csky-linux-tdep.c: Sort headers. * cris-tdep.c: Sort headers. * cris-linux-tdep.c: Sort headers. * cp-valprint.c: Sort headers. * cp-support.c: Sort headers. * cp-namespace.c: Sort headers. * cp-abi.c: Sort headers. * corelow.c: Sort headers. * corefile.c: Sort headers. * continuations.c: Sort headers. * completer.h: Sort headers. * completer.c: Sort headers. * complaints.c: Sort headers. * coffread.c: Sort headers. * coff-pe-read.c: Sort headers. * cli-out.h: Sort headers. * cli-out.c: Sort headers. * charset.c: Sort headers. * c-varobj.c: Sort headers. * c-valprint.c: Sort headers. * c-typeprint.c: Sort headers. * c-lang.c: Sort headers. * buildsym.c: Sort headers. * buildsym-legacy.c: Sort headers. * build-id.h: Sort headers. * build-id.c: Sort headers. * btrace.c: Sort headers. * bsd-uthread.c: Sort headers. * breakpoint.h: Sort headers. * breakpoint.c: Sort headers. * break-catch-throw.c: Sort headers. * break-catch-syscall.c: Sort headers. * break-catch-sig.c: Sort headers. * blockframe.c: Sort headers. * block.c: Sort headers. * bfin-tdep.c: Sort headers. * bfin-linux-tdep.c: Sort headers. * bfd-target.c: Sort headers. * bcache.c: Sort headers. * ax-general.c: Sort headers. * ax-gdb.h: Sort headers. * ax-gdb.c: Sort headers. * avr-tdep.c: Sort headers. * auxv.c: Sort headers. * auto-load.c: Sort headers. * arm-wince-tdep.c: Sort headers. * arm-tdep.c: Sort headers. * arm-symbian-tdep.c: Sort headers. * arm-pikeos-tdep.c: Sort headers. * arm-obsd-tdep.c: Sort headers. * arm-nbsd-tdep.c: Sort headers. * arm-nbsd-nat.c: Sort headers. * arm-linux-tdep.c: Sort headers. * arm-linux-nat.c: Sort headers. * arm-fbsd-tdep.c: Sort headers. * arm-fbsd-nat.c: Sort headers. * arm-bsd-tdep.c: Sort headers. * arch-utils.c: Sort headers. * arc-tdep.c: Sort headers. * arc-newlib-tdep.c: Sort headers. * annotate.h: Sort headers. * annotate.c: Sort headers. * amd64-windows-tdep.c: Sort headers. * amd64-windows-nat.c: Sort headers. * amd64-tdep.c: Sort headers. * amd64-sol2-tdep.c: Sort headers. * amd64-obsd-tdep.c: Sort headers. * amd64-obsd-nat.c: Sort headers. * amd64-nbsd-tdep.c: Sort headers. * amd64-nbsd-nat.c: Sort headers. * amd64-nat.c: Sort headers. * amd64-linux-tdep.c: Sort headers. * amd64-linux-nat.c: Sort headers. * amd64-fbsd-tdep.c: Sort headers. * amd64-fbsd-nat.c: Sort headers. * amd64-dicos-tdep.c: Sort headers. * amd64-darwin-tdep.c: Sort headers. * amd64-bsd-nat.c: Sort headers. * alpha-tdep.c: Sort headers. * alpha-obsd-tdep.c: Sort headers. * alpha-nbsd-tdep.c: Sort headers. * alpha-mdebug-tdep.c: Sort headers. * alpha-linux-tdep.c: Sort headers. * alpha-linux-nat.c: Sort headers. * alpha-bsd-tdep.c: Sort headers. * alpha-bsd-nat.c: Sort headers. * aix-thread.c: Sort headers. * agent.c: Sort headers. * addrmap.c: Sort headers. * ada-varobj.c: Sort headers. * ada-valprint.c: Sort headers. * ada-typeprint.c: Sort headers. * ada-tasks.c: Sort headers. * ada-lang.c: Sort headers. * aarch64-tdep.c: Sort headers. * aarch64-ravenscar-thread.c: Sort headers. * aarch64-newlib-tdep.c: Sort headers. * aarch64-linux-tdep.c: Sort headers. * aarch64-linux-nat.c: Sort headers. * aarch64-fbsd-tdep.c: Sort headers. * aarch64-fbsd-nat.c: Sort headers. * aarch32-linux-nat.c: Sort headers.
2019-01-01Update copyright year range in all GDB files.Joel Brobecker1-1/+1
This commit applies all changes made after running the gdb/copyright.py script. Note that one file was flagged by the script, due to an invalid copyright header (gdb/unittests/basic_string_view/element_access/char/empty.cc). As the file was copied from GCC's libstdc++-v3 testsuite, this commit leaves this file untouched for the time being; a patch to fix the header was sent to gcc-patches first. gdb/ChangeLog: Update copyright year range in all GDB files.
2018-01-02Update copyright year range in all GDB filesJoel Brobecker1-1/+1
gdb/ChangeLog: Update copyright year range in all GDB files
2017-01-01update copyright year range in GDB filesJoel Brobecker1-1/+1
This applies the second part of GDB's End of Year Procedure, which updates the copyright year range in all of GDB's files. gdb/ChangeLog: Update copyright year range in all GDB files.
2016-10-26PR 20569, segv in follow_execSandra Loosemore1-0/+8
The following testcases make GDB crash whenever an invalid sysroot is provided, when GDB is unable to find a valid path to the symbol file: gdb.base/catch-syscall.exp gdb.base/execl-update-breakpoints.exp gdb.base/foll-exec-mode.exp gdb.base/foll-exec.exp gdb.base/foll-vfork.exp gdb.base/pie-execl.exp gdb.multi/bkpt-multi-exec.exp gdb.python/py-finish-breakpoint.exp gdb.threads/execl.exp gdb.threads/non-ldr-exc-1.exp gdb.threads/non-ldr-exc-2.exp gdb.threads/non-ldr-exc-3.exp gdb.threads/non-ldr-exc-4.exp gdb.threads/thread-execl.exp The immediate cause of the segv is that follow_exec is passing a NULL argument (the result of exec_file_find) to strlen. However, the problem is deeper than that: follow_exec simply isn't prepared for the case where sysroot translation fails to locate the new executable. Actually all callers of exec_file_find have bugs due to confusion between host and target pathnames. This commit attempts to fix all that. In terms of the testcases that were formerly segv'ing, GDB now prints a warning but continues execution of the new program, so that the tests now mostly FAIL instead. You could argue the FAILs are due to a legitimate problem with the test environment setting up the sysroot translation incorrectly. A new representative test is added which exercises the ne wwarning code path even with native testing. Tested on x86_64 Fedora 23, native and gdbserver. gdb/ChangeLog: 2016-10-25 Sandra Loosemore <sandra@codesourcery.com> Luis Machado <lgustavo@codesourcery.com> Pedro Alves <palves@redhat.com> PR gdb/20569 * exceptions.c (exception_print_same): Moved here from exec.c. * exceptions.h (exception_print_same): Declare. * exec.h: Include "symfile-add-flags.h". (try_open_exec_file): New declaration. * exec.c (exception_print_same): Moved to exceptions.c. (try_open_exec_file): New function. (exec_file_locate_attach): Rename exec_file and full_exec_path variables to avoid confusion between target and host pathnames. Move pathname processing logic to exec_file_find. Do not return early if pathname lookup fails; Call try_open_exec_file. * infrun.c (follow_exec): Split and rename execd_pathname variable to avoid confusion between target and host pathnames. Warn if pathname lookup fails. Pass target pathname to target_follow_exec, not hostpathname. Call try_open_exec_file. * main.c (symbol_file_add_main_adapter): New function. (captured_main_1): Use it. * solib-svr4.c (open_symbol_file_object): Adjust to pass symfile_add_flags to symbol_file_add_main. * solib.c (exec_file_find): Incorporate fallback logic for relative pathnames formerly in exec_file_locate_attach. * symfile.c (symbol_file_add_main, symbol_file_add_main_1): Replace 'from_tty' parameter with a symfile_add_file. (symbol_file_command): Adjust to pass symfile_add_flags to symbol_file_add_main. * symfile.h (symbol_file_add_main): Replace 'from_tty' parameter with a symfile_add_file. gdb/testsuite/ChangeLog: 2016-10-25 Luis Machado <lgustavo@codesourcery.com> * gdb.base/exec-invalid-sysroot.exp: New file.
2016-01-01GDB copyright headers update after running GDB's copyright.py script.Joel Brobecker1-1/+1
gdb/ChangeLog: Update year range in copyright notice of all files.
2015-01-01Update year range in copyright notice of all files owned by the GDB project.Joel Brobecker1-1/+1
gdb/ChangeLog: Update year range in copyright notice of all files.
2014-07-18make exec_ops staticTom Tromey1-2/+0
While working on some target stack changes, I noticed that exec_ops is only used from exec.c. This patch makes it "static". This is cleaner and makes it simpler to reason about the use of the target. Tested by rebuilding. I'm checking this in as obvious. 2014-07-18 Tom Tromey <tromey@redhat.com> * exec.c (exec_ops): Now static. * exec.h (exec_ops): Don't declare.
2014-06-03resize_section_table cleanupDoug Evans1-3/+2
* exec.c (exec_close_1): Call clear_section_table instead of resize_section_table. (clear_section_table): New function. (resize_section_table): Make static. Rename arg num_added to adjustment. * exec.h (clear_section_table): Declare. (resize_section_table): Delete. * progspace.c (release_program_space): Call clear_section_table instead of resize_section_table.
2014-02-24Rename TARGET_XFER_E_UNAVAILABLE to TARGET_XFER_UNAVAILABLEYao Qi1-1/+1
Nowadays, TARGET_XFER_E_UNAVAILABLE isn't regarded as an error in to_xfer_partial interface, so _E_ looks odd. This patch is to replace TARGET_XFER_E_UNAVAILABLE with TARGET_XFER_UNAVAILABLE, and change its value from -2 to 2. Since there is no comparison on the value of 'enum target_xfer_status', so it should be safe. gdb: 2014-02-24 Yao Qi <yao@codesourcery.com> * target.h (enum target_xfer_status) <TARGET_XFER_E_UNAVAILABLE>: Rename it to ... <TARGET_XFER_UNAVAILABLE>: ... it with setting value 2 explicitly. New. * corefile.c (memory_error_message): User updated. * exec.c (section_table_read_available_memory): Likewise. * record-btrace.c (record_btrace_xfer_partial): Likewise. * target.c (target_xfer_status_to_string): Likewise. (raw_memory_xfer_partial): Likewise. (memory_xfer_partial_1, target_xfer_partial): Likewise. * valops.c (read_value_memory): Likewise. * exec.h: Update comments.
2014-02-23Adjust read_value_memory to use to_xfer_partialYao Qi1-11/+0
As the new to_xfer_partial implementations are done in ctf and tfile targets, read_value_memory can be simplified a lot. Call target_xfer_partial in a loop, check return value, and set bytes unavailable when necessary. gdb: 2014-02-23 Yao Qi <yao@codesourcery.com> * valops.c (read_value_memory): Rewrite it. Call target_xfer_partial in a loop. * exec.h (section_table_available_memory): Remove declaration. Move comments to ... * exec.c (section_table_available_memory): ... here. Make it static.
2014-02-23Use new to_xfer_partial interface in ctf and tfile targetYao Qi1-0/+8
This patch adjust both ctf and tfile target implementation of to_xfer_partial, to return TARGET_XFER_E_UNAVAILABLE and set *XFERED_LEN if data is unavailable. Note that some code on xfer in exec.c can be shared, but we can do it in a separate pass later. gdb: 2014-02-23 Yao Qi <yao@codesourcery.com> * exec.c (section_table_read_available_memory): New function. * exec.h (section_table_read_available_memory): Declare. * ctf.c (ctf_xfer_partial): Call section_table_read_available_memory. * tracefile-tfile.c (tfile_xfer_partial): Likewise.
2014-02-23Share code on to_xfer_partial for tfile and ctf targetYao Qi1-0/+9
In the to_xfer_partial implementations of ctf and tfile, the code on reading from read-only sections is duplicated. This patch moves it to a separate function exec_read_partial_read_only. gdb: 2014-02-23 Yao Qi <yao@codesourcery.com> * ctf.c (ctf_xfer_partial): Move code to ... * exec.c (exec_read_partial_read_only): ... it. New function. * tracefile-tfile.c (tfile_xfer_partial): Likewise. * tracefile.c: Include "exec.h". * exec.h (exec_read_partial_read_only): Declare.
2014-02-11Return target_xfer_status in to_xfer_partialYao Qi1-5/+7
This patch does the conversion of to_xfer_partial from LONGEST (*to_xfer_partial) (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len); to enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops, enum target_object object, const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, ULONGEST *xfered_len); It changes to_xfer_partial return the transfer status and the transfered length by *XFERED_LEN. Generally, the return status has three stats, - TARGET_XFER_OK, - TARGET_XFER_EOF, - TARGET_XFER_E_XXXX, See the comments to them in 'enum target_xfer_status'. Note that Pedro suggested not name TARGET_XFER_DONE, as it is confusing, compared with "TARGET_XFER_OK". We finally name it TARGET_XFER_EOF. With this change, GDB core can handle unavailable data in a convenient way. The rationale behind this change was mentioned here https://sourceware.org/ml/gdb-patches/2013-10/msg00761.html Consider an object/value like this: 0 100 150 200 512 DDDDDDDDDDDxxxxxxxxxDDDDDD...DDIIIIIIIIIIII..III where D is valid data, and xxx is unavailable data, and I is beyond the end of the object (Invalid). Currently, if we start the xfer at 0, requesting, say 512 bytes, we'll first get back 100 bytes. The xfer machinery then retries fetching [100,512), and gets back TARGET_XFER_E_UNAVAILABLE. That's sufficient when you're either interested in either having the whole of the 512 bytes available, or erroring out. But, in this scenario, we're interested in the data at [150,512). The problem is that the last TARGET_XFER_E_UNAVAILABLE gives us no indication where to start the read next. We'd need something like: get me [0,512) >>> <<< here's [0,100), *xfered_len is 100, returns TARGET_XFER_OK get me [100,512) >>> (**1) <<< [100,150) is unavailable, *xfered_len is 50, return TARGET_XFER_E_UNAVAILABLE. get me [150,512) >>> <<< here's [150,200), *xfered_len is 50, return TARGET_XFER_OK. get me [200,512) >>> <<< no more data, return TARGET_XFER_EOF. This naturally implies pushing down the decision of whether to return TARGET_XFER_E_UNAVAILABLE or something else down to the target. (Which kinds of leads back to tfile itself reading from RO memory from file (though we could export a function in exec.c for that that tfile delegates to, instead of re-adding the old code). Beside this change, we also add a macro TARGET_XFER_STATUS_ERROR_P to check whether a status is an error or not, to stop using "status < 0". This patch also eliminates the comparison between status and 0. No target implementations to to_xfer_partial adapts this new interface. The interface still behaves as before. gdb: 2014-02-11 Yao Qi <yao@codesourcery.com> * target.h (enum target_xfer_error): Rename to ... (enum target_xfer_status): ... it. New. All users updated. (enum target_xfer_status) <TARGET_XFER_OK>, <TARGET_XFER_EOF>: New. (TARGET_XFER_STATUS_ERROR_P): New macro. (target_xfer_error_to_string): Remove declaration. (target_xfer_status_to_string): Declare. (target_xfer_partial_ftype): Adjust it. (struct target_ops) <to_xfer_partial>: Return target_xfer_status. Add argument xfered_len. Update comments. * target.c (target_xfer_error_to_string): Rename to ... (target_xfer_status_to_string): ... it. New. All callers updated. (target_read_live_memory): Likewise. Call target_xfer_partial instead of target_read. (memory_xfer_live_readonly_partial): Return target_xfer_status. Add argument xfered_len. (raw_memory_xfer_partial): Likewise. (memory_xfer_partial_1): Likewise. (memory_xfer_partial): Likewise. (target_xfer_partial): Likewise. Check *XFERED_LEN is set properly. Update debug message. (default_xfer_partial, current_xfer_partial): Likewise. (target_write_partial): Likewise. (target_read_partial): Likewise. All callers updated. (read_whatever_is_readable): Likewise. (target_write_with_progress): Likewise. (target_read_alloc_1): Likewise. * aix-thread.c (aix_thread_xfer_partial): Likewise. * auxv.c (procfs_xfer_auxv): Likewise. (ld_so_xfer_auxv, memory_xfer_auxv): Likewise. * bfd-target.c (target_bfd_xfer_partial): Likewise. * bsd-kvm.c (bsd_kvm_xfer_partial): Likewise. * bsd-uthread.c (bsd_uthread_xfer_partia): Likewise. * corefile.c (read_memory): Adjust. * corelow.c (core_xfer_partial): Likewise. * ctf.c (ctf_xfer_partial): Likewise. * darwin-nat.c (darwin_read_dyld_info): Likewise. All callers updated. (darwin_xfer_partial): Likewise. * exec.c (section_table_xfer_memory_partial): Likewise. All callers updated. (exec_xfer_partial): Likewise. * exec.h (section_table_xfer_memory_partial): Update declaration. * gnu-nat.c (gnu_xfer_memory): Likewise. Assert 'res' is not negative. (gnu_xfer_partial): Likewise. * ia64-hpux-nat.c (ia64_hpux_xfer_memory_no_bs): Likewise. (ia64_hpux_xfer_memory, ia64_hpux_xfer_uregs): Likewise. (ia64_hpux_xfer_solib_got): Likewise. * inf-ptrace.c (inf_ptrace_xfer_partial): Likewise. Change type of 'partial_len' to ULONGEST. * inf-ttrace.c (inf_ttrace_xfer_partial): Likewise. * linux-nat.c (linux_xfer_siginfo ): Likewise. (linux_nat_xfer_partial): Likewise. (linux_proc_xfer_partial, linux_xfer_partial): Likewise. (linux_proc_xfer_spu, linux_nat_xfer_osdata): Likewise. * monitor.c (monitor_xfer_memory): Likewise. (monitor_xfer_partial): Likewise. * procfs.c (procfs_xfer_partial): Likewise. * record-btrace.c (record_btrace_xfer_partial): Likewise. * record-full.c (record_full_xfer_partial): Likewise. (record_full_core_xfer_partial): Likewise. * remote-sim.c (gdbsim_xfer_memory): Likewise. (gdbsim_xfer_partial): Likewise. * remote.c (remote_write_bytes_aux): Likewise. All callers updated. (remote_write_bytes, remote_read_bytes): Likewise. All callers updated. (remote_flash_erase): Likewise. All callers updated. (remote_write_qxfer): Likewise. All callers updated. (remote_read_qxfer): Likewise. All callers updated. (remote_xfer_partial): Likewise. * rs6000-nat.c (rs6000_xfer_partial): Likewise. (rs6000_xfer_shared_libraries): Likewise. * sol-thread.c (sol_thread_xfer_partial): Likewise. (sol_thread_xfer_partial): Likewise. * sparc-nat.c (sparc_xfer_wcookie): Likewise. (sparc_xfer_partial): Likewise. * spu-linux-nat.c (spu_proc_xfer_spu): Likewise. All callers updated. (spu_xfer_partial): Likewise. * spu-multiarch.c (spu_xfer_partial): Likewise. * tracepoint.c (tfile_xfer_partial): Likewise. * windows-nat.c (windows_xfer_memory): Likewise. (windows_xfer_shared_libraries): Likewise. (windows_xfer_partial): Likewise. * valprint.c: Replace 'target_xfer_error' with 'target_xfer_status' in comments.
2014-01-14Change to_xfer_partial 'len' type to ULONGEST.Yao Qi1-1/+1
This patch changes to_xfer_partial's len's type to ULONGEST, and adjust its implementations. gdb: 2014-01-14 Yao Qi <yao@codesourcery.com> * target.h (target_xfer_partial_ftype): Update. (struct target_ops) <to_xfer_partial>: Change 'len' type to ULONGEST. * aix-thread.c (aix_thread_xfer_partial): Change type of argument 'len' to ULONGEST. * auxv.c (procfs_xfer_auxv): Likewise. (ld_so_xfer_auxv): Likewise. (memory_xfer_auxv): Likewise. * bfd-target.c (target_bfd_xfer_partial): Likewise. * bsd-kvm.c (bsd_kvm_xfer_partial): Likewise. * bsd-uthread.c (bsd_uthread_xfer_partial): Likewise. * corelow.c (core_xfer_partial): Likewise. * ctf.c (ctf_xfer_partial): Likewise. * darwin-nat.c (darwin_read_write_inferior): Likewise. Use '%u'. (darwin_read_dyld_info): Likewise. (darwin_xfer_partial): Likewise. * exec.c (section_table_xfer_memory_partial): Likewise. (exec_xfer_partial): Likewise. * exec.h (section_table_xfer_memory_partial): Update declaration. * gnu-nat.c (gnu_xfer_memory): Likewise. Call pulongest instead of plongest. (gnu_xfer_partial): Likewise. * ia64-hpux-nat.c (ia64_hpux_xfer_memory): Likewise. (ia64_hpux_xfer_solib_got): Likewise. (ia64_hpux_xfer_partial): Likewise. * ia64-linux-nat.c (ia64_linux_xfer_partial): * inf-ptrace.c (inf_ptrace_xfer_partial): * inf-ttrace.c (inf_ttrace_xfer_partial): * linux-nat.c (linux_xfer_siginfo): Likewise. (linux_nat_xfer_partial): Likewise. (spu_enumerate_spu_ids, linux_proc_xfer_spu): Likewise. (linux_nat_xfer_osdata, linux_xfer_partial): Likewise. * monitor.c (monitor_xfer_memory): Likewise. (monitor_xfer_partial): Likewise. * procfs.c (procfs_xfer_partial): Likewise. * record-full.c (record_full_xfer_partial): Likewise. (record_full_core_xfer_partial): Likewise. * remote-sim.c (gdbsim_xfer_memory): Likewise. Call pulongest instead of plongest. (gdbsim_xfer_partial): Likewise. * remote.c (remote_xfer_partial): Likewise. * rs6000-aix-tdep.c (rs6000_aix_ld_info_to_xml): Likewise. * rs6000-aix-tdep.h (rs6000_aix_ld_info_to_xml): Update declaration. * rs6000-nat.c (rs6000_xfer_partial): Likewise. (rs6000_xfer_shared_libraries): Likewise. * sol-thread.c (sol_thread_xfer_partial): Likewise. * sparc-nat.c (sparc_xfer_wcookie): Likewise. (sparc_xfer_partial): Likewise. * spu-linux-nat.c (spu_proc_xfer_spu): Likewise. (spu_xfer_partial): Likewise. * spu-multiarch.c (spu_xfer_partial): Likewise. * target.c (target_read_live_memory): Likewise. (memory_xfer_live_readonly_partial): Likewise. (memory_xfer_partial, memory_xfer_partial_1): Likewise. (target_xfer_partial, default_xfer_partial): Likewise. (current_xfer_partial): Likewise. * tracepoint.c (tfile_xfer_partial): Likewise. * windows-nat.c (windows_xfer_memory): Likewise. Call pulongest instead of plongest. (windows_xfer_partial): Likewise. (windows_xfer_shared_libraries): Likewise.
2014-01-01Update Copyright year range in all files maintained by GDB.Joel Brobecker1-1/+1
2013-10-29Create target sections for user-added symbol files.Nicolas Blanc1-0/+6
Add the sections of the symbol files that are provided via 'add-symbol-file' to the set of current target sections. User-added sections are removed upon notification of free_objfile when their corresponding object file is deleted. 2013-10-29 Nicolas Blanc <nicolas.blanc@intel.com> * exec.h (add_target_sections_of_objfile): New declaration. * exec.c (add_target_sections_of_objfile): New function. * symfile.c (add_symbol_file_command): Update current target sections. (symfile_free_objfile): New function. (_initialize_symfile): Register observer for free_objfile events. Signed-off-by: Nicolas Blanc <nicolas.blanc@intel.com>
2013-08-28PR gdb/15415Jan Kratochvil1-0/+1
gdb/ 2013-08-27 Jan Kratochvil <jan.kratochvil@redhat.com> PR gdb/15415 * corefile.c (get_exec_file): Use exec_filename. * defs.h (OPF_DISABLE_REALPATH): New definition. Add new comment. * exec.c (exec_close): Free EXEC_FILENAME. (exec_file_attach): New variable canonical_pathname. Use OPF_DISABLE_REALPATH. Call gdb_realpath explicitly. Set EXEC_FILENAME. * exec.h (exec_filename): New. * inferior.c (print_inferior, inferior_command): Use PSPACE_EXEC_FILENAME. * mi/mi-main.c (print_one_inferior): Likewise. * progspace.c (clone_program_space, print_program_space): Likewise. * progspace.h (struct program_space): New field pspace_exec_filename. * source.c (openp): Describe OPF_DISABLE_REALPATH. New variable realpath_fptr, initialize it from OPF_DISABLE_REALPATH, use it. gdb/testsuite/ 2013-08-27 Jan Kratochvil <jan.kratochvil@redhat.com> PR gdb/15415 * gdb.base/argv0-symlink.c: New file. * gdb.base/argv0-symlink.exp: New file.
2013-07-222013-07-22 Doug Evans <dje@google.com>Jan Kratochvil1-3/+3
gdb/ * exec.h (remove_target_sections): Delete arg abfd. * exec.c (remove_target_sections): Delete arg abfd. (exec_close): Update call to remove_target_sections. * solib.c (update_solib_list): Ditto. (reload_shared_libraries_1): Ditto. (clear_solib): Ditto, and unconditionally call remove_target_sections.
2013-01-01Update years in copyright notice for the GDB files.Joel Brobecker1-1/+1
Two modifications: 1. The addition of 2013 to the copyright year range for every file; 2. The use of a single year range, instead of potentially multiple year ranges, as approved by the FSF.
2012-08-22 * exec.c (exec_close, exec_file_attach): Update.Tom Tromey1-2/+3
(add_to_section_table): Initialize 'key' field. (add_target_sections, remove_target_sections): Add 'key' argument. * exec.h (add_target_sections, remove_target_sections): Add 'key' argument. * solib.c (solib_map_sections, update_solib_list, clear_solib) (reload_shared_libraries_1): Update. * target.h (struct target_section) <key>: New field.
2012-01-04Copyright year update in most files of the GDB Project.Joel Brobecker1-2/+1
gdb/ChangeLog: Copyright year update in most files of the GDB Project.
2011-02-14 * exec.c (section_table_available_memory): Change `len' parameterPedro Alves1-1/+1
type to ULONGEST. * exec.h (section_table_available_memory): Ditto. * value.h (read_value_memory): Rename the `offset' parameter to `embedded_offset'.
2011-02-14 Mark pieces of values as unavailable if the corresponding memoryPedro Alves1-0/+12
is unavailable. gdb/ * valops.c: Include tracepoint.h. (value_fetch_lazy): Use read_value_memory. (read_value_memory): New. * value.h (read_value_memory): Declare. * dwarf2loc.c (read_pieced_value): Use read_value_memory. * exec.c (section_table_available_memory): New function. * exec.h (section_table_available_memory): Declare.
2011-01-01run copyright.sh for 2011.Joel Brobecker1-1/+2