

Public

PROGRAMMER'S GUIDE

1 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

API Technical Reference for TITAN TTCN-3 Test Executor

Abstract

This document describes detailed information on the TITAN Application Programming
Interface (API) on C++ level, advanced TTCN–3 programming, and background
information on the TITAN TTCN–3 Test Executor project.

Copyright

Copyright (c) 2000-2017 Ericsson Telecom AB

All rights reserved. This program and the accompanying materials
are made available under the terms of the Eclipse Public License v1.0
which accompanies this distribution, and is available at

http://www.eclipse.org/legal/epl-v10.html.

Disclaimer

The contents of this document are subject to revision without notice due to continued
progress in methodology, design and manufacturing. Ericsson shall have no liability for any
error or damage of any kind resulting from the use of this document.

Public

PROGRAMMER'S GUIDE

2 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Contents

1 Introduction .. 3
1.1 Overview .. 3
1.2 Target Groups .. 3
1.3 Typographical Conventions .. 3

2 Test Ports ... 4
2.1 Generating the Skeleton ... 4
2.2 Message-based Example ... 5
2.3 Test Port Functions .. 9
2.4 Support of address Type .. 20
2.5 Provider Port Types .. 21
2.6 Tips and Tricks ... 25

3 Logger Plug-ins .. 27
3.1 Implementing Logger Plug-ins .. 27
3.2 Building Logger Plug-ins ... 28
3.3 Event Handling ... 29
3.4 Execution ... 30

4 Encoding and Decoding .. 31
4.1 The Common API ... 31
4.2 BER .. 35
4.3 RAW ... 37
4.4 TEXT .. 39
4.5 XML Encoding (XER) ... 41
4.6 JSON ... 43

5 Mapping TTCN–3 Data Types to C++ Constructs .. 47
5.1 Mapping of Names and Identifiers .. 47
5.2 Namespaces .. 48
5.3 Predefined TTCN–3 Data Types .. 48
5.4 Compound Data Types ... 81
5.5 Predefined Functions.. 94
5.6 Using the Signature Classes .. 99

6 Tips & Troubleshooting ... 102
6.1 Migrating Existing C++ Code to the Naming Rules of Version 1.7 102
6.2 Using External C++ Functions in TTCN–3 Test Suites 102
6.3 Logging in Test Ports or External Functions ... 104
6.4 Error Recovery during Test Execution .. 109
6.5 Using UNIX Signals .. 109
6.6 Mixing C and C++ Modules .. 109

7 References ... 111

8 List of Tables .. 113

9 Abbreviations ... 115

Public

PROGRAMMER'S GUIDE

3 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

1 Introduction

1.1 Overview

This document describes the TITAN API on C++ level. It is intended for users who write
test port implementation, external function implementation in language C++ and want to
use the available resources of TITAN.

Detailed information can be found on the following topics:

 test ports, the communication link between the TITAN Executor and System Under
Test (SUT);

 built-in encoding and decoding functions;

 TTCN-3 data mapping to C++ constructs;

 troubleshooting for common TTCN-3 related issues and problems.

1.2 Target Groups

This document is intended for advanced users of the TITAN API on C++ level.

1.3 Typographical Conventions

This document uses the following typographical conventions:

 Bold is used to represent graphical user interface (GUI) components such as buttons,
menus, menu items, dialog box options, fields and keywords, as well as menu
commands. Bold is also used with ’+’ to represent key combinations. For example,
Ctrl+Click

 The ‘/’ character is used to denote a menu and sub-menu sequence. For example, File
/ Open.

 Monospaced font is used represent system elements such as command and

parameter names, program names, path names, URLs, directory names and code
examples.

 Bold monospaced font is used for commands that must be entered at the

Command Line Interface (CLI), For example, ttcn3_start

Public

PROGRAMMER'S GUIDE

4 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

2 Test Ports

The C++ source code generated by the Compiler is protocol independent, that is, it does
not contain any device specific operations. To provide the connection between the
executable test suite and SUT, that is, the physical interface of the test equipment1, a so-
called Test Port is needed.

The Test Port is a software library written in C++ language, which is linked to the
executable test program. It maps the device specific operations to function calls specified
in an API. This chapter describes the Test Port API in details.

2.1 Generating the Skeleton

The functions of Test Ports must be written by the user who knows the interface between
the executable test suite and the test equipment. In order to make this development easier,
the Compiler can generate Test Port skeletons. A Test Port belongs to one certain TTCN–
3 port type, so the skeleton is generated based on port type definitions.

A Test Port consists of two parts. One part is generated automatically by the Compiler, and
it is put into the generated C++ code. The user has nothing to do with this part.

The other part is a C++ class, which is written mainly by the user. This class can be found
in a separate C++ header and source file (their suffixes are .hh and .cc, respectively). The
names of the source files and the C++ class are identical to the name of the port type.
Please note that the name mapping rules described in section 5.1 also apply to these class
and file names.

During the translation, when the Compiler encounters a port type definition and the -t

command line switch is used, it checks whether the header and source files of Test Port
exist in its working directory. If none of them can be found there, the compiler generates
the skeleton header and source files for the corresponding test port automatically. This
means, once you have generated (and possibly modified) a skeleton, it will never be
overwritten. If you want to re-generate the skeleton, you must rename or remove the
existing one.

If the list of message types/signatures of a TTCN-3 port type changes, the list of the Test
Port class member functions also needs to change. If the Test Port skeleton has been
generated, it will not be modified, resulting in build errors (C++ compile errors like “cannot
declare variable of abstract type” / “virtual functions are pure” or linker errors). In this case,
the Test Port skeleton files should be renamed/moved, the skeleton generated, and any
user-written code should be copied back into the newly generated source files.

1 The test equipment not necessarily requires a special hardware; it can even be a simple PC with an Ethernet interface.

Public

PROGRAMMER'S GUIDE

5 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

If you have defined a TTCN–3 port type that you intend to use for internal communication
only (that is, for sending and receiving messages between TTCN–3 test components), you
do not need to generate and compile an empty Test Port skeleton for that port type.

Adding the attribute with {extension "internal"} to the port type definition in the

TTCN–3 module disables the generation and use of a Test Port for the port type.
WARNING! In this case you must not link the object file obtained from a previous Test Port
skeleton to your executable test suite.

In the following we introduce two port type definitions: one for a message based and
another one for a procedure based port. In our further examples we will refer to the test
port skeletons generated according to these definitions given within the module called
MyModule.

2.2 Message-based Example

The definition of MyMessagePort:

type port MyMessagePort message

{

 in octetstring;

 out integer;

 inout charstring;

};

That is, the types integer and charstring can be sent, and octetstring and charstring can be
received on port MyMessagePort.

The generated skeleton header file (that is, MyMessagePort.hh) will look as follows:

// This Test Port skeleton header file was generated by the

// TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pre4 build 4

// for Csaba Feher (ecsafeh@ehubuux110) on Tue Jul 29 18:45:10 2008

// Copyright Ericsson Telecom AB 2000-2014

// You may modify this file. Add your attributes and prototypes of your

// member functions here.

#ifndef MyMessagePort_HH

#define MyMessagePort_HH

#include "MyModule.hh"

namespace MyModule {

class MyMessagePort : public MyMessagePort_BASE {

public:

 MyMessagePort(const char *par_port_name = NULL);

 ~MyMessagePort();

 void set_parameter(const char *parameter_name,

 const char *parameter_value);

private:

 /* void Handle_Fd_Event(int fd, boolean is_readable,

 boolean is_writable, boolean is_error); */

 void Handle_Fd_Event_Error(int fd);

 void Handle_Fd_Event_Writable(int fd);

 void Handle_Fd_Event_Readable(int fd);

 /* void Handle_Timeout(double time_since_last_call); */

protected:

 void user_map(const char *system_port);

 void user_unmap(const char *system_port);

Public

PROGRAMMER'S GUIDE

6 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

 void user_start();

 void user_stop();

 void outgoing_send(const INTEGER& send_par);

 void outgoing_send(const CHARSTRING& send_par);

};

} /* end of namespace */

#endif

And the generated skeleton source file, that is, MyMessagePort.cc, will be the following:

// This Test Port skeleton source file was generated by the

// TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pre4 build 4

// for Csaba Feher (ecsafeh@ehubuux110) on Tue Jul 29 18:45:10 2008

// Copyright Ericsson Telecom AB 2000-2014

// You may modify this file. Complete the body of empty functions and

// add your member functions here.

#include "MyMessagePort.hh"

namespace MyModule {

MyMessagePort::MyMessagePort(const char *par_port_name)

 : MyMessagePort_BASE(par_port_name)

{

}

MyMessagePort::~MyMessagePort()

{

}

void MyMessagePort::set_parameter(const char *parameter_name,

 const char *parameter_value)

{

}

/*void MyMessagePort::Handle_Fd_Event(int fd, boolean is_readable,

 boolean is_writable, boolean is_error) {}*/

void MyMessagePort::Handle_Fd_Event_Error(int fd)

{

}

void MyMessagePort::Handle_Fd_Event_Writable(int fd)

{

}

void MyMessagePort::Handle_Fd_Event_Readable(int fd)

{

}

/*void MyMessagePort::Handle_Timeout(double time_since_last_call) {}*/

void MyMessagePort::user_map(const char *system_port)

{

}

void MyMessagePort::user_unmap(const char *system_port)

{

Public

PROGRAMMER'S GUIDE

7 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

}

void MyMessagePort::user_start()

{

}

void MyMessagePort::user_stop()

{

}

void MyMessagePort::outgoing_send(const INTEGER& send_par)

{

}

void MyMessagePort::outgoing_send(const CHARSTRING& send_par)

{

}

} /* end of namespace */

2.2.1 Procedure-based Example

The definition of MyProcedurePort in module MyModule:

type port MyProcedurePort procedure

{

 in inProc;

 out outProc;

 inout inoutProc;

};

The signature definitions are imported from a module called MyModule2, noblock is not

used and exceptions are used so that every member function of the port class is generated

for this example. If the keyword noblock is used the compiler will optimize code

generation by not generating outgoing reply, incoming reply member functions and their
argument types. If the signature has no exception outgoing raise, incoming exception
member functions and related types will not be generated.

The port type MyProcedurePort can handle call, getreply and catch operations

referencing the signatures outProc and inoutProc, and it can handle getcall, reply and

raise operations referencing the signatures inProc and inoutProc.

The generated skeleton header file (that is, MyProcedurePort.hh) will look as follows:

// This Test Port skeleton header file was generated by the

// TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pre4 build 4

// for Csaba Feher (ecsafeh@ehubuux110) on Tue Jul 29 18:53:35 2008

// Copyright Ericsson Telecom AB 2000-2014

// You may modify this file. Add your attributes and prototypes of your

// member functions here.

#ifndef MyProcedurePort_HH

#define MyProcedurePort_HH

#include "MyModule.hh"

Public

PROGRAMMER'S GUIDE

8 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

namespace MyModule {

class MyProcedurePort : public MyProcedurePort_BASE {

public:

 MyProcedurePort(const char *par_port_name = NULL);

 ~MyProcedurePort();

 void set_parameter(const char *parameter_name,

 const char *parameter_value);

private:

 /* void Handle_Fd_Event(int fd, boolean is_readable,

 boolean is_writable, boolean is_error); */

 void Handle_Fd_Event_Error(int fd);

 void Handle_Fd_Event_Writable(int fd);

 void Handle_Fd_Event_Readable(int fd);

 /* void Handle_Timeout(double time_since_last_call); */

protected:

 void user_map(const char *system_port);

 void user_unmap(const char *system_port);

 void user_start();

 void user_stop();

 void outgoing_call(const outProc_call& call_par);

 void outgoing_call(const inoutProc_call& call_par);

 void outgoing_reply(const inProc_reply& reply_par);

 void outgoing_reply(const inoutProc_reply& reply_par);

};

} /* end of namespace */

#endif

The generated skeleton source file for MyProcedurePort (that is, MyProcedurePort.cc) will
be the following:

// This Test Port skeleton source file was generated by the

// TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pre4 build 4

// for Csaba Feher (ecsafeh@ehubuux110) on Tue Jul 29 18:53:35 2008

// Copyright Ericsson Telecom AB 2000-2014

// You may modify this file. Complete the body of empty functions and

// add your member functions here.

#include "MyProcedurePort.hh"

namespace MyModule {

MyProcedurePort::MyProcedurePort(const char *par_port_name)

 : MyProcedurePort_BASE(par_port_name)

{

}

MyProcedurePort::~MyProcedurePort()

{

}

void MyProcedurePort::set_parameter(const char *parameter_name,

 const char *parameter_value)

{

}

/*void MyProcedurePort::Handle_Fd_Event(int fd, boolean is_readable,

 boolean is_writable, boolean is_error) {}*/

Public

PROGRAMMER'S GUIDE

9 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

void MyProcedurePort::Handle_Fd_Event_Error(int fd)

{

}

void MyProcedurePort::Handle_Fd_Event_Writable(int fd)

{

}

void MyProcedurePort::Handle_Fd_Event_Readable(int fd)

{

}

/*void MyProcedurePort::Handle_Timeout(double time_since_last_call) {}*/

void MyProcedurePort::user_map(const char *system_port)

{

}

void MyProcedurePort::user_unmap(const char *system_port)

{

}

void MyProcedurePort::user_start()

{

}

void MyProcedurePort::user_stop()

{

}

void MyProcedurePort::outgoing_call(const outProc_call& call_par)

{

}

void MyProcedurePort::outgoing_call(const inoutProc_call& call_par)

{

}

void MyProcedurePort::outgoing_reply(const inProc_reply& reply_par)

{

}

void MyProcedurePort::outgoing_reply(const inoutProc_reply& reply_par)

{

}

} /* end of namespace */

2.3 Test Port Functions

This section summarizes all possible member functions of the Test Port class. All of these
functions exist in the skeleton, but their bodies are empty.

The identical functions of both port types are:

 the constructor and the destructor

Public

PROGRAMMER'S GUIDE

10 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

 the parameter setting function

 the map and unmap function

 the start and stop function

 descriptor event and timeout handler(s)

 some additional functions and attributes

The functions above will be described using an example of message based ports

(MyMessagePort, also introducing the functions specific to message based port types).

Using these functions is identical (or very similar) in procedure based Test Ports.

Functions specific to message based ports:

 send functions: outgoing send

 incoming functions: incoming message

Functions specific to procedure based ports:

 outgoing functions: outgoing call, outgoing reply, outgoing raise

 incoming functions: incoming call, incoming reply, incoming exception

Both test port types can use the same logging and error handling mechanism, and the

handling of incoming operations on port MyProcedurePort is similar to receiving

messages on port MyMessagePort (regarding the event handler).

2.3.1 Constructor and Destructor

The Test Port class belongs to a TTCN–3 port type, and its instances implement the
functions of the port instances. That is, each Test Port instance belongs to the port of a
TTCN–3 test component. The number of TTCN–3 component types, port types and port
instances is not limited; you may have several Test Port classes and several instances of a
given Test Port class in one test suite.

The Test Port instances are global and static objects. This means, their constructor and
destructor is called before and after the test execution (that is, before the main function
starts and after the main function finishes). The name of a Test Port object is composed of
the name of the corresponding component type and the name of the port instance within
the component type.

Public

PROGRAMMER'S GUIDE

11 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

In case of parallel test execution, each TTCN–3 test component process has its own Test
Port instances of all ports defined in all component types within the entire test suite. Of
course, only the Test Ports of the active component type are used, the member functions
of other inactive Test Port instances (except constructor and destructor) will never be
called. Since all Test Port instances are static, their constructor and destructor is called
only once on each host and in the Host Controller process (outside its main function). The
test component processes (that is, the child processes of Host Controller) will get a copy of
the initialized Test Port instances and no constructor will be called again.

The Test Port class is derived from an abstract base class which can be found in the
generated code. The base class implements, for instance, the queue of incoming
messages.

The constructor takes one parameter containing the name of the port instance in a NUL
character terminated string. This string shall be passed further to the constructor of the
base class as it can be found in the skeleton code. The default argument for the test port
name is a NULL pointer, which is used when the test port object is a member of a port
array.

WARNING! In case of port arrays the name of the test port is set after the constructor is
completed. So the name of the test port should not be used in the constructor. The port
name is always set correctly when any other member function is called.

The destructor does nothing by default. If some dynamically allocated attributes are added
to the test port class, one should free the memory and release all resources in the
destructor.

WARNING! As the constructor and the destructor are called outside of main function, be

careful when writing them. For instance, there is no way for error recovery; exit(3) call

may result in a segmentation fault. If file descriptors are opened (and kept opened) here,

the fork(2) system call of Host Controller will only multiply the file descriptors and not

the kernel file structure. Therefore system and library calls should be avoided here.

2.3.2 Parameter Setting Function

Test Port parameters2 shall contain information which is independent from the TTCN-3 test
suite. These values shall not be used in the test suite at all. You can define them as
TTCN–3 constants or module parameters, but these definitions are useless and
redundant, and they must always be present when the Test Port is used.

For instance, using Test Port parameters can be used to convey configuration data (that is,
some options or extra information that is necessary for correct operation) or lower protocol
layer addresses (for example, IP addresses).

Test Port parameters shall be specified by the user of executable tests in section

[TESTPORT_PARAMETERS] of the run-time configuration file (see section

[TESTPORT_PARAMETERS] in [13]). The parameters are maintained for each test port

instance separately; wildcards can be used as well. In the latter case the parameter is
passed to all Test Port matching the wildcard.

2 Test Port parameters have been introduced in version 1.1.pl3

Public

PROGRAMMER'S GUIDE

12 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Each Test Port parameter must have a name, which must be unique within the Test Port
only. The name must be a valid identifier, that is, it must begin with a letter and must
contain alphanumerical characters only.

All Test Port parameter values are interpreted by the test executor as character strings.
Quotation marks must be used when specifying the parameter values in the configuration
file. The interpretation of parameter values is up to you: you can use some of them as
symbolic values, numbers, IP addresses or anything that you want.

Before the test execution begins, all parameters belonging to the Test Port are passed to
the Test Port by the runtime environment of the test executor using the function

set_parameter. It is a virtual function, that is, this function may be removed from the

header and source file if there are no parameters. Its default ancestor does nothing and
ignores all parameters.

Each parameter is passed to the Test Port one-by-one separately3, the two arguments of

set_parameter contain the name and value of the corresponding parameter,

respectively, in NUL character terminated strings. If the parameter values are needed in
further operations, backup copies must be made of them because the string will disappear
after the calling function returns.

It is warmly recommended that the Test Port parameter handling functions be fool-proof.
For instance, the Test Port should produce a proper error message (for example by calling

TTCN_error) if a mandatory parameter is missing instead of causing segmentation fault.

Repeated setting of the same parameter should produce warnings for the user (for

example by using the function TTCN_warning) and not memory leaks.

Note: On the MTC, in both single and parallel modes, the handling of Test Port parameters
is a bit different from that on PTCs. The parameters are passed only to active ports, but

the component type of MTC (thus the set of active ports) depends on the runs on clause

of the test case that is currently being executed. It would be difficult for the runtime
environment to check at the beginning of each test case whether the corresponding MTC
component type has already been active during a previous test case run. Therefore all
Test Port parameters belonging to the active ports of the MTC are passed to the

set_parameter function at the beginning of every test case. The Test Ports of MTC shall

be prepared to receive the same parameters several times (with the same values, of
course) if more than one test case is being executed.

If system related Test Port parameters are used in the run-time configuration file (that is,

the keyword system is used as component identifier), the parameters are passed to your

Test Port during the execution of TTCN–3 map operations, but before calling your

user_map function. Please note that in this case the port identifier of the configuration file

refers to the port of the test system interface that your port is mapped to and not the name
of your TTCN–3 port.

The name and exact meaning of all supported parameters must be specified in the user
documentation of the Test Port.

3 If the same parameter of the same port instance is specified several times in the configuration file, the function set_parameter will also be

called several times.

Public

PROGRAMMER'S GUIDE

13 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

2.3.3 Map and Unmap Functions

The run-time environment of the TTCN–3 executor knows nothing about the
communication towards SUT, thus, it is the user’s responsibility to establish and terminate
the connection with SUT. The TTCN–3 language uses two operations to control these

connections, map and unmap.

For this purpose, the Test Port class provides two member functions, user_map and

user_unmap. These functions are called by the test executor environment when

performing TTCN–3 map and unmap operations, respectively.

The map and unmap operations take two pairs of component references and ports as

arguments. These operations are correct only if one of the arguments refer to a port of a
TTCN–3 test component while the other port corresponds to SUT. This aspect of
correctness is verified by the run-time environment, but the existence of a system port is
not checked.

The port names of the system are converted to NUL character terminated strings and

passed to functions user_map and user_unmap as parameters. Unlike other identifiers,

the underscore characters in these port names are not translated.

If these system port names should be reused later, the entire strings (and not only the
pointers) must be saved in the internal memory structures since the string values will

disappear after the user_map or user_unmap finishes.

Note that in TTCN–3 it is not allowed to map a test component port to several system ports
at the same time. The run-time environment, however, is not so strict and allows this to
handle transient states during configuration changes. In this case messages can not be
sent to SUT even with explicit addressing, but the reception of messages is permitted.
When putting messages into the input queue of the port, it is not important for the test
executor (even for the TTCN–3 language) which port of the system the message is
received from.

The execution of TTCN–3 test component that requested the mapping or unmapping is

suspended until your user_map or user_unmap functions finish. Therefore it is not

allowed to block unnecessarily the test execution within these functions.

When the Test Port detects an error situation during the establishment or termination of

the physical connection towards the SUT, the function TTCN_error shall be used to

indicate the failure. If the error occurs within user_map the run-time environment will

assume that the connection with SUT is not established thus it will not call user_unmap to

destroy the mapping during the error recovery procedure. If user_map fails, it is the Test

Port writer’s responsibility to release all allocated resources and bring the object variables

into a stable state before calling TTCN_error. Within user_unmap the errors should be

handled in a more robust way. After a minor failure it is better to issue a warning and

continue the connection termination instead of panicking. TTCN_error shall be called only

to indicate critical errors. If user_unmap is interrupted with an error the run-time

environment assumes that the mapping has been terminated, that is, user_unmap will not

be called again.

Public

PROGRAMMER'S GUIDE

14 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Note that if either user_map or user_unmap fails, the error is indicated on the initiator

test component as well; that is, the respective map or unmap operation will also fail and

error recovery procedure will start on that component.

2.3.4 Start and Stop Functions

The Test Port class has two member functions: user_start and user_stop. These

functions are called when executing port start and port stop operations, respectively.

The functions have no parameters and return types.

These functions are called through a stub in the base class, which registers the current

state of the port (whether it is started or not). So user_start will never be called twice

without calling user_stop or vice versa.

WARNING! From version 1.2.pl0 on (according to the latest TTCN–3 standard) all ports of
test components are started implicitly immediately after creation. Such operations must not

be put in a user_start function blocking the execution for a longer period. This not only

hangs the new PTC but the also component that performed the create operation (usually

the MTC). All ports are stopped at the end of test cases or at PTC termination, even if

stop statements are missing.

In functions user_start and user_stop the device should be initialized or shut down

towards SUT (that is, the communications socket). Also the event handler should be
installed or uninstalled (see later).

2.3.5 Outgoing Operations

Outgoing operations are send (specific to message based ports); call, reply and

raise (specific to procedure based ports).

2.3.5.1 Send Functions

The Test Port class has an overloaded function called outgoing_send for each outgoing

message type. This function will be called when a message is sent on the port and it
should be routed to the system (that is, SUT) according to the addressing semantics4 of
TTCN–3. The messages (implicitly or explicitly) addressed to other test components are
handled inside the test executor; the Test Ports have nothing to do with them. The function

outgoing_send will be also called if the port has neither connections nor mappings, but

a message is sent on it.

The only parameter of outgoing_send contains a read-only reference to the message in

the internal data representation format of the test executor. The access methods for
internal data types are described in chapter 4.5. The test port writer should encode and
send the message towards SUT. For information on how to use the standard encoding
functions like BER, please consult chapter 3. Sending a message on a not started port

causes a dynamic test case error. In this case outgoing_send will not be called.

4 That is, the port has exactly one mapping and either the port has no connections or the message is explicitly addressed by a send (...) to

system statement.

Public

PROGRAMMER'S GUIDE

15 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

2.3.5.2 Call, Reply and Raise Functions

The procedure based Test Port class has overloaded functions called outgoing_call,

outgoing_reply and outgoing_raise for each call, reply and raise operations,

respectively. One of these functions will be called when a port-operation is addressing the

system (that is, SUT using the to system statement).

The only parameter of these functions is an internal representation of the signature
parameters (and possibly its return value) or the exceptions it may raise. The signature
classes are described in section 5.6.

2.3.6 Incoming Operations

Incoming operations are receive incoming messages (specific to message based ports);

call, reply and exception (specific to procedure based ports).

2.3.6.1 Descriptor Event and Timeout Handlers

The handling of incoming messages (or operations) is more difficult than sending. The
executable test program has two states. In the first state, it executes the operations one by
one as specified in the test suite (for example, it evaluates expressions, calls functions,
sends messages, etc.). In the other state it waits for the response from SUT or for a timer
to expire. This happens when the execution reaches a blocking statement, that is, one of a

stand-alone receive, done, timeout statements or an alt construct.

After reaching a blocking statement, the test executor evaluates the current snapshot of its
timer and port queues and tries to match it with the reached statements and templates. If
the matching fails, the executor sleeps until something happens to its timers or ports. After
waking up, it re-evaluates its snapshot and tries to match it again. The last two steps are
repeated until the executor finds the first matching statement. If the test executor realizes
that its snapshot can never match the reached TTCN–3 statements, it causes a dynamic
test case error. This mechanism prevents it from infinite blocking.

The test executor handles its timers itself, but it does not know anything about the
communication with SUT. So each Test Port instance should inform the snapshot handler
of the executor what kind of event the Test Port is waiting for. The event can be either the
reception of data on one or more file descriptors or a timeout (when polling is used) or both
of them.

When the test executor reaches a blocking statement and any condition – for which the
Test Port waits – is fulfilled, the event handler will be called. First one has to get the
incoming message or operation from the operating system. After that, one has to decode it
(and possibly decide its type). Finally, if the internal data structure is built, one has to put it
into the queue of the port. This can be done using the member function

incoming_message if it is a message, and using incoming_call, incoming_reply

or incoming_exception if it is an operation.

Public

PROGRAMMER'S GUIDE

16 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The execution must not be blocked in event handler functions; these must return
immediately when the message or operation processing is ready. In other words, always

use non-blocking recv() system calls. In the case when the messages are fragmented

(for instance, when testing TCP based application layer protocols, such as HTTP),
intermediate buffering should be performed in the Test Port class.

2.3.6.1.1 Event and timeout handling interface introduced in TITAN version 1.7.pl4

This descriptor event and timeout handling interface is the preferred interface for new Test
Port development.

There are two possibilities to be notified about available events:

 Either the Handle_Fd_Event function has to be implemented, or

 Handle_Fd_Event_Readable, Handle_Fd_Event_Writable and
Handle_Fd_Event_Error.

Using Handle_Fd_Event allows receiving all events of a descripor in one function call.

Using the other three event handler functions allows creating a more structured code.

All these functions are virtual. The unused event handler functions have to be left un-
overridden. (When using the second alternative and the Test Port does not wait for all
types of events (readable, writable, error) the handlers of the events – for which the Test
Port does not wait – can be left unoverridden.)

The following functions can be used to add events to and remove events from the set of
events for which the Test Port waits:

void Handler_Add_Fd(int fd, Fd_Event_Type event_mask = EVENT_ALL);

void Handler_Add_Fd_Read(int fd);

void Handler_Add_Fd_Write(int fd);

void Handler_Remove_Fd(int fd, Fd_Event_Type event_mask = EVENT_ALL);

void Handler_Remove_Fd_Read(int fd);

void Handler_Remove_Fd_Write(int fd);

The first parameter in all of these functions is the file descriptor.

Possible values of the event_mask are EVENT_RD, EVENT_WR, EVENT_ERR and

combinations of these using bitwise or: "|".

Timeout notification can be received with the Handle_Timeout function.

The parameter of the function indicates the time elapsed in seconds since its last call of
this function or the latest modification of the timer (whichever occured later).

The timer can be set with the following function:

void Handler_Set_Timer(double call_interval, boolean is_timeout = TRUE,

 boolean call_anyway = TRUE, boolean is_periodic = TRUE);

call_interval is measured in seconds and specifies the time after which the

Handle_Timeout function will be called.

To stop the timer call_interval value: 0.0 has to be given.

Public

PROGRAMMER'S GUIDE

17 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

is_timeout specifies if the timer has to be stopped when event handler is called.

call_anyway is meaningful when is_timeout is set to TRUE. In this case

call_anyway indicates if the Handle_Timeout function has to be called when event

handler is called before the timer would expire. If call_anyway is TRUE the timeout

handler will be called after the call of the event handlers and the timer will be stopped.

is_periodic indicates if the timer has to be restarted instead of stopping when timer

expires or event handler is called and is_timeout and call_anyway are both TRUE.

2.3.6.1.2 Event handler for Test Ports developed for 1.7pl3 and earlier versions of TITAN

There is only one event handler function in each Test Port class called Event_Handler,

which is a virtual member function. The run-time environment calls it when an incoming
event arrives. You can install or uninstall the event handler by calling the following
inherited member functions:

void Install_Handler(const fd_set *read_fds, const fd_set *write_fds,

 const fd_set *error_fds, double call_interval);

void Uninstall_Handler();

Install_Handler installs the event handler according to its parameters. It takes four

arguments, three pointers pointing to bitmasks of file descriptors and a timeout value.
Some of the parameters can be ignored, but ignoring all at the same time is not permitted.

The bitmasks are interpreted in the same way as in the select system call. They can be set

using the macros FD_ZERO, FD_SET and FD_CLR. If the pointer is NULL, the bitmask is

treated as zero. For further details see the manual page of select(2) or select(3).

The call interval value is measured in seconds. It means that the event handler function
will be called when the time elapsed since its last call reaches the given value. This
parameter is ignored when its value is set to zero or negative.

If you want to change your event mask parameters, you may simply call the function

Install_Handler again (calling of Uninstall_Handler is not necessary).

Uninstall_Handler will uninstall your previously installed event handler. The stop port

operation also uninstalls the event handler automatically. The event handler may be
installed or uninstalled in any Test Port member function, even in the event handler itself.

The prototype of the event handler function is the following:

void Event_Handler(const fd_set *r_fds, const fd_set *w_fds,

 const fd_set *e_fds, double time_since_last_call);

Public

PROGRAMMER'S GUIDE

18 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The function Event_Handler has four parameters. The first three of them are pointers to

bitmasks of file descriptors as described above. They are the bitwise AND combination of

bitmasks you have given to Install_Handler and the bitmasks given back by the last

call of select. They can be useful when waiting for data from many file descriptors, for
example when handling more than one SUT mappings simultaneously, because there is
no need to issue a select call again within the event handler. Note that the pointers can be
never NULL, they point to a valid memory area even if there are no file descriptors set in
the bitmask. The last parameter contains the time elapsed since the last call of the event
handler measured in seconds. This value is always calculated even if the call interval has

not been set. If the Event_Handler is called the first time since its last installation, the

time is measured from the call of Install_Handler.5

2.3.6.2 Receiving messages

The member function incoming_message of message based ports can be used to put an

incoming message in the queue of the port. There are different polymorphic functions for
each incoming message type. These functions are inherited from the base class. The
received messages are logged when they are put into the queue and not when they are
processed by the test suite6.

In our example the class MyMessagePort_BASE has the following member functions:

incoming_message(const OCTETSTRING& incoming_par);

incoming_message(const CHARSTRING& incoming_par);

2.3.6.3 Receiving calls, replies and exceptions

Receiving operations on procedure based ports is similar to receiving messages on
message based ports. The difference is that there are different overloaded incoming

functions for call, reply and raise operations called incoming_call,

incoming_reply and incoming_exception, respectively. The event handler (when

called) must recognize the type of operation on receiving and call one of these functions
accordingly with one of the internal representations of the signature (see section 0).

In the example7 the class MyProcedurePort_BASE has the following member functions

for incoming operations:

incoming_call(const MyModule2::inProc_call& incoming_par);

incoming_call(const MyModule2::inoutProc_call& incoming_par);

incoming_reply(const MyModule2::outProc_reply& incoming_par);

incoming_reply(const MyModule2::inoutProc_reply& incoming_par);

incoming_exception(const MyModule2::outProc_exception& incoming_par);

incoming_exception(const MyModule2::inoutProc_exception& incoming_par);

5 In versions of Test Executor older than 1.1 the event handler function had no parameters. If you want to upgrade a test port developed for
older versions, you should insert this formal parameter list to your event handler both in Test Port header and source file. Otherwise the
compilation of Test Port will fail.
6 Note that if the port has connections as well, the messages coming from other test components will also be inserted into the same queue
independently from the event handler.
7 In the example the signatures were defined in a different TTCN–3 module named MyModule2, as a consequence all types defined in that
module must be prefixed with the C++ namespace name of that module.

Public

PROGRAMMER'S GUIDE

19 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

For example, if the event handler receives a call operation that refers to the signature

called inoutProc, it has to fill the parameters of an instance of the class

inoutProc_call with the received data. Then it has to call the function

incoming_call with this object to place the operation into the queue of the port.

The following table shows the relation between the direction of the message type or
signature in the port type definition and the incoming/outgoing functions that can be used.
MyPort in the table header refers to MyMessagePort or MyProcedurePort in the example
depending on the type of the port (message based or procedure based).

Table 1 Outgoing and incoming operations

 MyPort::outgoing_ MyPort BASE::incoming_

 send call reply raise message call reply exception

message
type

in ○ ○ ○ ○ ● ○ ○ ○

out ● ○ ○ ○ ○ ○ ○ ○

inout ● ○ ○ ○ ● ○ ○ ○

signature

in ○ ○ ● ● ○ ● ○ ○

out ○ ● ○ ○ ○ ○ ● ●

inout ○ ● ● ● ○ ● ● ●

● supported
○ not supported

2.3.7 Additional Functions and Attributes

Any kind of attributes or member functions may be added to the Test Port. A file descriptor,
which you communicate on, is almost always necessary. Names not interfering with the
identifiers generated by the Compiler can be used in the header file (for example, the
names containing one underscore character). Avoid using global variables because you
may get confused when more than one instances of the Test Port run simultaneously. Any
kind of software libraries may be used in the Test Port as well, but included foreign header
files may cause name clashes between the library and the generated code.

In addition, the following protected attributes of ancestor classes are available:

Table 2 Protected attributes

Name Type Meaning

is_started boolean Indicates whether the Test Port is started.

handler_installed boolean Indicates whether the event handler is
installed.

port_name const char* Contains the name of the Test Port
instance. (NUL character terminated string)

Public

PROGRAMMER'S GUIDE

20 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Underscore characters are not duplicated in port name. In case of port array member

instances the name string looks like this: "Myport_array[5]".

2.4 Support of address Type

The special user-defined TTCN–3 type address can be used for addressing entities

inside the SUT on ports mapped to the system component. Since the majority of Test

Ports does not need TTCN–3 addressing and in order to keep the Test Port API backward

compatible the support of address type is disabled by default. To enable addressing on a

particular port type the extension attribute "address" must be added to the TTCN–3

port type definition. In addition to component references this extension will allow the usage

address values or variables in the to or from clauses and sender redirects of port

operations.

In order to use addressing, a type named address shall be defined in the same TTCN–3

module as the corresponding port type. Address types defined in other modules of the test
suite do not affect the operation of the port type. It is possible to link several Test Ports that
use different types for addressing SUT into the same executable test suite.

Test Ports that support SUT addressing have a slightly different API, which is considered
when generating Test Port skeleton. This section summarizes only the differences from the
normal API.

In the communication operations the test port author is responsible for handling the
address information associated with the message or the operation. In case of an incoming
message or operation the value of the received address will be stored in the port queue
together with the received message or operation.

The generated code for the port skeleton of message based ports will be the same, except

outgoing_send member function, which has an extra parameter pointing to an ADDRESS

value. With the example given in 2.3:

void outgoing_send(const INTEGER& send_par,

 const ADDRESS *destination_address);

void outgoing_send(const CHARSTRING& send_par,

 const ADDRESS *destination_address);

If an address value was specified in the to clause of the corresponding TTCN–3 send

operation the second argument of outgoing_send points to that value. Otherwise it is set

to the NULL pointer. The Test Port code shall be prepared to handle both cases.

The outgoing operations of procedure based ports are also generated in the same way if

the address extension is specified. These functions will also have an extra parameter.

Based on our example, these will have the following form:

Public

PROGRAMMER'S GUIDE

21 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

void outgoing_call(const MyModule2::outProc_call& call_par,

 const ADDRESS *destination_address);

void outgoing_call(const MyModule2::inoutProc_call& call_par,

 const ADDRESS *destination_address);

void outgoing_reply(const MyModule2::inProc_reply& reply_par,

 const ADDRESS *destination_address);

void outgoing_reply(const MyModule2::inoutProc_reply& reply_par,

 const ADDRESS *destination_address);

void outgoing_raise(const MyModule2::inProc_exception& raise_exception,

 const ADDRESS *destination_address);

void outgoing_raise(const MyModule2::inoutProc_exception& raise_exception,

 const ADDRESS *destination_address);

The other difference is in the incoming_message member function of class

MyMessagePort_BASE, and in the incoming member functions of class

MyProcedurePort_BASE. These have an extra parameter, which is a pointer to an

ADDRESS value. The default value is set the NULL pointer. In our example of

MyMessagePort_BASE:

void incoming_message(const OCTETSTRING& incoming_par,

 const ADDRESS *sender_address = NULL);

void incoming_message(const CHARSTRING& incoming_par,

 const ADDRESS *sender_address = NULL);

In our example of MyProcedurePort_BASE:

void incoming_call(const MyModule2::inProc_call& incoming_par,

 const ADDRESS *sender_address = NULL);

void incoming_call(const MyModule2::inoutProc_call& incoming_par,

 const ADDRESS *sender_address = NULL);

void incoming_reply(const MyModule2::outProc_reply& incoming_par,

 const ADDRESS *sender_address = NULL);

void incoming_reply(const MyModule2::inoutProc_reply& incoming_par,

 const ADDRESS *sender_address = NULL);

void incoming_exception(const MyModule2::outProc_exception& incoming_par,

 const ADDRESS *sender_address = NULL);

void incoming_exception(const MyModule2::inoutProc_exception& incoming_par,

 const ADDRESS *sender_address = NULL);

If the event handler of the Test Port can determine the source address where the message
or the operation is coming from, it shall pass a pointer to the incoming function, which

points to a variable that stores the address value. The given address value is not

modified by the run-time environment and a copy of it is created when the message or the
operation is appended to the port queue. If the event handler is unable to determine the

sender address the default NULL pointer shall be passed as second argument.

The address value stored in the port queue is used in receive, trigger, getcall,

getreply, catch and check port operations: it is matched with the from clause and/or

stored into the variable given in the sender redirect. If the receiving operation wants to

use the address information of the first element in the port queue, but the Test Port has not
supplied it a dynamic testcase error will occur.

2.5 Provider Port Types

Test Ports that belong to port types marked with extension attribute "provider" have a

slightly different API. Such port types are used to realize dual-faced ports, the details of
which can be found in section "Dual-faced ports" in the Programmer's Technical Reference
([13]).

Public

PROGRAMMER'S GUIDE

22 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The purpose of this API is to allow the re-use of the Test Port class with other port types

marked with attribute "user" or with ports with translation capability ([15]). The user port

types may have different lists of incoming and outgoing message types. The
transformations between incoming and outgoing messages, which are specified entirely by
the attribute of the user port type, are done independently of the Test Port. The Test Port
needs to support the sending and reception of message types that are listed in the
provider port type.

The provider port can be accessed through the port which maps to the port with provider

attribute. The get_provider_port() is a member function of the PORT class:

PORT* get_provider_port();

This function is useful when a reference to the provider type is needed. It returns the
provider port type for user ports and ports with translation capability. Otherwise returns

NULL. The function causes dynamic testcase error when the port has more than one

mapping, or the port has both mappings and connections. The function’s return value must
be manually cast to the correct provider port type.

This section summarizes only the differences from the normal Test Port API:

 The name of the Test Port class is suffixed with the string _PROVIDER (for example

MyMessagePort_PROVIDER instead of MyMessagePort).

 The base class of the Test Port is class PORT, which is part of the Base Library. Please

note that normal Test Ports are also derived from class PORT, but indirectly through an

intermediate class with suffix _BASE.

 The member functions that handle incoming messages and procedure-based

operations (that is incoming_message, incoming_call, incoming_reply and

incoming_exception) must be defined in the header file as pure virtual functions.

These functions will be implemented in various descendant classes differently.

 The Test Port header file must not include the generated header file of the
corresponding TTCN–3 module. The common header file of the Base Library called

TTCN3.hh shall be included instead. The source file of the Test Port may include any

header file without restriction.

 The member functions of the Test Port may refer to C++ classes that are generated
from user-defined message types and signatures. To avoid compilation failures the
declarations of the referenced classes must be added to the beginning of the header
file. At the moment the Test Port skeleton generator has a limitation that it cannot
collect the class declarations from the port type, so they must be added manually.
Please note that if a message type or signature is imported from another module the
corresponding class declaration must be put into the appropriate namespace.

The following example shows the generated Test Port skeleton of a provider port type.

Port type definition in TTCN–3 :

Public

PROGRAMMER'S GUIDE

23 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

type port MyProviderPort mixed {

 inout MyMessage, MySignature;

} with { extension "provider" }

Header file MyMessagePort.hh:

// This Test Port skeleton header file was generated by the

// TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pl0

// for Janos Zoltan Szabo (ejnosza@EG70E00202E46JR)

// on Wed Mar 7 18:14:33 2007

// Copyright Ericsson Telecom AB 2000-2014

// You may modify this file. Add your attributes and prototypes of your

// member functions here.

#ifndef MyProviderPort_HH

#define MyProviderPort_HH

#include <TTCN3.hh>

// Note: Header file MyModule.hh must not be included into this file!

// Class declarations were added manually

namespace MyOtherModule {

 // type MyMessageType was imported from MyOtherModule

 class MyMessageType;

}

namespace MyModule {

// signature MySignature was defined locally

class MySignature_call;

class MySignature_reply;

class MySignature_exception;

class MyProviderPort_PROVIDER : public PORT {

public:

 MyProviderPort_PROVIDER(const char *par_port_name = NULL);

 ~MyProviderPort_PROVIDER();

 void set_parameter(const char *parameter_name,

 const char *parameter_value);

 void Event_Handler(const fd_set *read_fds,

 const fd_set *write_fds, const fd_set *error_fds,

 double time_since_last_call);

protected:

 void user_map(const char *system_port);

 void user_unmap(const char *system_port);

 void user_start();

 void user_stop();

 void outgoing_send(const MyOtherModule::MyMessage& send_par);

 void outgoing_call(const MySignature_call& call_par);

 void outgoing_reply(const MySignature_reply& reply_par);

 void outgoing_raise(const MySignature_exception& raise_exception);

 virtual void incoming_message(

 const MyOtherModule::MyMessage& incoming_par) = 0;

 virtual void incoming_call(const MySignature_call& incoming_par) = 0;

 virtual void incoming_reply(const MySignature_reply& incoming_par) = 0;

 virtual void incoming_exception(

 const MySignature_exception& incoming_par) = 0;

};

} /* end of namespace */

Public

PROGRAMMER'S GUIDE

24 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Source file MyMessagePort.cc:

// This Test Port skeleton source file was generated by the

// TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pl0

// for Janos Zoltan Szabo (ejnosza@EG70E00202E46JR)

// on Wed Mar 7 18:14:33 2007

// Copyright Ericsson Telecom AB 2000-2014

// You may modify this file. Complete the body of empty functions and

// add your member functions here.

#include "MyProviderPort.hh"

#include "MyModule.hh"

namespace MyModule {

MyProviderPort_PROVIDER::MyProviderPort_PROVIDER(const char *par_port_name)

 : PORT(par_port_name)

{

}

MyProviderPort_PROVIDER::~MyProviderPort_PROVIDER()

{

}

void MyProviderPort_PROVIDER::set_parameter(const char *parameter_name,

 const char *parameter_value)

{

}

void MyProviderPort_PROVIDER::Event_Handler(const fd_set *read_fds,

 const fd_set *write_fds, const fd_set *error_fds,

 double time_since_last_call)

{

}

void MyProviderPort_PROVIDER::user_map(const char *system_port)

{

}

void MyProviderPort_PROVIDER::user_unmap(const char *system_port)

{

}

void MyProviderPort_PROVIDER::user_start()

{

}

void MyProviderPort_PROVIDER::user_stop()

{

}

void MyProviderPort_PROVIDER::outgoing_send(

 const MyOtherModule::MyMessage& send_par)

{

}

void MyProviderPort_PROVIDER::outgoing_call(

 const MySignature_call& call_par)

{

}

void MyProviderPort_PROVIDER::outgoing_reply(

 const MySignature_reply& reply_par)

{

}

void MyProviderPort_PROVIDER::outgoing_raise(

 const MySignature_exception& raise_exception)

{

}

Public

PROGRAMMER'S GUIDE

25 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

} /* end of namespace */

2.6 Tips and Tricks

The following sections deal with logging and error handling in Test Ports.

2.6.1 Logging

Test Ports may record important events in the Test Executor log during sending/receiving
or encoding/decoding messages. Such log messages are also good for debugging fresh
code.

The Test Port member functions may call the functions of class TTCN_Logger. These

functions are detailed in section 6.3.

If there are many points in the Test Port code that want to log something, it can be a good
practice to write a common log function in the Test Port class. We show here an example

function, which takes its arguments as the standard C function printf and forwards the

message to the Test Executor’s logger:

#include <stdarg.h>

// using in other member functions:

// log("The value of i: %d", i);

void MyPortType::log(const char *fmt, ...)

{

 // this flag can be a class member, which is configured through a

 // test port parameter

 if (logging_is_enabled) {

 va_list ap;

 va_start(ap, fmt);

 TTCN_Logger::begin_event(TTCN_DEBUG);

 TTCN_Logger::log_event("Example Test Port (%s): ", get_name());

 TTCN_Logger::log_event_va_list(fmt, ap);

 TTCN_Logger::end_event();

 va_end(ap);

 }

}

2.6.2 Error Handling

None of the Test Port member functions have return value like a status code. If a function
returns normally, the run-time environment assumes that it has performed its task
successfully. The handling of run-time errors is done in a special way, using C++
exceptions. This simplifies the program code because the return values do not have to be
checked everywhere and dynamically created complex error messages can be used if
necessary.

If any kind of fatal error is encountered anywhere in the Test Port, the following function
should be called:

void TTCN_error(const char *err_msg, ...);

Public

PROGRAMMER'S GUIDE

26 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Its parameter should contain the description of the error in a NUL terminated string in the

format of printf(3). You may pass further parameters to TTCN_error, if necessary.

The function throws an exception, so it never returns. The exception is usually caught at
the end of the test case or PTC function that is being executed. In case of error, the verdict

of the component is set to error and the execution of the test case or PTC function

terminates immediately.

The exception class is called TC_Error. For performance reasons this is a trivial (empty)

class, that is, it does not contain the error message in a string. The error string is written

into the log file by TTCN_error immediately. Such type of exception should never be

caught or thrown directly. If you want to implement your own error handling and error
recovery routines you had better use your own classes as exceptions.

If you write your own error reporting function you can add automatically the name of the
port instance to all of your error messages. This makes the fault analysis for the end-users
easier. In the following example the error message will occupy two consecutive lines in the

log since we can pass only one format string to TTCN_error.

void MyPortType::error(const char *msg, ...)

{

 va_list ap;

 va_start(ap, msg);

 TTCN_Logger::begin_event(TTCN_ERROR);

 TTCN_Logger::log_event("Example Test Port (%s): ", get_name());

 TTCN_Logger::log_event_va_list(msg, ap);

 TTCN_Logger::end_event();

 va_end(ap);

 TTCN_error("Fatal error in Example Test Port %s (see above).",

 get_name());

}

There is another function for denoting warnings (that is, events that are not so critical) with

the same parameter list as TTCN_error:

void TTCN_warning(const char *warning_msg, ...);

This function puts an entry in the executor’s log with severity TTCN_WARNING. In contrast

to TTCN_error, after logging the given message TTCN_warning returns and your test

port can continue running.

Public

PROGRAMMER'S GUIDE

27 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

3 Logger Plug-ins

3.1 Implementing Logger Plug-ins

All logger plug-ins must implement the ILoggerPlugin interface class in

ILoggerPlugin.hh in ${TTCN3_DIR}/include. Each plug-in should provide some

essential information on itself and should implement some basic functions:

The name (name_, plugin_name()) of the plugin. To be able to reference the plugin (for

example for configuration). Additional information about the plug-in (help_,

plugin_help()).

The minimum API version number the plug-in is compatible with (major_version_,

major_version(), minor_version_, minor_version()).

Each plug-in must have an initialization (init()) and deinitialization (fini()) routine,

which are called at the begin and end of the plug-in’s lifecycle. The same functionality can
be implemented in the plug-in’s constructor and destructor as well.

The plug-in could be asked, whether it’s configured or not (is_configured()). For

example the file is already opened, the database connection is set up etc. Depending on
this information event buffering can be enabled or disabled.

One plug-in should provide log2str() functionality. The is_log2str_capable()

function should be overridden to return true. At the moment it’s not possible to change the
default behavior and returning true will not have an effect except a warning.

The logger plug-ins receive the log events via the log() function. The details about event

handling can be found in 3.3.

The generated, runtime specific (load-test or function-test) header file

TitanLoggerApi.hh needs to be included by every logger plug-in depending on the

runtime it is compiled for. These header files can be found in

${TTCN3_DIR}/include/{RT1/RT2}. An example to handle these include files in a

logger plug-in’s code:

#ifndef TITAN_RUNTIME_2

#include "RT1/TitanLoggerApi.hh"

#else

#include "RT2/TitanLoggerApi.hh"

#endif

Public

PROGRAMMER'S GUIDE

28 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Unfortunately, the dlopen() API is a C API, not a C++ API, but each logger plug-in is a

class, which needs to be instantiated. To resolve this, the logger plug-ins are always
instantiated and destroyed through C factory functions. These functions are mandatory for
all logger plug-ins and they must follow C-style linkage rules. Otherwise, the function
names would be mangled by the C++ compiler, using its own, implementation dependent

mangling mechanism, and dlsym() and such functions would not be able to locate the

correct symbol in the SOs of the logger plug-ins. These functions look pretty simple:

#ifdef __cplusplus

extern "C"

{

 ILoggerPlugin *create_plugin()

 { return new MyPlugin(); }

 void destroy_plugin(ILoggerPlugin *plugin)

 { delete plugin; plugin = NULL; }

}

#endif

3.2 Building Logger Plug-ins

The generated, runtime specific (load-test or function-test) header file

TitanLoggerApi.hh needs to be included by every logger plug-in depending on the

runtime it is compiled for. These header files can be found in

${TTCN3_DIR}/include/{RT1/RT2} and this directory must be present (for example

as part of CPPFLAGS in the Makefile) while compiling the logger plug-ins.

To make logger plug-ins dynamically loadable at runtime the logger plug-ins need to be

built as shared libraries. Physically SOs (.so) on Unix and Linux platforms, DLLs (.dll)

on Cygwin and Windows platforms. A HOWTO on building shared libraries can be found at
[14]. A quick summary:

All the sources of the logger plug-ins need to be compiled with –fPIC, for example add

CXXFLAGS += -fPIC into the Makefile or command line.

The linker should be instructed to create a shared library instead of an executable with the

–shared flag. –fPIC is necessary here as well, for example add LDFLAGS += -fPIC –

shared in the Makefile or command line.

Public

PROGRAMMER'S GUIDE

29 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Another thing to keep in mind is that logger plug-ins need to be linked with the dynamically

linked TITAN runtime libraries (for example libttcn3-dynamic.so/libttcn3-

parallel-dynamic.so or libttcn3-rt2-dynamic.so/libttcn3-rt2-

parallel-dynamic.so) instead of the static ones (for example

libttcn3.a/libttcn3-parallel.a or libttcn3-rt2.a/libttcn3-rt2-

parallel.a). So, if all possible combinations need to be supported by a logger plug-in,

all of the four versions need to be built, additionally there are naming rules to simplify
making a distinction between them:

Single mode, load test runtime. File name must end with “.so”.

Single mode, function test runtime. File name must end with “-rt2.so”.

Parallel mode, load test runtime. File name must end with “-parallel.so”.

Parallel mode, function test runtime. File name must end with “-parallel-rt2.so”.

The runtime library linked with a logger plug-in must be selected to match the runtime

linked with the test executable that loads it: if the test executable is linked to libttcn3-

dynamic.so, then any logger plug-ins must also be linked to libttcn3-dynamic.so

and not libttcn3-parallel-dynamic.so or libttcn3-rt2-dynamic.so. To

ensure consistency, only a dynamic runtime library will load a logger plug-in (because a
plug-in is always linked to a dynamic runtime library). If a non-dynamic runtime library is
configured to load a logger plug-in, it will cause a runtime error.

Please note that linking a plug-in or any TTCN-3 project with the object files generated

from the TitanLoggerApi or TitanLoggerControl internal modules and using the

dynamic libraries of TITAN at the same time is not recommended and it can lead to various
runtime errors.

3.3 Event Handling

The log events are distributed to all active logger plug-ins via a four-parameter callback
function with the following signature:

void log(const TitanLoggerApi::TitanLogEvent& event, bool

 log_buffered, bool separate_file, bool use_emergency_mask);

The first parameter event is the event itself, the second parameter log_buffered

indicates, whether the event is coming from an internal buffer or not, separate_file and

use_emergency_mask are configuration options for emergency logging. The

use_emergency_mask flag indicates that the given event is an emergency event and

should be handled in a special way by the plug-ins, the separate_file flag indicates

that all the emergency events should be handled separately (for example written into a
separate file). For more details on emergency logging please check [13]. In this function,
the plug-in can handle the log events individually depending on the event’s type (that is,

the alternative selected in the union event.logEvent().choice()).

Public

PROGRAMMER'S GUIDE

30 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

TitanLoggerApi::TitanLogEvent is a generated type defined in

TitanLoggerApi.xsd, which can be found in ${TTCN3_DIR}/include. This file

contains all the necessary type definitions a logger plug-in should be aware of. The
corresponding header files generated from this XSD file can be found in

${TTCN3_DIR}/include/{RT1/RT2}. The mapping between XSD and TTCN-3 types

is defined in Error! Reference source not found., the mapping between TTCN-3 types
and C++ types is defined in 5.

3.4 Execution

When a logger plug-in is compiled (the SO is ready) it should be configured in the

configuration file. For details check [13]. Additionally, LD_LIBRARY_PATH should contain

the directory of the plug-in and ${TTCN3_DIR}/lib as well. If the runtime linker (the

loader) is unable to find any of the given logger plug-ins an error will be given.

Public

PROGRAMMER'S GUIDE

31 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

4 Encoding and Decoding

This tool is equipped with several standard encoding/decoding mechanisms. A part of
these functions reside in the core library, but the type-dependent part must be generated
by the compiler. In order to reduce the code size and compilation time, the code
generation for encoding functions (separately for different encoders) can be switched off if
they are not needed. For details, see section "Command line syntax" in the Programmer's
Technical Reference ([13]).

To make it easier to use the encoding features, a unified common API was developed.
With help of this API the behaviour of the test executor in different error situations can be
set during coding. There is also a common buffer class. The details of the above
mentioned API as well as the specific features of the certain encoders are explained in the
following sections.

4.1 The Common API

The common API for encoders consists of three main parts:

 A dummy class named TTCN_EncDec which encapsulates functions regarding error

handling.

 A buffer class named TTCN_Buffer which is used by the encoders to put data in,

decoders to get data from.

 The functions needed to encode and decode values.

4.1.1 TTCN_EncDec

TTCN_EncDec implements error handling functions.

4.1.1.1 Setting Error Behavior

There are lot of error situations during encoding and decoding. The coding functions can
be told what to do if an error arises. To set the behaviour of test executor in a certain error
situation the following function is to be invoked:

void TTCN_EncDec::set_error_behavior(error_type_t, error_behavior_t);

WARNING! As error_type_t and error_behavior_t are enums defined in

TTCN_EncDec class, they have to prefixed with the class name and the scope operator

(that is “TTCN_EncDec::”).

The possible values of error_type_t are detailed in the sections describing the different

codings. Some common error types are shown in the table below:

Public

PROGRAMMER'S GUIDE

32 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Table 3 Common error types

ET_UNDEF Undefined/unknown error.

ET_UNBOUND Encoding of an unbound value.

ET_REPR Representation error
(for example, internal representation of integral numbers).

ET_ENC_ENUM Encoding of an unknown enumerated value.

ET_DEC_ENUM Decoding of an unknown enumerated value.

ET_INCOMPL_MSG Decode error: incomplete message.

ET_INVAL MSG Decode error: invalid message.

ET_CONSTRAINT The value breaks some constraint.

ET_INTERNAL Internal error. Error behaviour cannot be set for this.

ET_ALL All error type. Usable only when setting error behaviour.

ET_NONE No error.

The possible values of error_behavior_t are shown in the table below:

Table 4 Possible values of error_behavior_t

EB_DEFAULT Sets the default error behaviour for the selected error type.

EB_ERROR Raises an error if the selected error type occurs.

EB_WARNING Gives a warning message but tries to continue the operation.

EB_IGNORE Like warning but without the message.

4.1.1.2 Getting Error Behavior

There are two functions: one for getting the current setting and one for getting the default
setting for a particular error situation.

error_behavior_t TTCN_EncDec::get_error_behavior(error_type_t);

error_behavior_t TTCN_EncDec::get_default_error_behavior(error_type_t);

The using of these functions are straightforward: giving a particular error_type_t the

function returns the current or default error_behavior_t for that error situation,

respectively.

4.1.1.3 Checking if an Error Occurred

The last coding-related error and its textual description can be retrieved anytime. Before
using a coding function, it is advisable to clear the “last error”. This can be achieved by the
following method:

void TTCN_EncDec::clear_error();

Public

PROGRAMMER'S GUIDE

33 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

After using some coding functions, it can be checked if an error occurred with this function:

error_type_t TTCN_EncDec::get_last_error_type();

This returns the last error, or ET_NONE if there was no error. The string representation of

the error can be requested with the help of this:

const char* TTCN_EncDec::get_error_str();

WARNING! The above two functions do not clear the “last error” flag.

4.1.2 TTCN_Buffer

TTCN Buffer objects are used to store encoded values and to communicate with the
coding functions. If encoding a value, the result will be put in a buffer, from which can be
get. In the other hand, to decode a value, the encoded octet string must be put in a
TTCN_Buffer object, and the decoding functions get their input from that.

void TTCN_Buffer::clear();

Resets the buffer, cleaning up its content, setting the pointers to the beginning of buffer.

void TTCN_Buffer::rewind();

Rewinds the buffer, that is, sets its reading pointer to the beginning of the buffer.

size_t TTCN_Buffer::get_pos() const;

Returns the (reading) position of the buffer.

void TTCN_Buffer::set_pos(size_t pos);

Sets the (reading) position to pos, or to the end of buffer, if pos > get_len().

size_t TTCN_Buffer::get_len() const;

Returns the amount of bytes in the buffer.

const unsigned char* TTCN_Buffer::get_data() const;

Returns a pointer that points to the beginning of the buffer. You can read out count bytes

beginning from this address, where count is the value returned by the get_len()

member function.

size_t TTCN_Buffer::get_read_len() const;

Returns how many bytes are in the buffer to read.

const unsigned char* TTCN_Buffer::get_read_data() const;

Returns a pointer which points to the read position of data in the buffer. count bytes can

be read out beginning from this address, where count is the value returned by the

get_read_len() member function.

Public

PROGRAMMER'S GUIDE

34 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

void TTCN_Buffer::put_c(const unsigned char c);

Appends the byte c to the end of buffer.

void TTCN_Buffer::put_s(const size_t len, const unsigned char *s);

Writes a string of bytes to the end of buffer, where len is the amount of bytes, s is a pointer

to the data to be written.

void TTCN_Buffer::put_os(const OCTETSTRING& os);

Appends the content of the octet string to the buffer.

Sometimes it is useful to copy data directly into a buffer. In this case, the buffer must be
told the maximum number of bytes to be written. So the buffer can resize its data area.
This can be done with the following function:

void TTCN_Buffer::get_end(unsigned char*& end_ptr, size_t& end_len);

Parameter end_len is an in-out parameter: you tell how many bytes you want to write,

and the returned value is equal to or greater than the requested. Parameter end_ptr is an

out parameter. So up to end_len bytes can be written beginning from end_ptr.After

writing also increase_length() must be called.

void TTCN_Buffer::increase_length(size_t count);

After writing bytes directly to the end of buffer using the pointer returned by get_end()

method, the buffer must be told how many bytes have been written. This can be done by
this function.

void TTCN_Buffer::cut();

Cuts (removes) the bytes between the beginning of the buffer and the read position. After
calling this, the read position will be the beginning of buffer. As this function manipulates
the internal data, pointers referencing to data inside the buffer will be invalid.

void TTCN_Buffer::cut_end();

Cuts (removes) the bytes between the read position and the end of the buffer. After calling
this, the read position remains unchanged (that is, it will point to the end of the truncated
buffer). As this function manipulates the internal data, pointers referencing to data inside
the buffer will be invalid.

boolean TTCN_Buffer::contains_complete_TLV();

Returns TRUE if the buffer contains a complete TLV, otherwise it returns FALSE. Useful

when decoding BER streams, and the data is coming in chunks. With the help of this, you
can check before decoding whether the message is complete.

4.1.3 Invoking the Coding Functions

Every type class has members like these:

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,

Public

PROGRAMMER'S GUIDE

35 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

 TTCN_EncDec::coding_t p_cod, ...) const;

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,

 TTCN_EncDec::coding_t p_cod, ...);

Parameter p_td is a special type descriptor. Each type has its own descriptor, which

contains the name of the type, and a lot of information used by the different encoding
mechanisms. The names of the descriptors come from the name of the types: the

appropriate type descriptor for type XXX is XXX_descr_.

Parameter p_buf contains the encoded value. For details about using it, please consult

the previous subsection.

Parameter p_cod is the desired coding mechanism. As coding_t is defined in

TTCN_EncDec, its value must be prefixed with TTCN_EncDec::. For the time being, this

parameter may have one of the following values:

 CT_BER BER coding;

 CT_RAW RAW coding;

 CT_TEXT TEXT coding;

 CT_XER XML coding.

The optional ... parameter(s) are depending on the chosen coding.

4.2 BER

The encoding rules defined in [5] can be used to encode and/or decode the values of
ASN.1 types. There are three methods defined in the referenced document: BER, CER
and DER (Basic, Canonical and Distinguished Encoding Rules). While the BER gives a lot
of options to the sender (that is, to the encoder), the CER and DER select just one
encoding from those allowed by the BER, eliminating all of the sender options. In other
words, CER (and also DER) is a subset of BER. Any value encoded by CER or DER can
be decoded using BER, but it is not true in the other direction.

In this section it is assumed that the reader has basic knowledge about BER, TLVs, tags,
length forms and other items defined in [5].

This tool is capable of encoding values in CER or DER, and uses the BER while
decoding8. The tags are handled quite separated from the types, giving extra freedom to
the user when encoding only one component of a compound type. Let us suppose we
have a large SEQUENCE with automatic tags (that is, context-specific implicit tags 1, 2,

...), the third component is “[3] Other-sequence”. Then we have the possibility to

encode only this field using SEQUENCE-tag. (Implementation details and examples follow
in next sections.)

8 Though the decoder can be forced to accept only certain length forms (short, long, indefinite or any combination of these.

Public

PROGRAMMER'S GUIDE

36 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

4.2.1 Error Situations

In addition to error situations mentioned in Section 4.1, these can occur during
BER-coding:

Table 5 BER-coding errors

ET_INCOMPL_ANY Encoding of an ASN ANY value which does not contain a valid
BER TLV.

ET_LEN_FORM During decoding: the received message has a non-acceptable
length form.

ET_TAG During decoding: unexpected tag.

ET_SUPERFL During decoding: superfluous part detected. This can be
superfluous TLV at the end of a constructed TLV.

ET_EXTENSION During decoding: there was something in the extension (for
example: in ASN.1 ellipsis). This is not supported in the current
version.

ET_DEC_DUPFLD While decoding a SET: duplicated field (value for the given field
already received).

ET_DEC_MISSFLD While decoding a SET: missing field (value for the given field
not received).

ET_DEC_OPENTYPE Cannot decode an opentype (broken component relation
constraint).

ET_DEC_UCSTR While decoding a universal charstring: Malformed sequence.

4.2.2 API

The Application Programming Interface for ASN.1 type encoding and decoding is
described in the following.

4.2.2.1 Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,

 TTCN_EncDec::coding_t p_cod, unsigned int p_BER_coding) const;

The parameter p_cod must be set to TTCN_EncDec::CT_BER.

The parameter p_BER_coding is used to choose between CER and DER.

BER_ENCODE_CER = CER coding.
BER_ENCODE_DER = DER coding.

4.2.2.2 Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,

 TTCN_EncDec::coding_t p_cod, unsigned int p_len_form);

Public

PROGRAMMER'S GUIDE

37 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The parameter p_cod must be set to TTCN_EncDec::CT_BER.

The parameter p_len_form determines which length forms are accepted.

BER_ACCEPT_SHORT Short form.
BER_ACCEPT_LONG Long form.
BER_ACCEPT_INDEFINITE Indefinite form.
BER_ACCEPT_DEFINITE Short and long form.
BER_ACCEPT_ALL All form.

Example

Let us assume that we have an ASN.1 module named MyASN which contains a type

named ErrorReturn, and we have a TTCN–3 module which imports this type. This

module contains also two ports:

type port MyPort1 message

{

 out ErrorReturn;

 in octetstring;

}

type port MyPort2 message

{

 out octetstring;

 in ErrorReturn;

}

Then we can complete the port skeleton generated by the compiler:

void MyPort1::outgoing_send(const MyASN::ErrorReturn& send_par)

{

 TTCN_Buffer buf;

 send_par.encode(MyASN::ErrorReturn_descr_, buf,

 TTCN_EncDec::CT_BER, BER_ENCODE_DER);

 OCTETSTRING encodeddata(buf.get_len(), buf.get_data());

 incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const OCTETSTRING& send_par)

{

 TTCN_EncDec::set_error_behavior(TTCN_EncDec::ET_ALL,

 TTCN_EncDec::EB_WARNING);

 TTCN_Buffer buf;

 buf.put_os(send_par);

 MyASN::ErrorReturn pdu;

 pdu.decode(MyASN::ErrorReturn_descr_, buf, TTCN_EncDec::CT_BER,

 BER_ACCEPT_ALL);

 incoming_message(pdu);

}

4.3 RAW

You can use the encoding rules defined in the section "RAW encoder and decoder" in the
Programmer's Technical Reference ([13]) to encode and decode the following TTCN–3
types:

 boolean

 integer

Public

PROGRAMMER'S GUIDE

38 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

 float

 bitstring

 octetstring

 charstring

 hexstring

 enumerated

 record

 set

 union

 record of

 set of

The compiler will produce code capable of RAW encoding/decoding for compound types if

they have at least one variant attribute.

When a compound type is only used internally or it is never RAW encoded/decoded then

the attribute variant has to be omitted.

When a type can be RAW encoded/decoded but with default specification then the empty

variant specification can be used: variant "".

4.3.1 Error Situations

Table 6 RAW-coding errors

ET_LEN_ERR During encoding: Not enough length specified in FIELDLENGTH to
encode the value.
During decoding: the received message is shorter than expected.

ET_SIGN_ERR Unsigned encoding of a negative number.

ET_FLOAT_NAN Not a Number float value has been received.

ET_FLOAT_TR The float value will be truncated during double to single precision
conversion.

4.3.2 API

The C++ Application Programming Interface for RAW encoding and decoding is described
in the following. It can be used for example in test port implementation, in external function
implementation.

Public

PROGRAMMER'S GUIDE

39 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

4.3.2.1 Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,

 TTCN_EncDec::coding_t p_cod) const;

The parameter p_cod must be set to TTCN_EncDec::CT_RAW.

4.3.2.2 Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,

 TTCN_EncDec::coding_t p_cod);

The parameter p_cod must be set to TTCN_EncDec::CT_RAW.

Example

Let us assume that we have a TTCN–3 module which contains a type named

ProtocolPdu, and this module contains also two ports:

type port MyPort1 message

{

 out ProtocolPdu;

 in octetstring;

}

type port MyPort2 message

{

 out octetstring;

 in ProtocolPdu;

}

Then we can complete the port skeleton generated by the compiler as follows:

void MyPort1::outgoing_send(const ProtocolPdu& send_par)

{

 TTCN_Buffer buf;

 send_par.encode(ProtocolPdu_descr_, buf,

 TTCN_EncDec::CT_RAW);

 OCTETSTRING encodeddata(buf.get_len(), buf.get_data());

 incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const OCTETSTRING& send_par)

{

 TTCN_EncDec::set_error_behavior(TTCN_EncDec::ET_ALL,

 TTCN_EncDec::EB_WARNING);

 TTCN_Buffer buf;

 buf.put_os(send_par);

 ProtocolPdu pdu;

 pdu.decode(ProtocolPdu_descr_, buf, TTCN_EncDec::CT_RAW);

 incoming_message(pdu);

}

4.4 TEXT

You can use the encoding rules defined in the section "TEXT encoder, decoder" in the
Programmer's Technical Reference ([13]) to encode and decode the following TTCN–3
types:

Public

PROGRAMMER'S GUIDE

40 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

 boolean

 integer

 charstring

 enumerated

 record

 set

 union

 record of

 set of

The compiler will produce code capable of TEXT encoding/decoding for compound types if
they have at least one variant attribute or it is used within a compound type which has a
TEXT attribute. If you need a compound type that is only used internally or it is never RAW
encoded/decoded then you have to omit the variant attribute. If you need a type which can
be TEXT encoded/decoded but with default specification then the empty variant

specification can be used: variant "TEXT_CODING()".

4.4.1 Error Situations

ET_TOKEN_ERR The specified token is not found during decoding

4.4.2 API

The Application Programming Interface for TEXT encoding and decoding is described in
the following.

4.4.2.1 Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,

 TTCN_EncDec::coding_t p_cod) const;

The parameter p_cod must be set to TTCN_EncDec::CT_TEXT.

4.4.2.2 Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,

 TTCN_EncDec::coding_t p_cod);

The parameter p_cod must be set to TTCN_EncDec::CT_TEXT.

Example

Let us assume that we have a TTCN–3 module which contains a type named

ProtocolPdu, and this module contains also two ports:

type port MyPort1 message

{

 out ProtocolPdu;

 in charstring;

}

Public

PROGRAMMER'S GUIDE

41 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

type port MyPort2 message

{

 out charstring;

 in ProtocolPdu;

}

Then we can complete the port skeleton generated by the compiler:

void MyPort1::outgoing_send(const ProtocolPdu& send_par)

{

 TTCN_Buffer buf;

 send_par.encode(ProtocolPdu_descr_, buf,

 TTCN_EncDec::CT_TEXT);

 CHARSTRING encodeddata(buf.get_len(), buf.get_data());

 incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const CHARSTRING& send_par)

{

 TTCN_EncDec::set_error_behavior(TTCN_EncDec::ET_ALL,

 TTCN_EncDec::EB_WARNING);

 TTCN_Buffer buf;

 buf.put_cs(send_par);

 ProtocolPdu pdu;

 pdu.decode(ProtocolPdu_descr_, buf, TTCN_EncDec::CT_TEXT);

 incoming_message(pdu);

}

4.5 XML Encoding (XER)

The encoding rules defined by [4] can be used to encode and/or decode values of ASN.1
and TTCN-3 types. This tool is capable of encoding and decoding Basic XER (BXER),
Canonical XER (CXER) and Extended XER (EXER). Values of all ASN.1 types can be
encoded, but only BXER and CXER are available for them because parsing XML Encoding
Instructions in ASN.1 files is not implemented.

The following built-in TTCN-3 types can be encoded in XML:

 boolean

 integer

 float

 bitstring

 octetstring

 hexstring

 objid

 charstring

 universal charstring

Public

PROGRAMMER'S GUIDE

42 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

 verdicttype

The following user-defined types can be encoded in XML:

 enumerated types

 record, set and union types, if all components can be encoded.

 record of and set of types, if the type of the element can be encoded.

The encoder and the decoder are working with XML data encoded in UTF-8 (described in

[9]), stored in an object of type TTCN_buffer.

Although the contents of this object can be retrieved (using the overloads of the get_string

function) as an instance of OCTETSTRING, CHARSTRING or UNIVERSAL_CHARSTRING, it

is recommended to use only the OCTETSTRING representation. CHARSTRING is not

recommended, because UTF-8 is an 8-bit encoding so the buffer may contain bytes with

values over 127, which are not valid characters for a TTCN-3 charstring (which is

implemented by CHARSTRING, see 5.3.9). UNIVERSAL_CHARSTRING must not be used

because its internal representation is not UTF-8.

4.5.1 Error Situations

In addition to error situations mentioned in Section 4.1, the following can occur during
XML-coding:

Table 7 XER coding errors

ET_TAG Incorrect (unexpected) XML tag found during
decoding

4.5.2 API

The Application Programming Interface for XML encoding and decoding is described in the
following.

4.5.2.1 Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,

 TTCN_EncDec::coding_t p_cod, unsigned int p_XER_coding) const;

The parameter p_cod must be set to TTCN_EncDec::CT_XER.

The parameter p_XER_coding is used to choose between BXER, CXER and EXER:

XER_BASIC = Basic XER (BXER)

XER_CANONICAL = Canonical XER (CXER)

XER_EXTENDED = Extended XER (EXER)

Public

PROGRAMMER'S GUIDE

43 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

4.5.2.2 Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,

 TTCN_EncDec::coding_t p_cod, unsigned int p_XER_coding);

The parameter p_cod must be set to TTCN_EncDec::CT_XER.

The parameter p_XER_coding is used to choose between BXER, CXER and EXER:

XER_BASIC = Basic XER (BXER)

XER_CANONICAL = Canonical XER (CXER)

XER_EXTENDED = Extended XER (EXER)

Example

Let us assume that we have a TTCN–3 module which contains a type named

ProtocolPdu, and this module contains also two ports:

type port MyPort1 message

{

 out ProtocolPdu;

 in octetstring;

}

type port MyPort2 message

{

 out octetstring;

 in ProtocolPdu;

}

Then we can complete the port skeleton generated by the compiler as follows:

void MyPort1::outgoing_send(const ProtocolPdu& send_par)

{

 TTCN_Buffer buf;

 send_par.encode(ProtocolPdu_descr_, buf,

 TTCN_EncDec::CT_XER, XER_EXTENDED);

 OCTETSTRING encodeddata(buf.get_len(), buf.get_data());

 incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const OCTETSTRING& send_par)

{

 TTCN_EncDec::set_error_behavior(TTCN_EncDec::ET_ALL,

 TTCN_EncDec::EB_WARNING);

 TTCN_Buffer buf;

 buf.put_os(send_par);

 ProtocolPdu pdu;

 pdu.decode(ProtocolPdu_descr_, buf, TTCN_EncDec::CT_XER, XER_EXTENDED);

 incoming_message(pdu);

}

4.6 JSON

The encoding rules defined in the section "JSON Encoder and Decoder" of the
Programmer's Technical Reference ([13]) can be used to encode and decode the following
TTCN–3 types:

Public

PROGRAMMER'S GUIDE

44 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

 anytype

 array

 bitstring

 boolean

 charstring

 enumerated

 float

 hexstring

 integer

 objid

 octetstring

 record, set

 record of, set of

 union

 universal charstring

 verdicttype

The rules also apply to the following ASN.1 types (if imported to a TTCN-3 module):

 ANY

 BIT STRING

 BOOLEAN

 BMPString

 CHOICE, open type (in instances of parameterized types)

 ENUMERATED

 GeneralString

 GraphicString

 IA5String

 INTEGER

 NULL

 NumericString

 OBJECT IDENTIFIER

 OCTET STRING

 PrintableString

 RELATIVE-OID

 SEQUENCE, SET

 SEQUENCE OF, SET OF

 TeletexString

 UniversalString

 UTF8String

 VideotexString

 VisibleString

The compiler will produce code capable of JSON encoding/decoding for compound types if

they have at least one JSON variant attribute or the encode “JSON” attribute (and, for

compound types, all fields and elements of compound types also have a JSON variant

attribute or the encode “JSON” attribute).

Public

PROGRAMMER'S GUIDE

45 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The encoder and the decoder work with JSON data encoded in UTF-8 (described in [9]),

stored in an object of type TTCN_buffer. Although the contents of this object can be

retrieved (using the overloads of the get_string function) as an instance of

OCTETSTRING, CHARSTRING or UNIVERSAL_CHARSTRING, it is recommended to use

only the OCTETSTRING representation. CHARSTRING is not recommended, because UTF-

8 is an 8-bit encoding so the buffer may contain bytes with values over 127, which are not

valid characters for a TTCN-3 charstring (which is implemented by CHARSTRING, see

5.3.9). UNIVERSAL_CHARSTRING must not be used because its internal representation is

not UTF-8.

4.6.1 Error Situations

There are no extra error situations apart from the ones in Section 4.1.

4.6.2 API

The Application Programming Interface for JSON encoding and decoding is described in
the following.

4.6.2.1 Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,

 TTCN_EncDec::coding_t p_cod) const;

The parameter p_cod must be set to TTCN_EncDec::CT_JSON.

4.6.2.2 Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,

 TTCN_EncDec::coding_t p_cod);

The parameter p_cod must be set to TTCN_EncDec::CT_JSON.

Example

Let us assume that we have a TTCN–3 module which contains a type named

ProtocolPdu, and this module also contains two ports:

type port MyPort1 message

{

 out ProtocolPdu;

 in octetstring;

}

type port MyPort2 message

{

 out octetstring;

 in ProtocolPdu;

}

Then we can complete the port skeleton generated by the compiler:

Public

PROGRAMMER'S GUIDE

46 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

void MyPort1::outgoing_send(const ProtocolPdu& send_par)

{

 TTCN_Buffer buf;

 send_par.encode(ProtocolPdu_descr_, buf,

 TTCN_EncDec::CT_JSON);

 OCTETSTRING encodeddata(buf.get_len(), buf.get_data());

 incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const OCTETSTRING& send_par)

{

 TTCN_EncDec::set_error_behavior(TTCN_EncDec::ET_ALL,

 TTCN_EncDec::EB_WARNING);

 TTCN_Buffer buf;

 buf.put_os(send_par);

 ProtocolPdu pdu;

 pdu.decode(ProtocolPdu_descr_, buf, TTCN_EncDec::CT_JSON);

 incoming_message(pdu);

}

Public

PROGRAMMER'S GUIDE

47 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

5 Mapping TTCN–3 Data Types to C++ Constructs

The TTCN–3 language elements of the test suite are individually mapped into more or less
equivalent C++ constructs. The data types are mapped to C++ classes, the test cases
become C++ functions, and so on. In order to write a Test Port, it is inevitable to be familiar
with the internal representation format of TTCN–3 data types and values. This section
gives an overview about the data types and their equivalent C++ constructs.

5.1 Mapping of Names and Identifiers

In order to identify the TTCN–3 language elements in the generated C++ program
properly, the names of test suite are translated to C++ identifiers according to the following
simple rules.

If the TTCN–3 identifier does not contain any underscore (_) character, its equivalent C++

identifier will be the same. For example, the TTCN–3 variable MyVar will be translated to a

C++ variable called MyVar.

If the TTCN–3 identifier contains one or more underscore characters, each underscore

character will be duplicated in the C++ identifier. So the TTCN–3 identifier My_Long_Name

will be mapped to a C++ identifier called My__Long__Name.

The idea behind this name mapping is that we may freely use the C++ identifiers
containing one underscore character in the generated code and in the Test Ports as well.
Otherwise name clashes can always happen because the name space of TTCN–3 and
C++ is identical. Furthermore, the generated C++ language elements fulfill the condition
that the scope of a translated C++ identifier is identical as the scope of the original TTCN–
3 identifier.

The identifiers that are keywords of C or C++ but not keywords in TTCN–3 are mapped to
themselves, but a single underscore character is appended at the end (for example

typedef becomes typedef_). The same rule applies to the all-uppercase identifiers that

are used in the Base Library: identifier INTEGER in TTCN–3 becomes INTEGER_ in C++,

TRUE9 is mapped to TRUE_, etc.

Here is the complete list (in alphabetical order) of the identifiers that are handled in such
special way:
asm, auto, bitand, bitor, bool, break, case, class, compl, continue, delete, double, enum,
explicit, export, friend, inline, int, ischosen, long, main, mutable, namespace, new,
operator, private, protected, public, register, short, signed, static, stderr, stdin, stdout,
struct, switch, this, throw, try, typedef, typeid, typename, unsigned, using, virtual, void,
volatile, ADDRESS, BITSTRING, BOOLEAN, CHAR, CHARSTRING, COMPONENT,
DEFAULT, ERROR, FAIL, FALSE, FLOAT, HEXSTRING, INCONC, INTEGER, NONE,
OBJID, OCTETSTRING, PASS, PORT, TIMER, TRUE, VERDICTTYPE.

9 The built-in verdict and boolean constants in TTCN–3 shall be written with all lowercase letters, such as true or pass. Although previous

compiler versions have accepted TRUE or PASS as well, these words are treated by the compiler as regular identifiers as specified in the

standard.

Public

PROGRAMMER'S GUIDE

48 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The identifiers that are the names of common preprocessor macros of the C library (such

as putchar, errno or NULL) should be avoided in TTCN–3 modules. The name clashes

with macros can cause mysterious compilation error messages.

Note that these name mapping rules apply to all TTCN–3 identifiers, including module,
Test Port, type, field, variable and function names.

WARNING! By default, from version 1.2.pl0 the compiler does NOT duplicate the
underscores in output file names and file references (for example when handling imports).

5.2 Namespaces

The compiler generates a C++ namespace for every TTCN–3 and ASN.1 module. All C++
definitions that belong to the module (including Test Port classes and external functions)
are placed in that namespace. The name of the namespace is derived from the module
identifier according to the rules described in section 5.1.

The definitions of the TTCN–3 Base Library do not use any namespace.

When accessing a C++ entity that belongs to a different module than the referring Test
Port or external function is in the reference has to be prefixed with the namespace of the

referenced module. For example, to access the C++ class that realizes type MyType

defined in MyModule1 from a Test Port that belongs to module MyModule2 the reference

shall be written as MyModule1::MyType.

5.3 Predefined TTCN–3 Data Types

There are some basic data types in TTCN–3 that have no equivalent data types in

language C/C++ (for example bitstring, verdicttype). Other types have C++

equivalent, but the TTCN–3 executor must know whether a variable has a valid value or
not because sending an unbound value must result in a dynamic test case error. Thus, in
the TTCN–3 Base Library all basic data types of TTCN–3 were implemented as C++
classes. This section describes the member functions of these classes.

5.3.1 Integer

The TTCN–3 type integer is implemented in class INTEGER.

The class INTEGER has the following public member functions:

Table 8 Public member functions of the class INTEGER

Member functions Notes

Constructors

INTEGER()

INTEGER(int)

INTEGER(const INTEGER&)

explicit INTEGER(const char *)

Initializes to unbound value.

Initializes to a given value.

Copy constructor.

Initializes with the (NUL terminated) string
representation of an integer.

Public

PROGRAMMER'S GUIDE

49 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Destructor

˜INTEGER()

Assignment operators

INTEGER& operator=(int)

INTEGER& operator=(const INTEGER&)

Assigns the given value

and sets the bound flag.

Comparison operators

boolean operator==(int) const

boolean operator==(const INTEGER&) const

boolean operator!=(int) const

boolean operator!=(const INTEGER&) const

boolean operator<(int) const

boolean operator<(const INTEGER&) const

boolean operator<=(int) const

boolean operator<=(const INTEGER&) const

boolean operator>(int) const

boolean operator>(const INTEGER&) const

boolean operator>=(int) const

boolean operator>=(const INTEGER&) const

Returns TRUE if equals

and FALSE otherwise.

Arithmetic operators

INTEGER operator+() const

INTEGER operator-() const

INTEGER operator+(int) const

INTEGER operator+(const INTEGER&) const

INTEGER operator-(int) const

INTEGER operator-(const INTEGER&) const

INTEGER operator*(int) const

INTEGER operator*(const INTEGER&) const

INTEGER operator/(int) const

INTEGER operator/(const INTEGER&) const

INTEGER& operator++()

INTEGER& operator—()

Unary plus.

Unary minus.

Addition.

Subtraction.

Multiplication.

Integer division.

Incrementation (prefix).

Decrementation (prefix).

Casting operator

operator int() const

Returns the value.

Other member functions

void log() const

boolean is_bound() const

void clean_up()

long long int get_long_long_val() const

Puts the value into log.

Returns whether the value is bound.

Deletes the value, setting it to unbound.

Returns the value as a long long int.

Public

PROGRAMMER'S GUIDE

50 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

void set_long_long_val(long long int) Sets the given long long int value.

The comparison, arithmetic and shifting operators are also available as global functions for

that case when the left side is int and the right side is INTEGER. Using the value of an

unbound variable for anything will cause dynamic test case error.

The casting operator int() is applicable only to INTEGER objects holding a signed value

with at most 31 useful bits, since in C/C++ the native int type is 32-bit large including the

sign bit. Casting an INTEGER object holding a bigger (for example a 32-bit unsigned) value

will result in run-time error.

Please note that if the value stored in an INTEGER object is too big (that is, it cannot be

represented as a long long int) the value returned by get_long_long_val() will

contain only the lowest sizeof(long long int) bytes of the original value. Another

way to obtain a value of a number having more useful bits than 31 is to convert the

INTEGER object to its string representation using the int2str() predefined function.

Then the string value can be converted to any native integer type using the sscanf()

library function or such. The following example demonstrates a common scenario:

unsigned int get_unsigned_int_val(const INTEGER& other_value)

{

 unsigned int ret_val = 0;

 sscanf((const char *)int2str(), “%u”, &ret_val);

 return ret_val;

}

In addition, the following global functions are available for modulo division. These functions

return the result of mod and rem operations according to TTCN–3 semantics.

INTEGER mod(const INTEGER& left_operand, const INTEGER& right_operand);

INTEGER mod(const INTEGER& left_operand, int right_operand);

INTEGER mod(int left_operand, const INTEGER& right_operand);

INTEGER mod(int left_operand, int right_operand);

INTEGER rem(const INTEGER& left_operand, const INTEGER& right_operand);

INTEGER rem(const INTEGER& left_operand, int right_operand);

INTEGER rem(int left_operand, const INTEGER& right_operand);

INTEGER rem(int left_operand, int right_operand);

Other operators (global functions):

 INTEGER operator+(int int_value, const INTEGER& other_value); // Add

 INTEGER operator-(int int_value, const INTEGER& other_value); // Subtract

 INTEGER operator*(int int_value, const INTEGER& other_value); // Multiply

 INTEGER operator/(int int_value, const INTEGER& other_value); // Divide

 boolean operator==(int int_value, const INTEGER& other_value); // Equal

 boolean operator!=(int int_value, const INTEGER& other_value); // Not equal

 boolean operator<(int int_value, const INTEGER& other_value); // Less than

 boolean operator>(int int_value, const INTEGER& other_value); // More than

5.3.2 Float

The TTCN–3 type float is implemented in class FLOAT.

The class FLOAT has the following public member functions:

Public

PROGRAMMER'S GUIDE

51 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Table 9 Public member functions of the class FLOAT

Member functions Notes

Constructors

FLOAT()

FLOAT(double)

FLOAT(const FLOAT&)

Initializes to unbound value.

Initializes to a given value.

Copy constructor.

Destructor

˜FLOAT()

Assignment operators

FLOAT& operator=(double)

FLOAT& operator=(const FLOAT&)

Assigns the given value

and sets the bound flag.

Comparison operators

boolean operator==(double) const

boolean operator==(const FLOAT&) const

boolean operator!=(double) const

boolean operator!=(const FLOAT&) const

boolean operator<(double) const

boolean operator<(const FLOAT&) const

boolean operator<=(double) const

boolean operator<=(const FLOAT&) const

boolean operator>(double) const

boolean operator>(const FLOAT&) const

boolean operator>=(double) const

boolean operator>=(const FLOAT&) const

Returns TRUE if equals

and FALSE otherwise.

Arithmetic operators

double operator+() const

double operator-() const

double operator+(double) const

double operator+(const FLOAT&) const

double operator-(double) const

double operator-(const FLOAT&) const

double operator*(double) const

double operator*(const FLOAT&) const

double operator/(double) const

double operator/(const FLOAT&) const

Unary plus.

Unary minus.

Addition.

Subtraction.

Multiplication.

Division.

Casting operator

operator double() const

Returns the value.

Public

PROGRAMMER'S GUIDE

52 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Other member functions

void log() const

boolean is_bound() const

void clean_up()

Puts the value into log, either in exponential
or decimal dot notation.

Returns whether the value is bound.

Deletes the value, setting it to unbound.

The comparison and arithmetic operators are also available as global functions for that

case when the left side is double and the right side is FLOAT. Using the value of an

unbound variable for anything will cause dynamic test case error.

Other operators (global functions):

 FLOAT operator+(double double_value, const FLOAT& other_value); // Add

 FLOAT operator-(double double_value, const FLOAT& other_value); // Subtract

 FLOAT operator*(double double_value, const FLOAT& other_value); // Multiply

 FLOAT operator/(double double_value, const FLOAT& other_value); // Divide

 boolean operator==(double double_value, const FLOAT& other_value); // Equal

 boolean operator!=(double double_value, const FLOAT& other_value); // Not equal

 boolean operator<(double double_value, const FLOAT& other_value); // Less than

 boolean operator>(double double_value, const FLOAT& other_value); // More than

5.3.3 Boolean

The TTCN–3 type boolean is implemented in class BOOLEAN.

We have introduced an ancillary C enumerated type called boolean to set and get values.

It may have two predefined values: TRUE or FALSE. You may use boolean values in C

conditions since FALSE equals to zero and TRUE is not zero.

The class BOOLEAN has the following public member functions:

Table 10 Public member functions of the class BOOLEAN

Member functions Notes

Constructors

BOOLEAN()

BOOLEAN(boolean)

BOOLEAN(const BOOLEAN&)

Initializes to unbound value.

Initializes to a given value.

Copy constructor.

Destructor

˜BOOLEAN()

Assignment operators

BOOLEAN& operator=(boolean)

BOOLEAN& operator=(const BOOLEAN&)

Assigns the given value

and sets the bound flag.

Public

PROGRAMMER'S GUIDE

53 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Comparison operators

boolean operator==(boolean) const

boolean operator==(const BOOLEAN&) const

boolean operator!=(boolean) const

boolean operator!=(const BOOLEAN&) const

Returns TRUE if equals

and FALSE otherwise.

Same as XOR.

Logical operators

boolean operator!() const

boolean operator&&(boolean) const

boolean operator&&(const BOOLEAN&) const

boolean operator||(boolean) const

boolean operator||(const BOOLEAN&) const

boolean operatorˆ(boolean) const

boolean operatorˆ(const BOOLEAN&) const

Negation (NOT).

Logical AND.

Logical OR.

Exclusive or (XOR).

Casting operator

operator boolean() const

Returns the value.

Other member functions

void log() const

boolean is_bound() const

void clean_up()

Puts the value into log.

Like “TRUE” or “FALSE”.

Returns whether the value is bound.

Deletes the value, setting it to
unbound.

The comparison and logical operators are also available as global functions for that case

when the left side is boolean and the right side is BOOLEAN. Using the value of an

unbound variable for anything will cause dynamic test case error.

Other operators (global functions):

 BOOLEAN operator&&(boolean bool_value, const BOOLEAN& other_value); // And

 BOOLEAN operator^(boolean bool_value, const BOOLEAN& other_value); // Not

 BOOLEAN operator||(boolean bool_value, const BOOLEAN& other_value); // Or

 boolean operator==(boolean bool_value, const BOOLEAN& other_value); // Equal

 boolean operator!=(boolean bool_value, const BOOLEAN& other_value);// Not equal

5.3.4 Verdicttype

The TTCN–3 type verdicttype is implemented in class VERDICTTYPE.

We have introduced an ancillary C enumerated type called verdicttype to set and get

values. It may have five predefined values: NONE, PASS, INCONC, FAIL or ERROR. The

order of these values is NONE < PASS < INCONC < FAIL < ERROR.

The class VERDICTTYPE has the following public member functions:

Public

PROGRAMMER'S GUIDE

54 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Table 11 Public member functions of the class VERDICTTYPE

Member functions Notes

Constructors

VERDICTTYPE()

VERDICTTYPE(verdicttype)

VERDICTTYPE(const VERDICTTYPE&)

Initializes to unbound value.

Initializes to a given value.

Copy constructor.

Destructor

˜VERDICTTYPE()

Assignment operators

VERDICTTYPE& operator=(verdicttype)

VERDICTTYPE& operator=

(const VERDICTTYPE&)

Assigns the given value

and sets the bound flag.

Comparison operators

boolean operator==(verdicttype) const

boolean operator==(const
VERDICTTYPE&) const

boolean operator!=(verdicttype) const

boolean operator!=(const VERDICTTYPE&)
const

Returns TRUE if equals

and FALSE otherwise.

Casting operator

operator verdicttype() const

Returns the value.

Other member functions

void log() const

boolean is_bound() const

void clean_up()

Puts the value into log.

Like “pass” or “fail”.

Returns whether the value is bound.

Deletes the value, setting it to unbound.

The comparison operators are also available as global functions for that case when the left

side is verdicttype and the right side is VERDICTTYPE. Using the value of an unbound

VERDICTTYPE variable for anything will cause dynamic test case error.

From version 1.2.pl0 there are the following three static member functions in class

TTCN_Runtime defined in the Base Library for getting or modifying the local verdict of the

current test components:

void TTCN_Runtime::setverdict(verdicttype);

void TTCN_Runtime::setverdict(const VERDICTTYPE&);

verdicttype TTCN_Runtime::getverdict();

These functions are the C++ equivalents of TTCN–3 setverdict and getverdict

operations. Use them only if your Test Port or C++ function encounters a low-level failure,
but it can continue its normal operation (that is, error recovery is not necessary).

Other operators (global functions):

Public

PROGRAMMER'S GUIDE

55 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

 boolean operator==(verdicttype par_value,

 const VERDICTTYPE& other_value); // Equal

 boolean operator!=(verdicttype par_value,

 const VERDICTTYPE& other_value); // Not equal

5.3.5 Bitstring

The equivalent C++ class of TTCN–3 type bitstring is called BITSTRING. The bits of

the bit string are stored in an array of unsigned characters. In order to reduce the wasted
memory space the bits are packed together, so each character contains eight bits. The first
character contains the first eight bits of the bit string; the second byte contains the bits
from the 9th up to the 16th, and so on. The first bit of the bit string is the LSB of the first
character; the second bit is the second least significant bit of the first character, and so on.

The character array is not terminated with a NUL character and if the length of the bit string

is not a multiple of eight, the unused bits of the last character can contain any value. So
the length of the bit string must be always given.

The class BITSTRING has the following public member functions:

Table 12 Public member functions of the class BITSTRING

Member functions Notes

Constructors

BITSTRING()

BITSTRING(int n_bits, unsigned char *bits_ptr)

BITSTRING(const BITSTRING&)

BITSTRING(const BITSTRING_ELEMENT&)

Initializes to unbound value.

Initializes from a given length

and pointer to character array.

Copy constructor.

Initializes from a single bitstring
element.

Destructor

˜BITSTRING()

Assignment operators

BITSTRING& operator=(const BITSTRING&)

BITSTRING& operator=(const
BITSTRING_ELEMENT&)

Assigns the given value

and sets the bound flag.

Assigns the given single bitstring
element.

Comparison operators

boolean operator==(const BITSTRING&) const

boolean operator==(const
BITSTRING_ELEMENT&) const

boolean operator!=(const BITSTRING&) const

boolean operator!=(const
BITSTRING_ELEMENT&) const

Returns TRUE if equals

and FALSE otherwise.

Concatenation operator

BITSTRING operator+(const BITSTRING&) const

BITSTRING operator+(const
BITSTRING_ELEMENT&) const

Concatenates two bitstrings.

Concatenates a bitstring and a
bitstring element.

Public

PROGRAMMER'S GUIDE

56 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Index operator

BITSTRING_ELEMENT operator[](int)

BITSTRING_ELEMENT operator[](const
INTEGER&)

const BITSTRING_ELEMENT operator[](int) const

const BITSTRING_ELEMENT operator[](const
INTEGER&) const

Gives access to the given element.
Indexing begins from zero. Index
overflow causes dynamic test case
error.

Gives read-only access to the given
element.

Bitwise operators

BITSTRING operator~() const

BITSTRING operator&(const BITSTRING&) const

BITSTRING operator&(const
BITSTRING_ELEMENT&) const

BITSTRING operator|(const BITSTRING&) const

BITSTRING operator|(const
BITSTRING_ELEMENT&) const

BITSTRING operatorˆ(const BITSTRING&) const

BITSTRING operator^(const
BITSTRING_ELEMENT&) const

C++ equivalent of operator

not4b. (bitwise negation)

C++ equivalent of operator

and4b. (bitwise and)

C++ equivalent of operator

or4b. (bitwise or)

C++ equivalent of operator

xor4b. (bitwise xor)

Shifting and rotating operators

BITSTRING operator<<(int) const

BITSTRING operator<<(const INTEGER&) const

BITSTRING operator>>(int) const

BITSTRING operator>>(const INTEGER&) const

BITSTRING operator<<=(int) const

BITSTRING operator<<=(const INTEGER&) const

BITSTRING operator>>=(int) const

BITSTRING operator>>=(const INTEGER&) const

C++ equivalent of operator

<<.(shift left)

C++ equivalent of operator

>>. (shift right)

C++ equivalent of operator

< @. (rotate left)

C++ equivalent of operator

@ >. (rotate right)

Casting operator

operator const unsigned char*() const

Returns a pointer to the character
array.

The pointer might be NULL if the
length is 0.

Other member functions

int lengthof() const

void log() const

boolean is_bound() const

void clean_up()

Returns the length measured in
bits.

Puts the value into log.
Example: ’100011’B.

Returns whether the value is bound.

Deletes the value, setting it to
unbound.

Public

PROGRAMMER'S GUIDE

57 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Using the value of an unbound BITSTRING variable for anything will cause dynamic test

case error.

5.3.5.1 Bitstring element

The C++ class BITSTRING_ELEMENT is the equivalent of the TTCN-3 bitstring’s

element type (the result of indexing a bitstring value). The class does not store the

actual bit, only a reference to the original BITSTRING object, an index value and a bound

flag.

Note: changing the value of the BITSTRING_ELEMENT (through the assignment operator)

changes the referenced bit in the original bitstring object.

The class BITSTRING_ELEMENT has the following public member functions:

Table 13 Public member functions of the class BITSTRING_ELEMENT

Member functions Notes

Constructor

BITSTRING_ELEMENT(boolean par_bound_flag,
BITSTRING& par_str_val, int par_bit_pos)

Initializes the object with an
unbound value or a reference to a
bit in an existring BITSTRING
object.

Assignment operators

BITSTRING_ELEMENT& operator=(const
BITSTRING&)

BITSTRING_ELEMENT& operator=(const
BITSTRING_ELEMENT&)

Sets the referenced bit to the given
bitstring of length 1.

Sets the referenced bit to the given
bitstring element.

Comparison operators

boolean operator==(const BITSTRING&) const

boolean operator==(const
BITSTRING_ELEMENT&) const

boolean operator!=(const BITSTRING&) const

boolean operator!=(const
BITSTRING_ELEMENT&) const

Comparison with a bitstring or a
bitstring element (the value of the
referenced bits is compared, not the
references and indexes).

Concatenation operator

BITSTRING operator+(const BITSTRING&) const

BITSTRING operator+(const
BITSTRING_ELEMENT&) const

Concatenates a bitstring element
with a bitstring, or two bitstring
elements.

Public

PROGRAMMER'S GUIDE

58 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Bitwise operators

BITSTRING operator~() const

BITSTRING operator&(const BITSTRING&) const

BITSTRING operator&(const
BITSTRING_ELEMENT&) const

BITSTRING operator|(const BITSTRING&) const

BITSTRING operator|(const
BITSTRING_ELEMENT&) const

BITSTRING operatorˆ(const BITSTRING&) const

BITSTRING operatorˆ(const
BITSTRING_ELEMENT&) const

C++ equivalent of operator

not4b. (bitwise negation)

C++ equivalent of operator

and4b. (bitwise and)

C++ equivalent of operator

or4b. (bitwise or)

C++ equivalent of operator

xor4b. (bitwise xor)

Other member functions

boolean get_bit() const

void log() const

boolean is_bound() const

Returns the referenced bit.

Puts the value into log.
Example: ’1’B.

Returns whether the value is bound.

Using the value of an unbound BITSTRING_ELEMENT variable for anything will cause

dynamic test case error.

5.3.6 Hexstring

The equivalent C++ class of TTCN–3 type hexstring is called HEXSTRING. The

hexadecimal digits (nibbles) are stored in an array of unsigned characters. In order to
reduce the wasted memory space two nibbles are packed into one character. The first

character contains the first two nibbles of the hexstring, the second byte contains the

third and fourth nibbles, and so on. The hexadecimal digits at odd (first, third, fifth, etc.)
positions occupy the lower 4 bits in the characters; the even ones use the upper 4 bits.

The character array is never terminated with a NUL character, so the length must be

always given with the pointer. If the hexstring has odd length the unused upper 4 bits of
the last character may contain any value.

The class HEXSTRING has the following public member functions:

Table 14 Public member functions of the class HEXSTRING

Member functions Notes

Public

PROGRAMMER'S GUIDE

59 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Constructors

HEXSTRING()

HEXSTRING(int n_nibbles, const unsigned char
*nibbles_ptr)

HEXSTRING(const HEXSTRING&)

HEXSTRING(const HEXSTRING_ELEMENT&)

Initializes to unbound value.

Initializes from a given length
and pointer to the character
array.

Copy constructor.

Initializes from a single
hexstring element.

Destructor

˜HEXSTRING()

Assignment operators

HEXSTRING& operator=(const HEXSTRING&)

HEXSTRING& operator=(const
HEXSTRING_ELEMENT&)

Assigns the given value

and sets the bound flag.

Assigns the given single
hexstring element.

Comparison operators

boolean operator==(const HEXSTRING&) const

boolean operator==(const HEXSTRING_ELEMENT&)
const

boolean operator!=(const HEXSTRING&) const

boolean operator!=(const HEXSTRING_ELEMENT&)
const

Returns TRUE if equals and
FALSE otherwise.

Concatenation operator

HEXSTRING operator+(const HEXSTRING&) const

HEXSTRING operator+(const
HEXSTRING_ELEMENT&) const

Concatenates two hexstrings.

Concatenates a hexstring and a
hexstring element.

Index operator

HEXSTRING_ELEMENT operator[](int)

HEXSTRING_ELEMENT operator[](const INTEGER&)

const HEXSTRING_ELEMENT operator[](int) const

const HEXSTRING_ELEMENT operator[](const
INTEGER&) const

Gives access to the given
element. Indexing begins from
zero. Index overflow causes
dynamic test case error.

Gives read-only access to the
given element.

Public

PROGRAMMER'S GUIDE

60 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Bitwise operators

HEXSTRING operator~() const

HEXSTRING operator&(const HEXSTRING&) const

HEXSTRING operator&(const
HEXSTRING_ELEMENT&) const

HEXSTRING operator|(const HEXSTRING&) const

HEXSTRING operator|(const
HEXSTRING_ELEMENT&) const

HEXSTRING operatorˆ(const HEXSTRING&) const

HEXSTRING operator^(const
HEXSTRING_ELEMENT&) const

C++ equivalent of operator

not4b. (bitwise negation)

C++ equivalent of operator

and4b. (bitwise and)

C++ equivalent of operator

or4b. (bitwise or)

C++ equivalent of operator

xor4b. (bitwise xor)

Shifting and rotating operators

HEXSTRING operator<<(int) const

HEXSTRING operator<<(const INTEGER&) const

HEXSTRING operator>>(int) const

HEXSTRING operator>>(const INTEGER&) const

HEXSTRING operator<<=(int) const

HEXSTRING operator<<=(const INTEGER&) const

HEXSTRING operator>>=(int) const

HEXSTRING operator>>=(const INTEGER&) const

C++ equivalent of operator

<<.(shift left)

C++ equivalent of operator

>>. (shift right)

C++ equivalent of operator

< @. (rotate left)

C++ equivalent of operator

@ >. (rotate right)

Casting operator

operator const unsigned char*() const

Returns a pointer to the
character array. The pointer
might be NULL if the length is
0.

Other member functions

int lengthof() const

void log() const

boolean is_bound() const

void clean_up()

Returns the length measured in
nibbles.

Puts the value into log.
Example: ’5A7’H.

Returns whether the value is
bound.

Deletes the value, setting it to
unbound.

Using the value of an unbound HEXSTRING variable for anything will cause a dynamic test

case error.

Public

PROGRAMMER'S GUIDE

61 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

5.3.6.1 Hexstring element

The C++ class HEXSTRING_ELEMENT is the equivalent of the TTCN-3 hexstring’s

element type (the result of indexing a hexstring value). The class does not store the

actual hexadecimal digit (nibble), only a reference to the original HEXSTRING object, an

index value and a bound flag.

Note: changing the value of the HEXSTRING_ELEMENT (through the assignment operator)

changes the referenced nibble in the original hexstring object.

The class HEXSTRING_ELEMENT has the following public member functions:

Table 15 Public member functions of the class HEXSTRING_ELEMENT

Member functions Notes

Constructor

HEXSTRING_ELEMENT(boolean
par_bound_flag, HEXSTRING& par_str_val, int
par_nibble_pos)

Initializes the object with an
unbound value or a reference to a
nibble in an existring HEXSTRING
object.

Assignment operators

HEXSTRING_ELEMENT& operator=(const
HEXSTRING&)

HEXSTRING_ELEMENT& operator=(const
HEXSTRING_ELEMENT&)

Sets the referenced nibble to the
given hexstring of length 1.

Sets the referenced nibble to the
given hexstring element.

Comparison operators

boolean operator==(const HEXSTRING&) const

boolean operator==(const
HEXSTRING_ELEMENT&) const

boolean operator!=(const HEXSTRING&) const

boolean operator!=(const
HEXSTRING_ELEMENT&) const

Comparison with a hexstring or a
hexstring element (the value of the
referenced nibbles is compared, not
the references and indexes).

Concatenation operator

HEXSTRING operator+(const HEXSTRING&)
const

HEXSTRING operator+(const
HEXSTRING_ELEMENT&) const

Concatenates a hexstring element
with a hexstring, or two hexstring
elements.

Public

PROGRAMMER'S GUIDE

62 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Bitwise operators

HEXSTRING operator~() const

HEXSTRING operator&(const HEXSTRING&)
const

HEXSTRING operator&(const
HEXSTRING_ELEMENT&) const

HEXSTRING operator|(const HEXSTRING&)
const

HEXSTRING operator|(const
HEXSTRING_ELEMENT&) const

HEXSTRING operatorˆ(const HEXSTRING&)
const

HEXSTRING operatorˆ(const
HEXSTRING_ELEMENT&) const

C++ equivalent of operator

not4b. (bitwise negation)

C++ equivalent of operator

and4b. (bitwise and)

C++ equivalent of operator

or4b. (bitwise or)

C++ equivalent of operator

xor4b. (bitwise xor)

Other member functions

unsigned char get_nibble() const

void log() const

boolean is_bound() const

Returns the referenced nibble
(stored in the lower 4 bits of the
returned character).

Puts the value into log.
Example: ’8’H.

Returns whether the value is bound.

Using the value of an unbound HEXSTRING_ELEMENT variable for anything will cause

dynamic test case error.

5.3.7 Octetstring

The equivalent C++ class of TTCN–3 type octetstring is called OCTETSTRING. The

octets are stored in an array of unsigned characters. Each character contains one octet;
the first character is the first octet of the string. The character array is not terminated by a

NUL character, so the length of the octet string must be always given.

The class OCTETSTRING has the following public member functions:

Table 16 Public member functions of the class OCTETSTRING

Member functions Notes

Public

PROGRAMMER'S GUIDE

63 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Constructors

OCTETSTRING()

OCTETSTRING(int n_octets, const unsigned char
*octets_ptr)

OCTETSTRING(const OCTETSTRING&)

OCTETSTRING(const OCTETSTRING_ELEMENT&)

Initializes to unbound value.

Initializes from a given length
and pointer to character array.

Copy constructor.

Initializes from a single octetstring
element.

Destructor

˜OCTETSTRING()

Assignment operators

OCTETSTRING& operator=(const OCTETSTRING&)

OCTETSTRING& operator=(const
OCTETSTRING_ELEMENT&)

Assigns the given value

and sets the bound flag.

Assigns the given octetstring
element.

Comparison operators

boolean operator==(const OCTETSTRING&) const

boolean operator==(const OCTETSTRING_ELEMENT&)
const

boolean operator!=(const OCTETSTRING&) const

boolean operator!=(const OCTETSTRING_ELEMENT&)
const

Returns TRUE if equals

and FALSE otherwise.

Concatenation operator

OCTETSTRING operator+(const OCTETSTRING&) const

OCTETSTRING operator+(const
OCTETSTRING_ELEMENT&) const

OCTETSTRING& operator+=(const OCTETSTRING&) const

OCTETSTRING& operator+=(const
OCTETSTRING_ELEMENT&) const

Concatenates two octetstrings.

Concatenates an octetstring and an
octetstring element.

Appends an octetstring to this one.

Appends an octetstring element to
this octetstring.

Index operator

OCTETSTRING_ELEMENT operator[](int)

OCTETSTRING_ELEMENT operator[](const INTEGER&)

const OCTETSTRING_ELEMENT operator[](int) const

const OCTETSTRING_ELEMENT operator[](const
INTEGER&) const

Gives access to the given element.
Indexing begins from zero. Index
overflow causes dynamic test case
error.

Gives read-only access to the given
element.

Public

PROGRAMMER'S GUIDE

64 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Bitwise operators

OCTETSTRING operator˜() const

OCTETSTRING operator&(const OCTETSTRING&) const

OCTETSTRING operator&(const
OCTETSTRING_ELEMENT&) const

OCTETSTRING operator|(const OCTETSTRING&) const

OCTETSTRING operator|(const
OCTETSTRING_ELEMENT&) const

OCTETSTRING operatorˆ(const OCTETSTRING&) const

OCTETSTRING operator^(const
OCTETSTRING_ELEMENT&) const

C++ equivalent of operator not4b.

(bitwise negation)

C++ equivalent of operator and4b.

(bitwise and)

C++ equivalent of operator or4b.

(bitwise or)

C++ equivalent of operator xor4b.

(bitwise xor)

Shifting and rotating operators

OCTETSTRING operator<<(int) const

OCTETSTRING operator<<(const INTEGER&) const

OCTETSTRING operator>>(int) const

OCTETSTRING operator>>(const INTEGER&) const

OCTETSTRING operator<<=(int) const

OCTETSTRING operator<<=(const INTEGER&) const

OCTETSTRING operator>>=(int) const

OCTETSTRING operator>>=(const INTEGER&) const

C++ equivalent of operator <<.

(shift left)

C++ equivalent of operator >>.

(shift right)

C++ equivalent of operator < @.

(rotate left)

C++ equivalent of operator @ >.

(rotate right)

Casting operator

operator const unsigned char*() const

Returns a pointer to the character
array. The pointer might be NULL if
the length is 0.

Other member functions

int lengthof() const

void log() const

boolean is_bound() const

void clean_up()

Returns the length measured in
octets.

Puts the value into log.
Like ’073CF0’O.

Returns whether the value is bound.

Deletes the value, setting it to
unbound.

Using the value of an unbound OCTETSTRING variable for anything will cause dynamic

test case error.

Public

PROGRAMMER'S GUIDE

65 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

5.3.7.1 Octetstring element

The C++ class OCTETSTRING_ELEMENT is the equivalent of the TTCN-3 octetstring’s

element type (the result of indexing an octetstring value). The class does not store the

actual octet, only a reference to the original OCTETSTRING object, an index value and a

bound flag.

Note: changing the value of the OCTETSTRING_ELEMENT (through the assignment

operator) changes the referenced octet in the original octetstring object.

The class OCTETSTRING_ELEMENT has the following public member functions:

Table 17 Public member functions of the class OCTETSTRING_ELEMENT

Member functions Notes

Constructor

OCTETSTRING_ELEMENT(boolean
par_bound_flag, OCTETSTRING& par_str_val, int
par_octet_pos)

Initializes the object with an
unbound value or a reference to an
octet in an existring
OCTETSTRING object.

Assignment operators

OCTETSTRING_ELEMENT& operator=(const
OCTETSTRING&)

OCTETSTRING_ELEMENT& operator=(const
OCTETSTRING_ELEMENT&)

Sets the referenced octet to the
given octetstring of length 1.

Sets the referenced octet to the
given octetstring element.

Comparison operators

boolean operator==(const OCTETSTRING&)
const

boolean operator==(const
OCTETSTRING_ELEMENT&) const

boolean operator!=(const OCTETSTRING&) const

boolean operator!=(const
OCTETSTRING_ELEMENT&) const

Comparison with an octetstring or
an octetstring element (the value of
the referenced octets is compared,
not the references and indexes).

Concatenation operator

OCTETSTRING operator+(const
OCTETSTRING&) const

OCTETSTRING operator+(const
OCTETSTRING_ELEMENT&) const

Concatenates an octetstring
element with an octetstring, or two
octetstring elements.

Public

PROGRAMMER'S GUIDE

66 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Bitwise operators

OCTETSTRING operator~() const

OCTETSTRING operator&(const
OCTETSTRING&) const

OCTETSTRING operator&(const
OCTETSTRING_ELEMENT&) const

HEXSTRING operator|(const OCTETSTRING&)
const

OCTETSTRING operator|(const
OCTETSTRING_ELEMENT&) const

OCTETSTRING operatorˆ(const
OCTETSTRING&) const

OCTETSTRING operatorˆ(const
OCTETSTRING_ELEMENT&) const

C++ equivalent of operator

not4b. (bitwise negation)

C++ equivalent of operator

and4b. (bitwise and)

C++ equivalent of operator

or4b. (bitwise or)

C++ equivalent of operator

xor4b. (bitwise xor)

Other member functions

unsigned char get_octet() const

void log() const

boolean is_bound() const

Returns the referenced octet.

Puts the value into log.
Example: ’3C’O.

Returns whether the value is bound.

Using the value of an unbound OCTETSTRING_ELEMENT variable for anything will cause

dynamic test case error.

5.3.8 Char

The char type, which has been removed from the TTCN–3 standard, is no longer

supported by the run-time environment. The compiler substitutes all occurrences of char

type with type charstring automatically.

To provide partial backward compatibility for older Test Ports that might have used the

type char, CHAR is a typedef alias to class CHARSTRING in C++.

5.3.9 Charstring

The equivalent C++ class of TTCN–3 type charstring is called CHARSTRING. The

characters are stored in a NUL character terminated array; thus, giving the length in the

constructor and other operations is optional.

The class CHARSTRING has the following public member functions:

Table 18 Public member functions of the class CHARSTRING

Member functions Notes

Public

PROGRAMMER'S GUIDE

67 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Constructors

CHARSTRING()

CHARSTRING(char)

CHARSTRING(int n_chars, const char *chars_ptr)

CHARSTRING(const char *chars_ptr)

CHARSTRING(const CHARSTRING&)

CHARSTRING(const CHARSTRING_ELEMENT&)

Initializes to unbound value.

Initializes from a single character.

Initializes from a given length and
pointer to character array.

Initializes from a given character
array. The end is noted by a NUL
character.

Copy constructor.

Initializes from a charstring
element.

Destructor

˜CHARSTRING()

Assignment operators

CHARSTRING& operator=(const CHARSTRING&)

CHARSTRING& operator=(const char *)

CHARSTRING& operator=(const
CHARSTRING_ELEMENT&)

CHARSTRING& operator=(const
UNIVERSAL_CHARSTRING&)

Assigns the given value and sets
the bound flag.

Assigns the NUL terminated string.

Assigns the given charstring
element.

Assigns the given universal
charstring value.

Comparison operators

boolean operator==(const CHARSTRING&) const

boolean operator==(const char *) const

boolean operator==(const
CHARSTRING_ELEMENT&) const

boolean operator==(const
UNIVERSAL_CHARSTRING&) const

boolean operator==(const
UNIVERSAL_CHARSTRING_ELEMENT&) const

boolean operator!=(const CHARSTRING&) const

boolean operator!=(const char *) const

boolean operator!=(const
CHARSTRING_ELEMENT&) const

Returns TRUE if equals and
FALSE otherwise.

Compares to the NUL terminated
string.

Comparison with a charstring
element.

Comparison with a universal
charstring.

Comparison with a universal
charstring element.

Public

PROGRAMMER'S GUIDE

68 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Concatenation operator

CHARSTRING operator+(const CHARSTRING&) const

CHARSTRING operator+(const char *) const

CHARSTRING operator+(const
CHARSTRING_ELEMENT) const

UNIVERSAL_CHARSTRING operator+(const
UNIVERSAL_CHARSTRING&) const

UNIVERSAL_CHARSTRING operator+(const
UNIVERSAL_CHARSTRING_ELEMENT&) const

CHARSTRING operator+=(char)

CHARSTRING operator+=(const char *)

CHARSTRING operator+=(const CHARSTRING&)

CHARSTRING operator+=(const CHARSTRING_ELEMENT&)

Concatenates two charstrings.

Concatenates with a NUL
terminated string.

Concatenates with a charstring
element.

Concatenates with a universal
charstring.

Concatenates with a universal
charstring element.

Appends a character.

Appends a NUL terminated string.

Appends a charstring.

Appends a charstring element.

Index operator

CHARSTRING_ELEMENT operator[](int)

CHARSTRING_ELEMENT operator[](const
INTEGER&)

const CHARSTRING_ELEMENT operator[](int)
const

const CHARSTRING_ELEMENT operator[](const
INTEGER&) const

Gives access to the given element.
Indexing begins from zero. Index
overflow causes dynamic test case
error.

Gives read-only access to the
given element.

Rotating operators

CHARSTRING operator<<=(int) const

CHARSTRING operator<<=(const INTEGER&) const

CHARSTRING operator>>=(int) const

CHARSTRING operator>>=(const INTEGER&) const

C++ equivalent of operator < @.
(rotate left)

C++ equivalent of operator @ >.
(rotate right)

Casting operator

operator const char*() const

Returns a pointer to the character
array. The string is always
terminated by NUL.

Other member functions

int lengthof() const

void log() const

boolean is_bound() const

void clean_up()

Returns the length measured in
characters not including the
terminator NUL.

Puts the value into log.
Example: ”abc”.

Returns whether the value is
bound.

Deletes the value, setting it to
unbound.

Public

PROGRAMMER'S GUIDE

69 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The comparison, concatenation and rotating operators are also available as global

functions for that case when the left side is const char* and the right side is

CHARSTRING.

The log() member function uses single character output for regular characters, but

special characters (such as the quotation mark, backslash or newline characters) are
printed using the escape sequences of the C language. Non-printable control characters
are printed in TTCN–3 quadruple notation, where the first three octets are always zero.

The concatenation operator (&) is used between the fragments when necessary. Note that

the output does not always conform to TTCN–3 Core Language syntax, but it is always
recognized by both our compiler and the configuration file parser.

Using the value of an unbound CHARSTRING variable for anything will cause dynamic test

case error.

Other operators (global functions):

 boolean operator==(const char* string_value,

 const CHARSTRING& other_value); // Equal

 boolean operator==(const char* string_value,

 const CHARSTRING_ELEMENT& other_value); // Equal

 boolean operator!=(const char* string_value,

 const CHARSTRING& other_value); // Not equal

 boolean operator!=(const char* string_value,

 const CHARSTRING_ELEMENT& other_value); // Not equal

 CHARSTRING operator+(const char* string_value,

 const CHARSTRING& other_value); // Concatenation

 CHARSTRING operator+(const char* string_value,

 const CHARSTRING_ELEMENT& other_value); // Concatenation

5.3.9.1 Charstring element

The C++ class CHARSTRING_ELEMENT is the equivalent of the TTCN-3 charstring’s

element type (the result of indexing a charstring value). The class does not store the

actual character, only a reference to the original CHARSTRING object, an index value and a

bound flag.

Note: changing the value of the CHARSTRING_ELEMENT (through the assignment

operator) changes the referenced character in the original charstring object.

The class CHARSTRING_ELEMENT has the following public member functions:

Table 19 Public member functions of the class CHARSTRING_ELEMENT

Member functions Notes

Constructor

CHARSTRING_ELEMENT(boolean
par_bound_flag, CHARSTRING& par_str_val, int
par_char_pos)

Initializes the object with an
unbound value or a reference to a
character in an existring
CHARSTRING object.

Public

PROGRAMMER'S GUIDE

70 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Assignment operators

CHARSTRING_ELEMENT& operator=(const
char*)

CHARSTRING_ELEMENT& operator=(const
CHARSTRING&)

CHARSTRING_ELEMENT& operator=(const
CHARSTRING_ELEMENT&)

Sets the referenced character to the
given null-terminated string of
length 1.

Sets the referenced character to the
given charstring of length 1.

Sets the referenced character to the
given charstring element.

Comparison operators

boolean operator==(const char*) const

boolean operator==(const CHARSTRING&) const

boolean operator==(const
CHARSTRING_ELEMENT&) const

boolean operator==(const
UNIVERSAL_CHARSTRING&) const

boolean operator==(const
UNIVERSAL_CHARSTRING_ELEMENT&) const

boolean operator!=(const char*) const

boolean operator!=(const CHARSTRING&) const

boolean operator!=(const
CHARSTRING_ELEMENT&) const

Comparison with a null-terminated
string, a charstring, a universal
charstring, a charstring element or a
universal charstring element (when
comparing element types, the value
of the referenced characters is
compared, not the references and
indexes).

Concatenation operator

CHARSTRING operator+(const char*) const

CHARSTRING operator+(const CHARSTRING&)
const

CHARSTRING operator+(const
CHARSTRING_ELEMENT&) const

UNIVERSAL_CHARSTRING operator+(const
UNIVERSAL_CHARSTRING&) const

UNIVERSAL_CHARSTRING operator+(const
UNIVERSAL_CHARSTRING_ELEMENT&) const

Concatenates this object with a null-
terminated string, a charstring, a
charstring element, a universal
charstring or a universal charstring
element.

Other member functions

char get_char() const

void log() const

boolean is_bound() const

Returns the referenced character.

Puts the value into log.
Example: “a”.

Returns whether the value is bound.

Using the value of an unbound CHARSTRING_ELEMENT variable for anything will cause

dynamic test case error.

Public

PROGRAMMER'S GUIDE

71 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

5.3.10 Universal char

This obsolete TTCN–3 type is converted automatically to universal charstring in the

parser.

5.3.11 Universal charstring

Each character of a universal charstring value is represented in the following C

structure defined in the Base Library:

struct universal_char {

 unsigned char uc_group, uc_plane, uc_row, uc_cell;

};

The four components of the quadruple (that is, group, plane, row and cell) are stored in

fields uc_group, uc_plane, uc_row and uc_cell, respectively. All fields are 8-bit

unsigned numeric values with the possible value range 0 .. 255.

In case of single-octet characters, which can be also given in TTCN–3 charstring notation

(between quotation marks), the fields uc_group, uc_plane, uc_row are set to zero. If

tuple notation was used for an ASN.1 string value fields uc_row and uc_cell carry the

tuple and the others are set to zero.

Except when performing encoding or decoding, the run-time environment does not check
whether the quadruples used in the following API represent valid character positions
according to [8]. Moreover, if ASN.1 multi-octet character string values are used, it is not
verified whether the elements of such strings are permitted characters of the
corresponding string type.

The C++ equivalent of TTCN–3 type universal charstring is implemented in class

UNIVERSAL_CHARSTRING. The characters of the string are stored in an array of structure

universal_char. The array returned by the casting operator is not terminated with a

special character, thus, the length of the string must be always considered when doing
operations with the array. The length of the string, which can be obtained by using member

function lengthof(), is measured in characters (quadruples) and not bytes.

For the more convenient usage the strings containing only single-octet characters can also

be used with class UNIVERSAL_CHARSTRING. Therefore some polymorphic member

functions and operators have variants that take const char* as argument. In these

member functions the characters of the NUL character terminated string are implicitly

converted to quadruples with group, plane and row fields set to zero. NULL pointer as

argument means the empty string for these functions.

The class UNIVERSAL_CHARSTRING has the following public member functions:

Table 20 Public member functions of the class UNIVERSAL_CHARSTRING

Member functions Notes

Public

PROGRAMMER'S GUIDE

72 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Constructors

UNIVERSAL_CHARSTRING()

UNIVERSAL_CHARSTRING
 (unsigned char group, unsigned char plane,
unsigned char row, unsigned char cell)

UNIVERSAL_CHARSTRING
 (const universal_char&)

UNIVERSAL_CHARSTRING
(int n_uchars, const universal_char *uchars_ptr)

UNIVERSAL_CHARSTRING (const char *chars_ptr)

UNIVERSAL_CHARSTRING
 (int n_chars, const char *chars_ptr)

UNIVERSAL_CHARSTRING
 (const CHARSTRING&)

UNIVERSAL_CHARSTRING
 (const CHARSTRING_ELEMENT&)

UNIVERSAL_CHARSTRING
 (const UNIVERSAL_CHARSTRING&)

UNIVERSAL_CHARSTRING
 (const UNIVERSAL_CHARSTRING_ELEMENT&)

Initializes to unbound value.

Constructs a string containing one
character formed from the given
quadruple.

Constructs a string containing the given
single character.

Constructs a string from an array by
taking the given number of single-octet
characters.

Constructs a string from a NUL
terminated array of single-octet
characters.

Constructs a string from a given number
of single-octet characters.

Constructs a universal charstring from a
charstring value.

Constructs a string containing the given
singe charstring element.

Copy constructor.

Constructs a string containing the given
singe universal charstring element.

Destructor

˜UNIVERSAL_CHARSTRING()

Assignment operators

UNIVERSAL_CHARSTRING& operator=
 (const UNIVERSAL_CHARSTRING&)

UNIVERSAL_CHARSTRING& operator=
 (const universal_char&)

UNIVERSAL_CHARSTRING& operator= (const char*)

UNIVERSAL_CHARSTRING& operator=
 (const CHARSTRING&)

UNIVERSAL_CHARSTRING& operator=
 (const CHARSTRING_ELEMENT&)

UNIVERSAL_CHARSTRING& operator=
 (const UNIVERSAL_CHARSTRING_ELEMENT&)

Assigns another string.

Assigns a single character.

Assigns a NUL terminated
single-octet string.

Assigns a charstring.

Assigns a single charstring element.

Assigns a single universal charstring
element.

Public

PROGRAMMER'S GUIDE

73 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Comparison operators

boolean operator==
(const UNIVERSAL_CHARSTRING&) const

boolean operator== (const universal_char&) const

boolean operator==(const char*) const

boolean operator==(const CHARSTRING&) const

boolean operator==(const CHARSTRING_ELEMENT&)
const

boolean operator==
(const UNIVERSAL_CHARSTRING_ELEMENT&) const

boolean operator!=
(const UNIVERSAL_CHARSTRING&) const

boolean operator!= (const universal_char&) const

boolean operator!=(const char*) const

boolean operator!=(const CHARSTRING&)

boolean operator!=(const CHARSTRING_ELEMENT&)
const

boolean operator!=
(const UNIVERSAL_CHARSTRING_ELEMENT&) const

Returns TRUE if the strings are identical
or FALSE otherwise.

Compares to a single character.

Compares to a NUL terminated printable
string.

Compares to a charstring.

Compares to a charstring element.

Compares to a universal charstring
element.

Concatenation operator

UNIVERSAL_CHARSTRING operator+
(const UNIVERSAL_CHARSTRING&) const

UNIVERSAL_CHARSTRING operator+
 (const universal_char&) const

UNIVERSAL_CHARSTRING operator+
 (const char*) const

UNIVERSAL_CHARSTRING operator+
 (const CHARSTRING&) const

UNIVERSAL_CHARSTRING operator+
 (const CHARSTRING_ELEMENT&) const

UNIVERSAL_CHARSTRING operator+
(const UNIVERSAL_CHARSTRING_ELEMENT&) const

Concatenates two strings.

Concatenates a single character.

Concatenates a NUL terminated single-
octet string.

Concatenates a charstring.

Concatenates a charstring element.

Concatenates a universal charstring
element.

Index operator

UNIVERSAL_CHARSTRING_ELEMENT operator[](int)

UNIVERSAL_CHARSTRING_ELEMENT
operator[](const INTEGER&)

const UNIVERSAL_CHARSTRING_ELEMENT
operator[](int) const

const UNIVERSAL_CHARSTRING_ELEMENT
operator[](const INTEGER&) const

Gives access to the given element.
Indexing begins from zero. Index
overflow causes dynamic test case error.

Gives read-only access to the given
element.

Public

PROGRAMMER'S GUIDE

74 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Rotating operators

UNIVERSAL_CHARSTRING operator<<=
 (int) const

UNIVERSAL_CHARSTRING operator<<=
 (const INTEGER&) const

UNIVERSAL_CHARSTRING operator>>=
 (int) const

UNIVERSAL_CHARSTRING operator>>=
 (const INTEGER&) const

C++ equivalent of operator < @
(rotate left).

C++ equivalent of operator @ >
(rotate right).

Casting operator

operator const universal_char*() const

Returns a pointer to the array of
characters. There is no terminator
character at the end.

UTF-8 encoding and decoding

void encode_utf8(TTCN_Buffer& buf) const

void decode_utf8(int n_octets,

 const unsigned char *octets_ptr)

Appends the UTF-8 representation of
the string to the given buffer

Decodes the given UTF-8 bytes into
Unicode characters and assigns
them to the string

Other member functions

int lengthof() const

boolean is_bound() const

void log() const

void clean_up()

Returns the length measured in
characters.

Returns whether the value is bound.

Puts the value into log. See below.

Deletes the value, setting it to unbound.

The comparison and concatenation operators are also available as global functions for that

case when the left operand is a single-octet string (const char*) or a single character

(const universal_char&) and the right side is UNIVERSAL_CHARSTRING value. Using

the value of an unbound UNIVERSAL_CHARSTRING variable for anything causes dynamic

test case error.

The UNIVERSAL_CHARSTRING variable used with the decode_utf8() method must be

newly constructed (unbound) or clean_up() must have been called, otherwise a memory
leak will occur.

Public

PROGRAMMER'S GUIDE

75 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The logged printout of universal charstring values is compatible with the TTCN–3 notation
for such strings. The format to be used depends on the contents of the string. Each
character (quadruple) is classified whether it is directly printable or not. The string is
fragmented based on this classification. Each fragment consists of either a single non-
printable character or a maximal length contiguous sequence of printable characters. The

fragments are logged one after another separated by an & character (concatenation

operator). The printable fragments use the normal charstring notation; the non-printable
characters are logged in the TTCN–3 quadruple notation. An empty universal charstring
value is represented by a pair of quotation marks (like in case of empty charstring values).

An example printout in the log can be the following. The string consists of two fragments of
printable characters and a non-printable quadruple, which stands for Hungarian letter “ű”:

"Character " & char(0, 0, 1, 113) & " is a letter of Hungarian alphabet"

Other operators (global functions):

 boolean operator==(const universal_char& left_value,

 const universal_char& right_value); // Equal

 boolean operator==(const universal_char& uchar_value,

 const UNIVERSAL_CHARSTRING& other_value); // Equal

 boolean operator==(const char* string_value,

 const UNIVERSAL_CHARSTRING& other_value); // Equal

 boolean operator==(const universal_char& uchar_value,

 const UNIVERSAL_CHARSTRING_ELEMENT& other_value); // Equal

 boolean operator==(const char* string_value,

 const UNIVERSAL_CHARSTRING_ELEMENT& other_value); // Equal

 boolean operator!=(const universal_char& left_value,

 const universal_char& right_value); // Not equal

 boolean operator!=(const universal_char& uchar_value,

 const UNIVERSAL_CHARSTRING& other_value); // Not equal

 boolean operator!=(const char* string_value,

 const UNIVERSAL_CHARSTRING& other_value); // Not equal

 boolean operator!=(const universal_char& uchar_value,

 const UNIVERSAL_CHARSTRING_ELEMENT& other_value); // Not equal

 boolean operator!=(const char* string_value,

 const UNIVERSAL_CHARSTRING_ELEMENT& other_value); // Not equal

 boolean operator<(const universal_char& left_value,

 const universal_char& right_value& other_value); // Character comparison

 UNIVERSAL_CHARSTRING operator+(const universal_char& uchar_value,

 const UNIVERSAL_CHARSTRING& other_value); // Concatenation

 UNIVERSAL_CHARSTRING operator+(const char* string_value,

 const UNIVERSAL_CHARSTRING& other_value); // Concatenation

 UNIVERSAL_CHARSTRING operator+(const universal_char& uchar_value,

 const UNIVERSAL_CHARSTRING_ELEMENT& other_value); // Concatenation

 UNIVERSAL_CHARSTRING operator+(const char* string_value,

 const UNIVERSAL_CHARSTRING_ELEMENT& other_value); // Concatenation

5.3.11.1 Universal charstring element

The C++ class UNIVERSAL_CHARSTRING_ELEMENT is the equivalent of the TTCN-3

universal charstring’s element type (the result of indexing a universal

charstring value). The class does not store the actual character, only a reference to the

original UNIVERSAL_CHARSTRING object, an index value and a bound flag.

Note: changing the value of the UNIVERSAL_CHARSTRING_ELEMENT (through the

assignment operator) changes the referenced character in the original universal

charstring object.

Public

PROGRAMMER'S GUIDE

76 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The class UNIVERSAL_CHARSTRING_ELEMENT has the following public member

functions:

Table 21 Public member functions of the class
UNIVERSAL_CHARSTRING_ELEMENT

Member functions Notes

Constructor

UNIVERSAL_CHARSTRING_ELEMENT(boolean
par_bound_flag, UNIVERSAL_CHARSTRING&
par_str_val, int par_uchar_pos)

Initializes the object with an
unbound value or a reference to a
character in an existring
UNIVERSAL_CHARSTRING
object.

Assignment operators

UNIVERSAL_CHARSTRING_ELEMENT&
operator=(const universal_char&)

UNIVERSAL_CHARSTRING_ELEMENT&
operator=(const char*)

UNIVERSAL_CHARSTRING_ELEMENT&
operator=(const CHARSTRING&)

UNIVERSAL_CHARSTRING_ELEMENT&
operator=(const CHARSTRING_ELEMENT&)

UNIVERSAL_CHARSTRING_ELEMENT&
operator=(const UNIVERSAL_CHARSTRING&)

UNIVERSAL_CHARSTRING_ELEMENT&
operator=(const
UNIVERSAL_CHARSTRING_ELEMENT&)

Sets the referenced character to the
given universal character.

Sets the referenced character to the
given null-terminated string of
length 1.

Sets the referenced character to the
given charstring of length 1.

Sets the referenced character to the
given charstring element.

Sets the referenced character to the
given universal charstring of length
1.

Sets the referenced character to the
given universal charstring element.

Public

PROGRAMMER'S GUIDE

77 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Comparison operators

boolean operator==(const universal_char&) const

boolean operator==(const char*) const

boolean operator==(const CHARSTRING&) const

boolean operator==(const
CHARSTRING_ELEMENT&) const

boolean operator==(const
UNIVERSAL_CHARSTRING&) const

boolean operator==(const
UNIVERSAL_CHARSTRING_ELEMENT&) const

boolean operator!=(const universal_char&) const

boolean operator!=(const char*) const

boolean operator!=(const CHARSTRING&) const

boolean operator!=(const
CHARSTRING_ELEMENT&) const

boolean operator!=(const
UNIVERSAL_CHARSTRING&) const

boolean operator!=(const
UNIVERSAL_CHARSTRING_ELEMENT&) const

Comparison with a universal
character, a null-terminated string, a
charstring, a universal charstring, a
charstring element or a universal
charstring element (when
comparing element types, the value
of the referenced characters is
compared, not the references and
indexes).

Concatenation operator

CHARSTRING operator+(const universal_char&)
const

CHARSTRING operator+(const char*) const

CHARSTRING operator+(const CHARSTRING&)
const

CHARSTRING operator+(const
CHARSTRING_ELEMENT&) const

UNIVERSAL_CHARSTRING operator+(const
UNIVERSAL_CHARSTRING&) const

UNIVERSAL_CHARSTRING operator+(const
UNIVERSAL_CHARSTRING_ELEMENT&) const

Concatenates this object with a
universal character, a null-
terminated string, a charstring, a
charstring element, a universal
charstring or a universal charstring
element.

Other member functions

const universal_char& get_char() const

void log() const

boolean is_bound() const

Returns the referenced character.

Puts the value into log.
Example: “a” or char(0, 0, 1, 113).

Returns whether the value is bound.

Using the value of an unbound UNIVERSAL_CHARSTRING_ELEMENT variable for anything

will cause dynamic test case error.

Public

PROGRAMMER'S GUIDE

78 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

5.3.12 Object Identifier Type

The object identifier type of TTCN–3 (objid) is implemented in class OBJID. In the run-

time environment the components of object identifier values are represented in
NumberForm, that is, in integer values. The values of components are stored in an array
with a given length. The type of the components is specified with a typedef, objid_element.

Class OBJID has the following member functions.

Table 22 Public member functions of the class OBJID

 Member functions Notes

Constructors

OBJID()

OBJID(int n_components,
 const objid_element *components_ptr)

OBJID(int n_components, ...)

OBJID(const OBJID&)

Initializes to unbound value.

Initializes the number of components to n
components and copies all components
from an array of integers starting at
components_ptr.

Initializes the number of components to
n_components. The components
themselves shall be given as additional
integer arguments after each other, starting
with the first one.

Copy constructor.

Destructor

˜OBJID()

Assignment operator

OBJID& operator=(const OBJID&)

Assigns the given value and sets the bound
flag.

Comparison operators

boolean operator==(const OBJID&) const

boolean operator!=(const OBJID&) const

Returns TRUE if the two values are equal
and FALSE otherwise.

Indexing operators

objid_element& operator[](int i)

const objid_element & operator[](int i) const

Returns a reference to the i th component.

Returns a read-only reference to the i th

component.

Casting operator

operator const objid_element *() const

Returns a pointer to the read-only array of
components.

Other member functions

int lengthof() const

void log() const

boolean is_bound() const

void clean_up()

Returns the number of components.

Puts the value into log in NumberForm.
Like this: “objid 0 4 0 ”.

Returns whether the value is bound.

Deletes the value, setting it to unbound.

Public

PROGRAMMER'S GUIDE

79 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Note: The constructor with variable number of arguments is useful in situations when the
number of components is constant and known at compile time.

Using the value of an unbound OBJID variable for anything will cause dynamic test case

error.

5.3.13 Component References

TTCN–3 variables the types of which are defined as component types are used for storing
component references to PTCs. The internal representation of component references are
test tool dependent, our test executor handles them as small integer numbers.

All TTCN–3 component types are mapped to the same C++ class, which is called

COMPONENT, using typedef aliases. We also use an ancillary C type called component,

which is defined as an alias for int:

typedef int component;

There are some predefined constants of component references in TTCN–3. These are
defined as C preprocessor macros in the following way:

Table 23 Predefined component references

TTCN–3 constant Preprocessor symbol Numeric value

null NULL COMPREF 0

mtc MTC COMPREF 1

system SYSTEM COMPREF 2

The class COMPONENT has the following public member functions:

Table 24 Public member functions of the class COMPONENT

Member functions Notes

Constructors

COMPONENT()

COMPONENT(component)

COMPONENT(const COMPONENT&)

Initializes to unbound value.

Initializes to a given value.

Copy constructor.

Destructor

˜COMPONENT()

Assignment operators

COMPONENT& operator=(component)

COMPONENT& operator=(const COMPONENT&)

Assigns the given value

and sets the bound flag.

Comparison operators

boolean operator==(component) const

Returns TRUE if equals

Public

PROGRAMMER'S GUIDE

80 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

boolean operator==(const COMPONENT&) const

boolean operator!=(component) const

boolean operator!=(const COMPONENT&) const

and FALSE otherwise.

Casting operator

operator component() const

Returns the value.

Other member functions

void log() const

boolean is_bound() const

void clean_up()

Puts the value into log in decimal
form or in symbolic format for
special constants. Like 3 or mtc.

Returns whether the value is
bound.

Deletes the value, setting it to
unbound.

Component references are managed by MC. All new test components are given a unique
reference that was never used in the test campaign before (not even in a previous test
case). The new numbers are increasing monotonously. The reference of the firstly created
component is 3; the next one will be 4, and so on.

Using the value of an unbound component reference for anything will cause dynamic test
case error.

Other operators (global functions):

 boolean operator==(component component_value,

 const COMPONENT& other_value); // Equal

 boolean operator!=(component component_value,

 const COMPONENT& other_value); // Not equal

5.3.14 Empty Types

Empty record and set types are not real built-in types in TTCN–3, but the C++

realization of these types also differs from regular records or sets. The empty types are
almost identical to each other, only their names are different. That is why we treat them as
predefined types.

Each empty type is defined in a C++ class, which is generated by the compiler. Using
separate classes enables us to differentiate among them in C++ type polymorphism. For
example, several empty types can be defined as incoming or outgoing types on the same
TTCN–3 port type.

Let us consider the following TTCN–3 type definition as an example:

type record Dummy {};

The generated class will rely on an enumerated C type null_type, which is defined as

follows:

enum null type {NULL VALUE };

Public

PROGRAMMER'S GUIDE

81 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The only possible value stands for the TTCN–3 empty record or array value (that is for

"{}"), which is the only possible value of TTCN–3 type Dummy. Note that this type and

value is also used in the definition of record of and set of type construct.

The generated C++ class Dummy will have the following member functions:

Table 25 Public member functions of the class Dummy

Member functions Notes

Constructors

Dummy()

Dummy(null type)

Dummy(const Dummy&)

Initializes to unbound value.

Initializes to the only possible value.

Copy constructor.

Destructor

˜Dummy()

Assignment operators

Dummy& operator=(null type)

Dummy& operator=(const Dummy&)

Assigns the only possible value and sets
the bound flag.

Comparison operators

boolean operator==(Dummy) const

boolean operator==(const Dummy&) const

boolean operator!=(address) const

boolean operator!=(const Dummy&) const

Returns TRUE if both arguments are bound.

Returns FALSE if both arguments are
bound.

Other member functions

void log() const

boolean is_bound() const

void clean_up()

Puts the value, that is, {}, into log.

Returns whether the value is bound.

Deletes the value, setting it to unbound.

Setting the only possible value is important, because using the value of an unbound
variable for anything will cause dynamic test case error.

Other operators (global functions):

 boolean operator==(null_type null_value, const Dummy& other_value);// Equal

 boolean operator!=(null_type null_value, const Dummy& other_value);// Not equal

5.4 Compound Data Types

The user-defined compound data types are implemented in C++ classes. These classes
are generated by the compiler according to type definitions. In contrast with the basic
types, these classes can be found in the generated code.

Public

PROGRAMMER'S GUIDE

82 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

5.4.1 Record and Set Type Constructs

The TTCN–3 type constructs record and set are mapped in an identical way to C++.

There will be a C++ class for each record type in the generated code. This class builds up
the record from its fields.10 The fields can be either basic or compound types.

Let us consider the following example type definition. The types t1 and t2 can be

arbitrary.

type record t3 {

 t1 f1,

 t2 f2

}

The generated class t3 will have the following public member functions:

Table 26 Public member functions of the class t3

Member functions Notes

Constructors

t3()

t3(const t1& par_f1, const t2& par_f2)

t3(const t3&)

Initializes all fields to unbound value.

Initializes from given field values. The
number of arguments equals to the number
of fields.

Copy constructor.

Destructor

˜t3()

Assignment operator

t3& operator=(const t3&)

Assigns the given value and sets
the bound flag for each field.

Comparison operators

boolean operator==(const t3&) const

boolean operator!=(const t3&) const

Returns TRUE if all fields are equal and
FALSE otherwise.

Field access functions

t1& f1(); t2& f2();

const t1& f1() const; const t2& f2() const;

Gives access to the first/second field.

The same, but it gives read-only access.

Other member functions

int size_of() const

void log() const

boolean is_bound() const

void clean_up()

Returns the size (number of fields).

Puts the value into log.

Like { f1 := 5, f2 := ”abc”}.

Returns whether the value is bound.

Deletes the value, setting it to unbound.

10 This section deals with the record and set types that have at least one field. See Section 5.3.14 for the C++ mapping of empty record

and set types.

Public

PROGRAMMER'S GUIDE

83 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The record value is unbound if one or more fields of it are unbound. Using the value of an
unbound variable for anything (even for comparison) will cause dynamic test case error.

5.4.1.1 Optional Fields in Records and Sets

TTCN–3 permits optional fields in record and set type definitions. An optional field does not
have to be always present, it can be omitted. But the omission must be explicitly denoted.
Let us change our last example to this.

type record t3 {

 t1 f1,

 t2 f2 optional

}

The optional fields are implemented using a C++ template class called OPTIONAL that

creates an optional value from any type. In the definition of the generated class t3 the

type t2 will be replaced by OPTIONAL<t2> everywhere and anything else will not be

changed.

The instantiated template class OPTIONAL<t2> will have the following member functions:

Table 27 Public member functions of the class OPTIONAL<t2>

Member functions Notes

Constructors

OPTIONAL()

OPTIONAL(template_sel init_val)

OPTIONAL(const t2& init_val)

OPTIONAL(const OPTIONAL& init_val)

template <typename T_tmp>
OPTIONAL(const OPTIONAL<T_tmp>&)

template <typename T_tmp>
OPTIONAL(const T_tmp&)

Initializes to unbound value.

Initializes to omit value, if the argument
is OMIT VALUE.

Initializes to given value.

Copy constructor.

Initializes to given value of different
(compatible) type.

Initializes to given optional value of
different (compatible) type.

Destructor

˜OPTIONAL()

Assignment operators

OPTIONAL& operator=(template_sel)

OPTIONAL& operator=(const OPTIONAL&)

template <typename T_tmp>
OPTIONAL& operator=(const
OPTIONAL<T_tmp>&)

template <typename T_tmp>
OPTIONAL& operator=(const T_tmp&)

Assigns omit value, if the right value is
OMIT VALUE.

Assigns the given optional value.

Assigns the given optional value of
different (compatible) type.

Assigns the given value of different
(compatible) type.

Public

PROGRAMMER'S GUIDE

84 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Comparison operators

boolean operator==(template_sel) const

boolean operator==(const OPTIONAL&) const

template <typename T_tmp>
boolean operator==(const
OPTIONAL<T_tmp>&) const

boolean operator!=(template_sel) const

boolean operator!=(const OPTIONAL&) const

template <typename T_tmp>
boolean operator!=(const OPTIONAL<T_tmp>&)
const

Returns TRUE if the value is omit and
the right side is OMIT VALUE or
FALSE otherwise.

Returns TRUE if the two values are
equal or FALSE otherwise.

Returns TRUE if the two values of
different (compatible) types are equal
or FALSE otherwise.

Casting operators

operator t2&()

operator const t2&() const

Gives read-write access to the value. If
the value was not previously present,
sets the bound flag true and the value
will be initialized to unbound.

Gives read-only access to the value. If
the value is not present, causes a
dynamic test case error.

Function call operators

t2& operator()()

const t2& operator()() const

Gives read-write access to the value. If
the value was not previously present,
sets the bound flag true and the value
will be initialized to unbound.

Gives read-only access to the value. If
the value is not present, causes a
dynamic test case error.

Other member functions

boolean ispresent() const

void log() const

boolean is_bound() const

void clean_up()

Returns TRUE if the value is present,
FALSE if the value is omit or causes
dynamic test case error if the value is
unbound.

Puts the optional value into log. Either
”omit” or the value of t2.

Returns whether the value is bound.

Deletes the value, setting it to
unbound.

In some member functions of the template class OPTIONAL the enumerated C type

template_sel is used. It has many possible values, but in the optional class only

OMIT_VALUE can be used, which stands for the TTCN–3 omit. Usage of other predefined

values of template_sel will cause dynamic test case error.

Public

PROGRAMMER'S GUIDE

85 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Using the value of an unbound optional field for anything will also cause dynamic test case
error.

5.4.2 Union Type Construct

The TTCN–3 type construct union is implemented in a C++ class for each union type in the
generated code. This class may contain any, but exactly one of its fields. The fields can be
either basic or compound types or even identical types.

Let us consider the following example type definition. The types t1 and t2 can be

arbitrary.

type union t3 {

 t1 f1,

 t2 f2

}

An ancillary enumerated type is created in the generated class t3, which represents the

selection:

enum union_selection_type { UNBOUND_VALUE = 0, ALT_f1 = 1, ALT_f2 = 2 };

The type t3::union_selection_type is used to distinguish the fields of the union. The

predefined constant values are generated as t3::ALT_<field name>.

The generated class t3 will have the following public member functions:

Table 28 Public member functions of the class t3

Member functions Notes

Constructors

t3()

t3(const t3&)

Initializes to unbound value.

Copy constructor.

Destructor

˜t3()

Assignment operator

t3& operator=(const t3&)

Assigns the given value.

Comparison operators

boolean operator==(const t3&) const

boolean operator!=(const t3&) const

Returns TRUE if the selections and field
values are equal and FALSE otherwise.

Public

PROGRAMMER'S GUIDE

86 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Field access functions

t1& f1()

const t1& f1() const

t2& f2()

const t2& f2() const

Selects and gives access to the first field. If
other field was previously selected, its value
will be destroyed.

Gives read-only access to the first field. If
other field is selected, this function will cause
a dynamic test case error. So use
get_selection() first.

Other member functions

union_selection_type get_selection() const

void log() const

boolean is_bound() const

void clean_up()

Returns the current selection. It will return
t3::UNBOUND VALUE if the value is
unbound, t3::ALT_f1 if the first field was
selected, and so on.

Puts the value into log.
Example: { f1 := 5 } or { f2 := ”abc” }.

Returns whether the value is bound.

Deletes the value, setting it to unbound.

Using the value of an unbound union variable for anything will cause dynamic test case

error.

5.4.2.1 The anytype

The TTCN-3 anytype is implemented as a C++ class named anytype. The class is
generated only if an actual anytype access is present in the module. It has the same
interface as any other C++ class generated for a union, with a few differences:

If a field is a built-in type or the address type, the name used in union_selection_type is the
name of the runtime class implementing the type (usually the name of the type in all
uppercase).

If a field is a user-defined type, the mapping rules in section 5.1 above apply.

The names of field accessor functions are prefixed with AT_. This is necessary, because
otherwise the accessor function looks like a constructor to C++.

For example, for the following module

module anyuser {

 type record myrec {}

 control {

 var anytype v_at;

 }

}

with {

 extension “anytype integer, myrec, charstring”

}

Public

PROGRAMMER'S GUIDE

87 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The generated class name will be “anytype”. The union_selection_type enumerated type
will be:

enum union_selection_type { UNBOUND_VALUE = 0, ALT_INTEGER = 1, ALT_myrec = 2,

ALT_CHARSTRING = 3 };

The field accessor methods will be:

INTEGER& AT_INTEGER();

myrec& AT_myrec();

CHARSTRING& AT_CHARSTRING();

5.4.3 Record of Type Construct

The TTCN–3 type construct record of makes a variable length sequence from one

given type. This construct is implemented as a C++ class.

Let us consider the following example type definition. The type t1 can be arbitrary.

type record of t1 t2;

This definition will be translated to a C++ class that will be called t2.

There is an enum type called null_type defined in the Base Library that has only one

possible value. NULL_VALUE stands for the empty “record of” value, that is, for {}.

Class t2 will have the following public member functions:

Table 29 Public member functions of the class t2

Member functions Notes

Constructors

t2()

t2(null type)

t2(const t2&)

Initializes to unbound value.

Initializes to the empty value.

Copy constructor.

Destructor

˜t2()

Assignment operator

t2& operator=(null type)

t2& operator=(const t2&)

Assigns the empty value.

 Assigns the given value.

Comparison operators

boolean operator==(null type) const

boolean operator==(const t2&) const

boolean operator!=(null type) const

boolean operator!=(const t2&) const

Returns TRUE if the two values are equal
and FALSE otherwise.

Public

PROGRAMMER'S GUIDE

88 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Index operators

t1& operator[](int)

t1& opetator[](const INTEGER&)

const t1& operator[](int) const

const t1& opetator[](const INTEGER&)
const

Gives access to the given element. Indexing
begins from zero. If this element of the
variable was never used before, new
(unbound) elements will be allocated up to
(and including) this index.

Gives read-only access to the given
element. Index overflow causes dynamic
test case error.

Rotating operators

t2 operator<<=(int)

t2 operator<<=(const INTEGER&)

t2 operator>>=(int)

t2 operator>>=(const INTEGER&)

C++ equivalent of operator <@. (rotate left)

C++ equivalent of operator @>. (rotate
right)

Concatenation operator

t2 operator+(const t2&) const

Concatenates two arrays.

Other member functions

int size_of() const

void set_size(int new_size)

t2 substr(int index, int returncount) const

t2 replace(int index, int len, const t2& repl)
const

void log() const

boolean is_bound() const

void clean_up()

Returns the number of elements, that is, the
largest used index plus one and zero for the
empty value.

Sets the number of elements to the given
value. If the value has fewer elements new
(unbound) elements are allocated at the
end. The excess elements at the end are
erased if the value has more elements than
necessary.

Returns the section of the array specified by
the given start index and length.

Returns a copy of the array, where the
section indicated by the given start index
and length is replaced by the given array.

Puts the value into log. Like {1, 2, 3 }.

Returns whether the value is bound.

Deletes the value, setting it to unbound.

A record of value is unbound if no value has been assigned to it or it has at least one

unbound element. Using the value of an unbound record of variable for anything will

cause dynamic test case error.

Starting with the largest index improves performance when filling a record of value.

Other operators (global functions):

 boolean operator==(null_type null_value, const t2& other_value); // Equal

 boolean operator!=(null_type null_value, const t2& other_value); // Not equal

Public

PROGRAMMER'S GUIDE

89 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

5.4.3.1 Pre-generated record of and set of constructs

The C++ classes for the record of and set of constructs of most predefined TTCN-3

types are pre-generated and part of the TITAN runtime. Only a type alias (C++ typedef)

is generated for instances of these types declared in TTCN-3 and ASN.1 modules. There
is a class with regular memory allocation and one with optimized memory allocation pre-

generated for each type. These classes are located in the PreGenRecordOf namespace.

Table 30 Pre-generated classes for record of/set of predefined types

C++ class name Equivalent type in TTCN-3

PREGEN__RECORD__OF__BOOLEAN record of boolean

PREGEN__RECORD__OF__INTEGER record of integer

PREGEN__RECORD__OF__FLOAT record of float

PREGEN__RECORD__OF__BITSTRING record of bitstring

PREGEN__RECORD__OF__HEXSTRING record of hexstring

PREGEN__RECORD__OF__OCTETSTRING record of octetstring

PREGEN__RECORD__OF__CHARSTRING record of charstring

PREGEN__RECORD__OF__UNIVERSAL__CHARSTRING record of universal charstring

PREGEN__RECORD__OF__BOOLEAN__OPTIMIZED record of boolean

with { extension “optimize:memalloc” }

PREGEN__RECORD__OF__INTEGER__OPTIMIZED record of integer

with { extension “optimize:memalloc” }

PREGEN__RECORD__OF__FLOAT__OPTIMIZED record of float

with { extension “optimize:memalloc” }

PREGEN__RECORD__OF__BITSTRING__OPTIMIZED record of bitstring

with { extension “optimize:memalloc” }

PREGEN__RECORD__OF__HEXSTRING__OPTIMIZED record of hexstring

with { extension “optimize:memalloc” }

PREGEN__RECORD__OF__OCTETSTRING__OPTIMIZE

D

record of octetstring

with { extension “optimize:memalloc” }

PREGEN__RECORD__OF__CHARSTRING__OPTIMIZED record of charstring

with { extension “optimize:memalloc” }

PREGEN__RECORD__OF__UNIVERSAL__CHARSTRING

__OPTIMIZED

record of universal charstring

with { extension “optimize:memalloc” }

PREGEN__SET__OF__BOOLEAN set of boolean

PREGEN__SET__OF__INTEGER set of integer

PREGEN__SET__OF__FLOAT set of float

PREGEN__SET__OF__BITSTRING set of bitstring

PREGEN__SET__OF__HEXSTRING set of hexstring

PREGEN__SET__OF__OCTETSTRING set of octetstring

PREGEN__SET__OF__CHARSTRING set of charstring

PREGEN__SET__OF__UNIVERSAL__CHARSTRING set of universal charstring

Public

PROGRAMMER'S GUIDE

90 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

PREGEN__SET__OF__BOOLEAN__OPTIMIZED set of boolean

with { extension “optimize:memalloc” }

PREGEN__SET__OF__INTEGER__OPTIMIZED set of integer

with { extension “optimize:memalloc” }

PREGEN__SET__OF__FLOAT__OPTIMIZED set of float

with { extension “optimize:memalloc” }

PREGEN__SET__OF__BITSTRING__OPTIMIZED set of bitstring

with { extension “optimize:memalloc” }

PREGEN__SET__OF__HEXSTRING__OPTIMIZED set of hexstring

with { extension “optimize:memalloc” }

PREGEN__SET__OF__OCTETSTRING__OPTIMIZED set of octetstring

with { extension “optimize:memalloc” }

PREGEN__SET__OF__CHARSTRING__OPTIMIZED set of charstring

with { extension “optimize:memalloc” }

PREGEN__SET__OF__UNIVERSAL__CHARSTRING__O

PTIMIZED

set of universal charstring

with { extension “optimize:memalloc” }

5.4.4 Set of Type Construct

The set of construct of TTCN–3 is implemented similarly to record of. The external

interface of this class is exactly the same as in case of record of. For more details

please see the previous section.

In the internal implementation only the equality operator differs. Unlike in record of, it

considers the unordered property of the set of type construct, that is, it returns TRUE if it

is able to find exactly one pair for each element.

The index is a unique identifier for a set of element because the C++ class does not

reorder the elements when a new element is added or an element is modified. The copy
constructor also keeps the original order of elements.

5.4.5 Enumerated Types

The TTCN–3 enumerated type construct is implemented as a C++ class with an

embedded enum type.

type enumerated Day { Monday (1), Tuesday, Wednesday (3) };

The example above will result in the following, very similar C enum type definition which is

embedded in the C++ class Day:

enum enum_type { Monday = 1, Tuesday = 0, Wednesday = 3,

 UNKNOWN_VALUE = 2, UNBOUND_VALUE = 4 };

Public

PROGRAMMER'S GUIDE

91 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The automatic assignment of numeric values is done according to the standard. Note that
there are two extra enumerated values in C, which stand for the unknown and unbound
values. They are used in the conversion functions described below. The compiler assigns
the smallest two non-negative integer numbers that are not used by the user-defined
enumerated values to the unknown and unbound values.

When using the C enum type and its values from user code the names must be prefixed

with the C++ class name. The enum type in the above example can be referenced with

Day::enum_type, its values can be accessed as Day::Monday, Day::Tuesday, and

so on.

The class Day will have the following public member functions:

Public

PROGRAMMER'S GUIDE

92 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Table 31 Public member functions of the class Day

Member functions Notes

Constructors

Day()

Day(int)

Day(enum_type)

Day(const Day&)

Initializes to unbound value.

Converts the given numeric value to
Day::enum_type and initializes to it.
Only valid values are accepted.

Initializes to a given value.

Copy constructor.

Destructor

˜Day()

Assignment operator

Day& operator=(int)

Day& operator=(enum_type)

Day& operator=(const Day&)

Converts the given numeric value to
Day::enum_type and assigns it. Only valid
values are accepted.

Assigns the given value.

Comparison operators

boolean operator==(enum_type) const

boolean operator==(const Day&) const

boolean operator!=(enum_type) const

boolean operator!=(const Day&) const

boolean operator<(enum_type) const

boolean operator<(const Day&) const

boolean operator<=(enum_type) const

boolean operator<=(const Day&) const

boolean operator>(enum_type) const

boolean operator>(const Day&) const

boolean operator>=(enum_type) const

boolean operator>=(const Day&) const

Returns TRUE if the two values are equal
and FALSE otherwise.

Casting operator

operator enum_type() const

Returns the enum_value.

Static conversion functions

static const char *enum_to_str(enum_type)

static enum_type str_to_enum(const char *)

static boolean is_valid_enum(int)

static int enum2int(enum_type);

static int enum2int(const Day&);

See below.

Public

PROGRAMMER'S GUIDE

93 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Non-static conversion functions

int as_int() const;

void from_int(int);

void int2enum(int);

See below

Other member functions

void log() const

boolean is_bound() const

void clean_up()

Puts the value into log. Like this: Monday

Returns whether the value is bound.

Deletes the value, setting it to unbound.

The static member function Day::enum_to_str converts the given parameter of type

Day::enum_type to a NULL terminated C character string. It returns the string

”<unknown>”, if the input is not a valid value of the TTCN–3 enumerated type. The
returned string is read-only, it must not be modified.

The function Day::str_to_enum does the conversion in the reverse direction. It converts

the symbolic enumerated identifier represented by a C character string back to the

Day::enum_type equivalent. It returns the value Day::UNKNOWN_VALUE if the input

string is not the equivalent of any of the possible values in the enumerated type. The
behavior of this function is undefined if the input parameter does not point to an
addressable memory area.

In the above two functions the strings are treated case sensitive and they shall not contain
any whitespace or other characters that are not part of the enumerated value. In case of

ASN.1 ENUMERATED types the strings used by enum_to_str, str_to_enum and log

represent the TTCN–3 view of the enumerated value, that is, the hyphenation characters
are mapped to a single underscore character. For example, if an ASN.1 enumerated type

has a value with name my-enum-value and numeric value 2, the function enum_to_str

will return the string "my_enum_value" if the input parameter equals to 2. Of course, its

C++ equivalent will be my_enum_value with numeric value 2.

Static member function Day::is_valid_enum returns the Boolean value TRUE if there is

a defined enumerated value having numeric value equal to the int parameter and FALSE

otherwise.

The static member function Day::enum_to_int converts the given parameter of type

Day or Day::enum_type to its numeric value. The member function as_int does the

same thing for the enumerated instance.

The member function int_to_enum initializes the enumerated instance with the

enumerated value having numeric value equal to the given int parameter. A dynamic test
case error is displayed if there is no such enumerated value. The member function

from_int does the same thing.

If a value of type int is passed to the constructor or assignment operator the value is

accepted only if it is a numerical representation of a valid enumerated value, that is, the

function is_valid_enum returns TRUE. A dynamic test case error occurs otherwise.

Public

PROGRAMMER'S GUIDE

94 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

To avoid run-time errors at the decoding of invalid messages the Test Port writer should
use the constructor or assignment operator in this way:

Day myDayVar;

int myIntVar = buffer[position];

if (Day::is_valid_enum(myIntVar)) myDayVar = myIntVar;

else myDayVar = Day::UNKNOWN_VALUE;

Using the value of an unbound enumerated variable for anything will cause dynamic test
case error.

5.4.6 The address Type

The special TTCN–3 data type address is represented in C++ as if it was a regular data

type. The name of the equivalent C++ class is ADDRESS. If it is an alias to another (either

built-in or user-defined) type then a C++ typedef is used.

5.5 Predefined Functions

Annex C of [1] and Annex B of [3] define a couple of predefined functions. Most of them
perform conversion between the built-in types of TTCN–3. In our test executor these
functions are implemented in the Base Library in C++ language. They are available not
only in TTCN–3 , but they can be called directly from Test Ports as well.

The prototypes for these functions can be found in $TTCN3_DIR/include/Addfunc.hh,

but for easier navigation we list them also in the present document.

The majority of these functions have more than one polymorphic version: when
appropriate, one of them takes literal (built-in) C++ types as arguments instead of the
objects of equivalent C++ classes. For instance, if the incoming argument is stored in an

int variable in your C++ code, you should not construct a temporary object of class

INTEGER because passing an int is faster and produces smaller binary code. Similarly,

the returned type is also literal when it is possible.

Integer to character

extern CHARSTRING int2char(int value);

extern CHARSTRING int2char(const INTEGER& value);

Character to integer

extern int char2int(char value);

extern int char2int(const char *value);

extern int char2int(const CHARSTRING& value);

Integer to universal character

extern UNIVERSAL_CHARSTRING int2unichar(int value);

extern UNIVERSAL_CHARSTRING int2unichar(const INTEGER& value);

Public

PROGRAMMER'S GUIDE

95 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Universal character to integer

extern int unichar2int(const universal_char& value);

extern int unichar2int(const UNIVERSAL_CHARSTRING& value);

Bitstring to integer

extern INTEGER bit2int(const BITSTRING& value);

Hexstring to integer

extern INTEGER hex2int(const HEXSTRING& value);

Octetstring to integer

extern INTEGER oct2int(const OCTETSTRING& value);

Charstring to integer

extern INTEGER str2int(const char *value);

extern INTEGER str2int(const CHARSTRING& value);

Integer to bitstring

extern BITSTRING int2bit(const INTEGER& value, const INTEGER& length);

Integer to hexstring

extern HEXSTRING int2hex(const INTEGER& value, const INTEGER& length);

Integer to octetstring

extern OCTETSTRING int2oct(const INTEGER& value, const INTEGER& length);

Integer to charstring

extern CHARSTRING int2str(int value);

extern CHARSTRING int2str(const INTEGER& value);

Length of string Type

This function is built into the equivalent C++ classes of all TTCN–3 string types:

int <any_string_type>::lengthof() const;

Number of elements in a structured type

This function is built into the C++ template classes of record of and set of types:

int <any_record_of_or_set_of_type>::size_of() const;

Public

PROGRAMMER'S GUIDE

96 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

This function is currently not implemented for record and set types.

The IsPresent Function

This function is built into the wrapper C++ template class OPTIONAL:

boolean <any_optional_field>::ispresent() const;

The IsChosen Function

These functions are built into the equivalent C++ classes of TTCN–3 union types:

boolean <union_type>::ischosen(

 <union_type>::union_selection_type checked_selection) const;

The regexp Function

extern CHARSTRING regexp(const CHARSTRING& instr,

 const CHARSTRING& expression, const INTEGER& groupno);

Bitstring to charstring

extern CHARSTRING bit2str(const BITSTRING& value);

Hexstring to charstring

extern CHARSTRING hex2str(const HEXSTRING& value);

Octetstring to character string

extern CHARSTRING oct2str(const OCTETSTRING& value);

Character string to octetstring

extern OCTETSTRING str2oct(const char *value);

extern OCTETSTRING str2oct(const CHARSTRING& value);

Bitstring to hexstring

extern HEXSTRING bit2hex(const BITSTRING& value);

Hexstring to octetstring

extern OCTETSTRING hex2oct(const HEXSTRING& value);

Bitstring to octetstring

extern OCTETSTRING bit2oct(const BITSTRING& value);

Public

PROGRAMMER'S GUIDE

97 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Hexstring to bitstring

extern BITSTRING hex2bit(const HEXSTRING& value);

Octetstring to hexstring

extern HEXSTRING oct2hex(const OCTETSTRING& value);

Octetstring to bitstring

extern BITSTRING oct2bit(const OCTETSTRING& value);

Integer to float

extern double int2float(int value);

extern double int2float(const INTEGER& value);

Float to integer

extern INTEGER float2int(double value);

extern INTEGER float2int(const FLOAT& value);

The Random Number Generator Function

The implementation is based on functions srand48 and drand48 of libc.

extern double rnd();

extern double rnd(double seed);

extern double rnd(const FLOAT& seed);

The Substring Function

Implemented for all string types.

extern BITSTRING substr(const BITSTRING& value, const INTEGER& index,

 const INTEGER& returncount);

extern HEXSTRING substr(const HEXSTRING& value, const INTEGER& index,

 const INTEGER& returncount);

extern OCTETSTRING substr(const OCTETSTRING& value, const INTEGER& index,

 const INTEGER& returncount);

extern CHARSTRING substr(const CHARSTRING& value, const INTEGER& index,

 const INTEGER& returncount);

extern UNIVERSAL_CHARSTRING substr(const UNIVERSAL_CHARSTRING& value,

 const INTEGER& index, const INTEGER& returncount);

Character string to float

extern double str2float(const char *value);

extern double str2float(const CHARSTRING& value);

The Replace Function

Implemented for all string types.
extern BITSTRING replace(const BITSTRING& value, const INTEGER& index,

 const INTEGER& len, const BITSTRING& repl);

Public

PROGRAMMER'S GUIDE

98 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

extern HEXSTRING replace(const HEXSTRING& value, const INTEGER& index,

 const INTEGER& len, const HEXSTRING& repl);

extern OCTETSTRING replace(const OCTETSTRING& value, const INTEGER& index,

 const INTEGER& len, const OCTETSTRING& repl);

extern CHARSTRING replace(const CHARSTRING& value, const INTEGER& index,

 const INTEGER& len, const CHARSTRING& repl);

extern UNIVERSAL_CHARSTRING replace(const UNIVERSAL_CHARSTRING& value,

 const INTEGER& index, const INTEGER& len, const UNIVERSAL_CHARSTRING& repl);

Octetstring to character string

extern CHARSTRING oct2char(const OCTETSTRING& value);

Character string to octetstring

extern OCTETSTRING char2oct(const char *value);

extern OCTETSTRING char2oct(const CHARSTRING& value);

The Decompose Function

Not implemented yet.

Additional Non-Standard Functions

extern BITSTRING str2bit(const char *value);

extern BITSTRING str2bit(const CHARSTRING& value);

extern HEXSTRING str2hex(const char *value);

extern HEXSTRING str2hex(const CHARSTRING& value);

extern CHARSTRING float2str(double value);

extern CHARSTRING float2str(const FLOAT& value);

template<typename TTCN_TYPE>

CHARSTRING ttcn_to_string(const TTCN_TYPE& ttcn_data)

template<typename TTCN_TYPE>

void string_to_ttcn(const CHARSTRING& ttcn_string, TTCN_TYPE& ttcn_value)

extern UNIVERSAL_CHARSTRING oct2unichar(const OCTETSTRING& invalue);

extern UNIVERSAL_CHARSTRING oct2unichar(const OCTETSTRING& invalue,

 const CHARSTRING& string_encoding);

extern OCTETSTRING unichar2oct(const UNIVERSAL_CHARSTRING& invalue);

extern OCTETSTRING unichar2oct(const UNIVERSAL_CHARSTRING& invalue,

 const CHARSTRING& string_encoding);

extern CHARSTRING get_stringencoding(const OCTETSTRING& encoded__value);

extern OCTETSTRING remove_bom(const OCTETSTRING& encoded__value);

extern CHARSTRING encode_base64(const OCTETSTRING& msg, bool use_linebreaks);

extern CHARSTRING encode_base64(const OCTETSTRING& msg);

extern OCTETSTRING decode_base64(const CHARSTRING& b64);

See the section "Additional predefined functions" in the Programmer's Technical
Reference ([13]) for more details.

Public

PROGRAMMER'S GUIDE

99 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

5.6 Using the Signature Classes

A Test Port has three outgoing and three incoming types of operation that require the

usage of signatures. These are call (getcall), reply (getreply) and raise

(catch). Because of this, there are three representation formats (classes generated by the

compiler) of a signature the Test Port writer should be familiar with. This section describes
these classes using an example.

Let us suppose the following signature definition:

signature MyProc(in integer inPar, out float outPar,

 inout bitstring inoutPar)

 return hexstring

 exception(charstring, integer, boolean);

The classes generated and needed to write a Test Port using this signature are

MyProc_call, MyProc_reply and MyProc_exception. These represent the

parameters, the return value and the exception type and value of the signature needed by

a call, reply or raise.

For example, if a port uses the signature MyProc as an output remote procedure, the Test

Port gets the outgoing parameters for a call operation towards the system in an instance of

the class MyProc_call. In this case the classes MyProc_reply and

MyProc_exception are used for placing an incoming reply or raise operation in the

queue of the port (using the functions incoming_reply and incoming_exception of

the port class).

5.6.1 The Representation of the Input Parameters

The class MyProc_call (using the above example) represents all incoming parameters

of the signature MyProc. It temporary stores the parameters inPar and inoutPar.

The generated class MyProc_call will have the following public member functions:

Table 32 Public member functions of the class MyProc_call

Member functions
Notes

Parameter access functions

INTEGER& inPar()
const INTEGER& inPar() const

BITSTRING& inoutPar()
const BITSTRING& inoutPar() const

Gives access to parameter inPar.

The same, but it gives read-only access.

Other member functions

void log() const

Puts the parameters into log.

The parameters can be accessed via their access functions that have the same names as
the parameters (name mapping also applies to these functions).

Public

PROGRAMMER'S GUIDE

100 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

5.6.2 The Output Parameters and Return Value

The output parameters and return value (if defined) are represented by the class

MyProc_reply that has the following public member functions:

Table 33 Public member functions of the class MyProc_reply

Member functions Notes

Parameter access functions

FLOAT& outPar()const FLOAT& outPar() const

BITSTRING& inoutPar() const BITSTRING&
inoutPar() const

Gives access to parameter outPar.

The same, but it gives read-only
access.

Access function for return value

HEXSTRING& return value()
const HEXSTRING& return value() const

Gives access to the return value.

Other member functions

void log() const

Puts the parameters into log.

The parameters can be accessed by their access functions, and the return value can be

accessed via the function return_value().

5.6.3 Representation of Signature Exceptions

The class representing the exceptions of a signature (remote procedure) is similar to the
representation of the union data type. Using the above example this class is called

MyProc_exception. This class is generated only if the signature has at least one

exception type.

Table 34 Public member functions of the class MyProc_exception

Member functions Notes

Constructors

MyProc_exception()

MyProc_exception(const MyProc_exception&)

Initializes to unbound value.

Copy constructor.

Destructor

˜MyProc_exception()

Assignment operator

MyProc_exception& operator=
 (const MyProc_exception&)

Assigns the given value.

Public

PROGRAMMER'S GUIDE

101 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Member functions Notes

Field access functions

CHARSTRING& CHARSTRING_field()

const CHARSTRING&
 CHARSTRING_field() const

INTEGER& INTEGER_field()
 const INTEGER& INTEGER_field() const

BOOLEAN& BOOLEAN_field()
 const BOOLEAN& BOOLEAN_field() const

Selects and gives access to the
CHARSTRING field. If other field was
previously selected, its value will be
destroyed.

Gives read-only access to the
CHARSTRING field. If other field is
selected, this function will cause dynamic
test case error. So use get selection()
first.

Other member functions

MyProc_exception::exception_selection_type
 get_selection() const

void log() const

Returns the current selection. It will return
MyProc exception::UNBOUND VALUE if
the exception is unbound, MyProc
exception::ALT CHARSTRING if a
charstring value is present in the
exception, and so on.

Puts the contents of the exception into
the log.

If an exception type is a user-defined type the field name will be constructed from the C++
namespace name of the module that the exception type resides in and the name of the
C++ class that realizes the exception type. The two identifiers are glued together using a
single underscore character. Please note that the namespace name is always present in
the identifiers, even if the exception type is defined in the same module as the signature.

For example, if exception type My_Record is defined in module My_Module the

respective field access functions will be named as My__Module_My__Record_field

and the associated enum value will be

MyProc_exception::ALT_My__Module_My__Record.

Public

PROGRAMMER'S GUIDE

102 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

6 Tips & Troubleshooting

Information not fitting in any of the previous chapters is given in this chapter.

6.1 Migrating Existing C++ Code to the Naming Rules of Version 1.7

When using the new naming rules11 the compiler generates a C++ namespace for each
TTCN–3 and ASN.1 module. The name of the namespace corresponds to the module. The
generated C++ entities of a module are all placed in its namespace; therefore all the test
port or protocol module code must use these namespaces.

Rules to follow when writing C++ code:

 When referencing an entity located in a different module its C++ name has to be
prefixed with the namespace name of that module.

 A test port class must be placed into the namespace of its module.

 Encoding and decoding functions must be placed into the namespace of the TTCN–3
module in which the external function was defined.

 All C++ entities have to be placed into namespace. An exception to this may be C++

entities used only locally; these are defined with the keyword static.

 For convenience the using namespace directive can be used in C++ source files. It is

forbidden to use this directive in header files!

 C++ enum types are placed in the scope of their value class; enum types have to be
prefixed by the C++ name of the value class.12

6.2 Using External C++ Functions in TTCN–3 Test Suites

Sometimes standard library functions13 are called in the test suite or there is a need for
efficiently implemented ”bit-crunching” functions in the TTCN–3 ATS. In these cases
functions to be called from the test suite can be developed in C++.

There are the standard library functions as well as other libraries in the C++ functions. The
logging and error handling facilities of the run-time environment are also available as in
case of Test Ports.

Since version 1.4.pl1 the semantic analyzer of the compiler checks the import statements
thoroughly. Therefore one cannot use the virtual C++ modules as before: C++ functions
must be defined as external functions to be accessible from TTCN–3 modules.

11 The new naming rules are used by default; the naming rules can be changed using the compiler command line switch -N.
12 The enum hack option has become obsolete with the new naming rules.
13 C language functions cannot be called directly from TTCN–3; you need at least a wrapper function for them.

Public

PROGRAMMER'S GUIDE

103 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

For example, the following definitions make two C++ functions accessible from TTCN–3

module MyModule and from any other module that imports MyModule.

6.2.1 Example TTCN–3 Module (MyModule.ttcn)

module MyModule {

[...]

 external function MyFunction(integer par1, in octetstring par2)

 return bitstring;

 external function MyAnotherFunction(inout My_Type par1,

 out MyAnotherType par2);

[...]

}

The compiler will translate those external function definitions to C++ function prototypes in

the generated header file MyModule.hh:

[...]

 extern BITSTRING MyFunction(const INTEGER& par1, const OCTETSTRING& par2);

 extern void MyAnotherFunction(My__Type& par1, MyAnotherType& par2);

[...]

Both pre-defined and user-defined TTCN–3 data types can be used as parameters and/or
return types of the C++ functions. The detailed description of the equivalent C++ classes
as well as the name mapping rules are described in chapter 4.5.

Using templates as formal parameters in external functions is possible, but not
recommended because the API of the classes realizing templates is not documented and
subject to change without notice.

The formal parameters of external TTCN–3 functions are mapped to C++ function
parameters according to the following table:

Table 35 TTCN–3 formal parameters and their C++ equivalents

TTCN–3 formal parameter Its C++ equivalent

[in] MyType myPar const MyType& myPar

out MyType myPar MyType& myPar

inout MyType myPar MyType& myPar

[in] template MyType myPar Not recommended.

Note: In versions 1.6.pl3 and earlier the in keyword had an extra meaning in formal

parameter lists. According to the TTCN–3 standard the parameter definitions MyType

myPar and in MyType myPar are totally equivalent, but the earlier versions of the

compiler distinguished them. Unless the keyword in was present the compiler passed the

parameter by value (involving a copy constructor call) instead of using a const reference.
That is why it was recommended to use an explicit in keyword in parameter lists of external
functions.

Public

PROGRAMMER'S GUIDE

104 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Due to the strictness of the TTCN–3 semantic analyzer one cannot use C/C++ data types
with external functions as formal parameters or return types, only TTCN–3 and ASN.1 data
types are allowed. Similarly, one cannot use pointers as parameters or return values
because they have no equivalents in TTCN–3 .

The external functions can be implemented in one or more C++ source files. The
generated header file that contains the prototypes of the external functions shall be
included into each C++ source file. This file makes accessible all built-in data types, the
user-defined types of the corresponding TTCN–3 module and all available services of the
run-time environment (logging, error handling, etc.).

The name, return type and the parameters of the implemented C++ functions must match
exactly the generated function prototypes or the compilation will fail. The generated
function prototype is in the namespace of the module, therefore the implementation of the
function has to be placed in that namespace, too.

6.3 Logging in Test Ports or External Functions

When developing Test Ports or external functions the need may arise for debug

messages. Instead of using printf or fprintf, there is a simple way to put these

messages into the log file of test executor. This feature can be also useful in case when an
error or warning situation is encountered in the Test Port, especially when decoding an
incoming message.

There is a class called TTCN_Logger in the Base Library, which takes care of logging. For

historical reasons it has a static instance (object), which is called TTCN_logger. Since all

member functions of TTCN_Logger are static, they can be and should be called without

the logger object. The usage of object TTCN_logger should be avoided in newly written

code.

The class TTCN_Logger provides some public member functions. Using them any kind of

message can be put into the log file. There are two ways to log a single message, the
unbuffered and the buffered mode.

6.3.1 Unbuffered Mode

In unbuffered mode the message will be put into log immediately as a separate line
together with a time stamp. Thus, the entire message must be passed to the logger class
at one function call. The log member function of the logger class should be used. Its
prototype is:

static void TTCN_Logger::log(int severity, const char *fmt, ...);

The parameter severity is used for filtering the log messages. The allowed values of the
parameter are listed in table "First level (coarse) log filtering" in the Programmer's

Technical Reference ([13]). We recommend using in Test Ports only TTCN_WARNING,

TTCN_ERROR and TTCN_DEBUG. The parameter fmt is a pointer to a format string, which

is interpreted as in printf(3). The dots represent the optional additional parameters that

are referred in format string. There is no need to put a newline character at the end of
format string; otherwise the log file will contain an empty line after your entry.

Public

PROGRAMMER'S GUIDE

105 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Here is an example, which logs an integer value:

int myVar = 5;

TTCN_Logger::log(TTCN_WARNING, "myVar = %d", myVar);

Sometimes the string to be logged is static. In such cases there is no need for printf-

style argument processing, which may introduce extra risks if the string contains the

character %. The logger class offers a function for logging a static (or previously

assembled) string:

static void TTCN_Logger::log_str(int severity, const char *str);

The function log_str runs significantly faster than log because it bypasses the

interpretation of the argument string.

There is another special function for unbuffered mode:

static void TTCN_Logger::log_va_list(int severity, const char *fmt,

 va_list ap);

The function log_va list resembles to log, but it takes the additional printf arguments

in one va_list structure; va_list is defined in the standard C header file stdarg.h

and used in functions with variable number of arguments.

This function (and especially its buffered mode version, log_event_va_list) is useful if

there is a need for a wrapper function with printf-like syntax, but the message should be

passed further to TTCN_Logger. With these functions one can avoid the handling of

temporary buffers, which could be a significant performance penalty.

6.3.2 Buffered Mode

As opposite to the unbuffered operation, in buffered mode the logger class stores the
message fragments in a temporary buffer. New fragments can be added after the existing
ones. When finished, the fragments can be flushed after each other to the log file as a
simple message. This mode is useful when assembling the message in many functions
since the buffer management of logger class is more efficient than passing the fragments
as parameters between the functions.

In buffered mode, the following member functions are available.

6.3.2.1 begin_event

begin_event creates a new empty event buffer within the logger. You have to pass the

severity value, which will be valid for all fragments (the list of possible values can be

found in the table "First level (coarse) log filtering" in the Programmer's Technical
Reference [13]). If the logger already has an unfinished event when begin event is called
the pending event will be pushed onto an internal stack of the logger. That event can be
continued and completed after finishing the newly created event.

static void TTCN_Logger::begin_event(int severity);

Public

PROGRAMMER'S GUIDE

106 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

6.3.2.2 log_event

log_event appends a new fragment at the end of current buffer. The parameter fmt

contains a printf format string like in unbuffered mode. If you try to add a fragment without
initializing the buffer by calling begin event, your fragment will be discarded and a warning
message will be logged.

static void TTCN_Logger::log_event(const char *fmt, ...);

6.3.2.3 log_char

log_char appends the character c at the end of current buffer. Its operation is very fast

compared to log_event.

static void TTCN_Logger::log_char(char c);

6.3.2.4 log_event_str and log_event_va_list

The functions log_str and log_va_list also have the buffered versions called

log_event_str and log_event_va_list, respectively. Those interpret the

parameters as described in case of unbuffered mode.

static void TTCN_Logger::log_event_str(const char *str);

static void TTCN_Logger::log_event_va_list(const char *fmt, va_list ap);

6.3.2.5 OS_error

The function OS_error appends the textual description of the error code stored in global

variable errno at the end of current buffer. Thereafter that variable errno will be set to

zero. The function does nothing if the value of errno is already zero. For further

information about possible error codes and their textual descriptions please consult the

manual page of errno(3) and strerror(3).

static void TTCN_Logger::OS_error();

6.3.2.6 log

The C++ classes of predefined and compound data types are equipped with a member

function called log. This function puts the actual value of the variable at the end of current

buffer. Unbound variables and fields are denoted by the symbol <unbound>. The contents

of TTCN–3 value objects can be logged only in buffered mode.

void <any TTCN-3 type>::log() const;

Public

PROGRAMMER'S GUIDE

107 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

6.3.2.7 end_event

The function end_event flushes the current buffer into the log file as a simple message,

then it destroys the current buffer. If the stack of pending events is not empty the topmost
event is popped from the stack and becomes active. The time stamp of each log entry is
generated at the end and not at the beginning. If there is no active buffer when

end_event is called, a warning message will be logged.

static void TTCN_Logger::end_event();

If an unbuffered message is sent to the logger while the buffer contains a pending event
the unbuffered message will be printed to the log immediately and the buffer remains
unchanged.

6.3.3 Logging Format of TTCN-3 Values and Templates

TTCN-3 values and templates can be logged in the following formats:

TITAN legacy logger format: this is the default format which has always been used in
TITAN

TTCN-3 format: this format has ttcn-3 syntax, thus it can be copied into TTCN-3 source
files.

Differences between the formats:

Value/template Legacy format output TTCN-3 format output

Unbound value “<unbound>” “-“

Uninitialized template “<uninitialized
template>”

“-“

Enumerated value name (number) name

The “-“ symbol is the NotUsedSymbol which can be used inside compound values, but
when logging an unbound value which is not inside a record or record of the TTCN-3
output format of the logger is actually not a legal TTCN-3 value/template because a value
or template cannot be set to be unbound. Thus this output format can be copy-pasted from
a log file into a ttcn-3 file or to a module parameter value in a configuration file only if it
semantically makes sense.

Public

PROGRAMMER'S GUIDE

108 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

The C++ API extensions to change the logging format:
A new enum type for the format in TTCN_Logger class:
enum data_log_format_t { LF_LEGACY, LF_TTCN };
Static functions to get/set the format globally:
data_log_format_t TTCN_Logger::get_log_format();

void TTCN_Logger::set_log_format(data_log_format_t p_data_log_format);
A helper class to use a format until the end of the scope, when used as local variable. This
can be used as follows:
{

 Logger_Format_Scope lfs(TTCN_Logger::LF_TTCN); // sets TTCN-3 log format

 <log some values and templates>

} // end of scope -> the original format is restored
It is recommended to use this helper class because using directly the format setting
functions of TTCN_Logger is more error prone, if the globally used logging format is not
restored properly then log files might contain values/templates in a mixed/unexpected
format.

6.3.4 Examples

The example below demonstrates the combined usage of buffered and unbuffered modes
as well as the working mechanism of the event stack:

TTCN_Logger::begin_event(TTCN_DEBUG);

TTCN_Logger::log_event_str("first ");

TTCN_Logger::begin_event(TTCN_DEBUG);

TTCN_Logger::log_event_str("second ");

TTCN_Logger::log_str(TTCN_DEBUG, "third message");

TTCN_Logger::log_event_str("message");

TTCN_Logger::end_event();

TTCN_Logger::log_event_str("message");

TTCN_Logger::end_event();

The above code fragment will produce three lines in the log in the following order:

third message
second message

first message

If the code calls a C++ function that might throw an exception while the logger has an
active event buffer care must be taken that event is properly finished during stack
unwinding. Otherwise the stack of the logger and the call stack of the program will get out
of sync. The following example illustrates the proper usage of buffered mode with
exceptions:

TTCN_Logger::begin_event(TTCN_DEBUG);

try {

 TTCN_Logger::log_event_str("something");

 // a function is called from here

 // that might throw an exception (for example TTCN_error())

 TTCN_Logger::log_event_str("something else");

 TTCN_Logger::end_event();

} catch (...) {

 // don’t forget about the pending event

 TTCN_Logger::end_event();

 throw;

}

Public

PROGRAMMER'S GUIDE

109 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

6.4 Error Recovery during Test Execution

If a fatal error is encountered in the Test Port, you should call the function TTCN_error

must be called to do the error handling. It has the following prototype in the Base Library:

void TTCN_error(const char *fmt, ...);

The parameter fmt contains the reason of the error in a NUL terminated character string

in the format of a printf format string. If necessary, additional values should be passed

to TTCN_error as specified in the format string. The error handling in the executable test

program is implemented using C++ exceptions so the function TTCN_error never returns;

instead, it throws an exception. The exception value contains an instance of the empty

class called TC_Error. This exception is normally caught at the end of each test case and

module control part. After logging the reason TTCN_Logger::OS error() is called.

Finally, the verdict is set to error and the test executor performs an error recovery, so it

continues the execution with the next test case.

It is not recommended to use own error recovery combined with the default method (that
is, catching this exception).

6.5 Using UNIX Signals

The UNIX signals may interrupt the normal execution of programs. This may happen when
the program executes system calls. In this case, when the signal handler is finished the
system call will fail and return immediately with an error code.

In the executable test program there are system calls not only in the Base Library, but in
Test Ports as well. Since the other Test Ports that you are using may have been written by
many developers, one cannot be sure that they are prepared to the effects of signals. So it
is recommended to avoid using signals in Test Ports.

6.6 Mixing C and C++ Modules

Modules written in C language may be used in the Test Ports. In this case the C header
files must be included into the Test Port source code and the object files of the C module
must be linked to the executable. Using a C compiler to compile the C modules may lead
to errors when linking the modules together. This is because the C and C++ compilers use
different rules for mapping function names to symbol names of the object file to avoid
name clashes caused by the C++ polymorphism. There are two possible solutions to solve
this problem:

1 Use the same C++ compiler to compile all of your source code (including C
modules).

2 If the first one is impossible (when using a third party software that is available in

binary format only), the definitions of the C header file must be put into an extern

”C” block like this.

#ifdef __cplusplus

extern "C" {

#endif

Public

PROGRAMMER'S GUIDE

110 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

<... your C definitions ...>

#ifdef __cplusplus

};

#endif

The latter solution does not work with all C++ compilers; it was tested on GNU C++
compiler only.

Public

PROGRAMMER'S GUIDE

111 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

7 References

[1] Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3.
Part 1: Core Language
European Telecommunications Standards Institute
ES 201 873-1 Version 4.5.1, April 2013

[2] Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3.
Part 4: TTCN–3 Operational Semantics
European Telecommunications Standards Institute.
ES 201 873-4 Version 4.4.1, April 2012

[3] Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3.
Part 7: Using ASN.1 with TTCN–3
European Telecommunications Standards Institute.
ES 201 873-7 Version 4.5.1, April 2013

[4] Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3.
Part 9: Using XML Schema with TTCN–3
European Telecommunications Standards Institute.
ES 201 873-9 Version 4.5.1, April 2013

[5] ITU-T, X.690, Information Technology
ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER)
International Telecommunication Union, November 2008

[6] ITU-T, X.693, Information Technology
ASN.1 encoding rules: XML Encoding Rules (XER), November 2008

[7] ITU-T, X.693 amendment 1, Information Technology
ASN.1 encoding rules: XER encoding instructions and EXTENDED-XER,
November 2008

[8] ISO/IEC 10646-1, Information technology – Universal Multiple-Octet Coded
Character Set (UCS) – Part 1: Architecture and Basic Multilingual Plane,
Second edition, 200009-15

[9] RFC3629: UTF-8, a transformation format of ISO 10646

[10] User Guide for TITAN TTCN-3 Test Executor
1/198 17-CRL 113 200/6 Uen

[11] Installation Guide for TITAN TTCN-3 Test Executor
1/1531-CRL 113 200/6 Uen

[12] Release Notes
109 47-CRL 113 200/6 Uen

Public

PROGRAMMER'S GUIDE

112 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

[13] Technical Reference for TITAN TTCN-3 Test Executor
2/198 17-CRL 113 200/6 Uen

[14] David A. Wheeler, Program Library HOWTO: http://tldp.org/HOWTO/Program-
Library-HOWTO/index.html

[15] ETSI ES 202 781 V1.4.1. (2015-06 Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; TTCN-3 Language
Extensions: Configuration and Deployment Support)

http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://tldp.org/HOWTO/Program-Library-HOWTO/index.html

Public

PROGRAMMER'S GUIDE

113 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

8 List of Tables
Table 1 Outgoing and incoming operations 19

Table 2 Protected attributes 19

Table 3 Common error types 32

Table 4 Possible values of error_behavior_t 32

Table 5 BER-coding errors 36

Table 6 RAW-coding errors 38

Table 7 XER coding errors 42

Table 8 Public member functions of the class INTEGER 48

Table 9 Public member functions of the class FLOAT 51

Table 10 Public member functions of the class BOOLEAN 52

Table 11 Public member functions of the class VERDICTTYPE 54

Table 12 Public member functions of the class BITSTRING 55

Table 13 Public member functions of the class BITSTRING_ELEMENT 57

Table 14 Public member functions of the class HEXSTRING 58

Table 15 Public member functions of the class HEXSTRING_ELEMENT 61

Table 16 Public member functions of the class OCTETSTRING 62

Table 17 Public member functions of the class OCTETSTRING_ELEMENT 65

Table 18 Public member functions of the class CHARSTRING 66

Table 19 Public member functions of the class CHARSTRING_ELEMENT 69

Table 20 Public member functions of the class UNIVERSAL_CHARSTRING 71

Table 21 Public member functions of the class UNIVERSAL_CHARSTRING_ELEMENT76

Table 22 Public member functions of the class OBJID 78

Table 23 Predefined component references 79

Table 24 Public member functions of the class COMPONENT 79

Table 25 Public member functions of the class Dummy 81

Public

PROGRAMMER'S GUIDE

114 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

Table 26 Public member functions of the class t3 82

Table 27 Public member functions of the class OPTIONAL<t2> 83

Table 28 Public member functions of the class t3 85

Table 29 Public member functions of the class t2 87

Table 30 Pre-generated classes for record of/set of predefined types 89

Table 31 Public member functions of the class Day 92

Table 32 Public member functions of the class MyProc_call 99

Table 33 Public member functions of the class MyProc_reply 100

Table 34 Public member functions of the class MyProc_exception 100

Table 35 TTCN–3 formal parameters and their C++ equivalents 103

Public

PROGRAMMER'S GUIDE

115 (115)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 6/198 17-CRL 113 200/6
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2017-10-11 C

9 Abbreviations

API Application Programming Interface
ASN.1 Abstract Syntax Notation One
ATS Abstract Test Suite
BER Basic Encoding Rules (of ASN.1)
BXER Basic XER
BNF Backus–Naur Formalism
CER Canonical Encoding Rules (of ASN.1)
CXER Canonical XER
DER Distinguished Encoding Rules (of ASN.1)
ETS Executable Test Suite
ETSI European Telecommunications Standards Institute
EXER Extended XER
GUI Graphical User Interface
HC Host Controller
HTML Hypertext Markup Language
HTTP HyperText Transfer Protocol
IP Internet Protocol
LSB Least Significant Byte
MC Main Controller
MTC Main (or Master) Test Component
PDU Protocol Data Unit
pl Patch Level
PTC Parallel Test Component
PT Port Type
SO Shared Object
SUT System Under Test
TC Test Component (either MTC or PTC)
TCC Test Competence Center
TCP Transmission Control Protocol
TLV Tag, Length, Value
TTCN Tree and Tabular Combined Notation
TTCN–2 Tree and Tabular Combined Notation
TTCN–3 Tree and Tabular Combined Notation version 3 (formerly)
 Testing and Test Control Notation (new resolution)
URL Universal Resource Locator
XER XML Encoding Rules for ASN.1
XML Extensible Markup Language

