

Public

USER GUIDE

1 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

User Guide for the TITAN Designer for the Eclipse IDE

Abstract

This document describes detailed information of using the TITAN Designer for the
Eclipse IDE plug-in.

Copyright

Copyright (c) 2000-2018 Ericsson Telecom AB.
All rights reserved. This program and the accompanying materials
are made available under the terms of the Eclipse Public License v2.0
which accompanies this distribution, and is available at

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html.

Disclaimer

The contents of this document are subject to revision without notice due to continued
progress in methodology, design and manufacturing. Ericsson shall have no liability for
any error or damage of any kind resulting from the use of this document.

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Public

USER GUIDE

2 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Contents

1 Introduction .. 5
1.1 Overview .. 5
1.2 Target Groups .. 5
1.3 Typographical Conventions .. 5
1.4 Installation ... 6
1.5 Reporting Errors .. 6
2 Getting started ... 7
2.1 The TITAN Editing Perspective .. 7
2.2 Enabling TITAN Actions on the Toolbar ... 9
2.3 Enabling TITAN Shortcuts.. 11
2.4 Enabling TITAN Decorations .. 12
2.5 Excluding resources ... 12
3 Setting Workbench Preferences... 13
3.1 TITAN Preferences .. 14
3.2 Content Assist Preferences .. 17
3.3 Debug .. 18
3.4 Excluded Resources .. 20
3.5 Export .. 21
3.6 Folding Preferences ... 23
3.7 Matching Brackets Highlighting Preferences .. 24
3.8 Indentation Preferences ... 24
3.9 Mark Occurrences ... 25
3.10 On-the-fly Checker Preferences ... 26
3.10.1 Pitfalls .. 27
3.11 Errors/Warnings Preferences ... 28
3.11.1 Pitfalls .. 31
3.12 Naming Conventions .. 32
3.13 Syntax Coloring Preferences ... 33
3.14 TITAN Actions .. 35
3.15 Typing Preferences .. 36
4 Managing Projects ... 37
4.1 Creating a New Project .. 37
4.2 Adding Directories to the Project .. 39
4.3 Adding Files to the Project ... 42
4.3.1 Using Wizards to Add Files to the Project .. 42
4.3.2 Manually Adding Files to the Project .. 44
4.4 Setting Project Properties .. 46
4.4.1 Build Configurations ... 46
4.4.2 Setting the Local Build Properties of a Project ... 47
4.4.3 Setting Project and Folder Level Naming Convention Settings 60
4.4.4 Setting Requirements on the Configuration of Referenced Projects 62
4.4.5 Setting the Remote Build Properties of a Project ... 63
4.5 Excluding Files and Folders from the Build Process... 65
4.5.1 Excluding a File from the Build Process ... 66
4.5.2 Excluding a Folder from the Build Process ... 66
4.6 Converting a Folder into a Central Storage .. 67
4.7 Opening and Closing Projects .. 67

Public

USER GUIDE

3 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4.8 Saving and Loading Project Properties .. 68
4.9 Importing and Exporting Projects ... 68
4.9.1 Exporting Projects in Native Format ... 68
4.9.2 Importing Projects from Native Format ... 71
4.9.3 Importing an Existing mctr_gui Project ... 73
4.9.4 Importing Files as Linked Resources ... 76
4.9.5 Exporting Projects into the TITAN Project Descriptor (tpd) Format 80
4.9.6 Importing Projects from TITAN Project Descriptor Format.................................... 85
4.9.7 Useful Tips for Exporting and Importing ... 88
4.10 Formatting Log Files .. 90
4.11 Merging Log Files .. 90
4.12 Using Project References .. 91
4.13 Mapping Elements of the Old Format ... 92
4.14 Common Threats ... 93
4.14.1 Disabling, Removing or Corrupting the Builder of the Project 93
4.14.2 Removing or Corrupting the Nature of the Project .. 93
4.14.3 Adding or Removing Resources from the Project ... 93
4.15 Make Archive ... 94
5 Converting Existing Projects .. 95
5.1 The Construction Principles of Projects.. 95
5.1.1 Makefile ... 95
5.1.2 Mctr_gui ... 95
5.1.3 Eclipse ... 96
5.2 Manually Converting an Existing Project to Eclipse Format.................................. 98
5.2.1 Small Project.. 98
5.2.2 Large Project Sets Consisting of Several Included Projects or Logically

Separate Parts ... 98
5.2.3 Large Projects Using Central Storage Folders ... 99
5.2.4 Project Referring to Specific Files Outside its Own Jurisdiction 100
5.3 Convert an Existing mctr_gui Project Using an Import Wizard 100
6 Building the Project .. 101
6.1 Building the Project – Step by Step .. 101
6.1.1 Creating Symbolic Links .. 101
6.1.2 Creating or Regenerating the Makefile ... 102
6.1.3 Editing the Makefile Skeleton ... 102
6.1.4 Module Compilation ... 103
6.1.5 Creating Dependencies ... 103
6.1.6 Building .. 104
6.2 Remote Build ... 106
6.2.1 Remarks and Tips .. 106
6.3 Building from the Command Line ... 107
6.3.1 Building Directly ... 107
6.3.2 Building with an External Script .. 107
6.4 Cleaning the Project... 109
6.5 Pitfalls .. 109
7 Editing with TITAN Designer Plug-in .. 109
7.1 File Types .. 109
7.2 Syntax Highlighting .. 110
7.3 Matching Brackets ... 110
7.4 Folding ... 111

Public

USER GUIDE

4 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

7.5 On-the-fly Parsing .. 111
7.5.1 Preprocessing of ttcnpp and ttcnin Files... 112
7.5.2 Limitations ... 115
7.6 On-the-fly Semantic Checking ... 115
7.6.1 Limitations ... 116
7.7 Content Assistance .. 116
7.7.1 Assistance with Keywords.. 116
7.7.2 Assistance with Code Skeletons .. 116
7.7.3 Assistance with Dynamic Elements .. 117
7.7.4 Content Assistance Limitations .. 118
7.8 Find Declaration ... 118
7.9 Find References .. 120
7.10 Mark Occurrences ... 120
7.10.1 Limitations ... 121
7.11 Refactoring .. 121
7.11.1 Rename Refactoring .. 121
7.11.2 Limitations ... 122
7.12 Editing Configuration Files ... 122
7.12.1 Module Parameters Section ... 123
7.12.2 Test Port Parameters Section .. 124
7.12.3 Components, Groups and Main Controller Section .. 125
7.12.4 Execute and External Commands Sections ... 126
7.12.5 Include and Define Sections .. 128
7.12.6 Logging Section ... 129
7.12.7 Limitations on the Graphical Pages .. 132
8 Contents of the Problems View .. 132
8.1 Types of Markers ... 132
8.2 Eclipse Provided Features ... 133
8.3 Grouping of Problems .. 133
8.3.1 Group by Severity .. 134
8.3.2 Group by Type ... 134
8.3.3 Group by TITAN Problems ... 134
9 Contents of the Tasks View ... 134
9.1 Types of Markers ... 135
10 Contents of the Outline View .. 135
10.1 The Tree .. 136
10.2 The Toolbar ... 136
10.2.1 Sorting Elements ... 136
10.2.2 Categorizing Elements ... 138
10.2.3 Grouping .. 138
10.2.4 Filtering Elements .. 139
10.3 Outline View Icons ... 140
11 Extensions to the Project Explorer ... 141
11.1 Filtering Resources from the View ... 141
12 References .. 142
13 List of figures ... 143
14 Abbreviations ... 147

Public

USER GUIDE

5 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

1 Introduction

1.1 Overview

This document describes the general workflow and use of the TITAN Designer for the
Eclipse IDE plug-in.

The TITAN Designer plug-in provides support for:

• creating and managing projects;

• creating and working with source files;

• building executable code;

• automatic analysis of the build results;

• remote build.

1.2 Target Groups

This document is intended for system administrators and users who intend to use the
TITAN Designer plug-in for the Eclipse IDE.

1.3 Typographical Conventions

This document uses the following typographical conventions:

• Bold is used to represent graphical user interface (GUI) components such as
buttons, menus, menu items, dialog box options, fields and keywords, as well as
menu commands. Bold is also used with ’+’ to represent key combinations. For
example, Ctrl+Click

• The ‘/’ character is used to denote a menu and sub-menu sequence. For example,
File / Open.

• Monospaced font is used represent system elements such as command and

parameter names, program names, path names, URLs, directory names and code
examples.

• Bold monospaced font is used for commands that must be entered at the

Command Line Interface (CLI), For example, mctr_gui

Public

USER GUIDE

6 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

1.4 Installation

For details on installing the TITAN Designer for the Eclipse IDE plug-in, see the
Installation Guide for TITAN Designer and TITAN Executor for the Eclipse IDE.

1.5 Reporting Errors

The following information should be included into trouble reports:

• Short description of the problem.

• What seems to have caused it, or how it can be reproduced.

• If the problem is graphical in some way (displaying something wrong), screenshots
should also be included.

• If the problem generates some output to:

• TITAN Console

• TITAN Debug Console

• If the Error view contains some related information, that should be copied too.

Before reporting a trouble, try to identify if the trouble really belongs to the TITAN
Designer for the Eclipse IDE plug-in. It might be caused by other third party plug-ins, or
by Eclipse itself.

Reporting the contents of the Consoles and the Error log is important as TITAN
consoles display the commands executed and their results and the Error log may
contain stack traces for some errors. To identify relevant log entries the easiest way is to
search for classes whose name starts with “org.eclipse.titan”.
The location on which the Error Log view can be opened can change with Eclipse
versions, but it is usually found at Window / Show View / Other... / PDE Runtime /
Error Log or Window / Show View / Other... / General / Error Log.

Public

USER GUIDE

7 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

2 Getting started

This section explains how to setup Eclipse to access every feature provided by TITAN
Designer.

2.1 The TITAN Editing Perspective

TITAN Designer provides its own perspective to Eclipse.This is a layout of visual
elements that provides a good environment for working with TITAN. This layout is a
starting point, since users can create their own layout in Eclipse, to set the best working
environment for themselves.

Open the TITAN Designer perspective by opening Window / Open Perspective /
Other....

In the pop-up window select TITAN Editing.

Figure 1 Opening a perspective

Public

USER GUIDE

8 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 2 Selecting the TITAN Editing perspective

The perspective is divided in three fields. Figure 3 TITAN Editing Perspective shows
the default layout.

The tab on the left side is the Project Explorer view. This is a navigator where projects
can be managed; for example, opened, renamed, or closed. Files can be added or
removed from a project and so on.

The biggest pane of the perspective is the editing area (upper right). Here the code can
be edited using the provided source code editors (or built-in text editors), once a file had
been opened.

The four tabs at the bottom of the picture open the following views:

• The Problems view (see chapter 7.10) displays information about problems found in
the project. The problems reported can be ordered using several criteria (see section
8.3).

• The Console view contains the commands executed and their output; Consoles only
appear if there is something to display. The Console view has two sub views (TITAN
console and TITAN Debug console, respectively); by default only one of both is
displayed in the pane. The hidden sub view can be displayed by clicking on the
display icon on the right of the pane.

Public

USER GUIDE

9 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

• The TITAN console displays the commands executed by the parts of TITAN
Designer and their results.

• The TITAN Debug console holds special debug related information for the plug-in
developers. If something strange happens this might hold additional information that
the user can include in his trouble report. Please note that the contents of this view
have no effect on the work of the user.

• The Progress view contains information about the progresses of Eclipse related
operations. Lengthy operations (for example building, remote building or the first on-
the-fly build pass) always provide information to the user about their progress.
Operations in general can be canceled in this view, provided that cancellation is
allowed.

• The Tasks view contains information extracted from the projects in a sorted manner.
The contents of this view differ from the contents of the Problems view in that they
are usually not errors, but TODO or FIXME like notations. Chapter 9 describes this
view in detail.

Figure 3 TITAN Editing Perspective

2.2 Enabling TITAN Actions on the Toolbar

TITAN Actions or Change Set Operations are commands (apart from those used in the
build process) that can be executed on TTCN-3 files.

Public

USER GUIDE

10 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

The TITAN Actions are enabled by checking the Change Set Operations submenu on
the tab Tool Bar Visibility after selecting Windows / Customize Perspective

(see Figure 4).

Figure 4 Enabling Titan Actions or ChangeSet Operations on the Toolbar

Enabling TITAN Actions will add a new toolbar with the TITAN Actions commands
described below to the available ones:

Figure 5 TITAN Actions commands

The command Check syntax checks the selected files for syntactical errors; no other

operation is performed. When a folder is selected, the check is performed for all the files
in the folder. The command is only available if at least one file is selected.

The command Check semantics checks the selected files both syntactically and

semantically; no other operation is performed. When a folder is selected, the check is
performed for all the files in the folder. The command is only available if at least one file
is selected.

The command Check compiler version displays the version of the compiler.

Public

USER GUIDE

11 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

The command Generate Test Port skeleton generates a test port skeleton from

the selected TTCN-3 file. The command is only available if there is exactly one selected
file in the project.

The command Convert XSD files to TTCN-3 takes as input the files selected by the
user, and converts them into TTCN-3 files. As for the output the user is asked to select a
folder, where the newly created files will be written to.

The output of the commands is written to the TITAN Console. Commands are executed
regardless of the file properties; for example, the selected file will be syntactically or
semantically checked even if it is excluded from the build process.

2.3 Enabling TITAN Shortcuts

TITAN Shortcuts appear in the File/New menu and are used to open a new ASN.1
module, a configuration file, a TITAN project or a TTCN-3 module, respectively.

The TITAN Shortcuts are enabled by checking the appropriate box on the right pane of
the Shortcuts tab after selecting Windows / Customize Perspective (Figure 6). The
boxes are checked by default.

Figure 6 Enabling the TITAN Shortcuts

Public

USER GUIDE

12 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

2.4 Enabling TITAN Decorations

Decoration here means a string added to a project, folder or file name or a picture
overlapping the icon of the resource to provide the reader with additional information.

The mark on the top right corner of a project’s icon means the project has been built
and the binaries are up to date. If the plug-in detects the modification of a non-excluded
file or folder inside the project, the check mark will disappear.

Decoration after a project name shows whether the Makefile has been automatically

generated. If it has, the corresponding command line switches are displayed between
brackets; for example, [-s] for single mode. No additional text is displayed if the

Makefile has been manually generated (not even the brackets).

Decoration after a folder name indicates that the folder is used as a central storage ([

centralstorage]) or the folder is excluded from build ([excluded by X]). If

both are true, [excluded by X centralstorage] is displayed.

Decoration after a file name denotes exclusion from build. Files excluded from build are
marked [excluded].

Decoration is enabled by checking the TITAN Decorator box after selecting Windows /
Preferences / General / Appearance / Label decorations; see the figure below.

Figure 7 Enabling TITAN Decoration

Note: decorations are extending the information displayed for elements. As there can be
several decorations extending an element, the texts shown above might not be the only
ones displayed.

2.5 Excluding resources

The possible reasons for a resource being excluded from build are as follows:

• Excluded by user:
These resources were explicitly excluded from the build by the user. (For more
information refer to section 4.5.)

Public

USER GUIDE

13 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

• Excluded as working directory:
The working directory by definition is excluded from the build process, in order to
make sure, that source files and generated file do not mix.

• Excluded by regexp:
The names of these resources was matching one or more exclusion regular
expressions provided on the Excluded resources preference page (for more
information refer to section 3.4)

• Excluded by convention:
On the Eclipse platform if the name of a resource (either a file or a folder) starts with
a dot, it indicates that the resource is some special resource used by one of the
plug-ins exclusively. All other plug-ins should exclude these files from their
operation; they should not be regarded as part of the project by any plug-in other
than its creator.

Note that when either the excluded resources or the working directory filter is active, it is
indicated by the projects being decorated with the “[filtered]” decoration too. For more
information on these filters please refer to section 11.1 .

3 Setting Workbench Preferences

This section gives an overview about the various settings related to the workbench
provided by the TITAN Designer plug-in.

In Eclipse, workbench preferences are used to set user specific general rules, which
apply to every project; for example, preferred font styles, access to version handling
systems and so on.

Workbench preferences are accessible selecting Window / Preferences. Clicking on
the menu item will bring up the preferences page. The opening window contains a
preference tree on the left pane to ease navigation – see Figure 8.

Figure 8 TITAN preferences sub-tree

This section only concerns the preferences that are available under the TITAN
preferences node of this preference tree.

Public

USER GUIDE

14 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

3.1 TITAN Preferences

Figure 9 TITAN preferences

The following options can be set on the TITAN preferences page (see the figure above):

• TITAN installation path.
The path to the TITAN installation directory. The TITAN version used to build the
projects can be changed by modifying the contents of this field. The Browse button
can be used to browse the directories.

• License file.
The path must point to a valid TITAN license file. The Browse button can be used to
browse the files.

This option is not available in all versions.

• Use markers for build error notification instead of dialog.
By default, an error during the build process is reported in a dialog window.
However, this is sometimes the unwanted behavior; for example, when a job is
running in the background. If this option is checked, no dialog window will pop-up;

Public

USER GUIDE

15 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

instead, an error marker will be placed on the project resource, seamlessly
integrated into the general error processing behavior of the tool. The error message
is assigned to the marker in this case.
The option is UNCHECKED by default.

• Treat on-the-fly errors as fatal for build.
By default if the on-the-fly analyzer recognizes a syntactic or semantic error, that has
no effect on the build process of the project.
However, most of the time this is not optimal behavior, because if the semantic
analyzer finds something erroneous, the build process will also find it erroneous and
as such the build process will not be able to fully complete (plus in such cases the
time spent by the build process to detect and report the problem is actually wasted
as the problem is already known).
The option is NOT CHECKED by default.

• When on-the-fly analysis ends the compiler markers.
When the on-the-fly analyzer starts it can trigger the following behaviors for error
markers generated by the compiler previously: “Stay unchanged”, “Become
outdated”, and “Are removed”.
The default setting is: “Become outdated”

• When the compiler runs the on-the-fly markers.
When the compiler starts it can trigger the following behaviors for error markers
generated by the on-the-fly analyzer previously: “Are removed”, “Stay”.
Setting this option to “Stay” can enhance the speed of the on-the-fly analyzer,
because if the markers need to be refreshed, so does all syntactic and semantic
information needs to be refreshed too.
The default setting is: “Are removed”.

• Maximum number of build processes to use.
By default, the build process is only executing in one process which is not efficient
on modern multi-core hardware. Using this option the users can set how many
parallel processes shall be used by the build process at the same time to compile
modules.
The option is set equal the number of processors/cores available in the system by
default.

• Display debug preferences
By default, the Designer plug-in isn’t logging debug information to the Debug
Console to help solving problems.
However as errors are reported to the Error Log of Eclipse this information is rarely
used. Most of the time these printouts hold no value for the users.
Debugging and load balancing features can be set by this option see chapter 3.3.

The option is NOT CHECKED by default because most of the time these features
hold no value for the users.

If you want to set any of these options, set the options “Display debug preferences”
then press button “Apply”. An entry “Debug” appears under “TITAN Preferences” on
the left pane (see Figure 10).

Public

USER GUIDE

16 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 10 Display Debug preferences

Below the last option, the version of the currently set compiler and information about the
license of the user is displayed.

Please note that in case the license file is not provided, is not valid or has expired an
additional link will appear on this page. Clicking on this link a browser will open directing
the user to a web page where he can order a new license or can ask for a renewal of his
existing one.

Public

USER GUIDE

17 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

3.2 Content Assist Preferences

Figure 11 Content Assist

The following options can be set on the Content Assist page (see figure above):

• Insert single proposals automatically
When the analysis finds that there is only one possible proposal to show to the user,
it can be set whether it should be inserted automatically, or displayed anyway.
This option is NOT CHECKED by default.

• Insert common prefixes automatically
Very often it happens, that all of the listed proposals start with a common prefix, that
is longer than the text being extended (for example naming conventions usually
have such prefixes).
In such cases if this option is checked, the common prefix will be inserted
automatically. This way the user only has to enter those characters that actually
differentiate between two options, allowing finishing with the actual code completion
much faster.
This option is NOT CHECKED by default.

Public

USER GUIDE

18 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

• Sort proposals
The sorting of the proposals can set to be done either “by relevance”, or
“alphabetically”.
If ordered by relevance definitions that were declared closer in the scope hierarchy
will be closer to the top of the proposal list. When the aim of the code compilation is
usually a local variable, using this sorting method it can be found much faster.
If ordered alphabetically all of the items will be in alphabetical order, although not as
fast in completing local definitions, it might be easier to search for most people.
The default setting is: “by relevance”.

• Enable auto activation
The code completion cannot only be activated by the user by pressing CTRL +
SPACE, but it can also be set to be automatically activated every time the ‘.’
character is entered.
This option is CHECKED by default.

• Auto activation delay
The delay between the auto activation of the content assistant, and its actual starting
can be set here in milliseconds.
The default setting is: 500 milliseconds

3.3 Debug

Figure 12 Debug options and Load Balancing

Public

USER GUIDE

19 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

The following option groups can be set on the Debug page (see figure above):

• Debug options for the Titan plugins
The elements of this group are rarely used but they are very useful in error reporting
to the Eclipse Titan plugin developers. These settings affect the output on the Debug
Console view.

• Load balancing
These options can be useful for advanced users to speed up the semantic analyzer
in case of huge projects.

The Debug options are as follows:

• Enable debug console
Enables the output on debug console

• Console timestamp
Timestamps are inserted before each debug line

• Print AST element for the cursor position
This debug information can be sent to the Eclipse Titan plugin developer as useful
information to localize a bug.

Example: The following figure shows a Debug console log with timestamp and AST
element info in the first three lines.

Figure 13 Debug Console log example

The Load balancing options are as follows:

• Tokens to process between thread switches
Sets how many tokens shall process between switching threads. It can modify the
speed of the analysis. Higher values are equivalent to faster file processing, lower
values to lesser system load.
Its default value is 100.

• Thread priority
Sets the Java priority of the lexical analyzer related to other applications, leftmost

Public

USER GUIDE

20 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

being lowest, rightmost highest priority.
Its default value is lowest.

• Sleep the syntax analyzer text after processing a single file (-1 to do not sleep
at all)
Sets the length of sleep call after the lexical analysis of each file; Longer value
means longer analysis but other activities are more possible.
Its default value is 10 ms.

• Switch thread after semantically checking modules or definitions
Gives the chance to other threads (activities) to work.

3.4 Excluded Resources

Public

USER GUIDE

21 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

On the excluded resources page, it is possible to provide a list of regular expressions,
which should be used to exclude resources from build in the workspace.
If even just one of the regular expressions matches on a name of a resource it will be
excluded from build.

Please note that the regular expressions are to be provided in the Java regular
expression format.

3.5 Export

Figure 14 Export options

The export options contain 2 groups of settings.

The first group contains the export fine tuning options on workspace level. Their values
are used in manual project export as default values and in automatic export as values.
(Their names are the same as the option names of manual export dialog (see 4.9.5.1).

The options in the first group are as follows:

• Do not generate information on the contents of the working directory:
If the working directory is visible inside Eclipse, inside the project, its contents are by
default also mentioned in the project description. As the working directory usually
contains only generated files, that can be reproduced later, this behavior is not
always desired.
Its default value is on.

Public

USER GUIDE

22 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

• Do not generate information about resources whose name starts with a ‘.’:
In Eclipse this naming convention is used to signal that a resource stores some tool
specific options about the project. As such, from the point of view of TITAN, they are
not needed.
Its default value is on.

• Do not generate information on resources contained within linked resources:
In many cases such links are intentionally used to connect to an existing folder
whose content might change externally. For example, version handling of files can
also be done like that.
Please note, that it is recommended to use this feature with care: as there is not
much connection between the Eclipse internal resource system, and the file system,
the activation of this option can cause unexpected side effects.
Its default value is on.

• Save default values:
By default we do not include any information on any option/setting in the descriptor
file, which has its default value as the actual one. This makes for a very compact
description, but in cases where all information needs to be saved, this might not be
ideal.
Its default value is off.
If it is switched on, the size of the tpd file is unnecessarily big. This is not a problem
but perhaps it is not so easy to analyze by the user.

• Pack all data of related projects:
Project references in Eclipse are a great way to structure one’s work into
manageable pieces. However, if one of those projects is not available, building the
whole set is not possible. For this reason, it is possible to save all information from
all required projects into one project descriptor.
Its default value is off.

The second group contains the settings for automatic export.

The options are as follows:

• Refresh tpd file automatically on adding/deleting/renaming file/folder and on
modifying project properties.

Choose this option if you want to have up-to-date tpd files in your workspace.
This is useful if you want to store information of your project in tpd files and the
content of your projects changes frequently.

• Request new location for the tpds at the first automatic save.
This option works if the previous option is set.
Choose this option if you want to change the location of the tpd file while it is being
imported or if you want to specify the location of new tpd files at the first automatic
save. The automatic save shall not work if it is not set and the project does not have
a tpd file yet. This way the automatic save can work only on a subset of the projects.

Public

USER GUIDE

23 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

3.6 Folding Preferences

Figure 15 Folding preferences

The following options can be set on the Folding page (see the figure above):

• Enable folding
Line folding can generally be enabled or disabled with this option.
Note: folding is called upon when parsing a modified file; thus, disabling this feature
may somewhat speed up file processing.

• Comments
Comments, that is, text between /* and */ will be folded if both this option and

Enable folding are checked.

• Statement blocks
Statements blocks, that is, {text between curly brackets} will be folded if both this

option and Enable folding are checked.

• Between parentheses
Parameters, that is, (text between parentheses) will be folded if both this option and

Enable folding are checked.

• When distance is at least
This option disables the folding of a region unless there are at least that many lines
between the ending and starting lines of the region.

Public

USER GUIDE

24 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

3.7 Matching Brackets Highlighting Preferences

Figure 16 Matching brackets preferences

The following options can be set on the Highlight matching brackets page (see the figure
above):

• Highlight matching brackets.
Checking this option enables highlighting of matching round, square and curly
bracket pairs.

• Color
The highlighting color is selected with this option.

3.8 Indentation Preferences

Figure 17 Indentation preferences

Indentation rules (valid for each editor provided by the TITAN Designer plug-in) are set
on the Indentation page (see the figure above):

• Indentation policy
the drop-down list contains two options: Spaces and Tab. When Spaces is selected,
indentation is done by inserting a number of spaces before the text; the number of

Public

USER GUIDE

25 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

space characters is determined in the field Indentation size. When Tab is selected,
indentation is performed by inserting a single tabulator character before the text.

• Indentation size
this field determines the number of spaces used for indentation. It is only enabled
when the indentation policy is set to Spaces.

In the default indentation policy, a single indentation level corresponds to inserting two
spaces.

3.9 Mark Occurrences

Figure 18 Mark occurrences

• Mark occurrences of the selected element
the mark occurrences feature can be turned on/off by checking this checkbox. If this
box is not checked, the other options are not available.

• Keep the marks after changing the selection
if the selection or the position of the cursor changes and the occurrences of the
newly selected element cannot be marked, the marks of the previous selection will
stay visible.

Public

USER GUIDE

26 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

• Mark occurrences of the following elements
the occurrences of the selected elements will be displayed.

3.10 On-the-fly Checker Preferences

Figure 19 On-the-fly checker preferences

The following options can be set on the TITAN preferences page (see the figure above):

• Enable parsing of TTCN-3, ASN.1 and Runtime Configuration files
Right now the on-the-fly parser might take a long time to run depending on the size
or the amount of source files. For this reason, the parsing process can be disabled
with this option, but disabling it will also disable most of the advanced features.
This option is CHECKED by default.

• Enable the incremental parsing of TTCN-3 files (EXPERIMENTAL)
By default when source code is modified the whole file needs to be syntactically re-
analyzed, which can take up to a few seconds for large files. Incremental parsing
tries to utilize the already existing syntactic and semantic information to speed up
this process, by only re-analyzing a minimal part of the code whose semantic value
might have changed because of the modification. When used correctly the length of
the syntactic re-analyzing can be reduced to the 10-2 second range, even for file of
ten thousands of lines. It is still in experimental phase.
This option is UNCHECKED by default.

Note: ttcnpp files are not analyzed incrementally even if incremental analysis is
switched on.

• Timeout in seconds before on-the-fly check starts
If the tool would start an on-the-fly check every time a character is entered or
deleted, it would overload the machine, not letting the user to enter text. For this

Public

USER GUIDE

27 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

reason, the on-the-fly analyzer only starts up a few seconds after the last continuous
editing has ended (the user stopped typing for a few seconds). In this option the
length of this waiting period can be set.
This option is set to 1 second by default.

• Delay on-the-fly semantic checking till the file is saved
when this feature is enabled, the on-the-fly analysis done when the user edits
something in a file will only involve syntactic checking, the semantic checking of the
project is delayed until the file is saved. Usually there would be no need for this
feature, however in huge projects the semantic checking can take a few seconds. In
those cases, now the programmers will be able to edit their code with less overhead.
There is however a bad side to this feature too: If there is no semantic checking the
on-the-fly database is also not updated. This means that for example newly created
local variables will only appear in code completion offerings after the file is saved.
This option is CHECKED by default.

The parsing process is detailed in the section 7.5.

Please note that the delayed semantic checking separates the syntactic analysis from
the semantic analysis, while the timeout before on-the-fly check starts feature shifts
them together. As such these two features are orthogonal to each other.

3.10.1 Pitfalls

• In the worst case incremental parsing can actually take somewhat longer than a full
parsing of the file. As it is using among others the opening and closing brackets to
localize the semantic effect of a change, if these are not used in a consistent way,
which reduce the performance drastically. For example, if only the ‘{’ sign is entered,
but the pairing ‘}’ is not, that might structurally damage the whole file, as all
statement blocks might become syntactically invalid.
Please note that using the automatic typing features provided, and programming in a
consistent way, can practically eliminate the chances of such performance
degradations.

• It is very important to have the timeout before the on-the-fly check as low as
possible. It can lead to strange phenomenon, if the text is modified too much
between two checks. For example, code completion might believe that according to
its outdated data the cursor has left a statement block, while in reality new
statements were added to it, extending its size.

• If the minimize memory usage option is turned on most of the semantic information
that is not currently needed to re-analyze a project is removed from memory. In case
of advanced functions this can cause problems if they would build on that data, or
modify that data.
For example in the case of rename refactoring a global constant this might mean,
that occurrences inside functions will not be renamed, since the data required to
identify those locations is not present in memory. Yet for renaming local variables
the functionality will operate correctly even with this option turn on.

Public

USER GUIDE

28 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

3.11 Errors/Warnings Preferences

Figure 20 Errors / Warnings preferences

There are some situations which are not semantically erroneous in general, but in most
of the cases they indicate bad coding practices or inefficient code. These checks in
several cases are above the level of semantic checks. On-the-fly checker options
determine TITAN behavior in such circumstances.
These options are categorized in 3 groups based on the kind of problem they detect:
code style problems, unnecessary code and potential programming problems.
Please note that by default only the first group is in opened state.

These options are set on the On-the-fly checker page (see the figure above):

Code style problems:

• Language constructs not supported yet
The on-the-fly checker, suspecting unsupported language constructs, triggers one of
the following behaviors: Ignore, Warning, Error.
The default setting is: Warning.

• DEFAULT elements of ASN.1 sequence and set types as OPTIONAL.
If this option is set the on-the-fly checker will handle elements of sequence and set

Public

USER GUIDE

29 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

types in ASN.1 modules with default values as if they were optional.
The option is UNCHECKED by default.

• Report uses of structured-type compatibility.
The on-the-fly checker, when a type compatibility check is detected, triggers one of
the following behaviors: Ignore, Warning, Error.
The default setting is: Warning.

• Use stricter checks for constants.
Since version 4.2.1 of the TTCN-3 standard it is not required to completely initialize
constant values, to allow more general operations. However, this also might
introduce some hard to trace bugs.
The option is UNCHECKED by default.

• Report the usage of label and goto statement
The on-the-fly checker, when usage of label and goto is detected, triggers one of the
following behaviors: Ignore, Warning, Error.
The default setting is Ignore

Unnecessary code:

• Report unused module importation
Unused imports can increase the time of analysis, re-analysis and compilation.
The on-the-fly checker, when unused import is detected, triggers one of the following
behaviors: Ignore, Warning, Error.
The default setting is: Warning.

• Report unused module level definition
The on-the-fly checker, when unused module level definition is detected, triggers
one of the following behaviors: Ignore, Warning, Error.
The default setting is: Ignore.

• Report unused local definition
The on-the-fly checker, when unused local definition is detected, triggers one of the
following behaviors: Ignore, Warning, Error.
The default setting is: Warning.

• Report unnecessary controls
The on-the-fly checker, when usage of unnecessary control is detected, triggers one
of the following behaviors: Ignore, Warning, Error.
The default setting is: Warning.

• Report ignored preprocessor directives.
The on-the-fly checker, suspecting that preprocessor directive is ignored, triggers
one of the following behaviors: Ignore, Warning, Error.
The default setting is: Warning.

Potential programming problems:

• Report missing imported modules
The on-the-fly checker, when missing imported module is detected, triggers one of

Public

USER GUIDE

30 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

the following behaviors: Ignore, Warning, Error.
The default setting is: Error.

• Report friend declaration with missing modules
The on-the-fly checker, when friend declaration with missing module is detected,
triggers one of the following behaviors: Ignore, Warning, Error.
The default setting is: Ignore.

• Report unused function return values
The on-the-fly checker, when a function returns a value or a template, but it is not
used, triggers one of the following behaviors: Ignore, Warning, Error.
The default setting is: Warning.

• Report infinite loops
The on-the-fly checker, when infinite loop is detected, triggers one of the following
behaviors: Ignore, Warning, Error.
The default setting is: Ignore.

• Report read only variables
The on-the-fly checker, when a definition was declared to be changeable, but is
never modified, triggers one of the following behaviors: Ignore, Warning, Error.
The default setting is: Ignore.

• Report TTCN-3 definitions that could be private, but are not set so
By default all definitions are public, but by declaring some private one can make
them invisible to importing modules. This might be useful in case of internal
functions, types, and constants.
The on-the-fly checker, when it detects TTCN-3 definitions that could be private, but
are not set so, triggers one of the following behaviors: Ignore, Warning, Error.
The default setting is: Ignore.

• Report TTCN-3 definitions that have too many parameters
The more parameters some entity has, the harder it becomes to fill them out
correctly without introducing faults.
The on-the-fly checker, when more parameters are detected than the limit specified
in the next field "The size the amount of parameters should not exceed" then triggers
one of the following behaviors: Ignore, Warning, Error.
The default setting is: Ignore.

• Report empty statement blocks
Empty statement blocks in the source code usually means, that the developer
planned to write some code there to handle some use cases, but forgot to finish it or
is right now in the process of finishing it.
The on-the-fly checker, when an empty statement block is detected, triggers one of
the following behaviors: Ignore, Warning, Error.
The default setting is: Ignore.

• Report statement blocks that have too many statements
If a statement block becomes very long it becomes hard to understand. Therefore,
long statement blocks should usually be refactored into several individual ones or
into individual functions that focus on a specific task.

Public

USER GUIDE

31 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

The on-the-fly checker, when more lines are detected in a block than the limit
specified in the next field "The size the amount of statements should not exceed"
then triggers one of the following behaviors: Ignore, Warning, Error.
The default setting is: Ignore.

• Report too big or too small shift and rotation sizes
If the on-the-fly checker detects too big (bigger than the string itself) or negative
rotation size then triggers one of the following behaviors: Ignore, Warning, Error.
The default setting is: Warning

• Report conditional statements without else block
The on-the-fly checker, when it detects that a conditional statement does not contain
an else block, triggers one of the following behaviors: Ignore, Warning, Error.
The default setting is: Ignore.

• Report setverdict without reason
The on-the-fly checker, when it detects that a setverdict does not contain a reason,
triggers one of the following behaviors: Ignore, Warning, Error.
The default setting is: Ignore.

• Report incorrect syntax in extension attributes.
According to the standard syntax errors in the extension attribute should not be
reported, but should be assumed as correct for some other tool.
The on-the-fly checker, when a syntax error is detected in an extension attribute,
triggers one of the following behaviors: Ignore, Warning, Error.
The default setting is: Error.

The on-the-fly checker is described in detail in section 7.6.

Note: changing these preferences will trigger a full re-checking of the projects already
checked (when the changes are applied).

3.11.1 Pitfalls

The detection of unused module importations and definitions is based on the semantic
analyzes done on-the-fly. As that is not yet a full semantic analyzes, these feature can
also produce only heuristic behavior.

For example, every importation / definition will be reported unused, if it is not used by
the semantic analyzer. This sadly does not mean that they are actually not used, but on
the contrary it means that every importation / definition not marked is sure to be used.
However this also means that if there are any unused importations / definitions in the
project they will be contained in this list, thus considerably reducing every effort needed
to find them.

Public

USER GUIDE

32 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

3.12 Naming Conventions

Figure 21 Workspace level naming convention settings

Usually it is preferred to follow a given naming convention in a project/environment as it
decreases the maintenance cost of source code, by making it easier to understand for
every developer working on it. These naming conventions can be configured on this
page for the on-the-fly checker to use.

Note 1: These options can be overridden on project and folder level.

Note 2: It is suggested to switch off checking the naming convention because it
significantly decreases the speed of the analysis. It should be switched on only at code
cleaning.

The naming conventions are grouped into sections.

The last section, the "other naming rules", is not self-explanatory therefore it is explained
below.

Section "Other naming rules":

• Report if the name of the module is mentioned in the name of the definition
Definitions can be referenced in the modulename.identifier format, in order to avoid a

Public

USER GUIDE

33 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

name collision. Adding the module name to the definition is unnecessary, this only
makes it longer.
The on-the-fly checker, when it detects that a definition contains its module name,
triggers one of the following behaviors: Ignore, Warning, Error.
The default setting is: Ignore.

• Report visibility settings mentioned in the name of definitions
Visibility attributes should not be mentioned in the names of the definitions. They
should be explicitly set as visibility attributes of the definition.
The on-the-fly checker, when it detects that a definition contains a visibility attribute
(private, public, friend), triggers one of the following behaviors: Ignore, Warning,
Error.
The default setting is: Ignore.

3.13 Syntax Coloring Preferences

Figure 22 Syntax coloring preferences 1

On the Syntax coloring page, the syntax coloring preferences of the editors can be set.
To change the color scheme of an element, the element must be selected in the middle
pane. To find the right element, click the + sign next to the appropriate group. The
following groups have been defined:

• General
the settings of these elements are applied in every editor. The coloring of text,
comments and strings can be set here.

• ASN.1 specific
the settings of these elements are applied in the ASN.1 editor. Colors of ASN.1
specific elements are determined here.

Public

USER GUIDE

34 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

• Configuration specific
the settings applied to these elements are valid for the Configuration editor. Colors of
configuration specific elements are set here.

• TTCN-3 specific
the settings of these elements are applied in the TTCN-3, TTCNPP and TTCNIN
editors. Colors of TTCN-3 specific elements and preprocessor tokens are chosen
here.

The elements are only enabled if there is a node selected in the tree displayed on the
middle pane. The elements are disabled if a branch is selected.

The actual attributes assigned to the selected elements are always shown (and can be
modified) on the upper half of the right pane as follows:

• foreground color
This option sets the color used for displaying characters.

• background color
This option sets the character background color.

• use background color
This option enables background color.
If this is disabled, the background color of the general text editor will be used instead
of the selected one.

• bold
This option sets the style of the text to be bold.
If this is disabled, the normal text will be used.

The lower half of the right pane, if a node is selected, shows either the words that are
affected by the color scheme or an example text.

Public

USER GUIDE

35 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 23 Syntax coloring preferences 2

To apply the new syntax color scheme, press the Apply or the OK button. Active editors
are instantly adapting the changes in the color scheme.

The Restore Defaults button restores every setting to its default value.

3.14 TITAN Actions

Figure 24 TITAN Actions preferences

On the TITAN Actions page the preferences of the external actions can be set. These
options are available on this page (see the figure above):

• Process build excluded resources too
if this option is set the external actions will also operate in resources that were
excluded from the build process.
The option is CHECKED by default.

• Default as omit
if this options is set default values in ASN.1 structures will be handled as omitted
ones. Please note that this is only useful in a few protocols.
The option is UNCHECKED by default.

Public

USER GUIDE

36 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

3.15 Typing Preferences

Figure 25 Typing preferences

The Typing page (above) is used to configure the automatic behavior during typing in
supported editors. The variable parameters are divided into two groups.

The first group deals with automatic bracket insertion. For the last three items a checked
box means that, as soon as the user types the opening bracket, the corresponding
closing bracket will be automatically inserted. The cursor will be placed between the two
brackets. This automatism can be invoked for three types of brackets: (parentheses),

[square brackets] and {curly brackets}.

For apostrophe it is somewhat different. In this case if there is some text selected when
the user types an apostrophe, its pair will not be inserted right after, but rather on the
other side of the selection, effectively enclosing the selected region. If there is an
alphabetical character right before or after the cursor only one apostrophe is inserted. In
other cases, the closing apostrophe is inserted automatically after the one typed.

The second group contains only one box for controlling new line insertion. A checked
box has the following effect: if the user hits Enter between two curly brackets, the cursor
will be moved to the next line and the closing bracket even further, to the second line.
This way an empty line is formed with an opening bracket above and a closing bracket
below it. The cursor will be placed on the empty line.

By default, all boxes are checked.

Public

USER GUIDE

37 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4 Managing Projects

In the TITAN Designer plug-in, you work with projects. A project usually represents the
complex procedure of developing a test suite and creating the executable from this test
suite.

To manage these projects, it is advised to use the Project Explorer view provided by
Eclipse. Other views, like the Navigator view, can also be used; however, beginners
shall take special care as those views might provide completely different data. For
example, by default the Project Explorer does not show the .TITAN_properties file,

while the Navigator view does. The role of the .TITAN_properties will be explained

later in section 4.8.

For advanced users it is advised to take also a look on the other navigators, as they
might be better in solving some minor problems.

Projects that are handled by the TITAN Designer plug-in will be referred to as TITAN
projects although in the Eclipse terminology they should be called TITAN natured
projects. More information on natures can be found in the Eclipse documentation.

4.1 Creating a New Project

Using the TITAN Designer, new TITAN projects can be created following these three
steps:

1 Select File / New / TITAN Project... from the main menu (Figure 26).
(The corresponding TITAN shortcut must be enabled, see section 2.3.)

Figure 26 New resources menu

2 Enter project name and location (see Figure 27).
By default, the project will be created in the directory of the workbench. It is not
recommended to select a path that contains special characters (like the spaces in
“Documents and Settings”).

Public

USER GUIDE

38 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 27 First page of the new TITAN Project wizard

1 At this point you can either select either Finish or Next.

If you select Finish, the new TITAN project will be created immediately.

If you select Next, you can customize some project properties (see Figure 28):
the name of the folder containing the sources, and the name of the working
directory (containing the generated binaries).
In case the project to be created will need a long time to set up, before it can
be used it is possible to set that the source folder should be generated as
excluded from build.

Public

USER GUIDE

39 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 28 Second page of the new TITAN Project wizard

The final project is only created when you select Finish.

Now the new TITAN project (called project1 on the figures) and the two directories

are created and are listed in the Project Explorer (Figure 29). The TITAN logo is
displayed to the left of the project name (provided that the TITAN decorator is enabled,
see section 2.4). TITAN projects will generally be decorated like this.

Figure 29 Example created project

The projects created with this wizard differ from other “General” projects in that the
TITAN nature and the TITAN builder (responsible for building the executable) are
automatically set on them.

Once the new project is created the property page of that project will be displayed, so
that it can be configured immediately. For more information on project properties please
refer to section 4.4.

4.2 Adding Directories to the Project

Directories can be added to projects in the following way: right click the project where
the directory should be added to and select New / Folder (Figure 30).

Public

USER GUIDE

40 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 30 New / folder menu

In the New Folder window (Figure 31) there is a possibility to set:

• where the new folder will be placed;

• how the new folder will be called;

• whether the folder is a virtual folder (“Folder is not located in the file system (Virtual
Folder)” see Eclipse general documentation)

• whether only a link to an existing folder will be established (“Link to alternate location
(Linked Folder)”)
(This will appear in the Project Explorer just like a normal folder, but is actually a link
to a folder). Note: linked folders are handled entirely by Eclipse; no additional
resource will be placed in the projects directory.

Public

USER GUIDE

41 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 31: New folder window

Once the new folder created, you shall see something like shown on Figure 32 (without
the filename file1.ttcn).

Figure 32 New file created

Public

USER GUIDE

42 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4.3 Adding Files to the Project

There are two ways to add files to a project. The first one, using wizards, is the
recommended way to do it.

4.3.1 Using Wizards to Add Files to the Project

Wizards are available to create some of the TITAN modules1 (TTCN-3, ASN.1 and
Configuration files). This functionality is reached by selecting File / New (see Figure 26
above).

In the Project Explorer view, the wizards ”TTCN-3 Module”, ”ASN.1 Module” and
”Configuration file” can be reached by right clicking the content area and selecting New
/ Other... .

In the example below, the “TTCN-3 Module” wizard is shown. The wizard is launched by
selecting File / New / TTCN3 Module.

1 The terms “modules” and “files” are used interchangeably in this section.

Public

USER GUIDE

43 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 33 First page of the New TTCN3 Module wizard

On the first page of the wizard (Figure 33) the correctness of the new module name is
verified. The file extension is checked against the type of module being created. If the
extension is not set, it is automatically appended when the file is created (the defaults
are: ttcn, asn and cfg for the respective wizards). The on-the-fly checker, if it has

enough data collected, verifies that a module name is unique in the project (right now
this only works for TTCN-3 modules).

On the second page of the wizard there is a checkbox and a combo box:

Public

USER GUIDE

44 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 34 Second page of the New TTCN3 Module wizard

• Generate as excluded from build.
If this checkbox is selected the file to be created is excluded from the build;
that is, the build system will not try to build it instantly. It is advised to create
new modules with this option turned on to avoid build errors until the code
logic is complete.

• Generate with module with this content
This Combo box contains three options: Empty module name, Module name
and empty body and Module skeleton. As the names suggest, the generated
file will contain empty module or module containing only module name and
empty body or a module skeleton.

Note 1: Configuration files may also be created with a skeleton.
Note 2: the filename will be used as the module name in the inserted module.

4.3.2 Manually Adding Files to the Project

Manual file addition has moderate means to set file properties compared to the wizard
(section 4.3.1). On the other hand, some files can only be inserted into projects
manually; namely the following way: right click on the project where the file should be
included and select New / File (see Figure 30 above).

On the New File window (Figure 35) there is a possibility to set:

• where the new file should be placed;

• how the new file will be called;

Public

USER GUIDE

45 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

• whether only a link to an existing file will be established.
(This will appear in the Project Explorer just like a normal file, but is actually a link to
a file). Note: linked files are fully handled by Eclipse; no additional resource will be
placed in the projects directory.

Figure 35 New file

Once the file created, you should see something like shown on Figure 32. You have
created a project, added a folder and a file to it.

Note: files handled by the TITAN Designer plug-in also have the TITAN moon to the left
of their names, just like projects do. Decorators used by TITAN Designer are described
in section 2.4.

Public

USER GUIDE

46 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4.4 Setting Project Properties

Project properties for local and remote build are set in two separate windows.

4.4.1 Build Configurations

Our projects support to have several “build configurations” or “sets of build settings”.
This means that it is possible to create sets of build settings, which can be switched to in
an easy and consistent way (Figure 37).

One excellent usage tip would be, to have “Development” and “Release” modes for
projects. Debug could have settings tuned for very fast compilation, at the expense of
generating slowly executing code: This way development could be sped up considerably
while only loosing features not relevant at development time. Release mode could be
fine-tuned for runtime performance, at the cost of increase in build times. This way once
the development is over, and the product is ready to be tested/investigated/used, the
build system could be set to use the most aggressive optimization methods available.

Changing the active build configuration is available on all project preference pages, in
the upper part of the window, as seen on Figure 37.

Using the drop-down control, one can select and switch to any already existing build
configuration created for the actual project.

Pushing the Manage Configurations button a new window will pop-up.

Figure 36 Manage configurations

On this window it is possible to create new configurations, delete existing ones, or
simply rename one.

Note 1: Even though the settings of the Default configuration can be changed it cannot
be deleted or renamed, the existence of this configuration is needed to be forward
compatible with older versions of our tools.

Note 2: The build configuration name cannot contain whitespace character.

Public

USER GUIDE

47 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Note 3: The visible build configuration settings always refer to the active build
configuration. To change a build configuration at first it shall be selected as active
configuration, then some of the settings described below shall be modified then the
settings shall be saved by pushing the button “Apply” or “OK”.

4.4.2 Setting the Local Build Properties of a Project

To set the project properties for local build first right click the project and select
Properties then select TITAN Project Property (Figure 37).

On the main window two options can be set:

• Automatic Makefile management
configures the TITAN Designer to automatically manage the Makefile (see Figure

37).
Note: disabling the automatic Makefile management makes it the users’

responsibility to update the file when it is needed. In case it is unchecked, the
buttons on the Makefile creation attributes tab and on the Internal makefile
creation attributes tab will be disabled;
Default: selected.

• Generate the Makefile using Eclipse internal Makefile generator
configures the TITAN Designer to use its own Makefile generator instead of the

one provided by TITAN;
Default: selected

• Don’t use symbolic links in the build process
configure the internal Makefile generator and the builder to drive the build process in
a way that does not requires the creation of symbolic links.
Please note that this option requires the internal Makefile generation option to be
set;
Default: selected.

Public

USER GUIDE

48 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 37 Makefile creation attributes

4.4.2.1 The Makefile Creation Attributes tab

Information from the Makefile creation attributes tab (Figure 37) is transferred to the
Makefile generator program. The options of the Makefile generator are described in

the TITAN Programmer’s Technical Reference [4].

The following Makefile creation attributes are set on this tab:

• Use absolute pathnames in the Makefile
Specifies whether the generated Makefile should contain absolute or relative

pathnames.
Default: not selected.

• Generate Makefile for GNU make
If checked, a GNU Makefile will be generated during the building process.

The gnu make utility can handle complex Makefile that the Solaris make cannot.

Default: selected.

• Generate Makefile with incrementally refreshing dependency
If checked and GNU make style Makefile generation is also set, the generated
Makefile will use GCC’s dependency tracking instead of makedepend. For more

Public

USER GUIDE

49 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

information, please refer section 6.1.5.
Default: selected.

• Link dynamically
If checked, all files of the project will be compiled with –fPIC and for each (static)

object, a new shared object will be created. Then, these shared objects will be linked
to the final executable instead of the (static) objects. For more information, pros and
cons etc. consult the TITAN Programmer’s Technical Reference [4].
Default: not selected.

• Generate Makefile for use with the function test runtime
Titan has two runtime environments: one for function testing and one for load testing.
The function test runtime provides more runtime checks and supports some specific
features, like the negative testing feature, that is not available in the load test
runtime. Therefore, for projects aiming functional testing, it is also advised to check
the "generate Makefile for use with the function test runtime" checkbox.
Default: not selected

Note: all dependent projects ("Project References" in Eclipse's term) shall use the
same Titan runtime.

• Generate Makefile for single mode
If checked, the executable will be built for single mode execution. Only one test
component is allowed in single test mode. In parallel mode, on the other hand,
several components can be used.
Default: not selected.

• Code splitting
Configures how the generated code should be organized: none, type, number.
By default it is set to be: none.

• Default target
Configures the default target of the generated Makefile:
 - Executable: Executable test suite
 - Library: Library archive

• Name of the target executable
The path of the executable to be built including the name of the file. This setting will
be written into the Makefile generated by the builder and will also be used for

execution. If it is not set, the executable will be generated in the working directory
having the name of the project.

Public

USER GUIDE

50 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4.4.2.2 The Internal Makefile Creation Attributes Tab

Figure 38 Internal makefile creation attributes

On the Internal makefile creation attributes tab the options to be generated into the
Makefile can be set. To change the value of an element it must be selected.

Depending on the element selected on the left side, the right hand side of the tab will
contain different options.

1) TTCN-3 Preprocessor

Figure 39 TTCN-3 preprocessor

On the TTCN-3 Preprocessor page it is possible to specify the preprocessor tool used to
pre-process the .ttcnpp and .ttcnin.

This will be applied to the CPP macro.
By default it is set to be: cpp

The pre-processing of .ttcnpp and .ttcnin files is the very first step of the build process,
as the compiler is not able to analyze these file formats.

Public

USER GUIDE

51 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

2) TTCN-3 Preprocessor Symbols

Figure 40 TTCN-3 Preprocessor symbols

On the symbols page it is possible to specify the list of symbols that should be defined
and the list of symbols that should be undefined when the TTCN-3 pre-processor tool is
executed.

These lists of options are applied to the CPPFLAGS_TTCN3 macro (only present if pre-
processable files are used in the project).
By default both lists are empty.

3) TTCN-3 Preprocessor Included Directories

Figure 41 TTCN-3 Preprocessor include directories

On the included directories page, it is possible to specify the list of directories where the
TTCN-3 pre-processor can look for included files.

Public

USER GUIDE

52 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

The list of options is applied to the CPPFLAGS_TTCN3 macro (only present if pre-
processable files are used in the project).
By default the list is empty.

4) TITAN Flags

Figure 42 TITAN Flags

On the TITAN flags page, it is possible to specify the flags TITAN should be called with
when compiling the TTCN-3 and ASN.1 files.

The options will be applied to the COMPILER_FLAGS macro.
By default only the Include source line info in C++ code and add source line info for
logging options are set.

Please note that the flag responsible for function or load test runtime generation is not
set here, but on the Makefile creation attributes (as that flag is handled by the Eclipse

external makefile generator too).

For more information on the meanings of these options please refer to section 5.1 of the
Programmer’s Technical Reference guide.

Public

USER GUIDE

53 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

5) Preprocessor

Figure 43 Preprocessor

The Preprocessor page only functions as reminder to the fact, that the generated
Makefile uses the same tool for pre-processing the .ttcnpp, .ttcnin and C/C++ files.

6) Preprocessor Symbols

Figure 44 Preprocessor symbols

On the preprocessor symbols page, it is possible to specify the list of symbols that
should be defined and the list of symbols that should be undefined when the C/C++ pre-
processor tool is executed.

These lists of options are applied to the CPPFLAGS macro.
By default both lists are empty.

Please note that there are a few symbols that are not displayed here, but are generated
into the Makefile. These symbols are required for proper operation.

Public

USER GUIDE

54 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

7) Preprocessor Included Directories

Figure 45 Preprocessor include directories

On the included directories page, it is possible to specify the list of directories where the
C/C++ pre-processor can look for included files.

The list of options is applied to the CPPFLAGS macro.
By default the list is empty.

Please note that some directories (like the include directory of TITAN) are not displayed
here, but are generated into the Makefile. They are required for proper operation.

8) C/C++ Compiler

Figure 46 C/C++ compiler

A C/C++ compiler tool used to process the generated and the user provided C/C++ files
can be specified on the C/C++ compiler page.

This will be applied to the CXX macro.
By default it is set to be: g++

Public

USER GUIDE

55 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

9) C/C++ Compiler Optimization

Figure 47 C/C++ compiler optimization

The C/C++ compiler optimization page allows the specification of optimization options
for C/C++ compiler.

The optimization level option can be: none, minor optimizations, common optimizations,
optimize for speed, optimize for size.
By default it is set to: common optimizations.

The other optimization flags option allows the specification of any user defined
optimization flag that is supported by the C/C++ compiler.

Both options will be applied the CXXFLAGS macro.

Please note that the –Wall option is not displayed here, but is generated into the
Makefile. It is required for proper operation.

For more information on the optimization flags please refer to the documentation of your
C/C++ compiler. In case of the default C/C++ compiler g++ is the manual pages of g++
(invoked with the man g++ command line command).

10) Platform Specific Libraries

Public

USER GUIDE

56 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 48 Platform specific libraries

On the platform specific libraries pages it is possible to specify the list of platform
specific libraries that are needed to build the final executable for each supported
platform.

The list of platform specific libraries is applied to the SOLARIS_LIB, SOLARIS8_LIBS,
LINUX_LIBS, FREEBSD_LIBS and WIN32_LIBS macros respectively.
By default all lists are empty.

Please note that some libraries are not displayed here, but are generated into the
Makefile. These are required for proper operation on the above platforms.

11) Linker

Figure 49 Linker

The Linker page only functions as reminder to the fact, that the generated Makefile

uses the same tool for compiling C/C++ sources and linking the generated object files.

Public

USER GUIDE

57 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

12) Linker Libraries

Figure 50 Linker libraries

On the linker libraries page it is possible to specify

• additional object files,

• the list of platform independent libraries (-l switch) and

• library search path (-L switch)

that are needed by the linker to produce a valid executable.

These lists of options are generated directly into the command responsible for creating
the final executable.
By default the lists are empty.

Note: In list of the library search paths (-L), environment variables can be used. If the
form [MYVAR] or ${MYVAR} is used, the value of [MYVAR] or ${MYVAR} will be
resolved, if it is possible, while generating Makefile. Any other form will be regarded as a
path relative to the project folder and will be prefixed with the project path.

In order for the generated Makefile to work and the project to compile properly there

are some libraries and search locations not displayed here, but generated into the
Makefile.

Public

USER GUIDE

58 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

If the Disable the entries of the predefined libraries option is selected only the search
paths related to TTCN3_DIR will be generated, all other libraries and search paths are
left out of the generated Makefile. For example, in the generated Makefile, lines

OPENSSL_DIR = $(TTCN3_DIR)

XMLDIR = $(TTCN3_DIR)

will be commented out and their usage will be omitted.

By default, this option is not selected.

13) Linker Options

Figure 51 Linker Options

On the page "Linker Options" you can select different linker options. These will be added
to the value of LDFLAGS in the Makefile.

Public

USER GUIDE

59 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

The first option is to use the GNU "gold" linker instead of the regular one. If it is selected
the text "-fuse-ld=gold" will be added to the value of LDFLAGS.

The second option is a free text. It also will be added to the value of LDFLAGS without
any checking. Use it carefully!

4.4.2.3 The Make Attributes Tab

Figure 52 Make attributes

On the Make attributes tab (Figure 52) the following attributes are set:

• The path to the Makefile updater script
Points out a shell script that will be run to modify to the generated Makefile. The

field is checked for validity: if not empty, it must point to an existing file.

• Build level
Specifies the project build level. For more information, please refer to chapter 4.15.

• Make flags
Specifies the make command suffixes.

• Working directory
specifies a directory used by the build operations: symbolic links and generated files
will be placed in this directory. This field is checked for validity.

In our resource based project representation it is impossible to tell which files are source
files and which ones are generated files. For this reason, we assume that every file in
the working directory is a generated file and every file outside the working directory is a
source file (if it is not excluded from build). For this reason, the user is forced to set a
working directory, or otherwise we wouldn’t know which files to build.

Public

USER GUIDE

60 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Note: if the provided directories are in the project, either as actual directories or linked
folders, the generated files can be seen from the workbench.

4.4.3 Setting Project and Folder Level Naming Convention Settings

Figure 53 Project level naming convention settings

On the project and folder level it is possible to override the general workspace level
naming conventions. This option can be used to further constrain the naming
conventions, for example to include some project specific constants.

Public

USER GUIDE

61 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 54 Folder level naming convention settings

These are same options that are available as on the workspace level.

The overriding rules are evaluated in the following order:

1 We start from the folder immediately containing the module in question.

2 We walk search the folder hierarchy upwards to the project either till we find a
folder that overrides the naming conventions or till we reach the project.

3 If the folder overrides the naming conventions, we use the settings found there.

4 If we reached the project and it overrides the naming conventions, we use the
settings found there.

5 If we reached the project, but even the project itself is not overriding the naming
conventions we will use the workspace level settings.

Note: It is suggested to switch off checking the naming convention because it
significantly decreases the speed of the analysis. It should be switched only on at code
cleaning.

Public

USER GUIDE

62 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4.4.4 Setting Requirements on the Configuration of Referenced Projects

Figure 55 Requirements on the actual configuration of referenced projects

On this page it is possible to set for each project, directly referenced by the actual one, a
requirement on its actual configuration. If the actual configuration on the given project is
not the same as the required one it will cause a build error.
This way it is possible to have fairly large project hierarchies, while still being able to
consistently support build configuration for each project.

To change the requirement for a project either select it in the list and click on the Edit…
button, or double click on it in the list.

On the window that pops up (Figure 56) it will be possible to select a configuration, from
all of the configurations configured for the selected project.

Figure 56 Configuration requirement selection window for project1.

Please note that both in the list and on the requirement selection window the “<No
requirement>” option is displayed if there is no requirement set for that given project at
this time. If you wish to disable a previously set requirement, you have to select this
option.

Public

USER GUIDE

63 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4.4.5 Setting the Remote Build Properties of a Project

Remote build enables building of source codes:

• on several different machines;

• on several platforms;

• in several different directories;

• with several different build settings;

• using all of the above possibilities at the same time.

Figure 57 Remote build attributes

On this property page one or more hosts can be chosen to build the project remotely.
The modalities of the remote build process on these hosts are also set.

To set the project properties for remote build first right click the project and select
Properties than select Remote build on the left pane (Figure 57). (If Remote build is

missing from the left pane, left click the ⊞ sign next to the TITAN Project Property; see

Figure 52.)

The checkbox Execute the build commands in parallel controls how the provided
build commands should be executed.

• If this option is NOT CHECKED (this is the default), the build commands will be
executed serially, that is, one by one.

Public

USER GUIDE

64 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

• If this option is CHECKED, the build command will be executed in a parallel fashion,
meaning that each execution will start at the same time.

Note: the majority of the build systems requires exclusive access to the intermediate
files (this is the reason why NOT SET is the default), otherwise the build process might
become corrupted (this can happen for example when an intermediate file built with
GCC 3.4 and another built with GCC 4.0 is linked together).

Remote build hosts have three attributes:

• Active
This attribute indicates whether the host should be included in the next remote build
session or not.

• Name
This attribute shows the name of the host. It is only used to provide feedback to the
user about the progress of the build processes. It doesn’t need to be unique.

• Command
This attribute contains part of the command that will be executed in the remote build
process. The string inserted will be prefixed with sh –c before executing it. The

default attribute content is rsh <[user@]hostname> -n 'cd <working

directory>; make dep; make', and the string inserted must follow this pattern.

The user can control the build hosts using the buttons to the right from the table.

The New... button is used to create a new remote build host. It brings up the remote
build host configuration window (Figure 58), where the properties of the new build host
can be set. The new build host will be added to the end of the list of build hosts. Host
creation can be cancelled by pressing the Cancel button, while the new host data is
validated by pressing the OK button.

Figure 58 Remote build attributes of a host

The Edit... button is used to edit the attributes of an existing remote build host. Before
pressing the button, the host to be edited must be selected from the table. By pressing
the button, the remote build host configuration window (Figure 58) will appear, showing
with the current properties of the selected host. Changes made to the host can be
revoked by pressing the Cancel button, while modifying the host is done by pressing the
OK button.

Public

USER GUIDE

65 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

The Copy... button is used to create a copy of an already existing host. Pressing this
button will create an exact copy of the currently selected host. This way of creating a
new host can be beneficial for example when the build command of the new host only
slightly differs from the build command of the source host. Copying is abandoned by
pressing the Cancel button, while it is confirmed by pressing the OK button.

The Remove... button is used to remove an existing host from list of remote build hosts.
The command is abandoned by pressing the Cancel button, while it is confirmed by
pressing the OK button.

Note: the saving of every change done on this page is validated by pressing the Apply
or OK buttons at the bottom on the property page (Figure 57).

4.4.5.1 Pitfalls

In case the rsh command is not present one should use the ssh command instead. In
this case the default command to start from should be: ssh –n <[user@]hostname>
'cd <working directory>; make dep; make'

As there is no way to enter a password when logging in to a remote machine, it is of
crucial importance to set the login mechanism of the remote machine, to not require a
password on login.

4.5 Excluding Files and Folders from the Build Process

A file or a folder excluded from the build process won’t be placed into the generated
Makefile. For this reason, once an exclusion or inclusion has taken place, the

Makefile and the symbolic links are updated (provided that automatic Makefile

management is enabled for the project).

Excluding a folder from the build process also means that every file and subfolder
contained in that folder will be excluded, too.

If a file or folder is excluded from build, its name is decorated with the string
[excluded], provided that TITAN decoration is enabled (see section 2.4).

Figure 59 Excluded from build

Public

USER GUIDE

66 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4.5.1 Excluding a File from the Build Process

A file can be excluded from build or included in the build in two different ways described
below. Note, however, that there are some special files that can never be included into
the build. In Eclipse these are project related plug-in resources, which by convention
never have a name, just an extension, for example .TITAN_properties. Such files

(that don’t have a name), are always excluded from build, no matter how their property
is set.

To access File properties (the first alternative): right click the file and select Properties.
On the Properties for ... window, select TITAN File Property. Here the exclusion state
of the file can be set via ticking the Excluded from build box.

Figure 60 TITAN file property

To access the Pop-up menu (the second alternative), right click the file and select
TITAN / Toggle exclude from build state. This method has the advantage that the
exclusion state of several selected files can be changed all at once.

Figure 61 Toggle exclude from build menu

4.5.2 Excluding a Folder from the Build Process

A folder can be excluded from build or included in the build in two different ways
described below. Note, however, that there are some special folders that can never be
included into the build. In Eclipse by convention folders having a name which starts with
a . (dot) are used for storing special files or folders, that one or more plug-ins might

temporarily create. Such folders and for this reason their whole content is always
excluded from build, no matter how their property is set.

Public

USER GUIDE

67 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

To access Folder properties (the first alternative), right click the folder and select
Properties. On the Properties for ... window, select TITAN Folder Property. Here the
exclusion state of the folder can be set via ticking the Excluded from build box. (The
other checkbox, Folder is in central storage, is described in section 4.6.)

Figure 62 TITAN folder property

To access the Pop-up menu (the second alternative), right click the folder and select
TITAN / Toggle exclude from build state. This method has the advantage that the
exclusion state of several selected folders can be changed all at once (see Figure 61
above).

4.6 Converting a Folder into a Central Storage

A folder marked as Central Storage is assumed to have its own Makefile. For this

reason, when this property of a directory is toggled, the Makefile and the symbolic

links are updated (provided that automatic Makefile management is enabled for the

project). For description of the Central Storage concept, please to refer to the TITAN
User Guide ([3]), section 11. 3. 1.

A directory’s Central storage property can be toggled the following way:

Right click on the folder, select Properties and in the Properties for ... window click
TITAN Folder Property. Here the central storage state of the folder can be toggled via
ticking the Folder is in central storage button (Figure 62).

4.7 Opening and Closing Projects

A closed project cannot be edited; even its contents are hidden. This is useful to
decrease memory occupation and computational load: a closed project does not use
any resources.

In Eclipse, projects can be opened and closed by right clicking the project and
selecting open project respective close project.

Public

USER GUIDE

68 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4.8 Saving and Loading Project Properties

There is no need to save or load the project properties file, as this is done automatically.
When files or folders are added or removed, or their properties are changed, the TITAN
Designer plug-in automatically saves the new properties into the .TITAN_properties

file, which always resides in the root directory of the project. When the content of this file
is edited and saved, or when the TITAN Designer plug-in starts up noticing that files
were changed while it was not active, then it automatically loads the file’s contents and
modifies the resources properties accordingly.

Besides the obvious use this is useful if more people are working on the same project.
Someone updates the properties of the resources and sends the file to the others; when
the recipients save the file the properties of their resources will be updated
automatically.

4.9 Importing and Exporting Projects

Importing and exporting projects can be done in many ways in Eclipse. Out of those 3
will be shown in detail: a native way, one using the TITAN project descriptor format, and
a way to import project from the old mctr_gui format.

It is important to turn off automatic building and to refresh the project before importing
and exporting. Because of the changing nature of the projects, it can be expected that
there will always be files which are out of synchrony with the file system. Importing and
exporting can only be done if every file in the project is in synchrony with their file
system counterparts.

Note: exporting and importing without archiving is almost exactly the same.

The following steps should be done before exporting a project:

1 Automatic building should be turned off, so that further operations will not invoke
any build related functionality.

2 Optionally the project should be cleaned to reduce the size of the exported data.

3 The project should be refreshed (right click the project and select Refresh), to
synchronize the files and the file system.

4.9.1 Exporting Projects in Native Format

To export a project using a native way, for example into an archive file, follow the steps
described below:

1 Right click the project to be exported and select Export.

Public

USER GUIDE

69 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 63 Export menu

Public

USER GUIDE

70 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

2 On the Export window select General / Archive File and press Next.

Figure 64 Export common dialog

3 Fill in the fields in the Export Archive file wizard. Note: it is advised to export
every file related to the project, and also to export only those files in the archive
which belong to the project.

Public

USER GUIDE

71 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 65 Export Archive file wizard

Please note that this will export the whole project: not just the information on settings,
but also the files and folders themselves.

4.9.2 Importing Projects from Native Format

To import a project from a native format, for example an archive file, follow the steps
described below:

1 Right click somewhere in Project Explorer and select Import, as shown on
Figure 63 above.

Public

USER GUIDE

72 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

2 On the Import window select General / Existing Projects into Workspace and
press next (below).

Figure 66 Import common dialog

Public

USER GUIDE

73 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

3 In the Import Projects wizard select the archive to import from. Eclipse will list
the projects the archive contains. Select one or more of them and press Finish.

Figure 67 Import Archive file wizard

4.9.3 Importing an Existing mctr_gui Project

To import a project from an existing mctr_gui project file follow the steps described
below:

1 Right click somewhere in Project Explorer and select Import, as shown on
Figure 63.

Public

USER GUIDE

74 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

2 On the Import window select TITAN / Project from .prj file and press next
(below).

Figure 68 Import from .prj file

Public

USER GUIDE

75 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

3 On the Import new TITAN Project from .prj file wizard select the original
project file to import from and press Next.

Figure 69 Import new TITAN Project from .prj file

4 Select the name and location of the new project to be created.

Figure 70 Name of the new project

Public

USER GUIDE

76 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 71 Create the included projects automatically

5 On the last page of the wizard it is possible to select whether included projects
(if any exists) should be imported automatically or not.

The wizard will now create the new project, populate it with the files referring to the ones
provided by the mctr_gui project file and set all options for the project which can be
transferred.

For more information on how the project is converted to this format please refer to
section 5.3.

4.9.4 Importing Files as Linked Resources

Linked resources are files and folders which are not physically copied into the Eclipse
workspace nor linked as soft or hard linked there (at least not into the source folder just
later into the build folder under the building process). Linked resources are stored
primarily internally in the Eclipse. When linked resources are modified, the original files
will be modified. This is the most useful ttcn source file handling method.

To import folders and files as “linked resources” follow the steps described below.

1 Create an empty project without src subfolder according to section 4.1. The project
name should be the same as the name of the project to be imported.

2 Right click on the project name and select Import, as shown on Figure 63 above. On
the Import window select General / File System and press Next as shown on
below.

Public

USER GUIDE

77 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

3 In The Import File system dialog select Browse near to field “From directory” (as
seen below) then find and select the src folder of the project to be imported.

Public

USER GUIDE

78 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4 Click on the button “Advanced>>>” in the “Import file system” dialog, select the
options “Create link in workspace” an unselect options “create virtual folders”
and “create link locations relative to:” as shown on below.

Public

USER GUIDE

79 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

5 Push Finish. The src folder appears under the project name in the Project Explorer
as linked resource (the icon before the src contains a little link arrow) as shown
below.

Public

USER GUIDE

80 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4.9.5 Exporting Projects into the TITAN Project Descriptor (tpd) Format

Exporting only project information into TITAN project Descriptor (tpd) format can be
performed manually or automatically.

4.9.5.1 Exporting Project manually into the TITAN Project Descriptor (tpd) Format

To export the project information into a tpd file, follow the steps described below:

1 Right click on the project to be exported and select Export (Figure 63).

2 On the Export window select TITAN / TITAN project settings and press Next.

Public

USER GUIDE

81 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 72 Export to TITAN project descriptor.

3 Select the file where the information should be exported to, and press Next.

Public

USER GUIDE

82 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 73 File selection page

4 On the options page fine tune the amount of data to be exported and press
Finish.

Public

USER GUIDE

83 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 74 Export options

The available options are:

• Do not generate information on the contents of the working directory:
If the working directory is visible inside Eclipse, inside the project, its contents are by
default also mentioned in the project description. As the working directory usually
contains only generated files, that can be reproduced later, this behavior is not
always desired.
Its default value is on.

• Do not generate information about resources whose name starts with a ‘.’:
In Eclipse this naming convention is used to signal that a resource stores some tool
specific options about the project. As such, from the point of view of TITAN, they are
not needed.
Its default value is on.

• Do not generate information on resources contained within linked resources:
In many cases such links are intentionally used to connect to an existing folder
whose content might change externally. For example, version handling of files can
also be done like that.
Please note, that it is recommended to use this feature with care: as there is not
much connection between the Eclipse internal resource system, and the file system,
the activation of this option can cause unexpected side effects.
Its default value is on.

Public

USER GUIDE

84 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

• Save default values:
By default we do not include any information on any option/setting in the descriptor
file, which has its default value as the actual one. This makes for a very compact
description, but in cases where all information needs to be saved, this might not be
ideal.
Its default value is off.
If it is switched on, the size of the tpd file is unnecessarily big. This is not a problem
but perhaps it is not so easy to analyze by the user.

• Pack all data of related projects:
Project references in Eclipse are a great way to structure one’s work into
manageable pieces. However, if one of those projects is not available, building the
whole set is not possible. For this reason, it is possible to save all information from
all required projects into one project descriptor.
Its default value is off.

• Export tpdName attribute to referenced projects:
If this option is on, then the referenced projects will have a tpdName attribute. The

value of the tpdName attribute by default is the project’s name and the .tpd suffix. If

the referenced project had a tpdName attribute during the import, then that value will

be stored.
By default this option is on, if the project was imported from a tpd file using –I

switches.

The default settings can be changed under Window / Preferences / TITAN
Preferences / Export (see chapter 3.5 Export).

For more information, related to this file format, please refer to section 8 of the
Programmer’s Technical Reference guide.

4.9.5.2 Exporting Projects automatically into the TITAN Project Descriptor (tpd) Format

The automatic export of projects can be set on workspace level. The fine tuning of the
information can be set. It can be set to ask/request the location of the tpd file when the
first automatic save happens.

To export your projects automatically, follow the steps below:

1 Select Window / Preferences / TITAN Preferences / Export. An option dialog
appears (see Figure 14 Export options in chapter 3.5 Export).

2 Switch on the option "Refresh tpd file automatically".

3 Switch on the option "Request new location for the tpds at the first automatic save" if
your projects to be automatically saved have not been saved yet or if you want to
change the location of your tpds when importing them.

4 Optionally change the options in the group "Fine tune the amount of data saved
about the project" if it is necessary. (It is not suggested.)

Public

USER GUIDE

85 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

5 Press Apply or OK to save the settings.

4.9.6 Importing Projects from TITAN Project Descriptor Format

To import a project using an existing TITAN project descriptor file follow the steps
described below:

1 Right click somewhere in Project Explorer and select Import, as shown on
Figure 63.

2 On the Import window select TITAN / Project from new project file and press
Next (below).

Public

USER GUIDE

86 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 75 Import from project descriptor

3 On the Import new TITAN Project from .tpd file page select the original project
file to import from.
There is an optional field where search paths can be entered in the format of –

Ipath where path must be an absolute path. The mechanism of the –I flag is

described in the Referred project usage with –I switch in the TITAN Reference

guide see ref. [4].

4 Press Next.

Public

USER GUIDE

87 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

5 On the options page select how the importer should behave in certain situations.

Figure 76 Import options

Available options:

• Open the preference page for all imported sub projects:
By default the page where the project preferences can be configured is only
displayed for the top level project, referenced projects don’t trigger this mechanism.
However, if several projects are imported it can be useful to open this page for each
of them.

• Skip existing projects on import:
This is important when a project with a name, which is about to be loaded as a
referenced project, already exists in the workbench. By default, there will be no
warning, and the importation of that project will not take place.

Public

USER GUIDE

88 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4.9.7 Useful Tips for Exporting and Importing

4.9.7.1 Pitfalls

During the importation there might be several behaviors which might look strange at
first.
When importing a project description containing Eclipse path variables, we will ask
permission from the user to add new variables, or in case the variable exists with a
different value, override variables in his system.
However, if the project description does not store, or the user does not add the
necessary Eclipse path variable to his own system, this will not be treated as an error by
our tool. Instead either the platform, or any other tool trying to access a resource being
unavailable, will report this error.

If a project with the same name to be loaded already exists:

• If it is the top level project the user will be asked to change the name.

• If it is not the top level project the default is to silently ignore the import request,
as the project is already imported.

• If it is not the top level project and the user asked not to skip existing projects,
the name changing dialog will be displayed. Upon name change all references to
the new project will use the new name.

It is worth to mention, that in order to re-import a project from a project descriptor file, it
is required to first delete the actual project. It is not supported to overwrite the current
contents automatically.
As an example, in the mctr_gui the process of closing the user interface and re-opening
it while loading the same project, will load the newest version of the project description
(and if it is not saved it will also lose all intermediate changes). However, as the closing
of Eclipse does not change any state of the imported projects, after re-opening it, the
original project with the original settings will be present. In order to load the new
settings, the old project has to be explicitly removed from the working environment.

For more information, related to this file format, please refer to section 8 of the
Programmer’s Technical Reference guide.

4.9.7.2 Native Export and Import

If your projects contain absolute pathnames, the project can be natively exported and
then imported only if the places defined with their absolute paths are visible from the
new workspace. This is a strong requirement/restriction but it can be satisfied within the
same group or working environment. But in that case why should the project be
compressed, relocated and uncompressed?

4.9.7.3 Exporting and Importing Project Information and Projects via TPD Files in Case of
Complex Projects

All project information can be stored in TPD files as it is described in the previous
subchapters but not all way of working achieves portability. The next method is
applicable for projects of any complexity.

Public

USER GUIDE

89 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Terminology:

Source root folder or root folder is the folder which contains all source files of all
projects. For example, for ClearCase titan users it can be /vobs/ttcn/TCC_Releases.

Workspace is the Eclipse workspace. It is a folder containing Eclipse related project
information (and generally it can contain even source files).

Source project is a project of our complex project. It is stored in a subfolder of the
source root folder. The name of the source project is the name of its containing folder.

General requirements

1 The projects should be handled from bottom to top, precisely string from the projects
independent from any others.

2 The Eclipse workspace and the folders containing the project and the source code
shall be totally disjoint (they shall not have any common element).

Suppose that the source codes are created and hierarchically stored under the source
root folder. Follow the steps for each project of our complex project.

1 Create an empty project in the workspace with the same name as the source project
(see 4.1).

2 Import the src folder of the project as linked resources according to 4.9.4.

3 Fill in project properties according to 4.4.

4 Export project properties into tpd according to 4.9.5.
Note: The target place should be the folder of the original project where the project
was imported from.

5 Import the tpd file from the source project into the Eclipse project.

6 Export the project into tpd as in step 4.
Note: This way the new tpd will contain the information about itself. It is extremely
important if the whole set of project should be exported as a compressed file for
example to send to a test lab as a product or to the TITAN support to report a bug.

4.9.7.4 Exporting Project Content from Command Line Using TPDs

To export the content of whole project sets if each project has a tpd, follow the steps
described below. Unix environment is required.

1 Go to the folder of the top level source project.
Note: It is located in the source root folder not in the workspace!

2 Use this command from command line:

Public

USER GUIDE

90 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

ttcn3_makefilegen -V -P rootdir_to_split -t top_level_tpd.tpd

| xargs tar cfz my_target_tar.tgz

for example:

ttcn3_makefilegen -V -P

/home/ethbaat/DiameterApplib/Diameter_Applib_2013_03_01 -t

Libraries/EPTF_Applib_Diameter_CNL113521/EPTF_Applib_Diameter_

CNL113521.tpd | xargs tar cfz DiamAppLibTest.tar.gz

Note 1: The compressed file will contain the files in the same structure as they have
been stored in the source root directory.

Note 2: See more information about the command ttcn3_makefilegen in sections

6.1.2 and 6.1.3 in TITAN Programmer’s Technical Reference for TITAN TTCN-3 Test
Executor
2/198 17-CRL 113 200/6 Uen [4].

4.10 Formatting Log Files

To format a log file (one having log as extension) right click the file and select TITAN /
Format log.

Figure 77 Format log menu

This will produce a formatted log file in the very same directory, with the same name, but
having the extension formatted_log.

Please note that for the duration while the formatted log is being created progress
indication is provided in the Progress view.

4.11 Merging Log Files

To merge several log files (ones having log as extension) select them, and after right
clicking on one select TITAN / Format log.

Figure 78 Merge log menu

This will first ask for the file where the results have to be saved, processing the log files
will only start after a new or an existing files is selected.

Public

USER GUIDE

91 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Please note that for the duration while the formatted log is being created progress
indication is provided in the Progress view.

4.12 Using Project References

In Eclipse for the creation of a hierarchy of projects building on other projects we can
use project references (Figure 82).

When a project references another project, this means for Eclipse that all of the
resources of the referenced project are available for use in the referring project.
For example if Project_2 is referencing Project_1:

• All modules available in Project_1 can be used in Project_2 too (for importation, code
completion …).
For the on-the-fly toolset is will seem as if those modules were also part of
Project_2.

• The order in which Project_1 and Project_2 are built will always be handled
automatically:

• If Project_1 changes, Project_2 will be refreshed too.

• If Project_2 is built Project_1 will also be built, but only if it has also changed since
the last time it was built.

• When Project_2 is built, it will not attempt to build the modules from Project_1 again,
but rather use their already built form from the working directory of Project_1.

Please note that project reference hierarchies are not limited to 2 projects they can
contain any number of projects.

Project references for one project can be managed in the following way: right click the
project whose references should be changed and select Properties / Project
References. Adding or removing a reference to a project can be done by simply
selecting or unselecting to projects the references should point to.

Public

USER GUIDE

92 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 79: Project references

Please note that these references are operating system and file system independent.
This means that it is possible to connect projects coming from different physical
locations / version handling systems … as long as each is project is set up to work
correctly within its own rules.

4.13 Mapping Elements of the Old Format

The elements of the old GUI can usually be mapped to the new GUI as folders. So, for
example, a testports folder should be created in the project, and the files of testports
should be placed there. This provides the users with much more configurable project
hierarchy, as they can organize their sources as they wish.

Included projects can be generally mapped to simple or linked folders, provided that the
central storage property of the folder is set (see section 4.6). Included projects are fully
functioning projects that can be built separately, but are included in the actual project
because they provide some useful features. Generally speaking, they are folders
(projects are practically stored separately), which might be linked (as they are expected
to be on a different computer in the network, if they are just local folders then they can
be mapped to local directories) and they have their own makefile (because they can

be built separately). Note: linked folders with their central storage property set provide
the same features.

Automatic conversion between the old and new format is not a part of the TITAN
Designer plug-in for the time being.

Public

USER GUIDE

93 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4.14 Common Threats

There are some very dangerous operations related to project management in Eclipse.

These are “good to have” features in a general sense, and they also provide more
flexibility, but if someone misuses them, then it is sometimes impossible to revert the
situation to its original state.

4.14.1 Disabling, Removing or Corrupting the Builder of the Project

This may happen when editing the .project file, where Eclipse stores the natures and

projects associated to the given project. Any modification of the .project file is

discouraged.

Repair can be attempted using the functionality Toggle TITAN project nature. It can be
activated by right clicking the project and selecting TITAN / Toggle TITAN project
nature. As shown on Figure 80, this functionality is used to add the TITAN nature and
TITAN builder to (or to remove them from) a given project. Removing is useful if only the
builder was removed; the user should then first remove the nature from the project, and
thereafter add it back together with the builder.

Figure 80 Toggle TITAN project nature

Note: the result of this problem (or its repairing) can result in losing every project specific
settings. So these settings must be checked after using this functionality.

4.14.2 Removing or Corrupting the Nature of the Project

This problem is almost exactly the same as the one mentioned just above: editing the
.project file is probably its cause. The possible remedy is also the same.

4.14.3 Adding or Removing Resources from the Project

Modifying project resources in the operating system (outside Eclipse) can temporarily
create problems for the users as the project structure they see might not be the actual
one.

This problem can be solved easily: right click the project and select Refresh. Eclipse
also does similar operations regularly.

Public

USER GUIDE

94 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4.15 Make Archive

It can happen that the source code shall be sent to another team member or to the Titan
support team to debug.

This can be done

• by exporting the whole project (by right clicking on the project, selecting the option
Export…> General>Archive File) or

by executing the command “make archive” from the Eclipse IDE. It can be executed
if the Makefile exists in the working directory and a UNIX shell can be executed.
Right click on the name of the project and select the option Titan>Make archive.
The command “make archive” will be executed in the working directory and a backup
directory will be generated in it. This directory will contain a tgz file including the
source files, the Makefile and optionally the tpd file.

Figure 81 Create Make archive

Public

USER GUIDE

95 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

5 Converting Existing Projects

In the TITAN toolset we are supporting 3 different tools/project handling principles at this
time: Makefiles, mctr_gui projects and Eclipse projects. Before going into detail on how
to convert one of the first two into an Eclipse project, we should review the features
offered by these tools to work with projects.

5.1 The Construction Principles of Projects

5.1.1 Makefile

Makefiles support the following ways of working with projects:

• Direct access:
The files are in the same folder as the Makefile.

• Central storage:
Some of the files are in a different folder, which also has its own Makefile. The actual
Makefile will call the Makefile of this folder, if needed to build the binary files, instead
of building them itself. This efficiently reduces build times even for a single user
scenario, and can also be used where several users refer to the same already built
folder.

• Anything else:
The Makefile is available for the users to modify, so any kind of project structure can
be created. It is also possible to add new commands, new build rules, new
behaviors.

5.1.2 Mctr_gui

The mctr_gui supports the following ways of working with projects:

• Referring to files directly anywhere in the file system:
when the project is built, symbolic links are created for all of these files in the
working directory of the project. Practically this maps to the direct access feature of
the Makefile mode.

• Referring to file groups:
file groups recursively declare a list of files and file groups that they represent. When
a file group is used, all files and other file groups it references are also automatically
used. The files included in a group do not have to be in the same folder or be related
any other way. For each file added to the project this way the build system creates
symbolic links in the working directory.

• Included projects:
it is possible to refer to a whole project, instead of referring to files or file groups one-
by-one. In this case at build time the working directories of the included projects are
used as central storages for the actual project.
In this mode, if something is changed in a project (build mode, additional files) all

Public

USER GUIDE

96 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

projects including that one will also see that change, at the next build, as it will go
differently.

5.1.3 Eclipse

In Eclipse the fundamental difference to all previous systems is that in this case Eclipse
as the platform provides all of the options for structuring the projects. Our IDE only
extends the platform with TTCN-3 related features (and doesn’t define the whole
platform).

On one side this is a limitation, on the other side this means, that anyone can extend his
projects with additional capabilities, either by developing his Eclipse extensions (for
example a builder that converts some 3rd party file format into TTCN-3 files), or by using
existing 3rd party tools (for example CDT for working with C/C++ and Makefiles, JDT for
Java, documentation supporting tools, supporting writing command line scripts easier …
and the list goes on).

The following ways of structuring are provided by Eclipse2:

• Each file and folder below the project’s folder is part of the project, and by default
should be used to operate the project. However, plug-ins working on the project can
choose to ignore some of them on their own.
For folders this is very much like file groups in mctr_gui, but in this case all
files/folders in a given folder are part of that project by default.

• Linked resources can be used to refer to files/folders that are not contained within the
folder of the actual project. This way the linked files/folders will also be members of
the project in the resource system of Eclipse.
It is important to understand that linked resources are only represented in Eclipse as
the path they point to. When such a project is moved (or checked out on a different
location), the contents of the linked resources are not moved together.

• Linked folders can be marked to be central storages. In this case the contents of the
folder are not built with the actual project, but used as central storages.

• Linked files/folders can be set to use Path variables to refer to the target location.
Using this method, it is possible to refer to files/folders that are outside the project in
the local file system, in a semi-transportable way. In this case the contents of the
files are not moved together with the project, but if the receiving user has the same

2 There is one more dimension of structuring in Eclipse when several plug-ins are used on the same project /*by
default all plug-ins are active on all projects */.
If there are several plug-ins active in/on a given project, this can create several “layers” of responsibilities. This
is an important feature, as this makes it possible to mix plug-ins that each provide some separate functionality
into a working environment that best supports the user’s daily work routine. For example on a parallel
cooperation the Designer supports editing TTCN-3, ASN.1 and configuration files, while CDT support editing
C/C++ and Makefiles practically covering all aspects of working with TITAN by default. For an example of
sequential cooperation we can say, that the working directory we use to output the final product of TITAN (the
executable test system), can be viewed by CDT as the source of information for debugging/profiling the
generated executable.

Public

USER GUIDE

97 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

folder structure as the sending one, and has the same path variables set, the linked
resources will point to valid locations at his site too.

• Referenced projects:
the projects in Eclipse can reference any other project inside the same workspace
(Figure 82).
Similar to included projects in the mctr_gui this feature also maps the working
directories of the referenced projects as central storages.
However there is difference between the two features: If a setting or file is changed
in the mctr_gui project, the projects including it will only notice the change when they
are being loaded / built the next time. As in Eclipse most of the time all projects are
available and interactively worked with, if something changes in a project, all
accessible projects referring to that one will automatically (and supposedly instantly)
react. For example if a function is removed from the source code in one project, all of
its call sites will notice and report the error, even if they are located in different
projects.
Also the internal Makefile generator is able to make use of settings of the referenced
projects, to make its own job better: for example if a library is set to be used at
linking time for a project, all projects referencing that one (either directly or
indirectly), will also include that library in the Makefiles they generate.
It is important to note that referenced projects are represented with their name only.
As long as there is a project in the workspace with the same name it will be ok to
use, without regard to where it might be located, how it is version controlled, or if it
really exists or is just emulated by a 3rd party plug-in.

Additional information related to Eclipse:

It is important to note, that using referenced projects is also a good way to manage
complex projects, and the possibly large load of build and analysis. In such a hierarchy if
something changes the command line build, and the on-the-fly analysis will only
reanalyze only those projects, that might be affected by the change, usually only a small
part of all of the sources.

As Eclipse defines the base folder of the project as the folder where the “.project” file
resides, it comes naturally, that in a single folder we can only have one Eclipse project.

No matter where they are originating from, in the workbench of Eclipse all projects are
located on the same level: directly below the root of the workbench. For this reason,
creating connections between projects, by any means other than “project references” is
not really recommended, as even importing, or joining such a project can create a
structure different from the one seen in the native file system of the projects involved.

Referring outside, the project should be discouraged in case of files and folders, as
those methods are not always transportable. In those cases, the project might not be
transferable as it is not the contents of these references that will be transferred, but the
reference itself.
In case of referenced projects this is not that much of a problem, as in that case it is
natural, that in order to transport a project, we also need to transport all projects that it
builds onto. As long as each project can be transferred on its own their referencing sets
will be transferable also.

Public

USER GUIDE

98 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

5.2 Manually Converting an Existing Project to Eclipse Format

5.2.1 Small Project

If the project is so small that all of its files are located in one place (in or below one
folder) it can be converted easily.

If done from Eclipse one just has to create a new project, setting the location of the
project to be linked to the folder where the sources are located in3. This will create the
project in Eclipse, and all of the files needed to store the settings of the project (which
are set to default values at this time). For more information, please refer to section 4.1.

If it is needed to perform this step from the command line, one needs to place a default
“.project” and “.TITAN_properties” file in the base folder of this project.

In the “.project” the name of the project has to be set. Eclipse should be able to import
the project and all further configurations can be done from there.

5.2.2 Large Project Sets Consisting of Several Included Projects or Logically Separate
Parts

This can be easily mapped to referenced projects inside Eclipse.
For each separate project or logically separate part there should be one project created,
and the proper referring relation between each one should be set. It is recommended to
set this attribute in Eclipse, so that all needed modifications are done in the internal
representation. For more information, please refer to section 4.12.

If we have to do the changes externally the “.project” file has to be extended with the
following code:

<projects>

 <project>included_project_name</project>

</projects>

As Eclipse will use the name of the project as reference, this will be a transportable
solution, as neither local file system paths, nor the relation between the actual and the
referenced project is fixed (with symbolic links we would be forced to build the same
project structure which is not possible in Eclipse, as all projects have to be on the same
level).

Figure 82 gives an example on how it might look if 2 large projects are separated into
smaller referring project.

3 In case the original project has some kind of structure like src, doc folders the new project should also be
created in this base directory instead of using the src folder directly.

Public

USER GUIDE

99 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 82 Two large projects

5.2.3 Large Projects Using Central Storage Folders

If the project uses central storage folders there are two good solutions possible:

• If it is possible these cases should be solved by converting the central storage
relation into a referencing relation between 2 projects.
As such the folder declared to be a central storage should be converted into a
project on its own, and the original project should be set to reference this project. For
more information, please refer to section 4.6.

• A second solution is to create a folder in the project for each such reference and set
it as central storage.
It is recommended to do this change from Eclipse by a single right click on the folder.
If this has to be done from the command line, the “.TITAN_properties” file’s
“FolderProperties” section has to be extended with the following code:

<FolderResource>

<FolderPath>path_of_the_folder_in_the_project</FolderPath>

 <FolderProperties>

 <CentralStorage>true</CentralStorage>

 </FolderProperties>

</FolderResource>

When loading this project the Designer plug-in will know, that that folder is not to be
handled as a normal folder, but instead as a central storage. This solution will also
let the user/converter chose whether he wishes to have the central storage inside
the project, or use Eclipse linked resources to refer to places outside the project no
matter whether the folder is inside or outside the project.

Public

USER GUIDE

100 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

It is important to note, that even though the second solution sounds to be the better one
at first, because of the similar terminology, actually it is not.

Creating referencing relations between projects reflects the logical structure of such
folders better, promotes reuse of projects (and so source code) and in the longer run
could be used to validate the relations between projects in a hierarchy.

5.2.4 Project Referring to Specific Files Outside its Own Jurisdiction

In some cases, it might have happened, that people did break logical relations and
either created symbolic links to files in other projects, or referred to them in the mctr_gui
one-by-one specifically.

If it is not possible to map this relation to referring projects or central storages the only
solution left is to create a linked resource. This new resource should be placed in the
actual project, but setting its location as a link to the original file.

Please note, that it is not recommended to have symbolic links in a project pointing to
some other location as those projects are typically not transportable, and also this
introduces a hidden dependency between projects, that cannot be validated
automatically.

5.3 Convert an Existing mctr_gui Project Using an Import Wizard

The Designer feature comes with an import wizard, which is able to create an Eclipse
project out of an existing mctr_gui project automatically. For information on how to find
this wizard, and what its steps are please refer to section 4.9.3.

As this wizard has no knowledge about the internal semantic structure of the project to
be loaded (the mctr_gui did not helped the organization of project parts too well), the
conversion is rather simple:

Projects mentioned as included project in the input project file will be converted to
references to Eclipse project.

File referred to directly will be linked in the base folder of the newly created project, with
Eclipse links.

Group files are read, but as such an automated wizard is not allowed to create arbitrary
folder structures, the files in each group will be linked to the base folder of the project,
just like directly referenced files.

In the last two cases if the location of the project directly contains any of the files to be
imported, instead of creating Eclipse links, the original files will be used.

Although it might be possible to work with the project created, it is recommended to fine
tune it by hand afterwards (or for large projects do the conversion by hand to start with).
As the generated out is known to have serious flows: not structured, not easy to version
handle and contains links to all files … even if it would be possible to create a project
hierarchy using existing projects.

Public

USER GUIDE

101 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

6 Building the Project

In this chapter a detailed, step-by-step procedure description is provided about how to
build a project according to the workflow presented in section Error! Reference source
not found..

Building a project from the TTCN–3 or ASN.1 source modules and perhaps test port files
is a procedure consisting of several steps. In the TITAN Designer plug-in, the procedure
is fully automated. The commands issued by the build related functionalities and their
progress messages are displayed in the TITAN console, so the successful completion of
the processes can easily be verified. Also, in case of an error, the analysis of the
progress messages helps to find the cause of the problem (this is also automated to
some extent; please refer to chapter 7.10). The build process also provides Eclipse with
user-friendly information about its progress.

The building process is automated; that is, the executable is updated in the background
when project resources change (because they have been created, deleted or updated).
There is no need for user interaction—provided that automatic building is enabled.

There is a way to build the project manually, by selecting Project / Build project or
Project / Build all. This is useful when automatic building (Project / Build
Automatically) is disabled.

Note: the problem markers of the compiler are parsed from the output of TITAN, for this
reason they are updated when the compiler is run (the project is built, or the files are
checked). If automatic building is not used, the projects should be built regularly, to have
up-to-date problem markers (see chapter 7.10).

6.1 Building the Project – Step by Step

The following sections describe the steps of the build process. These steps are carried
out either automatically by the TITAN plug-in or manually by the user; the sections
indicate which way applies.

6.1.1 Creating Symbolic Links

By default, the first step of the build process is creating or updating symbolic links in the
working directory of the project. The working directory contains symbolic links pointing to
every file included in the project (this is not true for files contained in a central storage
directory, because they are handled differently). For information please see the TITAN
Programmer’s Technical Reference [4].

Symbolic link creation is done automatically by the build process; no user action is
required.

Please note that the creation of symbolic links can be turned off in the Designer plug-in,
for more information please refer to section 4.4.2.

Public

USER GUIDE

102 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

6.1.2 Creating or Regenerating the Makefile

The second step of the build process, if needed, is creating or updating the project
Makefile. Automatic Makefile management should be enabled on the Properties /

TITAN Project Property page of the projects.

Every time it is required, the Makefile generator of TITAN will be called with the

parameters provided on the Makefile creation attributes tab (see section 4.4.2.1). It is
possible to indicate a Makefile updater script on the Make attributes tab (see section

4.4.2.2) that will be run on the generated Makefile.

Information about the flags of the TITAN Makefile generator and the Makefile

updater script can be found in the TITAN Programmer’s Technical Reference [4].

It is the user’s responsibility to create and update the Makefile when automatic

Makefile management is disabled.

6.1.3 Editing the Makefile Skeleton

If the generated Makefile is not suitable then either the options that direct its

generation should be changed or (after having disabled automatic building) the
Makefile should be created by hand. Everyone is allowed to write his own Makefile;

however, the Makefile skeleton generated by the compiler always serves as a good

starting point. For an extensive description of what shall be checked in the generated
Makefile, see the TITAN User Guide [3].

The TITAN plug-in has knowledge about the following Makefile commands:

• make

• make all

• make dep

• make check

• make clean

Note: the TITAN plug-in has some assumptions on what functionality the Makefile

offers. The real Makefile should support these functions, and they should be

conforming to what behavior TITAN would create.

This step, if needed, is carried out manually by the user.

Public

USER GUIDE

103 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

6.1.4 Module Compilation

In this step C++ files are generated from virgin TTCN-3 and ASN.1 files. When a C++
file already exists, then the timestamp of the Compile file is used to decide whether a
C++ file in question is up-to-date or not. A C++ file is refreshed only if the corresponding
TTCN–3 or ASN.1 module was modified later than the timestamp in the Compile file
indicates, or the project was refreshed by right clicking the project and selecting
Refresh; otherwise the generated C++ file is considered up-to-date.

The first compilation of the modules will result in addition of the following files in the
working directory:

• C/C++ header files:
These are the header files of the generated C++ code. One .hh file is generated for

every TTCN–3 and ASN.1 module in the project with the same name.

• C/C++ source files:
These are the body files of the generated C++ code. One .cc file is generated for

every TTCN–3 and ASN.1 module in the project with the same name.

• Compile file:
This is an empty file. The attributes of the file indicate the date and the time of the
last compilation process.

• Makefile.bak:

This is the backup of the Makefile, created when the make dep command has

been issued.

Module compilation is done automatically by the build process; no user action is
required.

6.1.5 Creating Dependencies

Once the symbolic links have been created and the Makefile of the project has been

properly edited if necessary, the command make dep has to be issued to find the

dependencies between the resulting C++ codes. It is extremely important that the
dependencies are always up-to-date. If, for example, a TTCN–3 module is removed
from the project, the dependencies between the C++ files must be updated, otherwise
the command make fails.

Dependencies appear at the end of the Makefile as dependency lines. They are

determining the conditions of the binary object code recompilation launched by the
command make.

It is discouraged to edit the appended dependency lines.

Public

USER GUIDE

104 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 83 Dependencies

The dependency update is done automatically if the build level mentioned in section
6.1.6 is set to three or five. Otherwise it must be carried out manually.

Alternatively, incremental generation of dependency information is available when using
Makefiles written for GNU make. Instead of modifying the Makefile, dependency

information is written into separate files with .d extension (one for each .cc file). These

files are included into the main Makefile. This has the advantage that the Makefile

is not modified every time a dependency changes. Another benefit is that the
dependencies are always updated during make; there is no need to explicitly run make

dep. For information on how to set this option please refer to section 4.4.2.1.

6.1.6 Building

In the final step of the project building procedure a conventional C++ compiler is used to
compile Test port codes and the generated C++ source code to a binary object code.
The resulting code is linked with the Base Library. The Base Library contains important
supplementary function libraries used for the execution of the generated code (for
example verdict handling, Host Controller code, and so on).

If automatic building is enabled, Eclipse will invoke the build process whenever project
resources change (are created, deleted or updated), or you refresh your project by right
clicking the project and selecting Refresh.

If automatic building (Project / Build Automatically) is disabled, then the build process
is started by a click on Project / Build project, Project / Build all or by right clicking
the project name and selecting Build.

The build process will result in the generation of the following files in the working
directory:

• Object files:
For every C++ file in the project (source code files, test ports, and so on), an object
file (with the extension .o) will be created by the C++ compiler.

Public

USER GUIDE

105 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

• Shared object files (if dynamic linking is enabled, see section 4.4.2):
For every (static) object file (with extension .o) in the project a shared object file

(with the extension .so) will be created by the C++ compiler.

• Executable:
The executable file has the same name as the project has.

The build process can be configured to set the build level for the given project (see
4.4.2). The following build levels are supported:

• Level 0 – Semantic Check
Only syntactic and semantic checks are carried out on the TTCN-3 and ASN.1
source files.
Uses the Makefile target check.

• Level 1 – TTCN3 → C++ compilation
In addition to the syntactic and semantic checks, the C++ code is also generated
from the TTCN-3 and ASN.1 source files if there were no errors found.
Uses the Makefile target compile.

• Level 2 – Creating object files
Executes the syntactic and semantic checks, generates the C++ code and tries to
compile it into object (.o) and if applicable, into shared object (.so) files.

Uses the Makefile target objects or shared_objects.

• Level 2.5 – Creating object files with heuristic dependency update
Executes the syntactic and semantic checks and generates the C++ code, but
before generating the object and if applicable, shared object files it also updates the
dependencies of the source codes if this is needed.
This means that the long lasting dependency refresh will not be executed if only
such files that the on-the-fly analyzer is able to analyze were changed since the last
build, and none of the changes made make a dependency refresh mandatory.
Uses the Makefile targets objects or shared_objects; or dep objects or dep

shared_objects.

• Level 3 – Creating object files with dependency update
Executes the syntactic and semantic checks and generates the C++ code, but
before generating the object and if applicable, shared object files it also always
updates the dependencies of the source codes.
Uses the Makefile targets dep objects or dep shared_objects.

• Level 4 – Creating Executable Test Suite
Carries out a full build and creates the Executable Test Suite, but the dependencies
are not updated.
Uses the Makefile target all.

• Level 4.5 – Creating Executable Test Suite with heuristic dependency update
Carries out a full build, creates the Executable Test Suite and the dependencies are
also updated if that is needed.
This means that the long lasting dependency refresh will not be executed if only

Public

USER GUIDE

106 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

such files that the on-the-fly analyzer is able to analyze were changed since the last
build, and none of the changes made make a dependency refresh mandatory.
Uses the Makefile target all or dep all.

• Level 5 – Creating Executable Test Suite with dependency update
Carries out a full build, creates the Executable Test Suite and the dependencies are
also always updated.
Uses the Makefile target dep all.

Some hints for selecting the appropriate build level: on build levels 0-3 the executable
will not be generated, only levels 4 and 5 produce an Executable Test Suite.
Dependency update is only required when the import hierarchy of the source files is
changed.

6.2 Remote Build

Projects might need to be built for several platforms, for several different GCC versions,
or it might just happen that the user’s computer is not powerful enough to assure short
build times.

Remote building (see section 4.4.4) is chosen by right clicking the project and
selecting TITAN / Build remotely, as shown on Figure 80 above.

The outputs of the remote build processes are displayed in the TITAN Console view.
Every piece of such an output is prefixed by the host name that provided it.

6.2.1 Remarks and Tips

It is impossible to clearly identify which source files were some errors reported for, for
this reason precise build problems reported by remote build hosts are not redirected to
the graphical interface. Only those problems are reported and marked, which are the
errors in the build process itself (for example: abnormal termination is reported, but as a
build process is not terminated by build errors, such errors are not redirected).

As it is the user’s responsibility to keep the files on the remote host up-to-date, no file
transfer or file synchronization is provided by the TITAN plug-in. Therefore, the remote
build process cannot be run automatically.

Building remotely might start up the shell of the remote host in interactive mode. If the
remote build host reports missing environmental variables, it is a good idea to check
how the shell of the remote build host is configured in interactive mode (this is usually
user specified).

The overall length of the name and build commands of the remote hosts should be less
than about 2,000 characters. However, assuming that an automated login mechanism
and a build script is used on the remote hosts (creating remote build commands like
rlogin rhea; buildscript.sh), means that the build process might still be

executed in parallel on about 60 remote hosts, which should be enough for now.

Public

USER GUIDE

107 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

6.3 Building from the Command Line

6.3.1 Building Directly

It is possible to invoke the build process of Eclipse from the command line, without
Eclipse showing even the splash screen.

An example invocation:
"eclipse.exe -noSplash -consoleLog -data location_of_workspace -

application com.ericsson.titan.designer.application.InvokeBuild

project_name_to_build"

This command instructs Eclipse to call our application with the name of the project to be
built, while not displaying even the splash screen, redirecting all error log to the console
too and using the workspace from the provided location.

The benefit of using this feature over generating the Makefile and building by hand is
that this way one will build with the exact same settings he uses inside Eclipse. If for
example 3rd party tools are also used as part of the build process, this method will
invoke them too properly.

6.3.2 Building with an External Script

It is possible to create an XML file for each Eclipse project, which will store all the
information needed to create the Makefile and build the project from the command line.

Figure 84 Generate external builder information

In order to create this file, right click on a project and select the TITAN / Generate
external builder information menu entry.
This will create a new file in the root of the project called
external_builder_information.xml

The XSD schema definition of this file looks like:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

id="TITAN_External_Builder_Information">

 <xs:element name="TITAN_External_Builder_Information">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Makefile_settings">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="useAbsolutePath" type="xs:boolean"/>

Public

USER GUIDE

108 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

 <xs:element name="GNUMake" type="xs:boolean"/>

 <xs:element name="incrementalDependencyRefresh" type="xs:boolean"/>

 <xs:element name="dynamicLinking" type="xs:boolean"/>

 <xs:element name="singleMode" type="xs:boolean"/>

 <xs:element name="codeSplitting">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="none|type"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="projectName" type="xs:string"/>

 <xs:element name="projectRoot" type="xs:anyURI"/>

 <xs:element name="workingDirectory" type="xs:anyURI"/>

 <xs:element name="targetExecutable" type="xs:anyURI"/>

 <xs:element name="MakefileScript" type="xs:anyURI"/>

 <xs:element name="MakefileFlags" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="ReferencedProjects">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="ReferencedProject">

 <xs:complexType>

 <xs:attribute name="location" type="xs:anyURI" use="required"/>

 <xs:attribute name="name" type="xs:string" use="required"/>

 <xs:attribute name="cygwinPath" type="xs:anyURI"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Files">

 <xs:complexType>

 <xs:sequence>

 <xs:element maxOccurs="unbounded" minOccurs="0" name="File">

 <xs:complexType>

 <xs:attribute name="path" type="xs:anyURI" use="required"/>

 <xs:attribute name="relativePath" type="xs:anyURI" use="required"/>

 <xs:attribute name="centralStorage" type="xs:boolean"/>

 <xs:attribute name="fromProject" type="xs:string"/>

 <xs:attribute name="cygwinPath" type="xs:anyURI"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="version" type="xs:decimal"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

Please note, that after this information was generated it is the user’s responsibility to
create and use the script files that actually do the building of the project.

Please also note that this file will only hold information relevant from the point of view of
TITAN. If other tools are also integrated on the project (to help its build, execution) their
data will not be included.

Public

USER GUIDE

109 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

6.4 Cleaning the Project

After switching to a newer version of the test executor or simply to save disk space, the
project might need to be cleaned by removing the generated files from the working
directory.

To remove all generated files from the project, select Clean in the Project menu option
in Eclipse.

The following files will be deleted from the working directory:

• All object files (files with suffix .o) and if applicable, all TITAN generated shared

object files (files with suffix .so)

• All C++ sources files translated from the original TTCN–3 and or ASN.1 modules

• The Compile file

• The executable file

6.5 Pitfalls

Every build related action is executed as a command line command. If the command
line is not responsive, the tool will not be able to extract messages from it.

In the Makefile generation process the size of the longest allowed command can

become a serious limitation. For example, on Windows 2000 this number is around 2048
characters by default; this is not enough for larger projects. However, as every
command that we try to execute, this is also displayed in the TITAN Console, making it
is possible to copy and paste it into a proper command line window (in this case into a
Cygwin console).

Manually editing of the Makefile can kick off a vicious build cycle if automatic

Makefile generation is enabled. Explanation: saving a file is a resource change and

can start the build process. On the other hand, the build process, with automatic
Makefile generation enabled, might re-create the Makefile. Next, the editor detects

that the Makefile has been changed and tries to open it which is also a resource

changing operation and triggers the build process.

7 Editing with TITAN Designer Plug-in

This chapter presents the editors provided by TITAN Designer plug-in and their features.

7.1 File Types

The TITAN Designer plug-in includes editors for the following file types supported by the
TITAN executor (the default extensions are given in brackets):

Public

USER GUIDE

110 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

• ASN.1 (.asn, .asn1)

• TTCN-3 (.ttcn, .ttcn3)

• TTCN-3 preprocessable (.ttcnpp)

• TTCN-3 includable (.ttcnin)

• Configuration (.cfg)

Additional file extensions can be associated to these editors by selecting the Eclipse
menu point Windows / Preferences / General / Editors / File Associations, but this is
discouraged for source files. Although the file will be well-colored, the dynamic analyses
will not work. For the same reason it is also discouraged to use the extensions listed
above for other file types.

Note: The editors may throw an exception if a file is deleted while being edited.

7.2 Syntax Highlighting

Each of the included editors has its own syntax highlighting schema that can be
customized by modifying the workbench preferences (see section 3.13)

Figure 85 Syntax coloring of TTCN-3 files

7.3 Matching Brackets

Bracket matching in source code provides structural information to the user. The
functionality is activated by placing the mouse cursor after an opening or closing
bracket. Figure 86 shows the closing bracket in line 51 highlighted with black color.

Figure 86 Matching brackets highlight in TTCN-3 files

The function can be customized on the workbench preferences; see section 3.7.

Public

USER GUIDE

111 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

7.4 Folding

Folding is another mechanism to provide structural information to the user. Folding
decreases the amount of information displayed on screen, thus, users only sees that
part of the code they are working with. Text regions can be folded and un-folded with a
single click on the folding marker on the left-side ruler.

Figure 87 shows a possible folding but the text is not folded. Please note the folding
marker on the left-side ruler at line 47.

Figure 87 Template not folded

Figure 88 shows the folding range, the smallest folding region the selected line belongs
to. The folding range is displayed when the mouse pointer is placed over the left-side
ruler.

Figure 88 Folding range shown

Figure 89 shows the text folded. Regions of text can be folded and un-folded with a
single click on the folding marker on the left-side ruler.

Figure 89 Template folded

The function can be customized by modifying the Folding preferences on the workbench
(see section 3.4).

7.5 On-the-fly Parsing

On-the-fly parsing means that the text is automatically parsed and checked as it is
changing.

The parser starts one second after the last character is typed. (This duration should be
long enough for the parser to operate without disturbing the user.) The problems found
by this parser are automatically and instantly indicated to the user, allowing a fast and
precise feedback on errors and reducing the detection time to almost zero.

Figure 90 shows an example error marker. The user was about to type the keyword
template, but as soon as he has typed tem the on-the-fly parser noticed that the file

was syntactically faulty.

Public

USER GUIDE

112 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Before parsing, the error markers created by the on-the-fly parser are removed. As
parsing proceeds, new markers are appearing ensuring that the markers are always
up-to-date (except for the markers of the compiler as they are updated by the compiler
itself, see section 7.10).

The three steps of the parsing process:

1 Every file in the given project is checked whether it needs to be parsed or not. A
file needs to be parsed if at least one of the following is true:

1.1 There is no information stored related to its content or the information
extracted from the file could not be stored in the data storages (for
example, two or more modules exist with the same name in the project).

1.2 The file has changed since the stored information was extracted last time.

1.3 The execution of the TITAN compiler removed syntax error markers
reported by the on-the-fly parser.

2 The file is parsed.

3 The on-the-fly data storage is updated.

The parsing process (like every other long running operation in the plug-in) provides
progress indication. Overall parsing of a file is usually very fast; however, the duration of
the on-the-fly parsing is adversely influenced by the size of the actually edited file.
The size of the project does not matter except for the first parsing of a project, when
every file needs to be analyzed once. However, if several files need to be parsed, our
algorithm will try to do this in parallel, where the level of parallelism is only limited by the
amount of hardware support available (for example a computer with 2 or 4 processor
cores, will finish this task about 2, 4 times faster in the optimal case).

If too slow, the parsing can be turned off on the TITAN preferences page (see section
3.1). Disabling the parsing does not destruct the data stored in the memory; rather, the
data cannot be updated while this option is set. If parsing is enabled again, the parser
will try to update outdated data.

Parsing of files can be slow in the following cases:

• Files containing more than twenty thousand lines of statements.

• Files containing more than fifty thousand lines of definitions only.

• Any time if the virtual machine does the garbage collection while parsing.

The on-the-fly parser is able to parse ASN.1, TTCN-3 and runtime configuration files.

7.5.1 Preprocessing of ttcnpp and ttcnin Files

In Titan it is supported to use the C pre-processor for creating TTCN-3 files. For this 2
file extensions are defined: the files with ttcnpp extension are to be preprocessed into
TTCN-3 modules, while the ones with ttcnin extension hold code snippets that can be
included into ttcnpp and ttcnin files. For detailed information please see the TITAN
Programmer's Guide.

Public

USER GUIDE

113 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

The designer plug-in provides support for a subset of the features of the C preprocessor.
The supported features are conditional compilation, inclusion of files and the use of
some other directives. There is a limited support for macros, object macros are limited to
be integer values which can be used in conditional expressions of #if directives, there is
no recursive substitution of macro values, function macros are not supported. Identifiers
in TTCN-3 code will not be replaced by the values of macros, macros are used only for
conditional compilation. A preprocessor directive is usually one line, except when the
line continuation is used by placing a backslash at the end of the line. Line continuation
of TTCN-3 code lines is not legal. Example of a multi-line macro:
#if 100== \

50+50

The above two lines are one logical line: #if 100==50+50

C preprocessor conditional expressions are integer expressions which can contain literal
values (64 bit signed integers) and macro identifiers. These expressions are evaluated
while parsing the preprocessor directive, in case of #define the value of the macro will
be the result of the evaluation. For example:
#define MACRO 1+2+3

#if MACRO==(12/2)

log(MACRO); //  in TTCN-3 code macros are not used!

// if there is no constant or variable named MACRO in TTCN-3 then

// there will be a semantic error here

#endif

the value of MACRO is 6, this value is used in the #if directive.
Integer literals can be decimal, octal and hexadecimal. Conditional constructs can be
nested. Inactive branches are displayed in a darker color in the editor.
In conditional expressions operators used on integer values in the preprocessor of the C
language can be used. For logical operations the integer value 0 is false and non-zero
values are true. The special operator defined can be used to check if a macro value
exists. Example code:
#if (M1 + M2 * 123) > (M3 & 0xABCD)

const integer cint := 123;

#elif defined M4 || !defined M5

const integer cint := 234;

#else

#error Invalid macro settings!

#endif

File inclusion is supported, the included files should have the extension ttcnin. The
content of these files is included at the position of the #include directive, multiple
inclusion of the same file and recursive inclusion is supported. Example myfile.ttcnin file:
#ifndef _MYFILE_INCLUDED_

#define _MYFILE_INCLUDED_

const integer cint := 123;

#endif

The conditional part prevents multiple inclusion of the same source code, this is useful if
ttcnin.myfile is included in other ttcnin files which are included in the same ttcnpp file.

Public

USER GUIDE

114 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

To define macros outside of files the Eclipse TITAN plug-in uses the settings given in
the TTCN-3 Preprocessor part of the Internal makefile creation attributes tab on the
TITAN Project Property page. Macros can be defined by adding them in the Defined
Symbols (-D) table. The Included directories setting is not used, the name of included
ttcnin file must always be relative to the ttcnpp file in which it is included). Every project
in Eclipse has its own defined macros (symbols), other projects do not see these
macros. This is an important difference between the command line tools and the
designer plug-in, the makefile does not know about projects.

#define MACRO_NAME <expression> Define a macro, it’s value is the
value of the integer expression

#undef MACRO_NAME Delete a macro

#ifdef MACRO_NAME The code in this branch is active if
the macro MACRO_NAME was
defined previously

#ifndef MACRO_NAME The code in this branch is inactive
if the macro MACRO_NAME was
defined previously

#if <expression> The code in this branch is active if
the expression evaluates to non-
zero (true)

#if defined MACRO_NAME The same as #ifdef

#if ! defined MACRO_NAME The same as #ifndef

#if not defined MACRO_NAME The same as "#ifndef
MACRO_NAME" or "#if ! defined
MACRO_NAME"

#elif <expression> The code in this branch is active if
the expression evaluates to non-
zero and no previous branches
were active

#else else branch, active if no previous
branches were active

#endif End the conditional construct (end
last branch)

#line, #pragma, null, linemarker These directives are ignored,
makers: ignored/warning/error
depending on the setting in

Public

USER GUIDE

115 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

preferences

#include “filename.ttcnin” The file name must be provided in
a string (<filename.ttcnin> notation
is not supported). If the file does
not exist or it is not found in the
project then an error is displayed

#error <free text> Display the free text as an error
marker

#warning <free text> Display the free text as a warning
marker

Note: ttcnpp files are not analyzed incrementally even if incremental analysis is switched
on.

7.5.2 Limitations

The on-the-fly parser does not support the single line comment in ASN.1 files when
placed right after non-comment elements. A simple workaround for this problem is to
insert a SPACE character between the last non-comment character and the “—“ sign.

Limitations of preprocessing:

Advanced editing features such as rename refactoring may fail or not work as intended
in some cases when pre-processor macros are present in the code. According to the
preprocessing logic, code in inactive branches of preprocessor conditionals must be
ignored, and so exempt from advanced functionalities (like semantic checking, rename
refactoring). In case of multiple inclusion of the same code the same source code may
be part of different semantic constructs, for example in rename refactoring the changed
source code can affect all other related semantic constructs.

In case of file inclusion, the locations of error and warning markers may be invalid,
pointing to the wrong file (usually to the ttcnpp file instead of the ttcnin file where the
error is located). This is a limitation of the current parsing mechanism which is optimized
for the 1 module == 1 file assumption.

Character constants cannot be used in conditional expressions

7.6 On-the-fly Semantic Checking

On-the-fly semantic checking is done after the on-the-fly parser has finished parsing.
The level and complexity of this check is on the same level with the command line
compiler, but is done much faster.

Public

USER GUIDE

116 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

7.6.1 Limitations

The following structures are not yet analyzed, and as such not all error cases related to
them will be detected:

• Encoding and variant attributes are not analyzed, in fact not even parsed. This
implies, that for example it is not able to detect if encoding/decoding functions are
used with types that does not have the required encoding attributes.

• Charstring and universal charstring patterns are not analyzed. This implies that even
though in some cases matching with regular expressions could be evaluated in
compile time, the semantic checker will not be able to do that.

• In ASN.1 table constraints, any type values (open type notation) are not checked.

7.7 Content Assistance

Content assistance is a feature providing context-sensitive content completion upon
user request for source files.

The content assistant can be activated either by a key combination (which by default is
set to CTRL + SPACE) or by typing a . (dot) before the keyword. To insert an element

from the proposed ones, double click it or select it and press Enter. If only one
element is proposed it is inserted automatically.

When an element is selected in the list of the proposed elements, a pop-up window
containing a short description may appear.

7.7.1 Assistance with Keywords

Editors support a basic level of content assistance, namely the listing of the appropriate
keywords (Figure 90).

Figure 90 Content assistant

7.7.2 Assistance with Code Skeletons

The intermediate level of assistance inserts structural elements into the source code
(Figure 91). Inserting skeletons is only supported for TTCN-3, TTCNPP, TTCNIN and
ASN.1 files.

Public

USER GUIDE

117 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 91 Skeletons in the content assistant

Static and dynamic skeletons are both marked with a unique icon.

A short description of them is provided after the name of the skeleton if a skeleton has
several slightly different versions. A pop-up window shows the text about to be inserted.

7.7.2.1 Using the Inserted Skeleton

The insertions may contain linked editing points (Figure 92).

Figure 92 Example inserted skeleton

Hints for using the inserted skeleton:

• The TAB key can be used to move between the editing points.

• If two or more editing points are linked, they will have the same content. This means
that no matter which one of them is edited, the others take up the same value.

• To leave this insertion mode and validate the insertion, press the ESC key.

7.7.3 Assistance with Dynamic Elements

The highest level of content assistance is available for TTCN-3 and ASN.1 files. It is
providing scope and type structure information that has been parsed and collected by
the on-the-fly parser. The calculation of the proposals is done this way:

1 The reference to be completed is identified strictly using character data available
before the completion point.

2 Based on the position of the completion point the smallest enclosing scope is
looked up.

3 From the smallest scope found the scope hierarchy is traversed in a bottom-up
manner to find the possible definitions. (The definitions imported are checked
after the definitions of the actual module).

Public

USER GUIDE

118 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

4 When a relevant definition is found the search for possible proposals continues
inside its structure. For example, if the definition is a variable of a structured
type, the reference is used to detect the sub-types or fields that the reference
could point to if it were to be completed that way.

The proposals are ordered in the following way (definitions don’t hide each other in the
proposal list):

1 Dynamic elements available in the given scope. The elements are ordered by
the distance of the element definition from the completion point in the scope
hierarchy. For example, a local variable will always precede module definitions.
The definitions that are most likely to be used are placed earlier in the list. If
there is more than one proposal from the same scope, they are ordered
alphabetically.

2 Skeletons available in the given scope. The skeletons are ordered
alphabetically.

3 Keywords available. The keywords are ordered alphabetically.

7.7.4 Content Assistance Limitations

Full context sensitivity is not possible yet. Only the scopes and the type structures are
used to filter the list of proposals. For this reason, the content assistant might offer
completion proposals, which are possible in the actual scope but not in the actual
context. It is the user’s task to choose the right proposal.

Only data gathered and stored by the on-the-fly parsers can be offered. If this data is
outdated or not complete, the content assistance will also offer outdated or limited
information. Section 3.1 explains how this can happen.

7.8 Find Declaration

Open Declaration provides a feature to jump to the declaration point of the selected
element.

Open Declaration can be invoked either by a key combination (by default F3) or by right
clicking anywhere on the screen and selecting Open Declaration. The element is
determined by the current position of the cursor when the functionality is invoked.

The search for the declaration is done this order:

1 The reference to be searched for is identified using only character data available
before the completion point and after the completion point up to the next dot,
opening bracket, opening square brace (or another character that cannot be part
of a reference). For example, in case of the string
module.definition.field:

1.1 If the cursor is somewhere inside, right before or right after the word
module, the reference will be module.

Public

USER GUIDE

119 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

1.2 If the cursor is somewhere inside, right before or right after the word
definition, the reference will be module.definition.

1.3 If the cursor is somewhere inside, right before or right after the word
field, the reference will be module.definition.field.

2 Based on the position of the completion point the smallest enclosing scope is
looked up.

3 From the scope found the scope hierarchy is traversed in a bottom-up manner,
to find the possible definitions. (The definitions imported are checked after the
definitions of the current module).

4 When a relevant definition is found, the search for possible proposals continues
inside its structure. For example, if the definition is a variable of a structured
type, the reference is used to detect the sub-types or fields that the reference
could point to.

5 If no definitions could be found in the actual module or in the ones imported by it,
a special search takes place. It traverses every module of the actual project to
find possibly matching definitions.

Jump to the location of the declaration takes place automatically if a declaration was
found in the actual module or in one of the imported modules. The target file will be
opened in an editor window taking the focus (if not already done so). The location of the
declaration is revealed and selected.

If no valid declarations could be found in the whole module, this will be stated in the
TITAN Debug Console and the status line of Eclipse, without presenting any extra
pop-up windows. This way the user can invoke the functionality again, without the need
to close several error indicating dialogs.

Open Declaration works for TTCN-3 and ASN.1 modules and configuration files. For
configuration files Open Declaration can be used to:

Open configuration files listed in the include section. If the selected configuration file
cannot be found the error is reported in the TITAN Debug Console and the status line
of Eclipse.

Find module parameter declarations. If the module parameter is given as a module
specific module parameter (e.g. module.parameter) only the given module is

searched through for the declaration. Otherwise (e.g. *.parameter or parameter) all

modules of the project are taken into account. Duplicate module parameter declarations
and errors are reported in the same way as for macro definitions.

Public

USER GUIDE

120 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

7.9 Find References

“Find references” provides a feature to search for all elements that refer the selected
TTCN-3 or ASN.1 element. The user can select TTCN-3 definitions of types, constants,
variables, templates, variable templates, functions, testcases, altsteps, components,
ports, formal parameters, enumerated values, etc. ASN.1 type and value assignments
can be selected in ASN.1 files. In case of structured types (record, set, union, etc.) the
individual fields can be selected, in this case all references to that field will be displayed.
The source files should be syntactically and semantically correct prior to starting the
search, otherwise it cannot be guaranteed that all references to the given element will
be found.

Find References can be invoked either by a key combination (by default F4) or by right
clicking anywhere on the screen and selecting Find References. The element is
determined by the current position of the cursor when the functionality is invoked.

The found references will be displayed in the standard Eclipse search result view, it is
usually displayed at the bottom as a new tab. The found references are displayed in a
tree view, grouped by module. If it cannot be determined what element we are trying to
search for, an error message will be displayed and the search result view will not be
opened. The error message will be displayed in the status line of Eclipse, without
presenting any extra pop-up windows. In the search result view clicking on an
occurrence will open the source file and jump to the reference location.

A more precise description of this feature is searching for identifiers that are used in a
context where they identify the language element that we are searching for. A reference
can contain multiple identifiers, for example in the case of a recursive record definition:
type record MyRec {

 MyRec rec optional,

 charstring str

}

…

var MyRec v_myrec;

…

v_myrec.rec.rec.rec.str := “foo”;
Searching for field rec will give 3 hits in the above line, because the reference
v_myrec.rec.rec.rec.str contains the identifier of the rec field 3 times.

It is not always guaranteed that all references to the selected element will be found or
that an element that should be selectable can be selected, because parsing and
semantic analysis of all the source code is not 100% completed in the Eclipse plug-in.

7.10 Mark Occurrences

The TTCN3 and ASN.1 editors are able to highlight the occurrences of the currently
selected element in the source code. The search for the occurrences is based on
semantic information (see 7.9). As the selection or the position of the cursor changes in
the editor, the marks are updated automatically. The feature can be configured on the
TITAN Preference page (see 3.9).

Public

USER GUIDE

121 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

7.10.1 Limitations

Occurrences of the following language elements are not highlighted:

• References to modules

• Sub-references of a reference
in the example below, if the cursor is on the ‘field1’ sub-reference, the occurrences
will not be marked.
myRec.field1 := 1;

• Fields of types in the assignment notation. In the example below, if the cursor is on
one of the fields (‘field1’ or ‘field2’) the occurrences will not be marked.
var MyRec myRecord := {field1 := 0, field2 := 1};

• The occurrences of keywords, predefined functions, primitive data types and literals
are not marked.

7.11 Refactoring

7.11.1 Rename Refactoring

This feature builds upon the “Find References” feature, it can be invoked the same way
and it works on the same language elements. Most of the TTCN-3 and ASN.1 language
elements can be renamed using this feature.

The user can select TTCN-3 definitions of types, constants, variables, templates,
variable templates, functions, testcases, altsteps, components, ports, formal
parameters, enumerated values, etc. ASN.1 type and value assignments can be
selected in ASN.1 files. In case of structured types (record, set, union, etc.) the
individual fields can be selected. The source files should be syntactically and
semantically correct prior to starting the renaming. By default, projects containing errors
or ttcnpp files cannot be refactored, but this behavior can be changed in the TITAN
Preferences on the On-the-fly checker page. If refactoring is done on projects which
contain syntax or semantic errors or ttcnpp files, then it cannot be guaranteed that all
occurrences of the given definition or field will be renamed because some occurrences
may reside in places that are inside erroneous source code or places that are not active
after pre-processing of ttcnpp files.

Rename refactoring can be invoked either by a key combination (by default Ctrl+F4) or
by right clicking anywhere on the screen and selecting Rename Refactoring. The
element is determined by the current position of the cursor when the functionality is
invoked. If it cannot be determined what element we are trying to rename, an error
message will be displayed. The error message will be displayed in the status line of
Eclipse, without presenting any extra pop-up windows.

Public

USER GUIDE

122 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

The refactoring process starts with a dialog box where the new name should be
specified, the new name must be a valid TTCN-3 or ASN.1 identifier.

Figure 93 Rename refactoring

A preview of all modifications is available; the preview window shows the original and
the refactored source code side by side. The source code will be modified only if the OK
button was selected.

7.11.2 Limitations

Refactoring might not be able to operate correctly in the following cases:

• If macro definitions are used in the source code, refactoring will not be able to
operate on the code parts which are not active at the time of the refactoring. The
reason for this is, that those parts are not visible for the semantic analyzer.

• When the minimize memory usage is turned on some information, that might be
required for the refactoring, is removed from memory. In this case the refactoring
will not take place in the whole project.

In the above cases the user is warned for possible issues.

7.12 Editing Configuration Files

Configuration files can be edited in their own editor in a textual format just like any other
file; however, the editor also provides graphical pages to ease this process. As it can be
seen on Figure 94, these graphical pages can be selected by clicking on the tabs in the
bottom of the editing area.

Public

USER GUIDE

123 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 94 Editing a configuration file

Whenever the textual page is edited the on-the-fly parser is run within one second and
the contents of graphical pages get updated; however, to save the contents of the
graphical pages (and to execute the on-the-fly parser on them) pressing the buttons Ctrl
+S is required. Please note that the content of the textual page is also updated when it
becomes active. The example on the figure below shows an error detected.

Figure 95 Syntax error detected

The graphical pages are explained in detail in the sections 7.12.1 … 7.12.6 below.

7.12.1 Module Parameters Section

On this page (new) values can be assigned to parameters defined in the TTCN–3
modules.

A new parameter can be added by clicking the Add… button. The column Module
name contains the name of the module where the parameter is used. The parameter
can be used in all modules when this column is left blank or filled with an asterisk. The
column Module parameter name is self-explanatory. The value of the parameter is
determined by the string in the pane Module parameter details in free form as
parameters may have different formats.

Highlighted existing parameters are removed by clicking the Remove button.

The field Total under the buttons shows the number of the defined module parameters.

Public

USER GUIDE

124 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 96 Module parameters

Changes made to the parameters must be saved by the shortcut key Ctrl + S.

7.12.2 Test Port Parameters Section

The values of all parameters on this page are passed to test ports.

A new parameter can be added by clicking the Add… button. The column Component
name contains the name of the component defining the test port. An asterisk (*) denotes
all ports of the Test System Interface. The column Test port name is the name of the
test port. The column Parameter name is self-explanatory. The value of the parameter
is determined by the string in the pane Test port parameter details in free form as
parameters may have different formats.

Highlighted existing parameters are removed by clicking the Remove button.

The field Total under the buttons shows the number of the defined module parameters.

Figure 97 Test port parameters

Public

USER GUIDE

125 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Changes made to the parameters must be saved by the shortcut key Ctrl + S.

7.12.3 Components, Groups and Main Controller Section

This page contains parameters of three configuration file sections. The parameters
make only sense in parallel mode.

Figure 98 Components, groups and Main Controller

Changes made to the parameters must be saved by the shortcut key Ctrl + S.

7.12.3.1 Main Controller Options

The options herein control the behavior of Main Controller (MC). Clicking the triangle in
the title line will collapse the section leaving more room to the tables.

The options Local Address and TCP port determine the IP address and TCP port
where the MC application will listen for incoming HC connections. The value of TCP
port is an integer number between 0 and 65535. The recommended port number is
9034. The MC will listen on an ephemeral port chosen by the kernel when this field is left
empty or set to zero.

The value Kill timer determines how long the MC waits for a busy test component (MTC
or PTC) to terminate when it was requested to stop. The value of Kill timer is measured
in seconds and can be given in either integer or floating point notation. Setting Kill timer
to zero disables the kill functionality, that is, busy test components will not be killed even
if they do not respond within a very long time period. When omitted, the default value of
Kill timer is 10 seconds.

Number of Host Controllers provides support for automated (batch) execution of
distributed tests. When set, the MC will not give a command prompt, but wait for the
specified number of HCs to connect. When all connected, the MC automatically creates
MTC and executes all items defined in the page Execute (see section 7.12.4).

Public

USER GUIDE

126 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

The Use of unix domain socket communication field can turn on or off the usage of
efficient communication between the main controller and other components of the test
system. By default it is turned on except on Cygwin because of performance
degradation.

7.12.3.2 Components

The aim of the Components table is to restrict component execution to certain (group
of) hosts. These constraints are useful when distributed tests are executed in a
heterogeneous environment. The participating computers may have different hardware
setup, computing capacity or operating system.

A new restriction is added by clicking the Add… button to the right of the first table. The
column Component name contains component to be restricted. The column Host
name contains either a host name, a group of hosts (see 7.12.3.3) or an IP address of a
host.

Highlighted components are removed by the button Remove.

The field Total under the buttons shows the number of the restrictions in force.

7.12.3.3 Group Section

The aim of the tables Group and Group item is to specify groups of hosts. These
groups are used to restrict creation of certain PTCs to a given set of hosts.

A new group can be added by clicking the Add group button to the right of the table in
the middle. The first column contains the name of the group. are added to the table
Group items by pressing the button Add item.

Highlighted group members or entire groups are removed by the button Remove item
and Remove group, respectively.

The field Total under the buttons shows the number of the defined groups and group
members.

7.12.4 Execute and External Commands Sections

This page contains parameters of two configuration file sections.

Public

USER GUIDE

127 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 99 Execute and external commands

Changes made to the parameters must be saved by the shortcut key Ctrl + S.

7.12.4.1 External Commands

This section defines external commands (shell scripts) to be executed by the Executable
Test Suite whenever a control part or test case is started or terminated. Clicking the
triangle in the title line will collapse the section leaving more room to the table. The
button Browse can be used to locate the shell script.

The field Begin control part contains the path to the shell script executed before control
part procession.

The field Begin testcase contains the path to the shell script executed before testcase
execution.

The field End control part contains the path to the shell script executed after the control
part is processed.

The field End testcase contains the path to the shell script executed after a testcase
has been executed.

Public

USER GUIDE

128 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

7.12.4.2 Elements to be Executed

This table points out parts of the test suite to be executed. Only test cases having no
parameters can be executed from this section.

A new test case is added by clicking the Add… button to the right of the table. The
column Module name contains the name of the module where the test case is defined.
The column Testcase… lists the test cases to be executed. An asterisk (*) denotes that
all test cases in the given module must be executed.

Highlighted test cases are removed by the button Remove.

The field Total under the buttons shows the number of the rows in the table.

7.12.5 Include and Define Sections

This page contains parameters of two configuration file sections. Clicking the triangles in
the title line will collapse the section leaving more room to the other section.

Figure 100 Include and define

Changes made to the parameters must be saved by the shortcut key Ctrl + S.

Public

USER GUIDE

129 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

7.12.5.1 Included Configurations

This table lists the configuration files to be imported. This way there is no need to merge
configuration files when parameter definitions needed are dispersed over several files.

A new configuration file is imported by clicking the Add… button to the right of the upper
table. The column File name contains between quotation marks the name of the files to
be imported.

Highlighted files are removed by the button Remove.

The field Total under the buttons shows the number of the imported files.

7.12.5.2 Definitions

This table contains macro definitions that can be used in other configuration file
sections.

A new macro definition is added by clicking the Add… button to the right of the lower
table. The column Definition contains the macro name whereas the column Definition
value contains the macro itself between quotation marks.

Highlighted macros are removed by the button Remove.

The field Total under the buttons shows the number of the defined macros.

7.12.6 Logging Section

The executable test program produces a log file during its run. The log file contains
important test execution events with time stamps. Logging may be directed to file or
displayed on console (standard error). This section explains how to set the parameters
connected to the log file.

Public

USER GUIDE

130 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 101 Logging

7.12.6.1 Components and Plug-ins

In the components and plug-ins section a tree of components and plug-ins can be
created and managed.

On the first level of the tree components can be added using the Add component…
button.
Using the Add plug-in… button plug-ins can be added under each component on the
second level of the tree.

Both component and plug-in names must be valid identifiers. The only exception is the
“*” component, this can be used to specify settings which are applied to all components
and plug-ins.
The “*” plug-in is automatically inserted; this can be used to specify settings which are
applied to all plug-ins of the selected component. To specify settings for a specific
component and plug-in one of the tree elements must be selected.

Public

USER GUIDE

131 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Any component or plug-in can be deleted using the Remove selected button.

7.12.6.2 Logging Options for the Selected Component/Plug-in

LogFile: the name of the log file between quotation marks. The string value entered
may contain metacharacters that are substituted dynamically during test execution. The
available metacharacters are listed in the section “LogFile” of [4].

TimeStampFormat can have three possible values:
 Time stands for the format hh:mm:ss.microsec.

 DateTime results in yyyy/Mon/dd hh:mm:ss.microsec.

 Seconds results relative timestamps in format s.microsec.

SourceInfoFormat controls the appearance of the test event location information
(position in the TTCN–3 source code). The option can take one of the three possible
values: None, Single and Stack. If set to Single, the location information of the

TTCN–3 statement is logged that is currently being executed. When Stack is used, the

entire TTCN–3 call stack is logged. The value None disables the printing of location

information.

AppendFile controls whether the run-time environment shall keep the contents of
existing log files when starting execution. The possible values are Yes or No. The

default is No, which means that all events from the previous test execution will be

overwritten.

LogEventTypes can be useful for log post-filtering scripts. The possible values are Yes,

No, Detailed and Subcategories. These values are explained in the section

“LogEventTypes” of [4].

LogEntityName: if set to Yes, the name of the TTCN–3 entity is indicated in the log file

along with the file name and line number.

MatchingHints: controls the verbosity of the logger regarding to template matching. The
possible values are Compact and Detailed. The default is Compact, which shows the

matched/unmatched fields of messages in a dot-separated notation. The Detailed

version is similar to the former logging format. It’s more verbose and preserves the
message structures.

Log file size limits log file growth: when the file reaches the limit given in kilobytes, the
log file is closed and a new one is opened with a different name. The naming scheme is
explained in the section “LogFileSize” of [4].

Log file number limits the number of log files stored. When this limit is reached
(because new ones are being opened as described in the paragraph above), the oldest
log file of the component is deleted.

Public

USER GUIDE

132 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Disk full action determines what to do when writing to the log file fails.
Stop: test case execution continues without logging.

Retry: TITAN attempts to restart logging activity periodically.

Delete: the oldest log file is deleted; logging continues to a new log file fragment.

Error: a runtime (dynamic) test case error is triggered.

Plug-in specific: this table lists the key-value pairs, that a given plug-in should be
called with to parameterize its behavior.

Console Log Bitmask and File Log Bitmask determine what sort of events will be
logged to the console respectively to the log file. Tables 11 to 22 of [4] explain the
meaning of the different logging classes.

7.12.7 Limitations on the Graphical Pages

The entered parameter values are not verified: any character string can be entered in
any field.

8 Contents of the Problems View

This section presents how TITAN Designer plug-in is integrated in the Problems view.

Whenever a problem is found in a project related resource, a marker is placed on that
resource in the TITAN Designer.

In general, when any part of the TITAN Designer plug-in checks a given file for
problems, it first removes the markers from the resource then does the checking; and if
any problems were found new markers are placed on the resource. The only exception
to this is that the on-the-fly parser cannot remove markers generated by the compiler;
but instead it turns them grey, this was designed so because the checks of the compiler
are much more precise than the checks of the on-the-fly parser. The compiler overwrites
also the markers of the on-the-fly parser, of course.

8.1 Types of Markers

There are three error marker types indicating:

• issues reported by the compiler;

• syntactic errors reported by the on-the-fly parser;

• semantic errors reported by the on-the-fly checker.

Issues are reported as warnings (minuscule issues) or errors (severe issues that must
be repaired as soon as possible).

Public

USER GUIDE

133 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

8.2 Eclipse Provided Features

Every time a marker is created the TITAN plug-in tries to provide as much information
about the issue as possible to fully profit from the Eclipse features.

The TITAN plug-in makes use of the following features:

• Collecting of markers:
Eclipse collects all of the markers in the Problems view, so that they can be
handled together in a single place.

• Jumping to a given position:
The TITAN plug-in provides Eclipse sufficient information to make Eclipse jump to
the exact problem location when the user double clicks a marker. If the file is not
opened in the editor Eclipse will first open it and then jump to the location.

• User configurable presentation:
The users can configure the presentation of the problems by selecting Window /
Preferences / General / Editors / Text Editors / Annotations. Here the
presentation of errors and warnings can be configured (for example, whether they
should be underlined and shown on the side rulers, what color to use).

• Grouping of markers:
These markers can be grouped in several, semantically different ways. This will be
shown in the section 8.3.

• Displaying the error text:
Every editor provided by the TITAN plug-in is able to show the error texts of markers
placed on a line. The mouse pointer must be placed over a marker to activate this
functionality. If several errors were found in the same line, each of their texts is
displayed on a new line.

8.3 Grouping of Problems

Grouping of markers can be activated by selecting Triangle / Group By.

Figure 102 Grouping problems

Other elements of Eclipse can also report problems; these issues will be called other
problems. General problems, for example not being able to execute a program, are
reported as general Problems by both the local and the remote build procedures.

Groupings supported by TITAN plug-in are described in the following sections.

Public

USER GUIDE

134 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

8.3.1 Group by Severity

Here the markers are grouped by their severity, that is, whether they are representing
errors or warnings. This grouping is preferable when treating errors first. Other problems
are mixed into the problems reported by TITAN plug-in.

Figure 103 Grouping by severity

8.3.2 Group by Type

Here the problems are grouped by the reporting entity. The following groups are
composed by the TITAN plug-in:

• TITAN complier problems

• TITAN on-the-fly semantic problems

• TITAN on-the-fly syntactic problems

Figure 104 Grouping by type

8.3.3 Group by TITAN Problems

Here every problem reported by the TITAN plug-in is placed into the same group labeled
TITAN Problems. Other problems are placed into a group labeled Other Problems.

Figure 105 Grouping by TITAN problems

9 Contents of the Tasks View

This section presents how TITAN Designer plug-in is integrated in the Tasks view.

Public

USER GUIDE

135 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

There are many cases when a developer would like to mark parts of the code; not
necessarily because of errors. For example, the programmer may be working on a huge
project consisting of many small parts easy to overlook. In this case it is invaluable for
the programmer if he can mark parts of the code as not finished. It happens several
times in real life development that the design of smaller program parts is shifted so
many times and so much in time that people actually forget about it.

9.1 Types of Markers

There are two task marker types:

• TODO markers are created in the code with a single line TODO comment, for
example //TODO this function still needs to be implemented.

• FIXME markers are created in the code with a single line FIXME comment, for
example //FIXME division by 0 might be possible here.

It is the on-the-fly parser creating these notifications, not the TITAN compiler.

Eclipse provides all the nice features for Task markers as it did for Problem markers,
with the only exception being that grouping is not supported; see section 8.2

Figure 106 TODO and FIXME task markers

10 Contents of the Outline View

This section presents how TITAN Designer plug-in is integrated in the Outline view.

It is often useful to get a higher level view of the actual TTCN-3/ASN.1 module,
especially if the module is thousands of lines long. The Outline view provides a solution
to this problem and makes it easy to navigate inside TTCN-3/ASN.1 modules. If an
element is selected in the Outline view the editor jumps to the position of the selected
element in the source code.

The Outline view consists of two main parts. The toolbar and the actual tree view.

Public

USER GUIDE

136 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

10.1 The Tree

The Outline view contains a tree, representing the structure of the current TTCN-
3/ASN.1 module. Each element is represented in the Outline view by an icon that makes
the type of the item easily recognizable and by a text that shows the name and the type
of the element or in case of structures with formal parameters their calling convention.

Figure 107 Outline view

The root of the tree always represents the current TTCN-3/ASN.1 module and optionally
the list of module importations if there were any. The structure of the underlying levels
shows data structure hierarchies, type definition groupings etc.

10.2 The Toolbar

With the functionality available through the toolbar buttons, the elements of the Outline
view can be ordered, restructured or the visibility of specific elements can be changed.
In the following subsections these toolbar actions will be described.

10.2.1 Sorting Elements

By default the elements in the Outline view are in the order of their position in the TTCN-
3/ASN.1 module.

Public

USER GUIDE

137 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 108 Sorted by position

The elements can be sorted alphabetically with toggling the icon.

Figure 109 Sorted alphabetically

Public

USER GUIDE

138 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

10.2.2 Categorizing Elements

It is possible to order the outline view t categorizes the elements to be displayed before
sorting them. This function is useful if one is only interested records, or functions as this
way functions, types, module parameters will be found together in the outline view.

Categorizing of the outline elements is possible with toggling the icon.

Figure 110 Categorized and sorted alphabetically

10.2.3 Grouping

By default the Outline view does not show the group hierarchies in the module, as the
groups do not have any effect on scoping. However they can be used to group
semantically similar functions, type definitions etc. To make group hierarchies visible in

the Outline view the button can be used.

Figure 111 Grouping

Public

USER GUIDE

139 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

10.2.4 Filtering Elements

If there are lots of elements in the Outline view it can be hard to find the appropriate one,
so it is possible to filter the elements based on their types, using the filtering buttons in
the toolbar. Filtering is additive, more filters can be active at the same time.

Filters for TTCN-3:

• Hide functions ()

• Hide templates ()

• Hide types ()

Public

USER GUIDE

140 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

10.3 Outline View Icons

import statements any
group bitstring
address bmpstring
altstep choice
array embedded_pdv
bitstring enumeration
boolean external
character string generalised time
component generalstring
constant graphicstring
constant external IA5string
default integer type
enumeration null type
external function returning a template numericstring
external function returning a value objectdescriptor
external function without return statement opentype
function returning a template printablestring
function returning a value relative object identifier
function without return statement selection
hexadecimal string sequence
integer set
module parameter teletexstring
object identifier universalstring
octetstring unrestrictedstring
port UTCtime
real float UTF8string
record videoteststring
record of visiblestring
referenced
sequence
sequence of
set
set of
signature
template
template variable, dynamic template
testcase

timer
type
union
unversal charstring
variable
verdict type

TTCN-3 ASN.1

Figure 112 Outline view icons for TTCN-3 and ASN.1

Pitfalls

Please note that as long we have to re-parse the whole TTCN-3 and ASN.1 modules on
a change the outline view will always have to reinitialize all of its contents. This means,
that all structures actually open at such a change will b closed (in fact the old structure
will be deleted and a new will be created).

Public

USER GUIDE

141 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

11 Extensions to the Project Explorer

11.1 Filtering Resources from the View

It is possible to hide excluded resources from the Project explorer view.

To achieve this go to View Menu / select Customize View…

Figure 113: View Menu

Figure 114: Customize View…

Public

USER GUIDE

142 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 115: The Available Customizations window

On the Available Customizations window there are two exclusion filters provided by
the Designer plug-in:

• TITAN working directory.
When selected the working directories of the projects will be filtered from the Project
Explorer view.

• TITAN excluded resources.
When selected all resources excluded from the build on some way, will be filtered
from the view. For more information on how a resource can be excluded from build
please refer to section 2.4 .

By default the “TITAN working directory” filter is selected.

12 References

[1] Installation Guide for TITAN TTCN-3 Test Executor
1/1531-CRL 113 200/6 Uen

[2] Installation Guide for TITAN Designer and TITAN Executor for the Eclipse
IDE
3/1531-CRL 113 200/6 Uen

[3] TITAN User Guide for TITAN TTCN-3 Test Executor
1/198 17-CRL 113 200/6 Uen

[4] TITAN Programmer’s Technical Reference for TITAN TTCN-3 Test Executor
2/198 17-CRL 113 200/6 Uen

Public

USER GUIDE

143 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

[5] TITAN Release Notes for TITAN TTCN-3 Test Executor
109 47-CRL 113 200/6 Uen

[6] TTCN–3 Style Guide 1/0113-FCPCA 101 35

[7] TTCN–3 Naming Convention ETH/R-04:000010

[8] Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3.
Part 1: Core Language
European Telecommunications Standards Institute.
ES 201 873-1 Version 4.5.1, April 2013

[9] Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3.
Part 4: TTCN–3 Operational Semantics
European Telecommunications Standards Institute.
ES 201 873-1 Version 4.4.1, April 2012

[10] Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3.
Part 7: Using ASN.1 with TTCN–3
European Telecommunications Standards Institute.
ES 201 873-1 Version 4.5.1, April 2013

13 List of figures

Figure 1 Opening a perspective ·· 7

Figure 2 Selecting the TITAN Editing perspective ··················· 8

Figure 3 TITAN Editing Perspective ····································· 9

Figure 4 Enabling Titan Actions or ChangeSet Operations on the
Toolbar 10

Figure 5 TITAN Actions commands ··································· 10

Figure 6 Enabling the TITAN Shortcuts ······························ 11

Figure 7 Enabling TITAN Decoration ·································· 12

Figure 8 TITAN preferences sub-tree ································· 13

Figure 9 TITAN preferences ··· 14

Figure 10 Display Debug preferences ·································· 16

Figure 11 Content Assist ··· 17

Figure 12 Debug options and Load Balancing ························ 18

Figure 13 Debug Console log example ································ 19

Figure 14 Export options ··· 21

Figure 15 Folding preferences ··· 23

Figure 16 Matching brackets preferences ····························· 24

Public

USER GUIDE

144 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 17 Indentation preferences ······································· 24

Figure 18 Mark occurrences ·· 25

Figure 19 On-the-fly checker preferences ····························· 26

Figure 20 Errors / Warnings preferences ······························ 28

Figure 21 Workspace level naming convention settings ··········· 32

Figure 22 Syntax coloring preferences 1 ······························ 33

Figure 23 Syntax coloring preferences 2 ······························ 35

Figure 24 TITAN Actions preferences ·································· 35

Figure 25 Typing preferences ·· 36

Figure 26 New resources menu ·· 37

Figure 27 First page of the new TITAN Project wizard ············· 38

Figure 28 Second page of the new TITAN Project wizard ········· 39

Figure 29 Example created project ······································ 39

Figure 30 New / folder menu ·· 40

Figure 31: New folder window ··· 41

Figure 32 New file created ·· 41

Figure 33 First page of the New TTCN3 Module wizard ··········· 43

Figure 34 Second page of the New TTCN3 Module wizard ······· 44

Figure 35 New file ··· 45

Figure 36 Manage configurations ·· 46

Figure 37 Makefile creation attributes ·································· 48

Figure 38 Internal makefile creation attributes ························ 50

Figure 39 TTCN-3 preprocessor ··· 50

Figure 40 TTCN-3 Preprocessor symbols ····························· 51

Figure 41 TTCN-3 Preprocessor include directories ················ 51

Figure 42 TITAN Flags ··· 52

Figure 43 Preprocessor ·· 53

Figure 44 Preprocessor symbols ·· 53

Figure 45 Preprocessor include directories ··························· 54

Figure 46 C/C++ compiler ··· 54

Figure 47 C/C++ compiler optimization ································ 55

Figure 48 Platform specific libraries ····································· 56

Figure 49 Linker ·· 56

Figure 50 Linker libraries ·· 57

Public

USER GUIDE

145 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 51 Linker Options ··· 58

Figure 52 Make attributes ··· 59

Figure 53 Project level naming convention settings ················· 60

Figure 54 Folder level naming convention settings ·················· 61

Figure 55 Requirements on the actual configuration of referenced
projects 62

Figure 56 Configuration requirement selection window for project1.62

Figure 57 Remote build attributes ······································· 63

Figure 58 Remote build attributes of a host ··························· 64

Figure 59 Excluded from build ·· 65

Figure 60 TITAN file property ··· 66

Figure 61 Toggle exclude from build menu···························· 66

Figure 62 TITAN folder property ··· 67

Figure 63 Export menu ··· 69

Figure 64 Export common dialog ·· 70

Figure 65 Export Archive file wizard ···································· 71

Figure 66 Import common dialog ·· 72

Figure 67 Import Archive file wizard ····································· 73

Figure 68 Import from .prj file ··· 74

Figure 69 Import new TITAN Project from .prj file ··················· 75

Figure 70 Name of the new project ······································ 75

Figure 71 Create the included projects automatically ··············· 76

Figure 72 Export to TITAN project descriptor. ························ 81

Figure 73 File selection page ··· 82

Figure 74 Export options ··· 83

Figure 75 Import from project descriptor ······························· 86

Figure 76 Import options ··· 87

Figure 77 Format log menu ··· 90

Figure 78 Merge log menu ·· 90

Figure 79: Project references ·· 92

Figure 80 Toggle TITAN project nature ································ 93

Figure 81 Create Make archive ·· 94

Figure 82 Two large projects ··· 99

Figure 83 Dependencies ··· 104

Public

USER GUIDE

146 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

Figure 84 Generate external builder information ··················· 107

Figure 85 Syntax coloring of TTCN-3 files ··························· 110

Figure 86 Matching brackets highlight in TTCN-3 files ··········· 110

Figure 87 Template not folded ··· 111

Figure 88 Folding range shown ·· 111

Figure 89 Template folded ·· 111

Figure 90 Content assistant ··· 116

Figure 91 Skeletons in the content assistant ························ 117

Figure 92 Example inserted skeleton ································· 117

Figure 93 Rename refactoring ·· 122

Figure 94 Editing a configuration file ·································· 123

Figure 95 Syntax error detected ······································· 123

Figure 96 Module parameters ·· 124

Figure 97 Test port parameters ·· 124

Figure 98 Components, groups and Main Controller ·············· 125

Figure 99 Execute and external commands························· 127

Figure 100 Include and define ··· 128

Figure 101 Logging ··· 130

Figure 102 Grouping problems ·· 133

Figure 103 Grouping by severity ·· 134

Figure 104 Grouping by type ··· 134

Figure 105 Grouping by TITAN problems ····························· 134

Figure 106 TODO and FIXME task markers ·························· 135

Figure 107 Outline view·· 136

Figure 108 Sorted by position ·· 137

Figure 109 Sorted alphabetically ·· 137

Figure 110 Categorized and sorted alphabetically ·················· 138

Figure 111 Grouping ··· 138

Figure 112 Outline view icons for TTCN-3 and ASN.1 ············· 140

Figure 113: View Menu ··· 141

Figure 114: Customize View… ··· 141

Figure 115: The Available Customizations window ·················· 142

Public

USER GUIDE

147 (147)
Prepared (Subject resp) No.

ETHBAAT Jeno Balasko 4/198 17-CRL 113 200/6 Uen
Approved (Document resp) Checked Date Rev Reference

ETHLEL Elemer Lelik ETHGRY 2018-06-19 PE1

14 Abbreviations

ASN.1 Abstract Syntax Notation OneGCC GNU Compiler Collection
GUI Graphical User Interface
HC Host Controller
IDE Integrated Development Environment
IP Internet Protocol
MC Main Controller
MTC Main Test Component
PTC Parallel Test Component
SUT System Under Test
TCP Transmission Control Protocol
TTCN–3 Tree and Tabular Combined Notation version 3 (formerly)

Testing and Test Control Notation (new resolution)
TTCNPP TTCN Preprocessable (file)
TTCNIN TTCN Includable (file)
URL Universal Resource Locator

