
   

 
Public 
USER GUIDE 1 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

  
 

 

 

 

User Guide for TITAN TTCN-3 Test Executor 

 

 

Abstract 

This document describes detailed information on using the TITAN TTCN-3 
Toolset, creating, compiling and executing test suites. 

Copyright 

Copyright (c) 2000-2017 Ericsson Telecom AB 
All rights reserved. This program and the accompanying materials 
are made available under the terms of the Eclipse Public License v1.0 
which accompanies this distribution, and is available at 

http://www.eclipse.org/legal/epl-v10.html. 

Disclaimer 

The contents of this document are subject to revision without notice due to 
continued progress in methodology, design and manufacturing. Ericsson 
should have no liability for any error or damage of any kind resulting from the 
use of this document. 



   

 
Public 
USER GUIDE 2 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

 

Contents 

1  About the Document .............................................................................. 3 
1.1  Purpose ...................................................................................... 3 
1.2  Target Groups ............................................................................ 3 
1.3  Typographical Conventions ........................................................ 3 

2  Overview of TITAN ................................................................................. 4 
2.1  Components ............................................................................... 4 
2.2  General Workflow ....................................................................... 5 
2.3  Building Test Suites ................................................................... 5 
2.4  Executing Test Suites ................................................................ 6 

3  Creating Executable Test Suites from the Command-line ................. 8 
3.1  Using make ................................................................................ 8 
3.2  Automatically Generated Makefile .......................................... 9 
3.3  Manual Building ........................................................................ 22 

4  Executing Test Suites .......................................................................... 25 
4.1  The Run-time Configuration File .............................................. 25 
4.2  Running Non-parallel Test Suites ............................................ 25 
4.3  Configuration ............................................................................ 26 
4.4  Running Parallel Test Suites .................................................... 27 
4.5  Strange Behavior of the Executable ......................................... 37 

5  Log Processing .................................................................................... 38 
5.1  The logmerge Utility ............................................................... 38 
5.2  The logfilter Utility ............................................................. 39 
5.3  The logformat Utility ............................................................. 40 
5.4  The HTML Report Generator ................................................... 41 

6  References ............................................................................................ 45 

 



   

 
Public 
USER GUIDE 3 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

1 About the Document 

1.1 Purpose 
The purpose of this document is to provide detailed information on using the 
TITAN toolset, that is, creating test suites from TTCN-3,  ASN.1 modules and 
test port files, by modifying a Makefile and using make to build executables. 

1.2 Target Groups 

This document is intended for users of the TITAN TTCN–3 Test Toolset 
(product number: CRL 113 200/4). In addition to this document, readers 
requiring additional information on creating and building test suites or writing 
test ports are referred to the TITAN Programmer´s Technical Reference for 
TITAN TTCN-3 Test Executor 
2/198 17-CRL 113 200/6 Uen. 

Note: Test port writing requires a sound knowledge of C++ programming. 

1.3 Typographical Conventions 

This document uses the following typographical conventions: 

 Bold is used to represent graphical user interface (GUI) components 
such as buttons, menus, menu items, dialog box options, fields and 
keywords, as well as menu commands. Bold is also used with ’+’ to 
represent key combinations. For example, Ctrl+Click 

 The character ‘/’ is used to denote a menu and sub-menu sequence. 
For example, File / Open. 

 Monospaced font is used represent system elements such as 
command and parameter names, program names, path names, URLs, 
directory names and code examples. 

 Bold monospaced font is used for commands that must be entered at 
the Command Line Interface (CLI). 



   

 
Public 
USER GUIDE 4 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

2 Overview of TITAN 

This Test Executor is an implementation of the TTCN–3 Core Language 
standard with support of ASN.1. 
There are limitations to supported TTCN–3 language constructs in the Test 
Executor. In addition, there are some non-standard extensions to the TTCN–3 
language implemented by TITAN. Information on these limitations and 
extensions and also some clarifications of how the standard has been 
implemented in TITAN, refer to the TITAN Programmer´s Technical 
Reference for TITAN TTCN-3 Test Executor 
2/198 17-CRL 113 200/6 Uen. 

2.1 Components 

The main components are the following: 

 The Compiler, which translates TTCN–3 and ASN.1 modules1 into C++ 
program code. 

 The Base Library written in C++ language, which contains important 
supplementary functions for the generated code. 

 The Test Port(s), which facilitate the communication between the 
TTCN–3 Test System and the System Under Test (SUT). 

The generated C++ modules as well as the Test Ports should be compiled to 
binary object code and linked together with the Base Library using a 
traditional C++ compiler. 

All parts, except the protocol specific Test Ports, are included in the binary 
package of the Test Executor. The Test Executor is a protocol and platform 
independent tool that can be easily adapted to any kind of protocols by writing 
the appropriate Test Port. The generated C++ code is exactly the same on all 
platforms, provided that the pre-compiled Base Library that matches the 
operating system and C++ compiler is used. The Test Port may use operating 
system calls or external library functions for sending or receiving messages 
towards System Under Test so it may become platform dependent. 

Writing a Test Port is not an easy task for the first time, but the Compiler 
alleviates it by generating an empty skeleton for each function to be written. 
This skeleton is also useful for checking the correctness of an existing test 
suite because the Executable Test Program can be linked with this empty 
Test Port. In this case the resulting program actually does nothing, but the 
successful linking means that no modules or functions are missing from the 
test suite. 

                                                 
1 Compilation of ASN.1 modules is necessary only if the test suite imports type definitions from ASN.1 modules. 



   

 
Public 
USER GUIDE 5 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

This document describes building and running test suites using the command 
line. 

Designer GUI

Run-time GUI

Run-time
library

IDL converter
& TP generator

XSD converter

XSD
document(s) IDL module(s) Other user code

(C/C++ functions)

Run-time
configuration

Test
port(s)

Generated
C++ source

C++ compiler
& linker

Executable test
suite (ETS)

ASN.1
module(s)

TTCN-3
module(s)

Main
contoller

Log processing
utilities

Executor GUI

Graphical
LogViewer

TTCN-3/ASN.1
compiler

code
generator

generates imports

skeleton generated

generates

generates
Titan

declared as external
functions or converted

 
Figure 1  Titan structure 

2.2 General Workflow 

 Generating and editing a Makefile 

 Building the executable 

 Executing test suites 

 Analyzing the execution log files. 

2.3 Building Test Suites 

Creating a TTCN–3 test suite involves building an executable from the initial 
modules (TTCN–3, ASN.1 or both) and test port files. The process basically 
comprises creating and modifying a Makefile and using the make command 
to build the executable. 

For detailed information, refer to Creating Executable Test Suites from the 
Command-line. 



   

 
Public 
USER GUIDE 6 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

2.4 Executing Test Suites 

After the test suite has been created a suitable configuration file has been 
built, the executable is ready to run. 

The test executor can operate in single or parallel mode. The single mode—
also called non-parallel mode—is thought for TTCN–3 test suites built around 
a single test component. It is forbidden to create parallel test components in 
single mode: the test suite is not supposed to contain any create operation 
otherwise the test execution will fail. The parallel mode, on the other hand, 
offers full-featured test execution including distributed and parallel execution. 
The goal of introducing the single operating mode was to eliminate 
redundancies and thereby increase the speed of execution. It is possible to 
execute non-parallel test suites in parallel mode, but doing so results in 
unnecessary overhead. The C++ code generated by the compiler is suitable 
for both execution modes, there are no command line switches to select 
mode. The only difference is that different Base Libraries must be linked in 
single and parallel modes. 

For detailed information on executing test suites in single or parallel mode, 
refer to 



   

 
Public 
USER GUIDE 7 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

Executing Test Suites. 



   

 
Public 
USER GUIDE 8 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

3 Creating Executable Test Suites from the Command-line 

This section describes the elementary commands that comprise the build 
process. The primary audience of this section is the group of users who want 
to integrate TTCN–3 to a new or an existing build system. 

3.1 Using make 

This section gives an example about how to create a new Makefile or 
modify an existing one manually to make it capable of handling TTCN–3 test 
suites. For example, if using many external libraries and program modules 
with TTCN–3, it can be beneficial to write an own Makefile. 

The generated skeleton is always a good starting point for a custom 
Makefile. 

The following lines are mandatory in the Makefile: 

TTCN3_MODULES = MyModule.ttcn 

ASN1_MODULES = 

GENERATED_SOURCES = MyModule.cc 

GENERATED_HEADERS = MyModule.hh 

$(GENERATED_SOURCES) $(GENERATED_HEADERS): 
$(TTCN3_MODULES) $(ASN1_MODULES) 

$(TTCN3_DIR)/bin/compiler $(TTCN3_MODULES) 
$(ASN1_MODULES) 

TTCN3_MODULES and ASN1_MODULES contain the names of the TTCN–3 
and ASN.1 files, respectively. 

The variables GENERATED_SOURCES and GENERATED_HEADERS store the 
name of the source and header files that the compiler will generate. This rule 
calls the compiler with an argument list that contains the name of all TTCN–3 
and ASN.1 files. Beginning from version 1.2.pl0 the compiler does not 
duplicate the underscore (“_”) characters in output file names, so you may 
safely use such module and file names that contain this character. 

To compile the generated C++ code using make, the following rule in the 
Makefile is also needed: 

.cc.o: 

 g++ -c -I$(TTCN3_DIR)/include -Wall $< 



   

 
Public 
USER GUIDE 9 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

In this case simply issue the command make MyModule.o and the two 
translation steps will be performed automatically in a row. 

3.1.1 Rules for Modular Test Suites 

The compiler supports modular TTCN–3 test suites as well. Each module is 
translated to a separate C++ header and source file. These source files can 
be compiled by the C++ compiler one-by-one separately. 

The importing mechanisms work in the following way. For example, two 
TTCN-3 modules are present in files A.ttcn and B.ttcn, respectively. 
Definitions of module A may be used from module B, so the import from A 
all; statement must be added to module B. The modules A and B must be 
translated by the compiler in one step to A.cc, A.hh, B.cc and B.hh. 
During the compilation from TTCN–3 to C++ of module B, the import 
statement will be translated to #include "A.hh". This statement will be put 
to the beginning of B.hh, so you can refer to any definitions of A in module B. 
But note that when compiling B.cc, A.hh must exist and it must be up to 
date. 

Thus, additional rules are needed in the Makefile. It is recommended 
adding them automatically using the utility makedepend.2 
Run the following command: 

makedepend -I$TTCN3_DIR/include A.cc B.cc 

This will add the rules to the end of the Makefile and they will be updated 
upon re-running makedepend. For further details please consult the manual 
page of makedepend(1). 

Multiple imports of the same module are handled correctly. For example, if 
importing all definitions of module C from both modules A and B in the 
previous example, all three C++ source files will compile correctly. 

3.2 Automatically Generated Makefile 

This section describes the automatically generated Makefile, its structure, 
the supported commands and the possibilities for customization. 

3.2.1 Makefile Generation 

The Makefile for a project can be generated using the generator tool 
ttcn3_makefilegen.3 A project usually consists of some TTCN–3 and 
ASN.1 modules and at least one test port and results in an executable test 
suite. 

                                                 
2 The makedepend utility is available on all supported platforms. It usually can be found in the X11 development 
package. 
3 Up to version 1.6pl4 Makefile generation was part of the compiler (using the -M option). 



   

 
Public 
USER GUIDE 10 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

Makefile generation is performed with the following command syntax: 

$TTCN3_DIR/bin/ttcn3_makefilegen [options] <Main module> 
{Module}* {Test_Port}* {Other_File}* 

 [options] can be one or more of the options that are listed in the 
TITAN Programmer´s Technical Reference for TITAN TTCN-3 Test 
Executor 
2/198 17-CRL 113 200/6 Uen. 

 <Main module> is the main TTCN–3 Core Language module. The 
argument can be either a file name (with or without path) or a module 
name. The name of the desired executable will be derived from the 
name of this module unless the -e option is used. 

 {Module}* are additional TTCN–3 or ASN.1 modules, which are 
directly or indirectly referenced (imported) from the main module and 
thus required for building the executable test suite. Each argument 
should be a file name (with or without path) or a module name. 

 {Test Port}* specifies names of all test ports or other required C++ 
program modules. The names can be given with or without suffix. 

 {Other File}* specifies the names of other files (configuration files, 
shell scripts, and so on) that are used in this project. 

For deatiled content of the generated Makefile, refer to Section 3.2.2. 

3.2.1.1 Makefile Generation Algorithm 

Before generating the Makefile the Makefile generator tries to figure out 
the file name, module type and module name for each argument 
automatically. It uses some heuristics which yield correct results in most 
cases, but not always. Typically, the algorithm works perfectly with shell 
wildcards. For example, if all source files reside in the same directory the 
following command will generate the right Makefile: 

$TTCN3_DIR/bin/ttcn3_makefilegen *.ttcn *.asn *.c* 

The Makefile generator looks for an existing file for each argument. It tries 
the given argument without any suffix, then the following list of suffixes are 
tried in this order: .ttcn, .ttcn3, .3mp, .ttcnpp, .ttcnin, .asn, .asn1, 
.cc, .c, hh, .h, .cfg, .prj. Once a file is found, the Makefile generator 
tries to guess its type as described below. If no suitable file is found for a 
given argument the Makefile generator prints an error message and exits. 



   

 
Public 
USER GUIDE 11 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

In the case of TTCN–3 preprocessing (using the -p command line argument) 
the TTCN–3 files with special suffix .ttcnpp will be added to the list of 
TTCN–3 modules which need to be preprocessed before compilation. Files 
with the .ttcnin suffix will be added to the list of TTCN–3 include files 
(without the -p switch these will be added to the other files section of the 
Makefile). 

Then the Makefile generator tries to classify the file in the following 
categories based on the contents and/or the suffix: 

 TTCN–3 modules (based on contents) 

 ASN.1 modules (based on contents) 

 TTCN–3 include files (based on suffix, only with -p) 

 C/C++ source files (based on suffix) 

 C/C++ header files (based on suffix) 

 other files (the rest) 

The Makefile generator has two built-in “light” parsers that can decide 
whether a file is a TTCN–3 or ASN.1 module, respectively. Those parsers 
read only the first few lines of the input and do not check the syntactical 
correctness of the modules. They are capable of retrieving the module name 
as well. 

If the Makefile generator ensured that the file is neither a TTCN–3 nor an 
ASN.1 module then it checks whether the file has .cc, .c, .hh or .h suffix. 
The content of the file is not examined anymore. 

The remaining files (configuration files and so on) will be added to the other 
files’ section of the Makefile. These files do not take part in the build 
process, but they are added to the archive files created using the Makefile. 

After the classification, the Makefile generator filters out the redundant 
generated C++ files. If a given C/C++ file was found to be generated from one 
of the given TTCN–3 or ASN.1 modules, a warning is printed and the file will 
be dropped from the list of C/C++ files. That is, the file will not be added to the 
list of user source files since it is already a member of the generated sources. 
This feature is useful if one wants to regenerate the Makefile using the 
shell wildcard *.cc while the generated files from the previous compilation 
are still present. 



   

 
Public 
USER GUIDE 12 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

In the next step the algorithm tries to complete the list of C/C++ files by 
checking the pairs of header and source files. If a C/C++ source file was 
identified and a header file with the same name exists (only the suffix differs) 
too, the Makefile generator will add the header file automatically. This step 
is performed in the reverse direction too: the Makefile generator can find an 
existing source file based on the header file given to it. Of course a C++ 
source file can exist without a header file or vice versa. 

The Makefile generator continuously checks the uniqueness of files and 
module names. If the same file was given more than once in the command 
line the repeated argument is simply ignored and a warning message is 
displayed. It is not allowed to use two or more different TTCN–3 or ASN.1 
files containing modules with the same name because the generated C++ 
files would clash. For similar reasons the user C/C++ files cannot have 
identical names even if they are located in different directories. 

Finally the Makefile is generated based on the resulting data. If the 
Makefile generator finds an existing Makefile in its working directory, it 
will not be overwritten unless the option -f is used. 

It is always assumed that the working directory of the generated Makefile 
will be the same as the current working directory of the Makefile generator 
even if the Makefile is placed into another directory using the -o switch. 

When a path name passed to the Makefile generator contains a directory 
part the Makefile generator analyzes and canonizes the directory name by 
resolving relative directory references (such as . or ..) and symbolic links 
pointing to directories.4 If the path name does not contain any directory part or 
it turns out that the file is located in the current working directory the 
generated Makefile will refer to the file using a simple file name without 
any directory. Files located in other directories will be referenced in a uniform 
way using either absolute or relative path names depending on whether the 
command line switch -a was specified or not. Thus it is not relevant whether 
the file was given as relative or absolute path name in the command line. 

The Makefile is generated based on the following assumptions: 

 Each object and if applicable, shared object file is located in the same 
directory as the C/C++ source file it is derived from. This allows the use 
of efficient wildcard rules. 

 The TTCN–3 /ASN.1 compiler will place all generated C++ files in the 
current working directory. 

                                                 
4 Symbolic links pointing to files will not be resolved. 



   

 
Public 
USER GUIDE 13 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

3.2.1.2 Use of GNU make 

If option -g is used, the resulting Makefile will be less redundant as it will 
use some suffix substitution rules. These rules are supported only by GNU 
make, other versions of the make utility will find such Makefiles erroneous. 

The more of the file naming conventions below are fulfilled, the more suffix 
substitution rules can be applied in the generated Makefile. If the rules are 
only partially fulfilled, the Makefile will be also correct, but it will be more 
difficult to maintain. It is recommended to follow these rules especially when 
starting a new project. 

 Unless option -c is used, all TTCN–3, ASN.1 and C++ modules should 
reside in the current working directory. If these files are stored in a 
different scheme (for example in a hierarchical directory tree) symbolic 
links can be used to collect all input files into one build directory. 

 The suffix should be .ttcn for TTCN–3 modules, .asn for ASN.1 
modules and .cc for C/C++ files. 

 The file name (without suffix) should be identical to the module name. If 
the name of the ASN.1 module contains a hyphen, the corresponding 
file name should contain an underscore character instead. For example, 
the TTCN–3 module My_Module should be stored in 
My_Module.ttcn and the file containing ASN.1 module My-ASN1-
Module should be named as My_ASN1_Module.asn. 

 Each C/C++ module should have a header file with identical name, but 
with the suffix .hh. 

3.2.1.3 Use of Central Storage 

Option -c can be used to create a Makefile that can use pre-compiled 
files from one or more central directories to save disk space and compilation 
time. Such Makefiles have different layout and more complex build rules. 

The central directories should contain those common modules that do not 
change frequently (type definitions, test ports, external functions, test 
configurations, and so on). The central directories should be updated and 
maintained by the project administrators while the individual testers are 
developing their test cases in their working directory based on the common 
files. Moreover, it is allowed to create a hierarchy of central directories, that is, 
to use a directory that takes files from other central directories as a central 
directory of another project. In such cases the files of all central directories 
should be passed to the compiler for Makefile generation. 

In addition to the above mentioned ones the following assumptions are used 
in these Makefiles: 



   

 
Public 
USER GUIDE 14 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

 The compiler will generate C++ files only for those TTCN–3 and ASN.1 
modules that are located in the current working directory. The 
generated C++ files of the remaining TTCN–3 and ASN.1 modules 
should be located in the same directory as the respective module. If a 
module is located in a directory other than the current working directory 
and it does not have pre-compiled files a symbolic link must be created 
in the current working directory, which should point to the file containing 
the module. 

 Object and if applicable, shared object files will be created only from 
those C/C++ source files that are located in the current working 
directory. Object and if applicable, shared object files of the remaining 
source files should be located in the same directory as the respective 
source file. 

 The TTCN–3 and ASN.1 modules of central directories should not 
import definitions from the modules of the current working directory. 
Importing in the reverse direction is allowed, of course. 

 C/C++ files of central directories should not include header files of the 
current working directory. Local C/C++ files can include headers from 
other directories. 

 The generated C++ files and object and if applicable, shared object files 
of all central directories must be up-to-date before invoking make. 
Otherwise the build process will fail immediately with an error 
message.5 In case of multi-level hierarchy of central directories the re-
compilation should be performed in bottom-up order in the central 
directories. 

 All directories must use the same environment, that is, same hardware 
platform, operating system, version of TTCN–3 Executor and C++ 
compiler, command line switches, and so on, for building. Otherwise 
compilation or run-time errors may occur. 

Note that when a pre-compiled TTCN–3 or ASN.1 module is taken from a 
central directory the following three files will be used from the central directory 
during the build process. Thus it is essential to keep all these files always 
consistent and up-to-date. 

 The module itself when performing the semantic analysis on the local 
modules importing it. 

 The generated C++ header file when compiling the generated C++ files 
of the importing modules. 

 The object and if applicable, the shared object file when linking the 
executable. 

                                                 
5 If an object and if applicable, a shared object file of a central directory is not up-to-date, but make is invoked it 
tries to build that file instead of printing an error message. The build will usually fail due to missing access rights. 
This is a known limitation of this Makefile system that cannot be easily solved in a generic way. 



   

 
Public 
USER GUIDE 15 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

3.2.1.4 TTCN–3 Preprocessing 

Preprocessing of TTCN–3 source code is supported with the use of the option 
-p. The TTCN–3 source files to be preprocessed must have the suffix 
.ttcnpp; these files will be preprocessed with the C preprocessor before 
being compiled. The compiler will detect all TTCN–3 files, including the ones 
containing directives for the preprocessor, but only the ones with the suffix 
.ttcnpp will be preprocessed. If any other suffix is used the user has to edit 
the Makefile manually to add the file to the list of files which will be 
preprocessed. The output of the preprocessing will be an intermediate file 
with the extension .ttcn. Do not use the extension .ttcn for any TTCN–3 
file that will be preprocessed; also avoid using the same name for different 
.ttcn and .ttcnpp files. Files included in .ttcnpp files with C 
preprocessor directive #include should have suffix .ttcnin. 

3.2.2 Makefile Structure 

This section presents the internal structure of the generated Makefile. 

For example, the following command will generate a Makefile for TTCN–3 
test suite ”Hello, world!”, which can be found in binary distribution: 

$TTCN3_DIR/bin/ttcn3_makefilegen -gs MyExample.ttcn 
PCOType.cc MyExample.cfg 

The Makefile generator creates the Makefile with the following content: 
 
# This Makefile was generated by the Makefile Generator 
# of the TTCN-3 Test Executor version 1.6.pl5 
# for Adam Delic (edmdeli@ehubuux110) 
# on Tue Oct 10 13:53:04 2006 
 
# Copyright Ericsson Telecom AB 2000-2014 
 
# The following make commands are available: 
# - make, make all Builds the executable test suite. 
# - make archive Archives all source files. 
# - make check Checks the semantics of TTCN-3 and ASN.1 
# modules. 
# - make port Generates port skeletons. 
# - make clean Removes all generated files. 
# - make compile Translates TTCN-3 and ASN.1 modules to 
# C++. 
# - make dep Creates/updates dependency list. 
# - make objects Builds the object files without linking 
# the executable. 
# - make tags Creates/updates tags file using ctags. 
# WARNING! This Makefile can be used with GNU make only. 
# Other versions of make may report syntax errors in it. 
# 
# Do NOT touch this line... 
# 
.PHONY: all archive check clean dep objects 
# 
# Set these variables... 
# 
# The path of your TTCN-3 Test Executor installation: 
# Uncomment this line to override the environment variable. 
# TTCN3_DIR = 
# Your platform: (SOLARIS, SOLARIS8, LINUX, FREEBSD or WIN32) 



   

 
Public 
USER GUIDE 16 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

PLATFORM = SOLARIS8 
# Your C++ compiler: 
CXX = g++ 
# Flags for the C++ preprocessor (and makedepend as well): 
CPPFLAGS = -D$(PLATFORM) -I$(TTCN3_DIR)/include 
# Flags for the C++ compiler: 
CXXFLAGS = -Wall 
# Flags for the linker: 
LDFLAGS = 
# Flags for the TTCN-3 and ASN.1 compiler: 
COMPILER_FLAGS = -L 
# Execution mode: (either ttcn3 or ttcn3-parallel) 
TTCN3_LIB = ttcn3 
# The path of your OpenSSL installation: 
# If you do not have your own one, leave it unchanged. 
OPENSSL_DIR = $(TTCN3_DIR) 
# Directory to store the archived source files: 
ARCHIVE_DIR = backup 
# 
# You may change these variables. Add your files if necessary... 
# 
# TTCN-3 modules of this project: 
TTCN3_MODULES = MyExample.ttcn 
# ASN.1 modules of this project: 
ASN1_MODULES = 
# C++ source & header files generated from the TTCN-3 & ASN.1 
# modules of this project: 
GENERATED_SOURCES = $(TTCN3_MODULES:.ttcn=.cc) $(ASN1_MODULES:.asn=.cc) 
GENERATED_HEADERS = $(GENERATED_SOURCES:.cc=.hh) 
# C/C++ Source & header files of Test Ports, external functions 
# and other modules: 
USER_SOURCES = PCOType.cc 
USER_HEADERS = $(USER_SOURCES:.cc=.hh) 
# Object files of this project that are needed for the executable 
# test suite: 
OBJECTS = $(GENERATED_SOURCES:.cc=.o) $(USER_SOURCES:.cc=.o) 
# Other files of the project (Makefile, configuration files, and so on) 
# that will be added to the archived source files: 
OTHER_FILES = Makefile MyExample.cfg 
# The name of the executable test suite: 
TARGET = MyExample 
# 
# Do not modify these unless you know what you are doing... 
# Platform specific additional libraries: 
# 
SOLARIS_LIBS = -lsocket -lnsl 
SOLARIS8_LIBS = -lsocket -lnsl 
LINUX_LIBS = 
FREEBSD_LIBS = 
WIN32_LIBS = 
# 
# Rules for building the executable... 
# 
all: $(TARGET) ; 
objects: $(OBJECTS) ; 
$(TARGET): $(OBJECTS) 
$(CXX) $(LDFLAGS) -o $@ $ˆ \ 
-L$(TTCN3_DIR)/lib -l$(TTCN3_LIB) \ 
-L$(OPENSSL_DIR)/lib -lcrypto $($(PLATFORM)_LIBS) 
.cc.o .c.o: 
$(CXX) -c $(CPPFLAGS) $(CXXFLAGS) -o $@ $< 
$(GENERATED_SOURCES) $(GENERATED_HEADERS): compile 
@if [ ! -f $@ ]; then $(RM) compile; $(MAKE) compile; fi 
check: $(TTCN3_MODULES) $(ASN1_MODULES) 
$(TTCN3_DIR)/bin/compiler -s $(COMPILER_FLAGS) $ˆ 
port: $(TTCN3_MODULES) $(ASN1_MODULES) 
$(TTCN3_DIR)/bin/compiler -t $(COMPILER_FLAGS) $ˆ 
compile: $(TTCN3_MODULES) $(ASN1_MODULES) 
$(TTCN3_DIR)/bin/compiler $(COMPILER_FLAGS) $ˆ - $? 
touch $@ 
tags: $(TTCN3_MODULES) $(ASN1_MODULES) \ 



   

 
Public 
USER GUIDE 17 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

$(USER_HEADERS) $(USER_SOURCES) 
$(TTCN3_DIR)/bin/ctags_ttcn3 --line-directives=yes $ˆ 
clean: 
-$(RM) $(TARGET) $(OBJECTS) $(GENERATED_HEADERS) \ 
$(GENERATED_SOURCES) compile \ 
tags *.log 
dep: $(GENERATED_SOURCES) $(USER_SOURCES) 
makedepend $(CPPFLAGS) $ˆ 
archive: 
mkdir -p $(ARCHIVE_DIR) 
tar -cvhf - $(TTCN3_MODULES) $(ASN1_MODULES) \ 
$(USER_HEADERS) $(USER_SOURCES) $(OTHER_FILES) \ 
| gzip >$(ARCHIVE_DIR)/‘basename $(TARGET) .exe‘-\ 
‘date ’+%y%m%d-%H%M’‘.tgz 
# 
# Add your rules here if necessary... 
# 

3.2.3 Editing the Generated Makefile 

Assume that the TTCN–3 and ASN.1 modules together with the test ports 
have been written and a Makefile skeleton has been generated. 
The Makefile generator recognizes the operating environment and sets up 
some compiler/linker flags accordingly. The path to the TTCN–3 test executor 
installation must be set in TTCN3_DIR before starting to use make. If 
OpenSSL is installed and proprietary shared libraries will be used, the 
variable OPENSSL_DIR may be changed to point to the directory of the 
proprietary OpenSSL installation. In the above ”Hello, world!” example the 
user also needs to change the execution mode (variable TTCN3_LIB) to non-
parallel. 

Always perform the following checklist before the first build of the executable 
test suite from the generated Makefile: 

 Verify that the variable TTCN3_DIR is set to point to the root directory 
of the TTCN–3 test executor installation. If this variable is automatically 
set in the login script, this line can be removed from the Makefile. 

 Ensure that the variable PLATFORM is set to match the test execution 
platform6. 

 Verify that the variable TTCN3_LIB contains the name of the 
appropriate Base Library for the chosen operating mode, that is, ttcn3 
for single and ttcn3-parallel for parallel execution mode! 

 The variable CXX should point to the name or full path of the C++ 
compiler. 

 The variables CPPFLAGS, CXXFLAGS and LDFLAGS should contain the 
extra command line switches to be passed to the C++ preprocessor, 

                                                 
6 The test suite must be translated on the same platform on which it will be executed. 



   

 
Public 
USER GUIDE 18 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

compiler and linker, respectively7. For example, profiling or optimization 
is set here. 

 Using the variable COMPILER_FLAGS you can pass additional 
command line options to the TTCN–3 /ASN.1 compiler. 

 Ensure that the version of the TTCN–3 /ASN.1 compiler used is 
identical to the version of Base Library it is linked with. 
In case of version mismatch the generated C++ source files will not 
compile and an #error notification will be received. This means that 
changing to another version of TTCN–3 Test Executor, a full re-build of 
all modules using make clean must be performed. 

 Make sure to always build test ports from their source distribution. 
A version mismatch between the object and if applicable, shared object 
files may cause improper linkage or unpredictable behavior. It is thus 
contra-indicated to link precompiled test port objects and if applicable, 
shared objects into your executable (for example taken from a central 
repository). If the Makefile was generated with the option -p check 
also: 

 The variable CPP should point to the name or full path of the used C 
preprocessor. 

 Command line options for the C preprocessor can be given using the 
CPPFLAGS TTCN3 variable. 
 
Warning: do not confuse it with the CPPFLAGS variable, which is used 
on the generated C++ code. 

 Specify additional files which are included (#include directive) into 
ttcnpp files with the variable TTCN3_INCLUDES. These files will be 
checked (modification time) at every build to determine if any dependent 
files need to be recompiled. Any file with extension .ttcnin will be 
added to TTCN3_INCLUDES by the Makefile generator. 

3.2.4 Available Commands 

The generated Makefile supports the following: 

make all, make: Creates or updates the executable test suite. Performs only 
those steps of compilation that are really necessary, that is, the output of 
which is outdated. 

                                                 
7 For the detailed list and explanation of possible command line switches, refer to the manual page of the used 
C++ compiler 



   

 
Public 
USER GUIDE 19 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

make archive: Creates a backup copy of all source files and other files in a 
tar-gzip archive stored in directory set by the variable ARCHIVE_DIR8. The 
command can be applied periodically: to avoid overwriting older versions, a 
time stamp containing the current date and time is included in the name of the 
archive file. The output of this command can be attached to trouble reports 
submitted for the TTCN–3 compiler or other parts of the TTCN–3 toolset. 

make check: Checks the syntax and semantics of the TTCN–3 and ASN.1 
modules. This command does not create or update any generated files. 

make clean: Removes all generated files (generated C++ files, object and 
TITAN generated shared object files and the executable) and log files. This 
command is useful when changing to another version of the test executor or 
simply for saving disk space. 

make compile: Translates the TTCN–3 and ASN.1 modules to C++. It is 
useful when the user wants to carry out the compilation of the generated C++ 
code later. As a result, an empty file named compile is created in the 
working directory. The attributes of this file contain the date and time of the 
last compilation, which helps the compiler in selective code generation. It is 
not recommended to change this file manually. The compiler will be invoked 
only if one or more of the TTCN–3 or ASN.1 modules were modified after that 
timestamp, otherwise the generated C++ files are up to date. 

make diag: Lists general information about the environment and the build. 
This information can be useful to fix build problem by the developers or the 
support team.  
The output contains: 
- the compiler related information (titan version, build date, C++ version, 
license information, see command "compiler –v"),  
- main controller related information ( titan version, C++ compiler version, 
build date, license information, see command "mctr_cli –v"),  
- C++ compiler information (see command "g++ -v"), 
- library creator info ( see command "ar –v"),  
- values of environment variables $TTCN3_DIR, $ OPENSSL_DIR, 
$XML_DIR, $PLATFORM.  

make dep:  Obsolete. Creates or updates the dependency list between the 
C++ header and source files by invoking the utility makedepend. This 
command must be invoked before the first compilation or when the list of 
modules or test ports has changed. It is also necessary to run make dep if 
an import statement has been added or removed in a module. The command 
implies make compile and after that it modifies the Makefile itself. Used 
only with older gcc versions. 

make objects: Creates or updates the object files created from the C++ 
source files. This command has the same effect as make all except that 
the executable test suite is not linked in the final step. 

                                                 
8 The value archive should not be assigned to the variable ARCHIVE_DIR otherwise the make archive command 
will work incorrectly. Choose other directory name, like backup. 



   

 
Public 
USER GUIDE 20 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

make port: Creates Test Port skeleton header and source files for all port 
types in the input TTCN-3 modules. Existing Test Port files will not be 
overwritten. 

make shared_objects: Creates the shared object files from object files, 
compiled with -fPIC. This target is present only when dynamic linking is 
enabled. 
For detailed information, refer to the TITAN Programmer’s Reference [1]. 

make run: Creates or updates the executable test suite and then runs it. This 
is only recommended for simple test suites in single mode. Running requires 
a configuration file; its name by default is config.cfg. This file has to be 
written by the user. 

3.2.5 Building the Executable 

Issue the command make dep when finished creating and editing the 
Makefile. This command will translate all TTCN–3 and ASN.1 modules to 
C++ and will find the dependencies between them automatically. The 
Makefile will be modified; many lines will be appended to it. 

Finally, issue the make command, which will build the executable test suite. If 
any of the source files (TTCN–3 or ASN.1 modules or test port source files) 
has been changed, issue the make command to get an up-to-date binary. 

If TTCN–3 or ASN.1 modules or test ports are need to be added or removed 
to or from the project, regenerate the Makefile skeleton or change the 
variables TTCN3_MODULES, ASN1_MODULES, GENERATED_HEADERS, 
GENERATED_SOURCES, OBJECTS or SHARED_OBJECTS accordingly. If a new 
test port or other C/C++ module should be added, add it to the lines 
USER_HEADERS, USER_SOURCES and OBJECTS or SHARED_OBJECTS. 

Warning: It is recommended to use the makedepend utility together with 
make. This ensures that all dependencies are handled correctly. Therefore, 
make dep command must be issued before the first use of make and 
whenever the module hierarchy (imports) changes! If no make dep command 
is issued then in some cases two make commands shall be issued for the 
successful compilation. 

Use the command make clean to remove all generated files. 

3.2.6 Modifying the Generated Makefile 

 
Note: this is a deprecated feature; whenever possible, a .tpd (Titan project 
descriptor) file should be used instead. 



   

 
Public 
USER GUIDE 21 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

 
 
When there is a Makefile in a project, it should be updated each time a 
further file is added or removed from the project. 

However, some manual modifications were made to the originally created 
Makefile skeleton, regeneration of the Makefile will cause the manually 
performed changes to be lost. To avoid this situation, write a shell script 
containing the Makefile updates, and configure this shell script to be 
automatically run after each instance of Makefile regeneration. 

This way, there is no need to perform the same manual updates upon every 
Makefile generation and file addition process. 

The shell script example below can be used to automate the modification of 
the Makefile with the updates every time it is regenerated. 

Example Shell Script for Makefile Modification 
 
#!/bin/sh 
editcmd=’s/CPPFLAGS = -D$(PLATFORM) -I$(TTCN3_DIR)\ 
/include/CPPFLAGS = -D$(PLATFORM) 
-I$(TTCN3_DIR)\/include -I$(ERLANG_DIR)\ 
/include -I$(OPENSSL_DIR)\/include/g 
s/TTCN3_LIB = ttcn3-parallel/TTCN3_LIB = ttcn3/g 
s/OPENSSL_DIR = $(TTCN3_DIR)/OPENSSL_DIR = \/mnt\/TTCN\/Tools\ 
/openssl-0.9.7d/g 
s/ˆ makedepend/ \/mnt\/TTCN\/Tools\/makedepend-R6.6\ 
/bin\/makedepend/g 
/ARCHIVE_DIR = ./ { 
a\ 
a\ 
# Directory for ERLANG: 
a\ 
ERLANG_DIR = /OTP/LXA_11930_R9C_6/lib/erl_interface-3.4.2 
} 
s/-lcrypto $($(PLATFORM)_LIBS)/-lcrypto \\/g 
/-lcrypto \\/ { 
a\ 
-L$(ERLANG_DIR)/lib -lerl_interface -lei $($(PLATFORM)_LIBS) 
} 
’ 
if [ ‘uname‘ = SunOS ] 
then 
case ‘uname -r‘ in 
5.6) editcmd="$editcmd 
s/CXX = g++/CXX = \/usr\/local\/gnu\/bin\/g++/g" 
;; 
5.7) editcmd="$editcmd 
s/CXX = g++/CXX = \/mnt\/TTCN\/Tools\/gcc-3.0.4-sol7\/bin\/g++/g" 
;; 
5.8) editcmd="$editcmd 
s/CXX = g++/CXX = \/usr\/local\/gnu\/gnu28\/gcc3.0.4_shared_sol8\ 
/bin\/g++/g" 
;; 
*) echo ’Unsupported Solaris version.’; exit 1 
esac 
else echo ’This script runs on Solaris only.’; exit 1 
fi 
sed -e "$editcmd" <$1 >$2  

 



   

 
Public 
USER GUIDE 22 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

3.3 Manual Building 

This section contains information useful for the experienced users who are 
using a build framework other than make for TTCN–3 -based testing. 

3.3.1 Compiling the Generated C++ Code 

If the TTCN–3 test suite was successfully translated to C++, it’s a good idea 
to check if the generated code contains any errors. The simplest way is to 
compile it using a C++ compiler. Since the generated code refers to the base 
library, run the following command: 

g++ -c -I$TTCN3_DIR/include -Wall MyModule.cc 

In the following, using of an GNU C++ compiler is assumed. If the TTCN–3 
/ASN.1 compiler did not report any errors in the input test suite, the generated 
C++ code must be correct (that is, compile without errors). After certain 
TTCN–3 warnings (such as unreachable statements) the generated code may 
trigger similar warnings in the C++ compiler. 

The generated code has been tested on various versions of GNU C++ and 
Sun Workshop C++ compilers. However, the code should work with any 
standard-compliant C++ compiler since it does not depend on hardware or 
compiler specific features. If the generated code fails to compile on a 
supported platform and C++ compiler the situation is considered as a 
compiler bug and a Trouble Report can be issued.9 

The switch -c tells the GNU C++ compiler to compile only and not to build an 
executable because, for example, the main function is missing from the 
generated code. The switch -I adds the $TTCN3_DIR/include directory to 
the compiler’s standard include path. The optional argument, -Wall, forces 
the compiler to report all warnings found in its input. This argument can be 
used in GCC only. 

The result after a successful compilation is an object file named MyModule.o 
and if applicable, a shared object file named MyModule.so. If compilation 
fails, a lot of error messages may be generated. For example, a miss-spelled 
type name in an included test port can totally confuse the C++ compiler. 
That’s why it is recommended to analyze the reason of the first error message 
only. 

3.3.2 Linking the Executable 

In order to get the executable test suite, the following files must be linked: 

                                                 
9 The Trouble Report must include the compiler error message(s), all input files and command line switches of the 
TTCN–3 /ASN.1 compiler, the platform and the exact version of TITAN TTCN–3 Test Executor and the C++ 
compiler. It is highly appreciated if the user could minimize the input by dropping out irrelevant modules and 
definitions. 



   

 
Public 
USER GUIDE 23 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

 The object and if applicable, shared object files generated from all used 
TTCN–3 modules. 

 The object and if applicable, shared object files generated from all used 
ASN.1 modules. 

 The object and if applicable, shared object files generated from all used 
test ports and any libraries that are used in the test ports. 

 The parallel ttcn3-parallel or the non-parallel ttcn3 version of 
the TTCN-3 Base Library depending on the chosen operating mode. 
They reside in $TTCN3_DIR/lib. 

 The shared library of OpenSSL, that is 
$TTCN3_DIR/lib/libcrypto.so. 

Assuming only one TTCN–3 module (called MyModule) and one test port 
(called MyTestPort), the linking command will be the following for parallel 
operation mode: 

g++ -o MyModule MyModule.o MyTestPort.o -L$TTCN3_DIR/lib-
lttcn3-parallel -lcrypto 

The linking command for single operation mode: 

g++ -o MyModule MyModule.o MyTestPort.o -L$TTCN3_DIR/lib 
-lttcn3 -lcrypto 

The name of the executable file will be MyModule in both cases. 

3.3.3 Dynamic Linking 

In order to save disk and memory space, the TTCN–3 Base Library may be 
dynamically linked to the executable. In this case use the following command 
in single mode: 

g++ -o MyModule MyModule.o MyTestPort.o -L$TTCN3_DIR/lib 
-lttcn3-dynamic -lcrypto 

In parallel mode use -lttcn3-parallel-dynamic instead of  
-lttcn3-dynamic. 

When running the executable, add the directory $TTCN3_DIR/lib to the 
system library path (which is specified in /etc/ld.so.conf on most of 
UNIX systems) or simply add it to the environment variable 
LD_LIBRARY_PATH. 



   

 
Public 
USER GUIDE 24 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

From version 1.8pl2, ttcn3_makefilegen supports the generation of (per 
module) shared objects. If this option is enabled with the -l command line 
switch, the project’s working directory (together with the central storage 
directories, if applicable) should be added to LD_LIBRARY_PATH in addition 
to $TTCN3_DIR/lib. Otherwise, the resulting executable may not run. If 
moving the executable from one machine to another, all the generated shared 
object (.so) files should be copied as well. For more information about the –l 
command line switch, please consult the TITAN Programmer’s Technical 
Reference [1]. 



   

 
Public 
USER GUIDE 25 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

4 Executing Test Suites 

This chapter describes the modalities of test suite execution. 

4.1 The Run-time Configuration File 

The behavior of the executable test program is described in the run-time 
configuration file. 

Each section of the configuration file begins with a section name within 
square brackets. Different sections use different syntax, thus the section 
name determines the possible syntax of the members. 

Refer to the TITAN Programmer´s Technical Reference for TITAN TTCN-3 
Test Executor 
2/198 17-CRL 113 200/6 Uen for details of the runtime configuration file 
including descriptions of each of its sections and examples. 

4.2 Running Non-parallel Test Suites 

If an application is built for single operation mode the resulting executable 
contains the ETS itself.  

It takes a single optional parameter (the name and path of its configuration 
file) and two optional command line switches related to debugging: 

-h 
Automatically halts execution at the beginning, when the first test case’s or 
control part’s execution begins, and displays the debugger’s user interface 
(debugging must be activated). 

-b file 
Automatically executes the specified batch file (containing debugger 
commands) at the beginning of the program’s execution. 

The ETS also accepts the command line options -l and -v with the 
following semantics: 

-l 
Lists the names of all control parts and individually executable test cases of 
the ETS to standard output. The list is suitable as the [EXECUTE] section of 
a configuration file. Refer to TITAN Programmer´s Technical Reference for 
TITAN TTCN-3 Test Executor 
2/198 17-CRL 113 200/6 Uen more details. 

-v 
Prints the tool version, license information and the name, compilation time, 
checksum and (if available) the version info of the participating modules. 



   

 
Public 
USER GUIDE 26 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

If the ETS contains exactly one module with a control part, then a 
configuration file need not be specified. In this case, running the ETS with no 
parameters will execute the control part. If more than one control part is 
present (or none at all) then the configuration file is mandatory. 

The ETS blocks until all test cases are executed as specified in the section 
[EXECUTE] of its configuration file. Console log messages are displayed on 
the terminal, while the execution log is written into LogFile. 

ETSes built for single operation mode are unable to act as HCs thus these 
cannot be executed in the parallel environment. The test suite should be re-
linked with the parallel version of Base Library instead if this was the intention 
(see section 3.2.3 for information on editing the Makefile). 

4.3 Configuration 

The TITAN runtime environment uses configuration files to control execution 
of the test suites. An ordinary text editor can be used to create and modify 
configuration files. The configuration file (with the default extension .cfg) is a 
simple text file consisting of the following sections: 

 Module parameters 
This section contains the value of each parameter that is defined in the 
TTCN-3 or ASN.1 modules of the project. 

 Logging 
This section indicates logging conditions: the name of the log file, 
category and component based logging filters or the like. 

 Testport parameters 
This section specifies the parameters that are passed to the test ports 
during the execution of the test suite. 

 Define 
This section contains definitions of macros that can be used in other 
configuration file sections (except Include) for entry of recurring values. 

 Include 
Paths to additional configuration files may be listed in this section. The 
host controller takes into account the values listed in those configuration 
files, too. 

 External commands 
This section contains shell scripts that are called whenever a control 
part or a test case is started or terminated. 

 Execute 
This section indicates which parts of the test suite will be executed. This 
section is mandatory in single execution mode. Only test cases without 
parameters, or testcases where every parameter has a default value, 



   

 
Public 
USER GUIDE 27 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

can be started from this section. 
Testcases with parameters can be started from the control part. 

 
The following sections are used only in parallel mode: 

 Groups 
This section specifies a groups of hosts used in the Components 
section. 

 Components 
This section contains the rules that restrict the location of PTCs. 

 Main controller 
This section controls the behavior of the main controller when executing 
a test suite. 

TITAN processes the configuration file sequentially. If a section occurs 
several times in the configuration file, all sections will be processed without an 
error message. 

Refer to the corresponding chapter of the TITAN Programmer´s Technical 
Reference for TITAN TTCN-3 Test Executor 
2/198 17-CRL 113 200/6 Uen for details of the runtime configuration file 
including descriptions of each of its sections and examples. 

4.4 Running Parallel Test Suites 
The test execution in parallel mode comprises the following steps: 

1 Start Main Controller. (See Section 4.4.2.) 

2 Start Host Controllers, that is, the executable test suite, on all 
participating computers. (See Section 4.4.3.) 

3 Create MTC. 

4 Start the control part or a selection of test cases of a TTCN–3 module 
on MTC. 

5 View the verdicts of executed test cases on MC. 

6 Terminate MTC after the end of execution. 

7 Terminate HCs and MC. 

8 Analyze the logs of each test component. 



   

 
Public 
USER GUIDE 28 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

4.4.1 Parallel TTCN–3 Execution Architecture 

The components of test environment form two main groups: the Test System 
and the SUT. As TTCN–3 is used for black box testing, that is, the test suite 
does not assume anything about the internal structure of the SUT, this section 
describes the internal structure of Test System only. The Test System 
consists of one or more test components, whose behaviors are entirely 
described in a TTCN–3 test suite. The test system has other components for 
special purposes, listed below. 

Each component of the test system runs independently, they are different 
processes of the operating system. Every component executes one single 
thread of control. The components can be located on different machines and, 
of course, there can be more than one component running on the same 
computer. In the latter case scheduling among them is provided by the 
scheduler of the operating system. Regardless of their roles, all test 
components execute binary code generated from the same C++ source code. 
Their code consists of three parts: the code generated from the test suite by 
the TTCN–3 compiler, the Test Ports and the TTCN–3 Base Library. 

The components communicate with each other using TCP connections with 
proprietary protocols and platform independently encoded abstract messages. 
The components form three groups according to their functionality.  

computer D

computer E

User

para-
meters

CLI/GUI

computer A

computer B

HC PTC

MTC

computer C

HC PTC

PTC

MC

Test system

connected
ports

SUT

?

?

?

mapped
ports

 
Figure 2  Components of parallel test execution 

   



   

 
Public 
USER GUIDE 29 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

 Main Controller (MC) 
The Main Controller is a stand-alone application delivered with the 
distribution ($TTCN3_DIR/bin/mctr). It is started manually by the 
user and runs in one instance during the entire test execution. MC 
provides the user with CLI to the test executor system. It arranges the 
creation and termination of Main Test Component on user request and 
the execution of module control part. It shows the user the verdicts of 
executed test cases. MC has many hidden tasks that can only be 
performed in a centralized way, for example component reference 
assignment, verdict collection, and so on. MC maintains a control 
connection with all other components. 

 Host Controller (HC) 
Host Controllers are instances (processes) of the executable test 
program, that is, the translated test suite linked with Test Ports and 
Base Library. Exactly one HC should be run on each computer that 
participates in (distributed) TTCN–3 test execution. HCs are started by 
the user manually on all participating computers. They maintain a 
connection to MC and if MC wants a new test component to be created 
on that host, HC duplicates itself and its child process will act as the 
new test component. 

 Test Component (TC) 
Can be either the Main Test Component or a Parallel Test Component. 

 Main Test Component (MTC) 
The Main Test Component is an instance of the executable test 
program that is firstly created on a user request. There is exactly one 
MTC in the Test System. It can execute the control part of a TTCN–3 
module if requested by the user. If a test case is executed MTC 
changes its component type to the type specified in the runs on 
clause of the testcase. Note that MTC is the only one test component 
that can change its component type. MTC maintains a control 
connection to MC. 

 Parallel Test Component (PTC) 
Parallel Test Components are also instances of the same executable 
test program. TCs execute TTCN–3 functions written by the user in the 
same way as in non-parallel mode. They are automatically created by 
HC when requested from the MTC or other PTCs. PTCs also maintain a 
connection to MC. 

4.4.2 The TTCN–3 Main Controller 

The binary executable of Main Controller is $TTCN3_DIR/bin/mctr_cli. It 
takes the optional configuration file (section 4.1) as its single argument. The 
variables in the section [MAIN CONTROLLER] of the configuration file 
determine important MC properties, for detailed information refer to the TITAN 
Programmer´s Technical Reference for TITAN TTCN-3 Test Executor 
2/198 17-CRL 113 200/6 Uen. 



   

 
Public 
USER GUIDE 30 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

The Main Controller has two operation modes: interactive and batch mode. In 
interactive mode the user can control and monitor the test execution from a 
CLI. Batch mode is useful for automated and unattended execution of parallel 
and distributed tests. The actual operation mode depends on the 
configuration file and is determined at program startup. If the option NumHCs 
is set in the [MAIN CONTROLLER] section, the MC starts in batch mode, 
otherwise interactive mode is selected. 

4.4.2.1 Interactive Mode 

After starting MC in interactive mode a welcome screen and command prompt 
appear. 
 
******************************************** 
* TTCN-3 Test Executor - Main Controller 2 * 
* Version: 1.3.pl0 * 
******************************************** 
MC2> 

The MC command line interface uses the editline library which is compatible 
with the GNU readline  editing functionality. In addition to its powerful line 
editing functions it provides command completion, line history and help 
function. 

Command completion is activated using the tabulator key. It presents the list 
of applicable commands according to the typed prefix. The typing of the 
command is concluded when a single alternative remains (for example 
pressing key c followed by the tabulator puts the cmtc command onto the 
command line). 

The last couple of entered command lines are stored in the history buffer. The 
implementation is based on GNU history  library. The buffer elements can be 
browsed with the cursor keys or an incremental search backward can be 
performed following a <CTRL>-r keystroke and a lot more. History buffer 
contents are automatically saved and loaded when the mctr cli is started 
or stopped into a file named .ttcn3 history located in the home 
directory. Note that console log messages as well as notifications of HC 
connection establishments are printed on the MC’s screen and may disrupt its 
contents. 

The following commands are accepted by the MC: 

 help [command] displays the list of available commands or a short 
use information about the command submitted as parameter. 

 cmtc [hostname] creates the MTC on the given host. If the optional 
hostname is omitted, the MTC will be created on the host whose HC 
has connected first. Once an MTC is created, this command cannot be 
used before terminating the MTC via emtc. 

 smtc [module name[.control|.testcase name|.*]] is used 
to start test execution. smtc has a single optional parameter defining the 



   

 
Public 
USER GUIDE 31 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

name of the module or test case to start. The MTC must exist and it 
must be in idle state when using this command. smtc is a non-blocking 
command, there is a  prompt and it is possible to issue other commands 
while the test case execution is proceeding. 
When the module name argument is used (with or without the .control 
suffix) then smtc starts executing the control part of that module. 10 
When it is intended to select a single test case for execution, smtc is 
told using the format module name.testcase name. Only those test 
cases can be executed individually that have no formal parameters, or 
every formal parameter has a default value. 
It is also possible to execute all individually startable test cases defined 
inside a module by specifying the module name.* as smtc parameter. 
In case the optional parameter is omitted, the contents of the 
[EXECUTE] section of the configuration file are run after each other if 
that section was specified. 

 emtc terminates MTC. When using this command MTC must be in idle 
state, that is, it cannot be killed. 

 info prints statistics and status information of the currently connected 
HCs and test components. 

 reconf instructs MC to re-read and re-distribute its configuration file to 
the connected HCs. This feature is useful when restarting a test 
campaign involving multiple HCs, because the tester configuration can 
be altered eliminating the drawback of restarting and reconnecting all 
elements of the test set-up manually. 

 stop terminates test execution. The verdict of the actual test case will 
not be considered in the statistics of the test suite. 

 pause [on|off] sets whether to interrupt test execution after each 
test case. For setting the state of the pause function on or off values 
can be used. If the state of the pause function is on and the actual test 
case is finished, the execution is stopped until the continue command is 
issued. If pause is in off state and the actual test case is finished, the 
execution is continued with the next test case. Using pause without 
these options it simply prints the state of the pause function. 

 continue resumes interrupted test execution. 

 log [on|off] enables/disables console logging. It can be set using 
on or off. If log is in off state no log messages will be printed to MC’s 
console. Using log without these options it simply prints the state of 
logging. 

                                                 
10 TTCN–3 assumes to have a single control part within an ETS. Our Test Executor, however, removed this 
limitation and permits multiple module control parts within the ETS. The smtc command can be used to select 
between the available control parts, which one needs to be executed. Moreover, it can be specified to execute a 
number of different control parts, too. 



   

 
Public 
USER GUIDE 32 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

 ! escape prefix is used to execute command line contents in a subshell. 

 exit terminates all HCs and MC itself. This command can be used 
when test execution is not in progress. If MTC still exists it will be 
terminated gracefully, like with emtc. 

 quit is an alias to exit to provide backward compatibility. 

4.4.2.2 Batch Mode 

If MC is started in batch mode no command prompt is given. In order to 
monitor the actual state of execution the console messages are printed to the 
standard output. 

In batch mode, the MC performs the following actions sequentially: 

 MC waits until the specified number of HCs, that is given in 
configuration option NumHCs, are connected. 

 MTC is created on the host of firstly connected HC. Equivalent 
command: cmtc 

 The items of the [EXECUTE] section are launched sequentially. 
Equivalent command: smtc 

 After all items are finished the MTC is terminated. Equivalent command: 
emtc 

 The session and all HCs are shut down and MC exits. Equivalent 
command: exit 

If the [EXECUTE] section of the configuration file is empty or it is missing the 
MC stops in batch mode immediately with an error message. 

If a fatal error is encountered during initialization, for example due to an error 
in the configuration file, no MTC is created and the session stops 
immediately. If an error happens within a test case the normal error recovery 
routines are activated and the execution continues with the next test case. 

4.4.2.3 Performance Hints 

Note that if performance tests are executed with a large number of test 
components, MC can be a performance bottleneck in the test executor 
system. If performance problems occur around the test executor, the first 
thing that should be checked is the operating environment of MC. Running 
MC on a dedicated computer with a powerful CPU can help in the most 
cases. 



   

 
Public 
USER GUIDE 33 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

MC maintains a control TCP connection with all other components (HCs, MTC 
and PTCs). Each of these connections use an open file descriptor, which is a 
limited resource in the operating system. If many test components should be 
run simultaneously, this limitation can be a bottleneck. However, the number 
of open files per process can be increased up to a so called hard limit (for 
example 1024 on Solaris and unlimited11 on Linux). The limit can be 
increased by a built-in shell command12, of course, before starting MC. On the 
other hand, the license key also limits the number of simultaneously active 
PTCs, which is considered in MC when processing TTCN–3 create 
operations. 

4.4.2.4 Displaying ASCII Art on Startup 

The command line main controller displays an ASCII art file that is located in 
the $TTCN3_DIR/etc/asciiart directory. There can be any number of 
ASCII art text files in that directory, a random file will be chosen from those. 
The file name can contain special filtering instructions, if such instructions are 
detected in the file name then the file is grouped into the special files group, 
all other files are in the normal group. If there is at least one file in the special 
group that was not filtered out by the condition(s) given in the file name then 
the file to be displayed will be chosen randomly from the list of special files. If 
there are no such special files or all of these were filtered out by their filtering 
instructions then a normal file will be displayed. The filtering instructions in the 
file name are separated by dots, one instruction consists of a name and a 
value which are separated by a dash. If the value is of numerical type then it 
can be a single number or an interval, an interval consists of 2 numbers 
separated by an underscore. Currently the following filtering condition name 
and value pairs can be used: 
 

Filter condition name Value, type of value Example 

user User name, string user-edmdeli 

weekday Number/interval, 1-7 weekday-6_7 

day Number/interval, 1-31 day-1 

month Number/interval, 1-12 month-12 

year Number/interval year-2013 

hour Number/interval, 0-23 hour-18_23 

minute Number/interval, 0-59 minute-30 

second Number/interval, 0-61 second-0_30 

 

                                                 
11 The total number of open files can also be a bottleneck on Linux kernel, which can be changed through the /proc 
file system. 
12 Called limit on tcsh and ulimit on bash. For more details please consult the manual page of the used shell. 



   

 
Public 
USER GUIDE 34 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

Example file names: 
xmasparty.month-12.day-24_26.txt 
weekendwork.weekday-6_7.txt 

Displaying ASCII art can be prevented by deleting all files from the directory. 
Adding some filtering conditions can be done by renaming the file according 
to the above described naming rules. 

4.4.3 The TTCN–3 Host Controller 

The ETS built for parallel operation mode will act as Host Controller. After 
starting up it establishes a TCP connection to MC (which must be started prior 
to HC) and waits for requests. The executable takes two mandatory 
arguments, the host name or IP address and the TCP port number that MC 
listens on.13 

The optional command line switch -s can be used to specify the source 
address of control connections towards MC. Either an IP address or a DNS 
name can be given after the switch. Only such IP address is accepted that is 
assigned to one of the local network interfaces. This option can be useful on 
multi-homed hosts, that is, computers with more than one network interfaces, 
in order to route all traffic of control connections to a separate network path to 
avoid disturbances in the communication with SUT. If the option is omitted the 
local IP address is chosen automatically based on MC’s IP address and the 
kernel routing table. The test components, child processes of HC, will use the 
same local IP address for their connections as the HC independent if it was 
set manually or automatically. 

The command line synopsis for HC is the following: 
 
<executable_program_name> [-s <local_address>] <MC_host> <MC_port> 

Note: In earlier versions, the HCs accepted an optional third command line 
argument specifying the configuration file name. From version 1.3 (MC 
version 2), the MC distributes configuration data to all participating HCs. 
Consequently, the configuration file became a command line argument of the 
MC. 

The ETS linked in parallel mode accepts the command line switches -l and 
-v like in single mode (see section 4.2). If the test execution is performed in 
a distributed environment and file synchronization between computers is not 
automatic (for example you use FTP instead of a shared NFS directory), it is 
useful to check the module checksums and versions with flag -v on each 
computer before starting the HCs. 

                                                 
13 If MC and HC runs on the same computer and you run Host Controllers on other computers as well, never use 
localhost or 127.0.0.1 as host name argument to HC. The IP address that the HC’s connection comes from may 
be transferred by MC to TCs running on other hosts. Giving out the local IP address may result in incorrect 
behavior. 



   

 
Public 
USER GUIDE 35 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

From version 1.3.pl0 the MC checks the version of each connected HC 
automatically in order to ensure the consistency of the distributed test system. 
If the ETSes used in the same test campaign contain different TTCN–3 
modules or different versions of the same TTCN–3 modules the HC 
connections, except the firstly connected one, will be refused by the MC. 

4.4.4 Logging in Parallel Mode 

During test execution all test components create separate log files. Each log 
file has the same format as presented in non-parallel mode. Logging into the 
same, NFS shared directory makes the log analysis easier. 

The name of log files can be explicitly set in the configuration file using a 
metacharacter substitution mechanism. If the file names are not set, the 
backward compatible default naming convention is used. It is important to 
ensure that every component has its own unique log file name. Refer to the 
TITAN Programmer´s Technical Reference for TITAN TTCN-3 Test Executor 
2/198 17-CRL 113 200/6 Uen for more details. 

In parallel mode the log messages sent to the console are transmitted through 
the network and printed on the user interface of MC in normal cases. Thus it 
is an unwise thing to log all messages to the console without filtering when 
the test suite is used for load generation. If the control connection from a TC 
or HC to MC is broken due to any error, the console log messages are written 
to the standard error of the ETS locally. 

4.4.5 Automation of Testing in Parallel Mode 

The starting procedure of TTCN–3 tests in parallel mode can be a tiring task if 
it has to be repeated the tests several times. We have developed a small 
script that can do this work for you. It is based on the expect command, 
which is an extension of the TCL scripting language. The script is called 
ttcn3_start and is located in $TTCN3_DIR/bin. In order to use it a 
working expect interpreter must be in the $PATH. 

The script itself is very simple, it takes one mandatory and one or more 
optional arguments. The first mandatory argument is the name of the ETS 
that is launched. The second argument can be the name of the configuration 
file that will be passed to MC during execution. If this argument is omitted or 
the second argument does not resemble to a file name, the script will look for 
file <ETS name>.cfg in its current working directory. If such file exists, it will 
be used as configuration file. Otherwise MC will be launched without 
configuration file. 

Additionally, the IP address of the interface used for communication between 
the MC and the ETS can be specified. The syntax is –ip followed by the IP 
address in dotted decimal format, for example 192.168.0.1. 
If not specified explicitly, the address defaults to the IP address of the local 
machine. 



   

 
Public 
USER GUIDE 36 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

The rest of arguments are the list of test cases to be executed in format 
<modulename>.<testcase name>. They are passed to MC command 
smtc sequentially, see section 4.4.2 for details. If these arguments are 
missing and a configuration file is present the items of section [EXECUTE] 
will be executed, that is, smtc will be called without arguments. If neither 
configuration file nor test cases are specified the control part of the main 
TTCN–3 module, that is, the module that has the same name as the ETS, is 
executed. 

The script works the following way: first it launches the MC. If the environment 
variable TTCN3_DIR is set the MC is started from directory 
$TTCN3_DIR/bin (to find the right one multiple versions are present), 
otherwise the command mctr cli is invoked using your search path. If the 
configuration file is present it is passed to MC as a command line argument. 
After that ttcn3_start launches the ETS, that is, the HC, locally with the 
appropriate arguments. That is, the script guesses the host name and 
extracts the TCP port number from the output of MC automatically. Then the 
script issues the cmtc and the appropriate smtc commands in the MC 
command prompt and waits until test execution is finished. Finally it 
terminates the programs by issuing emtc and quit. It also takes care of 
MC’s answers and issues the commands in the right state. 

The messages coming from the standard output or standard error of MC, HC 
and the test components are continuously displayed in the output of 
ttcn3_start. 

Note that this script does not support distributed test execution when more 
than one HC has to be started. 

Examples for the invocation of ttcn3_start: 
 
$ ttcn3_start Main_Control 
$ ttcn3_start Main_Control multi.cfg 
$ ttcn3_start Main_Control –ip 10.10.10.10 multi.cfg 
$ ttcn3_start Main_Control SNMP_Testcases.tc_110 SNMP_Testcases.tc_113 \ 
SNMP_Testcases.tc_114 
$ ttcn3_start Main_Control multi.cfg SNMP_Testcases.tc_110 \ 
SNMP_Testcases.tc_113 SNMP_Testcases.tc_114 

The script returns different exit codes which can be used by user written 
software which invokes it. In case of success the return code is 0, in error 
cases the return codes are the following: 

Return code Error description 

1 The expect tool was not found. 

2 Parameters are missing. 

3 Cannot find the given executable. 

4 The script cannot be used when MC 
is run in batch mode. 



   

 
Public 
USER GUIDE 37 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

5 The MC has terminated 
unexpectedly. 

6 The given executable is not a TTCN-
3 executable in parallel mode. 

7 The executable could not connect to 
the MC. 

8 The MTC cannot be created. 

9 The MTC cannot be created on an 
unknown host. 

10 The MTC terminated unexpectedly. 

4.5 Strange Behavior of the Executable 

If modular test suites are executed, sometimes the executable test program 
can do strange things, for example, the execution terminates without any 
reason or the send functions of the Test Port is not called, and so on. This is 
because out-of-date C++ header files are used for translating the C++ 
modules, that is, there is a wrong Makefile. 

This may happen when the Test Port files are renamed, so the compiler 
regenerates them. Thus the C++ source files generated by the compiler see an 
empty Test Port header file, but the  fully functional Test Port object file is 
linked to the executable. In this case, the linking will be successful, but during 
the execution strange things can happen. The reason behind this phenomenon 
is that the modules consider the raw binary structure of the same C++ class 
different, for example they fetch the virtual function pointer from a wrong place. 

Avoid these situations and re-compile all C++ files before reporting such bugs, 
and the use of makedepend utility is strongly recommended. 



   

 
Public 
USER GUIDE 38 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

5 Log Processing 

The logs generated by the test executor, although they are ASCII text files, 
are perfect for machine processing, but not for analyzing by humans. To 
make these log files more readable log formatting tools are provided. All of 
these programs require the same license feature, LOGFORMAT. The programs 
are designed so that they can be used either individually or bundled together 
with UNIX pipelines. 

Logmerge is useful for test suites that are run in parallel mode. It can merge 
the logs of different PTC into one single file based on the timestamps. 

Logfilter can be used for post filtering large log files based on the kind of 
logged events. It can be specified to keep or remove the event type(s). 

Logformat breaks the sent and received data structures into lines and 
indents the fields according to their hierarchy. Moreover, if the test suite was 
executed in single mode, the log formatter splits the logs of each test case 
into separate files. 

Repgen can present not only the formatted log files but the description and 
TTCN–3 source code of test cases as well as the output of other network 
monitor programs, like tcpdump, in HTML format. The test results can be 
easily viewed by any JavaScript capable Web browser. 

5.1 The logmerge Utility 

The logmerge utility, which can be found in $TTCN3_DIR/bin, merges all 
files given in the command argument into a single output file. The output of 
logmerge is sorted based on the timestamps found in the log files. 

The command line syntax is: 

ttcn3_logmerge [ -o outfile ] [ file.log ] ... 

or 

ttcn3_logmerge -v 

Available command line switches are: 

-o outfile 
Merges all input log files into outfile. If the outfile exists its contents will be 
overwritten. This switch is optional, if it is omitted, merged logs will be printed 
to standard output. 



   

 
Public 
USER GUIDE 39 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

-v 
Prints version and license key information and exits. 
Each line of the input files should contain an event in the following format: 
<timestamp> <rest of the event> 

Merging log files with different types of timestamps, for example with 
timestamp format Time and DateTime, results in warning message(s), and 
only files with same format are merged. Merging log files with timestamp 
format Seconds is not. If a file contains one or more timestamp(s) that is in 
wrong order, the resulting order will be incorrect too. In this case a warning 
message will be printed to the standard error. 

The output of the utility is the following: 

<timestamp> <component id> <rest of the event> 

where <component id> is taken from the name of the respective input file. 
If the name of the input file is not in the format <ets name>.<host>-
<component id>.log, the whole input file name will be used as 
<component id>. Events spreading over multiple lines are also handled 
properly. 

5.2 The logfilter Utility 

The logfilter utility, which can be found in $TTCN3_DIR/bin, filters the input 
log file given in the command line argument based on the event types in the 
file, and filter parameters given in the program argument. The output is then 
written to an output file if specified, or to the standard output. The program is 
useful only if the variable LogEventTypes is set to yes in section 
[LOGGING] of the configuration file. 

The command line syntax is: 

ttcn3_logfilter [ -o outfile ] {eventtype(+|-)} 
[input.log] 

or 

ttcn3_logfilter -v | -h | -l 

Available command line switches are: 

-h 
Prints help on using the utility. 

-l 
Prints the list of supported event types. 



   

 
Public 
USER GUIDE 40 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

-o outfile 
Puts its output into outfile. If the outfile exists, its contents will be overwritten. 
This switch is optional, if it is omitted, the output will be printed to standard 
output. 

-v 
Prints version and license key information and exits. 

The utility can handle one file at a time, giving more input files results an 
error. If no input file is given, it reads the log from standard input. Logfilter 
can be efficiently used as the middle stage of a pipeline, combined with 
logmerge and logformat. 

Event types to be included or excluded should be given without the TTCN 
prefix, that is, as they appear in the log file. Undefined event type(s), that are 
not listed in the [2], specified as filter parameters will cause warning 
message(s), but will not cause the utility to quit. If there are parameters 
specified both to include and to exclude one or more event types, the program 
will quit with an error message, because in this case it is not well defined how 
to handle other event types. All possible error and warning messages will be 
printed to standard error. 

5.3 The logformat Utility 

The logformat utility, which can be found in $TTCN3_DIR/bin, reads the 
unformatted log file generated by test executor from its standard input. It can 
split up the log into several files based on the lines that are automatically 
logged at the beginning or end of each test case. Furthermore, logformat 
formats the sent and received messages in the log file. The structured values 
are indented and each field is put into a new line according to the braces and 
commas. 

The command line syntax is: 

ttcn3 logformat [ -i n ] [ -o outfile ] [ -s ] [ -n ] 
[ file.log ] ... 

or 

ttcn3 logformat -v 

The switches denoted by square brackets are optional. The following 
command line options are available (listed in alphabetical order): 

-i n 
Sets the depth of each indentation level to n characters. The default value is 
4. If the sent or received PDU is too complex and has too deeply nested 
fields, this number can be decreased to get more readable output. 



   

 
Public 
USER GUIDE 41 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

-o outfile 
Places the output into file outfile. If the -s flag is also set, only those parts of 
the log files will be written into this file that were logged outside the test cases, 
that is, in control part or on PTCs. If this option is omitted, the formatted log 
will be printed to standard output. 

-s 
If this option is set, the entries that were recorded during the execution of a 
particular test case will be saved in a separate file in logformat’s working 
directory. The name of this file will be identical to the name of the test case. If 
the same test case is executed several times after each other, the results of 
repeated test runs will be collected after each other. If the output file 
contained some data before logformat was started, for example the results 
of previous test run, the output file will be emptied and the old logs will be 
destroyed. 
logformat recognizes any types of timestamps that can be set in the 
[LOGGING] section of the configuration file. 
WARNING! This option is useless when formatting the log files of PTCs, 
because these logs do not contain the name of the testcase the PTC belongs 
to. 

-n 
If this option is set, newline and tab control characters are not modified, they 
are printed as \n and \t. 

-v 
Prints version and license key information and exits. 

logformat formats all files that are given as arguments and concatenates 
them after each other. If no files are given, it reads the log from standard 
input. 

5.4 The HTML Report Generator 

The HTML report generator called repgen can be found in 
$TTCN3_DIR/bin. The program requires one command line argument that 
contains the name of its configuration file. The behavior of repgen can be 
configured only through this file. If the switch -h is given instead of the name 
of the configuration file, repgen prints a sample configuration file to its 
standard output. 

The configuration file of repgen is a simple text file which contains a 
sequence of directives. Its usual suffix is .ts. Each directive starts with a 
special keyword beginning with a hash mark (#) character. The first part of 
configuration file should contain global settings, the description of test cases 
can be added after that. 

The following table summarizes all global settings: 

Keyword Meaning 



   

 
Public 
USER GUIDE 42 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

#Title The name of the ETS. This string will be used as title in the 
resulting HTML pages. 

#Tab length The report generator replaces all tabulator characters with 
spaces in the TTCN–3 test cases and log files. This parameter 
sets how many spaces a single tab character should be 
replaced with. The default value is 8. 

#Column width The report generator breaks the long lines of the ATS and the 
external monitor logs. The resulting lines in HTML output will 
not be longer than this limit. The default value is 80 characters. 

#TTCN-3 code The name of the directory that contains the TTCN–3 source 
files of the test suite. All files will be searched in this directory 
whose name ends with .ttcn. repgen collects the source 
code of test cases that are listed in the remainder of this 
configuration file. The referenced functions, templates and 
other definitions are not collected. 
An absolute or a relative path may be entered, the starting 
point is always the repgen’s working directory, for this and the 
following three parameters. The same directory may be used 
for many purposes because the file names do not clash. 

#TTCN-3 log The name of the directory that contains the log file(s) of the 
test executor. The report generator splits and formats the log 
files using the log formatter logformat. All files will be formatted 
in this directory whose name ends with .log. If the log of one 
test case can be found more than once in the log file(s), for 
example, because of repeated test execution, the resulting 
HTML page will contain the log of one execution. The others 
will be lost. 

#Other log The name of the directory that contains the log files of the 
external monitor programs, for example tcpdump. Each file 
should contain the messages (network packets) recorded 
during the execution of one test case. The log files in this 
directory must be named as <testcase name>.dump where 
<testcase name> stands for the name of the corresponding 
test case. All files must be in ASCII format. logformat will 
simply copy them into the destination directory and will not 
change their content. 

#Destination The name of the destination directory where the files of the 
resulting HTML report should be stored by repgen. The 
starting page will be <title>-report.html in this directory and the 
other files will be stored under sub-directory <title>-report, 
where <title> stands for the string set as the value of 
parameter #Title. 
Note that each space and dash in this name will be replaced 
by an underscore character. 

After the global settings, the name and description of all test cases after each 
other (in arbitrary order) can be listed. Note that repgen processes the 
source code and logs only for those test cases that are listed in the 
configuration file. The TTCN–3 code and logs of other test cases will be 
silently ignored. A test case can be specified using the following keywords: 



   

 
Public 
USER GUIDE 43 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

 

Keyword Meaning 

#Testcase The name of the test case. It must be the same as in the 
TTCN–3 code. 

#Purpose A short summary of the test case describing in one sentence 
what it does. It must not be longer than one line. These short 
descriptions will be listed on the HTML page that lists the results 
of all test cases in one table. 

#Description This section should contain the detailed description of the test 
case. It may continue through several lines, until the next 
#Testcase directive. Figures or message sequence charts can 
be drawn using ASCII characters, but images cannot be 
embedded. 

For browsing the HTML reports the only thing needes is to open the starting 
page, the file <title>-report.html in the destination directory, with a 
JavaScript capable web browser. The reports should work with any versions 
of Netscape and Microsoft Internet Explorer on any platforms. The reports can 
be viewed locally or remotely using any web server. 

The starting page consists of two list boxes and four buttons (in addition to the 
title and the Ericsson logo). The test case can be selected in the left list box. 
After selecting a test case the available descriptions and logs will be shown 
on the right list box. The following items can be selected: Detailed 
description, TTCN–3 code, TTCN–3 executor’s log, Other type of log. If 
one or more items for the test case are missing from input files, the missing 
option will not be shown. Select or unselect the available descriptions and 
logs one-by-one independently by clicking on them. 

After selecting a test case and its items the ”Show” button at bottom should 
be pressed to view the selected logs and descriptions. A new browser window 
will be opened for each test case and the selected items will be shown in 
vertically split frames. The text in each frame can be scrolled independently. 
Of course, the logformat tool is unable to figure out the relation between 
the TTCN–3 source code and the produced log events. 

In the root window, it is possible to walk through the available test cases step-
by-step using the buttons Previous and Next. The button Summary will bring 
up another window that lists all test cases, their short descriptions and 
verdicts in a single table to get a quick overview about the test results. 

Example: In the following is an example configuration file of logformat. We 
included the descriptions of the first three test cases only.  
 
#Title ROHC 
#Tab length 8 
#Column width 80 
#TTCN-3 code /home/ethpkr/ROHC 
#TTCN-3 log /home/ethpkr/ROHC/log 
#Other log ./ 
#Destination ./ 
#Testcase CTC01 



   

 
Public 
USER GUIDE 44 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

#Purpose Mode transition from Unidirectional to Optimistic mode. 
#Description 
Comp->IRs, Comp->IR_DYNs, Comp->UO-0s, Decomp->Feedback(mode 
transition u->o), Comp->UO-0s 
#Testcase CTC02 
#Purpose Feedback processing in Unidirectional mode. 
#Description 
Testing the compressor’s feedback processing capabilities in U 
mode. 
#Testcase CTC03 
#Purpose Operation in Optimistic mode (NACK). 
#Description 
Testing the compressor’s operation in Bidirectional Optimistic 
mode. Preamble: taking the compressor to SO state and O mode. 
After that a NACK is sent as an answer to a received compressed 
packet. The answer for that should be an IR with dynamic chain 
or UOR-2 or an IR-DYN packet. 
[...] 

Note: repgen was designed to present the results of non-parallel test cases. 
In case of parallel test execution, the logs of PTCs cannot be browsed, only 
the MTC log.. 

Warning: During its run repgen will start the other log formatter program 
logformat. That is why repgen works correctly only if the directory 
$TTCN3_DIR/bin is included to the path. 



   

 
Public 
USER GUIDE 45 (45)

Prepared (Subject resp) No. 

ETHBAAT Jeno Balasko 1/198 17-CRL 113 200/6 Uen 
Approved (Document resp) Checked Date Rev Reference 

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C  

 

 

6 References 

[1] Installation Guide for TITAN TTCN-3 Test Executor 
1/1531-CRL 113 200/6 Uen 

[2] TITAN Programmer´s Technical Reference for TITAN TTCN-3 Test 
Executor 
2/198 17-CRL 113 200/6 Uen 

[3] Release Notes for TITAN TTCN-3 Test Executor 
109 47-CRL 113 200/6 Uen 

[4] TTCN–3 Style Guide 
1/0113-FCPCA 101 35 

[5] TTCN–3 Naming Convention 
ETH/R-04:000010  


