
KASH
A User’s Guide

KANT–Group

Technische Universität Berlin

Fachbereich 3 Mathematik

Straße des 17. Juni 136

10623 Berlin, Germany

February 3, 1999

Copyright c© Prof. Dr. Michael E. Pohst, 1987–1999

TU Berlin

Fachbereich 3 Mathematik

Strasse des 17. Juni 136

10623 Berlin, Germany

KASH can be copied and distributed freely for any non-commercial purpose.

If you copy KASH for somebody else, you may ask this person to refund your expenses.

This should cover cost of media, copying and shipping. You are not allowed to ask for

more than this. In any case you must give a copy of this copyright notice along with

the program.

If you obtain KASH please send us a short notice to that effect, e.g., an e-mail message

to the address kant@math.tu-berlin.de containing your full name and address. This

allows us to keep track of the number of KASH users.

If you publish a mathematical result that was partly obtained using KASH, please cite

M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner

and K. Wildanger, KANT V4, in J. Symbolic Comp. 24 (1997), 267-283.

Also we would appreciate it if you could inform us about such a paper.

You are permitted to modify and redistribute KASH, but you are not allowed to restrict

further redistribution. That is to say proprietary modifications will not be allowed.

We want all versions of KASH to remain free. If you modify any part of KASH and

redistribute it, you must supply a ‘README’ document. This should specify what

modifications you made in which files. We do not want to take credit or be blamed for

your modifications.

Of course we are interested in all of your modifications. In particular we would like to

see bug-fixes, improvements and new functions. So again we would appreciate it if you

would inform us about all modifications you make.

KASH is distributed by us without any warranty, to the extent permitted by applicable

state law. We distribute KASH *as is* without warranty of any kind, either expressed

or implied, including, but not limited to, the implied warranties of merchantability and

fitness for a particular purpose.

The entire risk as to the quality and performance of the program is with you. Should

KASH prove defective, you assume the cost of all necessary servicing, repair or correc-

tion. In no case unless required by applicable law will we, and/or any other party who

may modify and redistribute KASH as permitted above, be liable to you for damages,

including lost profits, lost monies or other special, incidental or consequential damages

arising out of the use or inability to use KASH.

CONTENTS 1

Contents

Preface 3

Acknowledgements 6

Introduction 7

Overall Organization 8

1 Interactive Use of KASH 9

1.1 Starting and Leaving KASH . 9

1.2 First steps . 9

1.3 Online Help . 10

1.4 Line Editing . 11

1.5 Constants and Operators . 12

1.6 Variables and Assignments . 13

1.7 Integers and rationals . 14

1.8 Real and complex numbers . 16

1.9 Polynomials . 17

1.10 Matrices . 19

1.11 Lists . 20

1.12 Sets . 23

1.13 Ranges . 24

1.14 Records . 25

2 Algebraic Number Theory I : Absolute extensions 27

2.1 Arithmetic . 27

2.2 Maximal orders . 30

2.3 Unit groups . 33

2.4 Ideals . 34

2.5 Class Groups . 37

CONTENTS 2

3 Algebraic Number Theory II : Relative extensions 39

3.1 Arithmetic . 39

3.2 Relative ideals . 42

3.3 Modules over Dedekind rings . 45

4 Algebraic function fields 48

4.1 Definition of an algebraic function field 48

4.2 Orders, ideals and elements . 50

5 Lattices 54

5.1 Defining lattices in KASH . 54

5.2 Lattice Elements . 56

5.3 Shortest vectors . 57

5.4 Enumerating lattices . 59

6 The Programming Language 61

6.1 While . 61

6.2 Repeat . 62

6.3 For . 62

6.4 If . 63

6.5 Writing Functions . 64

A Installation 68

B Customizing KASH 69

C PVM, KASH and KANT V4 70

C.1 Installing KANT V4-pvm and KASH-pvm 70

C.2 KANT V4-pvm . 71

C.3 KASH-pvm . 72

C.4 pvm-watch . 74

C.5 Trouble shooting . 74

D Printlevel 75

CONTENTS 3

Preface

This is the n-th release of KASH, the KANT V4 1 shell.

KANT V4 is a program library for computations in algebraic number fields and

(global) algebraic function fields. In the number field case, algebraic integers are

considered to be elements of a specified order of an appropriate field F . Algebraic

numbers are presented by an integer and a denominator, usually chosen as a

natural number. In the function field case, also orders of F are used, but now

over different coefficient rings. The representation of algebraic functions is then

done in an analogous way as for algebraic numbers. The available algorithms

provide the user with the means to compute many invariants of F . In the number

field case it is possible to solve tasks like calculating the solutions of Diophantine

equations related to F . Further subfields of F can be generated and F can be

embedded into an overfield. The potential of moving elements between different

fields (orders) is a significant feature of our system. In the function field case, for

example, genus computations and the construction of Riemann-Roch spaces are

available.

KANT V4 was developed at the University of Düsseldorf from 1987 until 1993

and at the Technical University Berlin afterwards. During these years the perfor-

mance of existing algorithms and their implementations grew dramatically. While

calculations in number fields of degree 4 and up were nearly impossible before

1970 and number fields of degree more than 10 were beyond reach until 1990, it is

now possible to compute in number fields of degree well over 20, and – in special

cases – even beyond 1000. This also characterizes one of the principles of KANT

V4, namely to support computations in number fields of arbitrary degree rather

than fixing the degree and pushing the size of the discriminant to the limit.

KANT V4 consists of a C–library of more than 1000 functions for doing arith-

metic in number fields. Of course, the necessary auxiliaries from linear algebra

over rings, especially lattices, are also included. The set of these functions is

based on the computer algebra system MAGMA from which we adopt our stor-

age management, arithmetic for (long) integers and arbitrary precision floating

point numbers, arithmetic for finite fields, polynomial arithmetic and a variety

1The quasi-acronym KANT stands for Computational Algebraic Number Theory with a

slight twist hinting at its German origin.

CONTENTS 4

of other tools. Essentially, all of the public domain part of MAGMA is contained

in KANT V4. In return, almost all KANT V4 routines are included in MAGMA.

To make KANT V4 easier to use we developed a shell called KASH. This shell is

based on that of the group theory package GAP and the handling is similar to

that of MAPLE. We put great effort into enabling the user to handle the number

theoretical objects in the very same way as one would do using pencil and paper.

For example, there is just one command Factor for the factorization of elements

from a factorial monoid like rational integers in Z, polynomials over a field, or

ideals from a Dedekind ring.

The main features of the current release of KASH are

• computation of maximal orders in numbers fields,

• computation of class groups,

• computation of fundamental units in arbitrary orders,

• decomposition of ideals in number fields,

• arithmetic of ideals,

• arithmetic of relative extensions of number fields,

• computation of maximal orders of a relative extension

• computation of normal forms of modules in relative extensions,

• solution of norm equations in absolute and relative extensions,

• computation of subfields,

• computation of Galois groups up to degree 15,

• computation of automorphisms in normal number fields,

• computation of ray class fields,

• computation of the genus of an algebraic function field, handling of places,

divisors and Riemann-Roch spaces,

• computation of maximal orders and ideal arithmetic in function fields,

CONTENTS 5

• computation of reduced bases and fundamental units in global function

fields,

• arithmetic in relative lattices,

• solving Thue and unit equations, integral points on Mordell curves,

• solving index form equations.

The development of KANT V4 as well as KASH is continued in view of providing

the user with the most advanced tools for computations in algebraic number

fields. Suggestions for important features to be included are welcome.

CONTENTS 6

Acknowledgements

This program could not have been written without the support of Prof. J. Can-

non, W. Bosma, S. Collins and A. Steele at the University of Sydney. Addi-

tionally, we would like to thank Prof. Dr. J. Neubüser at the RWTH Aachen,

Germany for his permission to use and modify a large portion of the GAP source

code. Special thanks also go to M. Schönert, a main contributor to the creation

of GAP, for his kind support and aid. Finally, we would like to thank A. Weber at

Cornell University, who developed the database for algebraic number fields and

M. Klebel who did the (Ray) class fields for imaginary quadratic number fields.

KANT V4 Copyright c© Prof. Dr. M. Pohst, 1987-1999

TU Berlin, Fachbereich 3 Mathematik

Straße des 17. Juni 136, 10623 Berlin, Germany

EMail: kant@math.tu-berlin.de

KASH Copyright c© Prof. Dr. M. Pohst, 1994-1999

TU Berlin, Fachbereich 3 Mathematik

Straße des 17. Juni 136, 10623 Berlin, Germany

EMail: kant@math.tu-berlin.de

MAGMA Copyright c© Prof. J. Cannon, 1995 -1999

Sydney, Australia

Email: john@maths.usyd.edu.au

GAP Copyright c© Lehrstuhl D für Mathematik, 1992

RWTH Aachen

Templergraben 64, 52062 Aachen, Germany

CONTENTS 7

Introduction

The following sections introduce you to the KASH system. A step by step in-

troduction should give you an impression of how the KASH system works. After

reading these sections the reader should know what kind of problems can be

handled with KASH and how they can be handled.

KASH is based on the shell of GAP; however, GAP’s functions have been replaced

with KANT V4 functions. Although most functions listed in the GAP manual will

not work in KASH, the GAP manual is still an invaluable reference for the general

usage of the shell (i.e., the syntax of input and programming language, etc.). For

a listing of the KANT V4 functions currently available in KASH, please refer to

the reference manual.

The printed examples encourage you to try running KASH on your computer.

This will support your feeling for KASH as a tool, which is the leading aim of this

section. Do not believe any statement in this section so long as you cannot verify

it with your own version of KASH. You will learn to distinguish between small

deviations of the behavior of your personal KASH from the printed examples and

serious nonsense.

In case you encounter serious nonsense it is highly recommended that you send

a bug report to kant@math.tu-berlin.de.

CONTENTS 8

Overall Organisation

This manual is organized into the following sections.

• Interactive Use of KASH

This section describes how to start KASH and how to leave it. It provides

a succinct discussion of the basic data types supported by KASH such as

reals, matrices and polynomials. We also describe the main points of the

KASH shell.

• Algebraic Number Theory I-II

In these two sections we explain in great detail the central part of KASH.

We establish the concepts necessary to understand and use orders, algebraic

numbers and ideals in KASH. Such tasks as the computation of maximal

order, unit and class group of an algebraic number field are discussed here.

The first section deals with absolute extensions whereas relative extensions

are discussed in the second section.

• Algebraic function fields

In this section the basic concepts of KASH dealing with algebraic function

fields are explained. It is shown in detail how to define an algebraic function

field, how to compute it’s genus, and how to work with elements and ideals

in orders.

• Lattices

This section gives an introduction on how to use lattices in KASH.

• Programming

This section provides a brief description of the programming language. of

KASH. You can skip this section if you are already familiar with the pro-

gramming language of GAP.

Notice that most functions described in the following introduction allow alterna-

tive and more sophisticated calling sequences providing the user with additional

options. A complete description of every function is contained in the reference

manual.

1 INTERACTIVE USE OF KASH 9

1 Interactive Use of KASH

The first section is devoted to explaining the basic types supported by KASH and

how to effectively use them. As the main points of the KASH shell are given in

conjunction with the type specific information, special attention should be paid

to the examples. To begin with we describe how to start KASH (you may have

to ask your system administrator to install it correctly) and how to leave it.

1.1 Starting and Leaving KASH

If KASH is correctly installed, then you start KASH by simply typing kash at

the prompt of your operating system. If you are successful in starting KASH,

the KASH logo should appear, at which time a command or function call may be

entered. To exit KASH type

quit;

at the prompt (the semicolon is necessary!). From now on, we will display the

KASH prompt kash> to mean that the user is to type what comes after the kash>

in the manual when the prompt appears on the screen.

1.2 First steps

A simple calculation with KASH is as easy as one can imagine. You type the

problem just after the prompt, terminate it with a semicolon and then pass

the problem to the program with the return key. For example, to multiply the

difference between 9 and 7 by the sum of 5 and 6, that is to calculate (9−7)(5+6),

you type exactly this last sequence of symbols followed by ; and return.

kash> (9 - 7) * (5 + 6);

22

kash>

Then KASH echoes the result 22 on the next line and shows with the prompt

that it is ready for the next problem.

1 INTERACTIVE USE OF KASH 10

If you did omit the semicolon at the end of the line but have already typed return,

then KASH has read everything you typed, but does not know that the command

is complete. The program is waiting for further input and indicates this with

a partial prompt >. This little problem is solved by simply typing the missing

semicolon on the next line of input. Then the result is printed and the normal

prompt returns.

kash> (9 - 7) * (5 + 6)

> ;

22

kash>

Whenever you see this partial prompt and you cannot decide what KASH is still

waiting for, then you have to type semicolons until the normal prompt returns.

In the following examples we will omit this prompt on the line after the result.

Considering each example as a continuation of its predecessor this prompt occurs

in the next example.

1.3 Online Help

For online help, ? is a valuable tool. A single question mark followed by the

name of a function (without the final semicolon!) causes the description of the

function found in the reference manual to appear on the screen. If the function

is not found, a list will appear of all functions beginning with that name. If a list

of all functions beginning with a particular string is desired, use ?? followed by

the string to match.

For example, to produce the manual page corresponding to the KASH function

Order, use

kash> ?Order

and wait for the manual page to appear on the screen. The list of all functions

beginning with Order can be obtained by

kash> ??Order

with the two question marks. Suppose that

1 INTERACTIVE USE OF KASH 11

kash> ?OrderSet

had been given. As there is no function with that name, but several which

begin with that string, the ? will behave like the ?? and produce a list for

possibilities. If no match is found, the response Help: no topic with this

name was found is displayed.

1.4 Line Editing

KASH allows you to edit the current input line with a number of editing com-

mands. Those commands are accessible as control keys. You enter a control key

by pressing the Ctrl key, and, while still holding the Ctrl key down, hitting

another key. Below we denote control keys by <Ctrl>-<key>. The case of <key>

does not matter, i.e., <Ctrl>-A and <Ctrl>-a are equivalent.

In the table below we list the most important commands for cursor movement,

deleting text and yanking text.

Keystrokes Action

<Ctrl>-A move to beginning of line

<Ctrl>-B move backward one character

<Ctrl>-D delete character under cursor

<Ctrl>-E move to end of line

<Ctrl>-F move forward one character

<Ctrl>-H delete previous character

<Ctrl>-K delete from cursor to end of line

<Ctrl>-Y insert (yank) what you’ve deleted

The Tab key looks at the characters before the cursor, interprets them as the

beginning of an identifier and tries to complete this identifier. If there is more

than one possible completion, it completes to the longest common prefix of all

those completions. If the characters to the left of the cursor are already the

longest common prefix of all completions hitting Tab a second time will display

all possible completions.

The next commands allow you to fetch previous lines. This history is limited to

about 8000 characters.

1 INTERACTIVE USE OF KASH 12

Keystrokes Action

<Ctrl>-L insert last input line before current character

<Ctrl>-P redisplay the last input line, another <Ctrl>-P will redisplay

the line before that, etc. If the cursor is not in the first column

only the lines starting with the string to the left of the cursor

are taken.

<Ctrl>-N like <Ctrl>-P but goes the other way round through the

history.

1.5 Constants and Operators

In an expression like (9 - 7) * (5 + 6) the constants 5, 6, 7, and 9 are being

composed by the operators +, * and - to result in a new value.

There are three kinds of operators in KASH, arithmetical operators, comparison

operators, and logical operators. You have already seen that it is possible to form

the sum, the difference, and the product of two integer values. There are some

more operators applicable to integers in KASH. Of course integers may be divided

by each other, possibly resulting in noninteger rational values.

kash> 12345/25;

2469/5

Note that the numerator and denominator are divided by their greatest common

divisor and that the result is uniquely represented as a division instruction.

We haven’t met negative numbers yet. So consider the following self–explanatory

examples.

kash> -3; 17 - 23;

-3

-6

The exponentiation operator is written as ^. This operation in particular might

lead to very large numbers. This is no problem for KASH as it can handle numbers

of (almost) arbitrary size.

kash> 7^69;

20500514515695490612229010908095867391439626248463723805607

1 INTERACTIVE USE OF KASH 13

KASH knows a precedence between operators that may be overridden by paren-

theses.

Besides these arithmetical operators there are comparison operators in KASH. A

comparison result is a boolean value. Integers, rationals and real numbers are

comparable via =, <, <=, >=, > and <>; algebraic elements, ideals, matrices and

complex numbers can be compared via = and <>.

The boolean values true and false can be manipulated via logical operators,

i. e., the unary operator not and the binary operators and and or.

1.6 Variables and Assignments

Values may be assigned to variables. A variable enables you to refer to an object

via a name. The assignment operator is :=. Do not confuse the assignment

operator := with the single equality sign = which in KASH is only used for the

test of equality.

kash> a:= (9 - 7) * (5 + 6);

22

kash> a;

22

kash> a * (a + 1);

506

After an assignment, the assigned value is echoed on the next line. The printing

of the value of a statement may be in every case prevented by typing a double

semicolon.

kash> a:= 2;;

After the assignment, the variable evaluates to that value if evaluated. Thus it

is possible to refer to that value by the name of the variable in any situation.

A variable name may be sequences of letters and digits containing at least one

letter. For example abc and a1b2 are valid names. Since KASH distinguishes

upper and lower case, a and A are different names. Keywords such as quit must

not be used as names. The following letters are reserved for use as fixed objects

and may not be used as variable names:

1 INTERACTIVE USE OF KASH 14

C field of complex numbers

e 2.7182 . . .

pi π = 3.14159 . . .

Q field of rational numbers

R field of real numbers

Z ring of integers

Zx polynomial algebra over Z

In order to determine the type of a named variable or constant, the function TYPE

is used. For example, the command

kash> TYPE(e);

produces the result

"KANT real"

Whenever KASH returns a value by printing it on the next line, this value is

assigned to the variable last. So if you computed

kash> (9 - 7) * (5 + 6);

22

and forgot to assign the value to the variable a for further use, you can still do it

by the following assignment.

kash> a:= last;

22

Moreover there are variables last2 and last3, guess their values.

1.7 Integers and rationals

KASH integers are entered as a sequence of digits optionally preceded by a + sign

for positive integers or a - sign for negative integers. In KASH, the size of integers

is only limited by the amount of available memory. The binary operations +, -,

*, / allow combinations of arguments from the integers, the rationals, and real

and complex fields (see 1.8); automatic coercion is applied where necessary.

1 INTERACTIVE USE OF KASH 15

kash> 3+3;

6

kash> 3*3;

9

kash> 3^4;

81

kash> 11111^5;

169342410709747836551

KASH provides the following integer functions; refer to the reference manual for

detailed descriptions and examples.

Factor Returns the factorization of an integer.

IntGcd Returns the greatest common divisor of two integers.

IntIsPrime Checks whether an integer is a prime.

IntLcm Returns the least common multiple of two integers.

IntQuo Divides one integer by another and returns an integer quo-

tient.

NextPrime Returns the smallest prime larger than an integer.

Since integers are naturally embedded in the field of real numbers, all real func-

tions are applicable to integers (see 1.8).

Rationals can be created by simply typing in the fraction using the symbol / to

denote the division bar. The value is not converted to decimal form, however the

reduced form of the fraction is found.

kash> 4/6

2/3

All real functions are applicable to rationals (see 1.8).

1 INTERACTIVE USE OF KASH 16

1.8 Real and complex numbers

Real numbers can only be stored in the computer effectively in the form of ap-

proximations. KASH provides a number of facilities for calculating with such

approximations to (at least) a given, but arbitrary, precision. Real numbers have

a default precision of 20. To reset this precision to n, the call

kash> Prec(n);

is used.

The following self–explanatory examples show how to create real numbers in

KASH and how to do arithmetic.

kash> 123.45;

123.45

kash> 34.5+20.2;

54.7

kash> 34.5/17.1;

2.0175438596491228

kash> 12.0E+30;

1.2e31

KASH provides the following real functions; refer to the reference manual for

detailed descriptions and examples.

Abs Returns the absolute value of a real number.

Ceil Finds the smallest integer larger than or equal to a real num-

ber.

Cos Evaluates the cosine of an angle in radians.

Exp Computes the exponential of a real number.

Floor Finds the largest integer less than or equal to a real number.

Log Evaluates the natural logarithm of a real number.

Sin Evaluates the sine of an angle in radians.

Sqrt Computes the square root of a real number.

1 INTERACTIVE USE OF KASH 17

Tan Evaluates the tangent of an angle in radians.

In KASH, complex numbers have the same precision as real numbers. This preci-

sion can be modified by calling the Prec function (see above). A complex number

can be designated using the function Comp, which requires two real arguments.

kash> z := Comp(1,2);

1 + 2*i

kash> z+1;

2 + 2*i

kash> z*z;

-3 + 4*i

Most real functions can be applied to complex numbers. Additionally, KASH

provides the following complex functions.

Arg Returns the argument of a complex number.

Im Returns the imaginary part of a complex number.

Re Returns the real part of a complex number.

1.9 Polynomials

At the moment, KASH can only handle univariate polynomials. These polynomi-

als can be defined using the routine Poly which takes two arguments. The first

one is the polynomial algebra the polynomial comes from; the second argument

holds a list of the coefficients (a list is a collection of objects separated by commas

and enclosed in brackets; see 1.11).

For example, to create the polynomial f(x) = x3 + x + 1 ∈ Z[x] in KASH, you

can do it by the assignment

kash> f := Poly(Zx,[1,0,1,1]);

x^3 + x + 1

Let’s look closely at this example. The first argument Zx is the predefined con-

stant for the polynomial algebra Z[x]. In the second argument we pass the list

1 INTERACTIVE USE OF KASH 18

[1, 0, 1, 1] which contains the coefficients of f(x). The list begins with the coeffi-

cient of the highest exponent down to that of the constant, including all zeroes.

The following self-explanatory examples show how to do some artihmetic.

kash> f+f;

2*x^3 + 2*x + 2

kash> f*f;

x^6 + 2*x^4 + 2*x^3 + x^2 + 2*x + 1

kash> f^3;

x^9 + 3*x^7 + 3*x^6 + 3*x^5 + 6*x^4 + 4*x^3 + 3*x^2 + 3*x + 1

kash> 5*f;

5*x^3 + 5*x + 5

Use the Eval routine to calculate the value of f when the variable x is substituted

by certain values.

kash> Eval(f,1);

3

kash> Eval(f,10);

1011

kash> Eval(f,f);

x^9 + 3*x^7 + 3*x^6 + 3*x^5 + 6*x^4 + 5*x^3 + 3*x^2 + 4*x + 3

Suppose now, that we want to enter the polynomial g(x) = 1

2
x2 + x + 2

3
∈ Q[x]

in KASH. This is not as easy as entering a polynomial over the integers, because

the polynomial algebra Q[x] is not provided by KASH. To create the polynomial

algebra S[x] with coefficients from a designated ring S, the routine PolyAlg

should be used. This routine requires one argument, namely the coefficient ring

of the polynomial algebra. Recalling that Q is the predefined constant for the

ring Q, the following assignment creates the polynomial algebra Q[x] in KASH.

kash> Qx := PolyAlg(Q);

Univariate Polynomial Algebra in x over Rational Field

Now we are ready to define g(x).

kash> g := Poly(Qx,[1/2,1,2/3]);

1/2*x^2 + x + 2/3

1 INTERACTIVE USE OF KASH 19

There are many KASH functions dealing with polynomials. They are all explained

in the reference manual. The names usually start with Poly. The most important

ones are listed below.

Factor Returns the factorization of a polynomial.

PolyDeg Returns the degree of a polynomial.

PolyDeriv Returns the derivative of a polynomial.

PolyDisc Returns the discriminant of a polynomial.

PolyGcd Returns the greatest common divisor of two polynomials.

1.10 Matrices

To create a matrix in KASH, the routine Mat should be used. It requires two

arguments. The first one is a ring from which the matrix entries come; the

second argument is a list containing the rows of the matrix, each row again being

a list.

For example, to create the matrix

A =




1 2

3 4



 ∈ Z2×2,

the following assignment will do it

kash> A := Mat(Z,[[1,2],[3,4]]);

[1 2]

[3 4]

Recall that there are several predefined constants which can be used as a ring

type (for example, Z, Q, R, C, Zx). Other objects, such as an order (see 2.1)

or a polynomial algebra, may be used as a ring type as well. See Mat in the

reference manual for more examples.

We can easily access an entry or a row.

1 INTERACTIVE USE OF KASH 20

kash> A[2][2];

4

kash> A[2];

[3 4]

kash> A[2][2]:=5;;A;

[1 2]

[3 5]

See MatElt in the reference manual for the complete bracket notation capabili-

ties.

Let’s do some simple arithmetic.

kash> A+A;

[2 4]

[6 8]

kash> A^2-5*A;

[2 0]

[0 2]

KASH provides several linear algebra routines which are all explained in the

reference manual. Their names usually start with Mat. The most important

ones are catalogued below.

MatCharPoly Returns the characteristic polynomial of a matrix.

MatDet Returns the determinant of a matrix.

MatInv Returns the inverse of a matrix.

MatTrace Returns the trace of a matrix.

MatTrans Returns the transpose of a matrix.

1.11 Lists

A list is a collection of objects separated by commas and enclosed in brackets.

Let’s for example construct the list primes of the first 10 prime numbers.

1 INTERACTIVE USE OF KASH 21

kash> primes:= [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

The next two primes are 31 and 37. They may be appended to the existing list

by the function Append, which takes the existing list as its first and another list

as a second argument. The second argument is appended to the list primes and

no value is returned.

kash> Append(primes, [31, 37]);

kash> primes;

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

You can also add single new elements to existing lists by the function Add which

takes the existing list as its first argument and a new element as its second

argument. The new element is added to the list primes and again no value is

returned but the list primes is changed.

kash> Add(primes, 41);

kash> primes;

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]

Single elements of a list are referred to by their position in the list. To get the

value of the seventh prime, that is the seventh entry in our list primes, you

simply type

kash> primes[7];

17

and you will get the value of the seventh prime. This value can be handled like any

other value, for example multiplied by 2 or assigned to a variable. On the other

hand, this mechanism allows a value to be assigned to a position in a list. So the

next prime 43 may be inserted in the list directly after the last occupied position

of primes. This last occupied position is returned by the function Length.

kash> Length(primes);

13

kash> primes[14] := 43;

43

kash> primes;

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]

1 INTERACTIVE USE OF KASH 22

Note that this operation has again changed the object primes. Not only the next

position of a list is capable of taking a new value. If you know that 71 is the

20th prime, you can enter it right now in the 20th position of primes as well.

This will result in a list with holes, which is, however, still a list, the list being

of length 20.

kash> primes[20] := 71;

71

kash> Length(primes);

20

kash> primes;

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71]

The list itself, however, must exist before a value can be assigned to a position

of the list. This list may be the empty list [].

kash> L[1] := 2;

Error, Variable: ’L’ must have a value

kash> L := [];

[]

kash> L[1] := 2;

2

Of course existing entries of a list can be changed by this mechanism, too.

In all of the above changes to the list primes, the list has been automatically

resized. There is no need for you to tell KASH how big you want a list to be.

It is not necessary for the objects collected in a list to be of the same type.

kash> L := [1,2,true,3/4,Poly(Zx,[1,0,2])];

[1, 2, true, 3/4, x^2 + 2]

In the same way a list may be part of another list.

kash> L := [[1,2],[3,4]];

[[1, 2], [3, 4]]

kash> L[1][1];

1 INTERACTIVE USE OF KASH 23

1

kash> L[1][2];

2

kash> L[2][1];

3

kash> L[2][2];

4

In the rest of this section we introduce some further data types. You should

read this part when you start to write programs in KASH . If you are beginning

to use KASH, jump to the second section Algebraic Number Theory, which

describes the central part of KASH.

1.12 Sets

A set in KASH is a special kind of list. A set contains no holes, and its elements

are sorted according to the KASH ordering of all its objects. Moreover, a set

contains no object twice.

For any list there exists a corresponding set. This set is constructed by the

function Set which takes the list as its argument and returns a set obtained from

this list by ignoring holes and duplicates and by sorting the elements.

kash> L := [1,4,2,7,4,9];

[1, 4, 2, 7, 4, 9]

kash> S := Set(L);

[1, 2, 4, 7, 9]

Note that the original list L is not changed by the function Set. We have to make

a new assignment to the variable S in order to make it a set.

The in operator is used to test whether an object is an element of a set. It

returns a boolean value true or false.

kash> 4 in S;

true

kash> 5 in S;

false

1 INTERACTIVE USE OF KASH 24

The in operator may be applied to ordinary lists as well. It is, however, much

faster to perform a membership test for sets since sets are always sorted and a

binary search can be used instead of a linear search.

New elements may be added to a set by the function SetAdd which takes the

set S as its first argument and an element as its second argument and adds the

element to the set if it wasn’t already there. Note that the object S is changed.

kash> SetAdd(S,5);

kash> SetAdd(S,10);

kash> S;

[1, 2, 4, 5, 7, 9, 10]

Sets can be intersected by the function SetIntersect and united by the function

SetUnite which both take two sets as their arguments and change their first

argument to be the result. The second argument of the functions SetIntersect

and SetUnite may as well be ordinary lists.

kash> T := [3,8];

[3, 8]

kash> SetUnite(S,T);

kash> S; [1, 2, 3, 4, 5, 7, 8, 9, 10]

1.13 Ranges

A range is a finite sequence of integers which is another special kind of list. A

range is described by its minimum (the first entry), its second entry and its

maximum, separated by a comma resp. two dots and enclosed in brackets. In

the usual case of an ascending list of consecutive integers the second entry may

be omitted.

For example, to create the list of all positive integers less than or equal to 100,

you can use the following assignment.

kash> L := [1..100];

[1 .. 100]

kash> Length(L);

100

1 INTERACTIVE USE OF KASH 25

kash> L[1];

1

kash> L[50];

50

To get the list of all even integers between 2 and 100, simply type

kash> L := [2,4..100];

[2, 4 .. 100]

kash> L[1];

2

kash> L[2];

4

kash> Length(L);

50

1.14 Records

A record provides another way to build new data structures. Like a list, a record

is a collection of other objects. In a record the elements are not indexed by

numbers, but by names (identifiers). An entry in a record is called a record

component (or sometimes also record field).

kash> date := rec(year:=1995, month:=10, day := 27);

rec(

year := 1995,

month := 10,

day := 27)

Initially, a record is defined as a list consisting of assignments to its record com-

ponents, which are separated by commas Then the value of a record component

is accessible by the record name and the record component name separated by

one dot as the record component selector.

kash> date.year;

1995

kash> date.month;

10

1 INTERACTIVE USE OF KASH 26

Assignments to new record components are possible in the same way. The record

is automatically resized to hold the new component.

kash> date.time := rec(hour:=15, minute := 40);

rec(

hour := 15,

minute := 40)

kash> date;

rec(

year := 1995,

month := 10,

day := 27,

time := rec(

hour := 15,

minute := 40))

Records are objects that may be changed. An assignment to a record component

changes the original object.

kash> date.year := 1997;

1997

kash> date;

rec(

year := 1997,

month := 10,

day := 27,

time := rec(

hour := 15,

minute := 40))

Sometimes it is interesting to know which components of a certain record are

bound. This information is available from the function RecFields which takes a

record as its argument and returns a list of all bound components of this record

as a list of strings.

kash> RecFields(date);

["year", "month", "day", "time"]

2 ALGEBRAIC NUMBER THEORY I : ABSOLUTE EXTENSIONS 27

2 Algebraic Number Theory I :

Absolute extensions

This section describes the central part of KASH. After learning how to do simple

arithmetic in algebraic number fields using KASH, you will be able to compute

the main invariants of algebraic number fields.

2.1 Arithmetic

We call α ∈ C an algebraic integer if there exists a monic irreducible polynomial

f(x) ∈ Z[x] with f(α) = 0. An algebraic number field F is a finite extension

of the field of rationals Q. There always exists an algebraic integer ρ ∈ C such

that F = Q(ρ). The set of algebraic integers in F forms a ring which is denoted

by O = OF . An order o in F is a unital subring of O which, as a Z–module, is

finitely generated and of rank [F : Q]. Of course, O is an order which we call the

maximal order of F .

In KASH, any computations in an algebraic number field F are performed with

respect to a certain order in F . Suppose that we want do some arithmetic in the

field F = Q(ρ), where ρ is a zero of the polynomial

f(x) = x5 + 4x4 − 56x2 − 16x + 192 ∈ Z[x]

(you can easily check that f(x) is irreducible using the KASH command Factor).

We will create the equation order Z[ρ] in F using the Order function. There are

currently four ways in KASH to call this routine. Here, we use the simplest one,

which takes only one argument, namely the minimal polynomial of ρ.

kash> f := Poly(Zx,[1,4,0,-56,-16,192]);

x^5 + 4*x^4 - 56*x^2 - 16*x + 192

kash> o := Order(f);

Generating polynomial: x^5 + 4*x^4 - 56*x^2 - 16*x + 192

The computation of the discriminant and signature of an order are both basic

tasks (by the signature of an order we mean of course the signature of the algebraic

number field the order comes from).

2 ALGEBRAIC NUMBER THEORY I : ABSOLUTE EXTENSIONS 28

kash> OrderDisc(o);

1364202618880

kash> OrderSig(o);

[1, 2]

The OrderSig routine returns a list whose first entry is the number of real em-

beddings of F in C. The second entry equals the number of the complex em-

beddings. Remember, that KASH has Tab completion (see 1.4). Rather than

typing OrderDisc, type Or and press Tab , then type Di and press Tab again.

To do some arithmetic in Z[ρ] we need to enter elements from Z[ρ] in KASH. Any

element α ∈ Z[ρ] has a unique representation

α = a1 + a2ρ + a3ρ
2 + a4ρ

3 + a5ρ
4

with a1, . . . , a5 ∈ Z. We can create α by invoking the KASH routine Elt which

requires two arguments. The first one is the order Z[ρ]. In the second argument

the representation of α from above is passed as a list. For example, the following

commands creates ρ, α = 2 + 3ρ + 4ρ2 − 1ρ3 + 6ρ4 and β = −2ρ3 + ρ4.

kash> rho := Elt(o,[0,1,0,0,0]);

[0, 1, 0, 0, 0]

kash> alpha := Elt(o,[2,3,4,-1,6]);

[2, 3, 4, -1, 6]

kash> beta := Elt(o,[0,0,0,-2,1]);

[0, 0, 0, -2, 1]

Now we are ready to do some simple calculations.

kash> rho+1;

[1, 1, 0, 0, 0]

kash> rho+rho^2;

[0, 1, 1, 0, 0]

kash> alpha-beta;

[2, 3, 4, 1, 5]

kash> alpha*beta;

[54720, -34128, -6392, 6876, -840]

2 ALGEBRAIC NUMBER THEORY I : ABSOLUTE EXTENSIONS 29

So far, we have only entered elements from Z[ρ]. However, the Elt function

enables you also to create an element δ ∈ F which is not contained in Z[ρ].

Having a representation

δ =
d1 + d2ρ + d3ρ

2 + d4ρ
3 + d5ρ

4

d

with d1, . . . , d5, d ∈ Z, d 6= 0, you can enter δ in KASH by calling the Elt routine

and passing in as its second argument a list containing d1, . . . , d5 followed by

a division bar / and the denominator d. For example, the assignment below

produces δ = 1

2
ρ + 3

2
ρ2 ∈ F .

kash> delta := Elt(o,[0,1,3,0,0]/2);

[0, 1, 3, 0, 0] / 2

This assignment is tantamount to

kash> delta := Elt(o,[0,1/2,3/2,0,0]);

[0, 1, 3, 0, 0] / 2

There are many KASH functions dealing with algebraic numbers. Their names

usually start with Elt. Look at the reference manual for a complete list. Here, we

present the functions EltNorm and EltTrace which compute norms and traces

of algebraic numbers.

kash> EltNorm(rho);

-192

kash> EltTrace(rho);

-4

kash> EltNorm(alpha);

16256331150880

kash> EltTrace(alpha);

-3498

2 ALGEBRAIC NUMBER THEORY I : ABSOLUTE EXTENSIONS 30

2.2 Maximal orders

We are now going to compute the maximal order O of F . This means we compute

an integral basis ω1, . . . , ω5 of F .

kash> O := OrderMaximal(o);

F[1]

|

F[2]

/

/

Q

F [1] Given by transformation matrix

F [2] x^5 + 4*x^4 - 56*x^2 - 16*x + 192

Discriminant: 1301005

Let’s look closely at this example. So far, we have only been concerned with

an equation order, namely Z[ρ]. When KASH prints any equation order over Z,

it displays the corresponding polynomial. However, the maximal order O of F
returned by the OrderMaximal function is not given as an equation order, but by

a transformation matrix T ∈ Q5×5 such that

(w1, . . . , w5) = (1, ρ, . . . , ρ4) · T.

Instead of printing the transformation matrix, KASH displays a graph as above.

The vertices Q, F[1] and F[2] in this graph are algebraic number fields which

are the quotient fields of pairwise distinct orders (orders are supposed to be

distinct in KASH when their bases differ). The vertex at the top of the graph

corresponds to the order which is displayed. Therefore, F[1] in the above graph

corresponds to the maximal order O returned by the OrderMaximal function.

From the description at the bottom of the graph we get the information that

the field F[2] is the quotient field of the equation order corresponding to the

polynomial x5 + 4x4 − 56x2 − 16x + 192. This means that F[2] represents the

quotient field of Z[ρ]. Of course, the vertex named Q stands for Q. Notice, that

vertices connected by a vertical edge | represent the same number field, whereas

a slanted edge indicates that the field at the bottom of this edge is properly

contained in the field at the other end.

2 ALGEBRAIC NUMBER THEORY I : ABSOLUTE EXTENSIONS 31

The OrderMaximal function computes an integral basis ω1, . . . , ω5 of F . We are

now going to enter the numbers ω1, . . . , ω5 in KASH. So far, we have entered alge-

braic numbers whose representations with respect to the power basis 1, ρ, . . . , ρ4

were known. By using the equation order Z[ρ] as the first argument we told the

Elt function that the coefficients in the second argument are given with respect

to this basis. To enter a number given as a1ω1 + · · · + a5ω5 with a1, . . . , a5 ∈ Q,

we again use the Elt function by passing the maximal order as its first argument.

Therefore, it’s quite easy to enter ω1, . . . , ω5 in KASH.

kash> w1 := Elt(O,[1,0,0,0,0]);

1

kash> w2 := Elt(O,[0,1,0,0,0]);

[0, 1, 0, 0, 0]

kash> w3 := Elt(O,[0,0,1,0,0]);

[0, 0, 1, 0, 0]

kash> w4 := Elt(O,[0,0,0,1,0]);

[0, 0, 0, 1, 0]

kash> w5 := Elt(O,[0,0,0,0,1]);

[0, 0, 0, 0, 1]

After entering ω1, . . . , ω5 in KASH we will compute the representations of ω1, . . . , ω5

with respect to the power basis 1, ρ, . . . , ρ4. To do so, the EltMove function should

be used. When you call this routine, passing an algebraic number γ and an order

o as arguments, it returns a copy of γ represented with respect to the basis of o.

Let’s look at the following lines that should clarify how EltMove works.

kash> EltMove(w1,o);

1

kash> EltMove(w2,o);

[0, 1, 0, 0, 0] / 2

kash> EltMove(w3,o);

[0, 0, 1, 0, 0] / 4

kash> EltMove(w4,o);

[0, 0, 0, 1, 0] / 8

kash> EltMove(w5,o);

[0, 0, 0, 0, 1] / 16

2 ALGEBRAIC NUMBER THEORY I : ABSOLUTE EXTENSIONS 32

The results returned by EltMove are copies of the numbers ω1, . . . , ω5. Each copy

is given with respect to the power basis 1, ρ, . . . , ρ4 of Z[ρ]. Therefore, we have2

ω1 = 1, ω2 =
1

2
ρ, ω3 =

1

4
ρ2, ω3 =

1

8
ρ3, ω5 =

1

16
ρ4 .

Earlier, the algebraic number ρ was defined with respect to the power basis of

Z[ρ]. Using EltMove you can easily compute the representation of ρ with respect

to ω1, . . . , ω5. We have ρ = 2ω2.

kash> EltMove(rho,O);

[0, 2, 0, 0, 0]

Let’s now discuss the concept of moving algebraic numbers more closely. In

KASH, every order has a fixed basis. The basis of an equation order corresponding

to a certain polynomial g(x) is always a power basis built by powers of a root of

g(x). Two orders are considered as distinct in KASH if their bases differ. When

you enter an algebraic number γ in KASH by calling the Elt routine, γ is defined

with respect to the fixed basis of the order which is passed in the first argument of

Elt, say ord1. The Elt routine returns an object, say gamma1, which represents

the algebraic number γ. The object gamma1 depends on the order ord1 which was

used to define gamma1. For example, printing the object gamma1 always involves

ord1. Assume now, that ord2 is another order in KASH. By invoking the EltMove

function we can get the representation of γ with respect to the basis of ord2. In

fact, the EltMove routine creates a new object, say gamma2, which also represents

the algebraic number γ. Of course, the new object gamma2 depends on ord2.

When doing arithmetic with algebraic numbers in KASH, it is sometimes neces-

sary to invoke the EltMove function, because operations like +,-, * and / require

that the operands depends on the same order. For example, assume, that we

want to compute ω2 + ρ in KASH. You must either move the object w1 to Z[ρ] or

the object rho to O.

kash> w2+rho;

Error, different orders

2To obtain these representations of ω1, . . . , ω5 in terms of ρ you should use the OrderBasis

routine in practice. Refer to the reference manual for a detailed description.

2 ALGEBRAIC NUMBER THEORY I : ABSOLUTE EXTENSIONS 33

kash> EltMove(w2,o)+rho;

[0, 3, 0, 0, 0] / 2

kash> w2+EltMove(rho,O);

[0, 3, 0, 0, 0]

Notice that the first result ([0, 3, 0, 0, 0] / 2) is an object which depends

on Z[ρ] = o, whereas the second one ([0, 3, 0, 0, 0]) depends on O = O.

2.3 Unit groups

KASH provides several functions dealing with the units of an order. They are

all explained in the reference manual. Here, we discuss only the most important

ones. To compute a system of fundamental units the OrderUnitsFund function

should be used. This function taking only one argument, namely an order, returns

a list whose entries are algebraic numbers forming a system of fundamental units.

kash> OrderUnitsFund(O);

[[-1, 1, 0, 0, 0], [1, 0, -1, 0, 0]]

Notice that the entries [-1, 1, 0, 0, 0] and [1, 0, -1, 0, 0] depend on

the order O. Therefore, −1+ω1 and 1−ω2 forms a system of fundamental units

in O. To obtain the regulator of O, just type

kash> OrderReg(O);

5.6855418836578346

A generator for the torsion subgroup can be computed by the OrderTorsionUnit

routine. Obviously, O contains only the torsion units +1 and −1.

kash> OrderTorsionUnit(O);

-1

KASH enables you to compute fundamental units in arbitrary orders.

kash> OrderUnitsFund(o);

[[-11518081, 26088, 4956996, 1680132, 236679],

[493088471, 153109288, -254564324, -27045279, 33856238]]

2 ALGEBRAIC NUMBER THEORY I : ABSOLUTE EXTENSIONS 34

2.4 Ideals

In KASH an ideal is an object which is — like an algebraic number — defined

over a certain order. There are many ways to create an ideal in KASH. The most

basic one is to use the function Ideal. For example, the ideal a = 〈ω3, ω4〉 ⊆ O
can be created by the assignment

kash> a := Ideal(w3,w4);

<[0, 0, 1, 0, 0], [0, 0, 0, 1, 0]>

Earlier we learned that the object which represents an algebraic number in KASH

always depends on an order. This concept also applies to ideals in KASH. Since

w3 and w4 depend on O, the ideal a is linked to O as well. Before doing some

arithmetic with ideals, we will generate another ideal, namely the principal ideal

b = 〈2 ω2〉 ⊆ O. Again, we invoke the Ideal routine.

kash> b := Ideal(2*w2,2*w2);

<[0, 2, 0, 0, 0], [0, 2, 0, 0, 0]>

However, this assignment is tantamount to each of the following ones.

kash> b := Ideal(2*w2);

<[0, 2, 0, 0, 0]>

kash> b := 2*w2*O;

<[0, 2, 0, 0, 0]>

The sum and the difference of two ideals is the smallest ideal which contains both

operands. The product of two ideals is the ideal formed by all products of an

element of the first ideal with an element of the second one.

kash> a^2;

<1296, [12, -8, -13, 7, 4]>

kash> a*b;

<[0, 72, 0, 0, 0], [0, 0, 0, 0, 2]>

2 ALGEBRAIC NUMBER THEORY I : ABSOLUTE EXTENSIONS 35

kash> c := a+b;

<

[12 6 0 0 0]

[0 1 0 0 0]

[0 0 1 0 0]

[0 0 0 1 0]

[0 0 0 0 1]

>

Let’s see what’s going on here. a
2 is the ideal generated by 1296 and 12− 8 ω2 −

13 ω3 + 7 ω4 + 4 ω5. The product a · b is the ideal generated by 72 ω2 and 2 ω5.

However, the result of c = a + b is printed in a quite different way. As c is a

finitely generated Z–module of rank 5, there is always a transformation matrix

T ∈ Z5×5 such that

T · (ω1, . . . , ω5)

is a Z–basis for c. Such a transformation matrix is printed as above because

KASH has not computed another representation of c yet. Therefore, a Z–basis of

c is given by

ω′

1
= 12, ω′

2
= 6 + ω2, ω′

3
= ω3, ω′

4
= ω4, ω′

5
= ω5 .

Recalling that O is a Dedekind ring, there are algebraic numbers c1, c2 ∈ O
such that 〈c1, c2〉 equals c. Such numbers can be computed by applying the

Ideal2EltAssure function to the ideal c. The next time c is printed, these

numbers instead of the transformation matrix are displayed.

kash> Ideal2EltAssure(c);

kash> c;

<12, [-12, -2, -1, 1, -2]>

So far, we have only considered integral ideals. KASH can also handle fractional

ideals (a fractional ideal is an integral ideal divided by a certain non–zero integer).

This feature allows ideals to be inverted if the underlying order is the maximal

one (remember that in a Dedeking ring the fractional ideals form a group under

multiplication). In the following example the inverse of a is computed.

2 ALGEBRAIC NUMBER THEORY I : ABSOLUTE EXTENSIONS 36

kash> 1/a;

<

[36 0 0 0 29]

[0 36 0 0 29]

[0 0 36 0 12]

[0 0 0 36 8]

[0 0 0 0 1]

/36>

kash> a*last;

<1>

We have

a
−1 =

36 + 36 ω2 Z + 36 ω3 Z + 36 ω4 Z + (29 + 29 ω2 + 12 ω3 + 8 ω4 + ω5) Z

36
.

There are many KASH functions dealing with ideals. Their names usually start

with Ideal. Look at the reference manual for a complete list. Here, we will discuss

the functions Factor, IdealNorm and IdealIsPrincipal.

In maximal orders which are Dedekind rings every ideal can uniqely be factorized

in prime ideals. The Factor routine returns a list containing the prime ideal

decomposition of a certain ideal. Here, we factor the principal ideal 〈5〉 ⊆ O.

kash> L := Factor(5*O);

[[<5, [1, 2, 0, 0, 0]>, 2], [<5, [4, 2, 0, 0, 0]>, 1],

[<5, [3, 6, 4, 0, 0]>, 1]]

Let’s look at the result L which is a list containing three sublists. Each sublist

has two entries. The first one is a prime ideal, whereas the second entry is the

corresponding exponent. Therefore, we have

〈5〉 = 〈5, 1 + 2 ω2〉2 · 〈5, 4 + 2 ω2〉 · 〈5, 3 + 6 ω2 + 4 ω3〉 .

The factorization can easily be checked in KASH.

kash> p1 := L[1][1];;

kash> p2 := L[2][1];;

kash> p3 := L[3][1];;

2 ALGEBRAIC NUMBER THEORY I : ABSOLUTE EXTENSIONS 37

kash> b := p1^2*p2*p3;

<625, [-180, 110, 420, 240, 80]>

kash> IdealIsPrincipal(b);

5

kash> b = 5*O;

true

The function IdealIsPrincipal returns the generator of an ideal a if a is a

principal ideal and false otherwise.

Finally, we compute the ideal norm of each factor.

kash> IdealNorm(p1);

5

kash> IdealNorm(p2);

5

kash> IdealNorm(p3);

25

2.5 Class Groups

The last invariant of the field F we will compute here is the ideal class group ClF .

This task can be solved by invoking the OrderClassGroup function. This routine

takes only one argument, namely a maximal order, and returns a list. The first

entry in this list is the class number, whereas the second entry is another list

containing the orders of the cyclic factors of the class group. In our example, ClF

is the cyclic group of order 6.

kash> OrderClassGroup(O);

[6, [6]]

Using the OrderClassGroupCyclicFactors routine we can obtain a list of ideals

representing generators of the cyclic factors of ClF . Here, because ClF ' C6, we

get only one representative.

kash> OrderClassGroupCyclicFactors(O);

[[<2, [1, 1, 0, 0, 1]>, 6]]

2 ALGEBRAIC NUMBER THEORY I : ABSOLUTE EXTENSIONS 38

Notice that the OrderClassGroupCyclicFactors function actually returns a list

containing sublists. Each sublist consists of a representative of an ideal class and

its order.

When KASH computes a class group, it uses the Minkowski bound. This bound

always guarantees correct results. However, when the field discriminant is large,

the Minkowski bound causes very time consuming computations requiring a large

amount of memory. You can pass a smaller bound to the OrderClassGroup

function calling it with two arguments, the second one being the new bound.

Refer to the reference manual for a detailed description.

3 ALGEBRAIC NUMBER THEORY II : RELATIVE EXTENSIONS 39

3 Algebraic Number Theory II :

Relative extensions

KASH provides considerable support for computations in relative extensions. If

you know how to handle absolute extensions in KASH, you will be able to adapt to

relative extensions in KASH with no trouble. The commands change little from

absolute extensions to relative extensions — you will find that the command

EltTrace again means the trace of an algebraic number.

3.1 Arithmetic

Suppose that we want to do some arithmetic in the relative extension F/E with

F = E(
√

165) and E = Q(ρ), where ρ is a root of x4−99x3+99x2−99x+99 ∈ Z[x].

First, we compute the maximal order OE of E in KASH.

kash> oE := Order(Poly(Zx, [1, -99, 99, -99, 99]));

Generating polynomial: x^4 - 99*x^3 + 99*x^2 - 99*x + 99

kash> OE := OrderMaximal(oE);

F[1]

|

F[2]

/

/

Q

F [1] Given by transformation matrix

F [2] x^4 - 99*x^3 + 99*x^2 - 99*x + 99

Discriminant: -175877319123

We will create the relative equation order oF = OE [
√

165] by using the Order

function. First we have to enter the polynomial x2 − 165 ∈ OE [x] in KASH.

kash> OEx := PolyAlg(OE);

Univariate Polynomial Algebra in x over

F[1]

3 ALGEBRAIC NUMBER THEORY II : RELATIVE EXTENSIONS 40

|

F[2]

/

/

Q

F [1] Given by transformation matrix

F [2] x^4 - 99*x^3 + 99*x^2 - 99*x + 99

Discriminant: -175877319123

kash> f := Poly(OEx,[1,0,165]);

x^2 + 165

Now we are ready to define oF .

kash> oF := Order(f);

F[1]

/

/

E1[1]

|

E1[2]

/

/

Q

F [1] x^2 + 165

E 1[1] Given by transformation matrix

E 1[2] x^4 - 99*x^3 + 99*x^2 - 99*x + 99

Notice, that the Order function works here in the same way as in the absolute

case (2.1).

To do some arithmetic in oF we need to enter some elements from oF in KASH

using the Elt function. For example, let us define

α = (2ρ + 4ρ2 + 6ρ3)
︸ ︷︷ ︸

a1

+ (1 + 3ρ + 5ρ2 + 7ρ3)
︸ ︷︷ ︸

a2

√
165 ,

β = (−2ρ − 4ρ2 − 6ρ3)
︸ ︷︷ ︸

b1

+ (−1 + 3ρ − 5ρ2 + 7ρ3)
︸ ︷︷ ︸

b2

√
165

3 ALGEBRAIC NUMBER THEORY II : RELATIVE EXTENSIONS 41

Since α and β are elements of the relative order oF , their coefficients are not

integral numbers but algebraic numbers.

kash> a1 := EltMove(Elt(oE,[0,2,4,6]),OE);

[0, 2, 12, 18]

kash> a2 := EltMove(Elt(oE,[1,3,5,7]),OE);

[1, 3, 15, 21]

kash> b1 := EltMove(Elt(oE,[0,-2,-4,-6]),OE);

[0, -2, -12, -18]

kash> b2 := EltMove(Elt(oE,[-1,3,-5,7]),OE);

[-1, 3, -15, 21]

After entering a1, a2, b1, b2 we create α, β.

kash> alpha := Elt(oF,[a1,a2]);

[[0, 2, 12, 18], [1, 3, 15, 21]]

kash> beta := Elt(oF,[b1,b2]);

[[0, -2, -12, -18], [-1, 3, -15, 21]]

Now we are ready to do some computations.

kash> alpha + beta;

[0, [0, 6, 0, 42]]

kash> alpha * beta;

[[7800956526, -7721357688, 23166485484, -23166485049],

[592020, -586084, 1758216, -1758336]]

kash> EltTrace(alpha);

[0, 4, 24, 36]

As already mentioned, the command EltTrace(alpha) computes the relative

trace TrF/E of α. When you need to get the absolute trace TrF/Q of α, the

EltTrace requires a second argument.

kash> EltTrace(alpha,Z);

11371536

This is tantamount to

kash> EltTrace(EltTrace(alpha));

11371536

3 ALGEBRAIC NUMBER THEORY II : RELATIVE EXTENSIONS 42

3.2 Relative ideals

KASH provides arithmetic of ideals in relative orders. It is important that the

coefficient order OE is a maximal order otherwise it is not sure to be a Dedekind

ring and serious theoretic troubles arises.

A short example3:

kash> OE := OrderMaximal(Order(Poly(Zx,[1,-10,-3,-2])));

Generating polynomial: x^3 - 10*x^2 - 3*x - 2

Discriminant: -8180

kash> OF := OrderMaximal(Order(OE, 3, 3));

F[1]

|

F[2]

/

/

E1[1]

/

/

Q

F [1] Given by transformation matrix

F [2] x^3 - 3

E 1[1] x^3 - 10*x^2 - 3*x - 2

Generating polynomial: x^3 - 3

Coef. Ideals are: <1> <1> <1>

Define relative ideals in terms of 2 generators:

kash> I1 := Ideal(3, Elt(OF, [0, Elt(OE, [0, 1, 0]), -1]));

<3, [0, [0, 1, 0], -1]>

kash> I2 := Ideal(5, Elt(OF, [Elt(OE, [2, -1, 1]),

> Elt(OE, [-1, 2, 0]), 1]));

<5, [[2, -1, 1], [-1, 2, 0], 1]>

3Be aware of the fact that your results may look different because some algorithms of KASH

are pseudopropabilistic and may get different representations of the same ideal.

3 ALGEBRAIC NUMBER THEORY II : RELATIVE EXTENSIONS 43

Some arithmetic:

kash> I1+I2;

<{<1><1><1>

[1 0 0]

[0 1 0]

[0 0 1]

}

>

kash> I := I1*I2;

<{<15, [3, 3, 0]><5, [0, 1, 1]><1>

[1 0 9]

[0 1 2]

[0 0 1]

}

>

kash> IdealGenerators(I);

[15, [[12, 3, 0], 2, 1]]

kash> I1^5;

<243, [[72, -90, -18], [-90, 27, -72], [-111, 15, -63]]>

kash> I1^-1;

<{<1><1><1 / 3>

[1 0 0]

[0 1 0]

[0 0 1]

}

>

Ideals are represented either in 2-element representation or basis representation

analogue to absolute ideals. The 2-element representation (one element in case

the ideal is principal) is very similar to the absolute case — just the defining

elements are elements of a relative order.

3 ALGEBRAIC NUMBER THEORY II : RELATIVE EXTENSIONS 44

The basis representation is different because there is no canonical analogon to

the HNF of integral matrices. The ideal is represented as the following sum:

ξ1a1 + · · · + ξnan

where n is the relative degree of the order, ξi are algebraic numbers in this order

and ai are ideals of the coefficient order OE .

Because the ξi are represented as vectors of elements of OE the ideal is viewed as

a module of degree n over the coefficient order oF which is viewed in more

detail in the next subsection 3.3. The form the ideal is represented in is called a

pseudomatrix over the order OE .

We can compute the minimum and the norm of relative ideals:

kash> IdealMin(I1);

<

[3 0 0]

[0 3 0]

[0 0 3]

>

kash> IdealNorm(I1);

<3>

The minimum and the norm of a relative ideal are ideals over the coefficient order

OE . The minimum is defined to be the intersection of the ideal with the coefficient

order of the ideal. The norm of the ideal is defined in terms of the pseudobasis

(which is a certain pseudomatrix): it is the determinant of the matrix times the

product of all coefficient ideals.

3 ALGEBRAIC NUMBER THEORY II : RELATIVE EXTENSIONS 45

3.3 Modules over Dedekind rings

This subsection describes computations with pseudomatrices in relative orders.

Let OE be a maximal order. A finitely generated module over this order (as a

ring) can be viewed as a subset of On
E

which can be represented as a pseudomatrix

which is a matrix M over OE and for each column i of the matrix a OE -Ideal ai.

Say the matrix has m columns ξ1, . . . , ξm I write the pseudomatrix as










a1 · · · am




 ξ1 · · · ξm
















which represents the sum:
m∑

i=1

aiξi ⊂ On
E .

There are algorithms to compute from a given pseudomatrix another pseudoma-

trix which generates the same module and whose matrix is a square matrix and

is in diagonal form with just ones on the diagonal. This form is called the normal

form of the module.

With the normal form of modules membership, equality, and inclusion of modules

can be readily decided.

Modules over Dedekind domains are given in KASH like

kash> OE := OrderMaximal(Order(Poly(Zx,[1,-10,-3,-2])));

Generating polynomial: x^3 - 10*x^2 - 3*x - 2

Discriminant: -8180

kash> M:=Module([Ideal(15, Elt(OE,[0, -3, -3])),

> Ideal(5, Elt(OE,[1, 1, 0])),1*OE],

> Mat(OE, [[1,0,9],[-3,1,2],[1,Elt(OE,[0, -1, 1]),1]]));

{<15, [0, -3, -3]><5, [1, 1, 0]><1>

[1 0 9]

[-3 1 2]

[1 [0, -1, 1] 1]

}

3 ALGEBRAIC NUMBER THEORY II : RELATIVE EXTENSIONS 46

We compute a normal form with:

kash> ModuleNF(M);

{<6562770, [-40410, 2739987, -350613]><5, [1, 1, 0]><1>

[1 350016 9]

[0 1 2]

[0 0 1]

}

Another interesting form of a module is a representation where all but possibly

one ideal is the 1-ideal. From the theory it is clear that it is not always possible

to find a pseudomatrix with a square matrix and just trivial ideals. The ideal

class of the remaining ideal is uniquely determined and is an interesting invariant

of the module. It is called Steinitz class therefore I call the presentation Steinitz

form.

kash> ModuleSteinitz(M);

{<1><1><15, [3, 6, 3]>

[[21, 36, 0] 9 -1]

[[-1393, -108, 0] 2 [502, -1524, 144] / 15]

[[21, 1366, -1330] 1 [-471, -853, 133] / 15]

}

The following gives the trivial module of a certain degree:

kash> ModuleId(OE,3);

{<1><1><1>

[1 0 0]

[0 1 0]

[0 0 1]

}

3 ALGEBRAIC NUMBER THEORY II : RELATIVE EXTENSIONS 47

Modules can be multiplied with numbers and algebraic numbers from the coeffi-

cient order.

kash> N := 6562770*ModuleId(OE,3);

{<1><1><1>

[6562770 0 0]

[0 6562770 0]

[0 0 6562770]

}

Modules can be checked on equality and inclusion:

kash> N=M;

false

kash> N<M;

true

4 ALGEBRAIC FUNCTION FIELDS 48

4 Algebraic function fields

In this section the basic steps necessary for the creation of an algebraic function

field and for doing simple operations are explained. The concepts are quite similar

to the algebraic number field case, so you may also have a look at the first sections

dealing with algebraic number fields.

4.1 Definition of an algebraic function field

An algebraic function field is a field extension F/k of transcendence degree 1,

where k denotes a field of characteristic p ≥ 0. The function field may be an

extension of a finite field Fq, Q, or an order. There is always an element T ∈ F

such that F/k(T) is a finite separable field extension. From this follows the

existence of an y ∈ F and an irreducible bivariate polynomial f over k, which

is separable and monic in the second variable, such that f(T, y) = 0. So we

can consider the quotient ring k(T)[y] / f(T, y)k(T)[y] as a representation of our

given function field.

In KASH, creation of an algebraic function field begins with choosing a bivarate

polynomial as above. For this there have to be defined the field k, the polynomial

rings k[T] and k[T][y]:

kash> k := FF(5,2);

Finite field of size 5^2

kash> kT := PolyAlg(k,T);

Univariate Polynomial Algebra in T over Finite field of size 5^2

kash> kTy := PolyAlg(kT);

Univariate Polynomial Algebra in y over Univariate Polynomial

Algebra in T over Finite field of size 5^2

kash> T := Poly(kT, [1, 0]);

T

kash> y := Poly(kTy, [1, 0]);

y

4 ALGEBRAIC FUNCTION FIELDS 49

For convenience, there is one function defining these variables:

kash> AlffInit(FF(5,2));

"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"

kash> k;

Finite field of size 5^2

kash> y;

y

In two further arguments variable names can be specified:

kash> AlffInit(Q, "u", "v");

"Defining global variables: k, w, ku, kuf, kuv, u, v, AlffGlobals"

This function defines also the variable w, which is a generator of the multiplicative

group of the constant field, if finite. Independently of this definition, in all outputs

w is used to denote a generator of the multiplicative group a finite field.

It is now possible to define an algebraic function field. We test first whether the

bivariate polynomial is irreducible and separable in the second variable. It does

not have to be neccessarily monic:

kash> f := y^3+T^4+1;

y^3 + T^4 + 1

kash> AlffPolyIsIrrSep(f);

true

kash> F := Alff(f);

Global function field defined over Finite field of size 5^2 by

y^3 + T^4 + 1

As a first application, the genus of the function field is computed:

kash> AlffGenus(F);

3

4 ALGEBRAIC FUNCTION FIELDS 50

4.2 Orders, ideals and elements

For further applications usually orders are needed. Let P∞ denote the degree

valuation of k(T) and write O∞ for its valuation ring. We define an order

over k[T] resp. O∞ to be a ring extension of k[T] resp. O∞ whose quotient

field equals F . Such orders are free k[T]- or O∞-modules of degree [F : k(T)].

According to their coefficient rings k[T] or O∞ orders are called finite or infi-

nite. By an equation order (or coordinate ring) over k[T] we mean the quotient

ring k[T][y]/f(T, y)k[T][y]. Equation orders over O∞ are defined analogously for

suitable, field generating polynomials. Maximal orders (maximal for inclusion)

coincide with the integral closures of k[T] or O∞ in F .

We consider the computation of various orders:

kash> oe := AlffOrderEqFinite(F);

Finite order over Finite field of size 5^2 defined by

y^3 + T^4 + 1

kash> oie := AlffOrderEqInfty(F);

Infinite order over Finite field of size 5^2 defined by

y^3 + (T^4 + 1)/T^6

kash> o := AlffOrderMaxFinite(F);

Finite order over Finite field of size 5^2 defined by

y^3 + T^4 + 1

kash> oi := AlffOrderMaxInfty(F);

Infinite order over Finite field of size 5^2 defined by

y^3 + (T^4 + 1)/T^6

and transformation matrix

[1/T 0 0]

[0 1/T 0]

[0 0 1]

den: 1/T

The computation of these orders amounts in finding their module bases. For

equation orders this causes no problem, a basis of powers of a root of the defining

4 ALGEBRAIC FUNCTION FIELDS 51

polynomial is chosen. On the other hand the computation of the corresponding

maximal orders is not an easy task. In the example we see that the finite equation

order is already maximal, but the infinite equation order is not maximal. The

matrix shown gives a transformation from the module basis of oie to oi. The

bases itself are given internally in the orders.

Now we like to define elements of these orders. Since the orders have bases, it is

enough to specify coefficients of linear combinations of the basis elements. This

is done as follows:

kash> a := AlffElt(oe, [0, 1, 0]);

[0, 1, 0]

kash> b := AlffElt(oe, [0, T, T^2+1]);

[0, T, T^2 + 1]

kash> c := AlffElt(oie, [1, 1/T, 0]);

[1, 1/T, 0]

kash> d := AlffElt(o, [0, 1/T, 0]);

[0, 1, 0] / (T)

The last example looks strange since 1/T 6∈ k[T]. This is a general concept of the

representation of elements: They do not have to be elements of their orders in

the mathematical sense, but they are simply expressed by a linear combination

with coefficients in k(T) with respect to the order basis. This actually means

that elements are elements (in the mathematical sense) of the quotient field of

their order, which equals F . Elements with no denominators are true elements

of their order.

It is now possible to operate with the above defined elements. This includes

for example algebraic operations such as addition, multiplication and their in-

verse operations, but also norm and trace computations as well as changing the

representation with respect to different orders:

kash> a^3 + T^4 + 1;

0

kash> a+b;

[0, T + 1, T^2 + 1]

kash> b^2;

4 ALGEBRAIC FUNCTION FIELDS 52

[3*T^7 + 3*T^5 + 3*T^3 + 3*T, 4*T^8 + 3*T^6 +

3*T^4 + 3*T^2 + 4, T^2]

kash> 1/c;

[T^9/(T^9 + 4*T^4 + 4), 4*T^8/(T^9 + 4*T^4 + 4),

T^7/(T^9 + 4*T^4 + 4)]

kash> AlffEltMove(a, oi);

[0, 1, 0] / (1/T^2)

kash> AlffEltMove(c, oe);

[T^3, 1, 0] / (T^3)

kash> AlffEltNorm(a);

4*T^4 + 4

kash> AlffEltTrace(a);

0

Usually one wants to work with the maximal orders since only these are Dedekind

rings. For convenience there is a function which expects the defining polynomial

and which first checks for irreducibility and separability and defines then the

algebraic function field F and the maximal orders o and oi.

kash> AlffInit(FF(5,2));;

kash> f := y^3 + T^4 + 1;

y^3 + T^4 + 1

kash> AlffOrders(f);

"Defining global variables: F, o, oi, one"

kash> o;

Finite order over Finite field of size 5^2 defined by

y^3 + T^4 + 1

As a last example we consider computations with ideals of the maximal orders.

Similar as the case for elements ideals may be fractional. There are two represen-

tations for ideals, first by two generating elements and second by a module basis

over the coefficient ring of the order. Multiplicative arithmetic is supported and

you may also take the sum of two ideals, which is the same as to compute the

gcd of these ideals:

kash> a := AlffElt(o, [1,1,0]);;

4 ALGEBRAIC FUNCTION FIELDS 53

kash> b := AlffElt(o, [T,T^2,1]);;

kash> I := T*(T+1)*o + a*b*o;

<

[T^2 + T 3*T + 1 3*T + 4]

[0 1 0]

[0 0 1]

/ 1

>

kash> 1/I;

<

[T^2 + T 0 2*T + 1]

[0 T^2 + T 2*T + 4]

[0 0 1]

/ T^2 + T

>

kash> l := AlffIdealFactor(I);

[[< T, [1, 1, 0]>, 1], [< T + 1, [3, 1, 0]>, 1]]

kash> p := l[1][1];

< T, [1, 1, 0]>

kash> AlffIdealValuation(p, I);

1

kash> AlffIdealValuation(p, I^-3);

-3

kash> AlffIdealIsPrime(I/p);

true

The ideal bases are given by transformation matrices with respect to the order

bases. The second ideal is fractional as the denominator indicates. Afterwards

the factorisation is computed. It returns a list of lists consisting of prime ideals

and exponents. Then we compute some valuations and test for primality. The

computation of factorisations and valuations is possible since maximal orders are

Dedekind rings (the infinite maximal order is in fact semilocal).

5 LATTICES 54

5 Lattices

In this section we deal with lattices in KASH. First we recall the main definitions.

Let a1, . . . , ak ∈ Rn be k linearly independent vectors. Then the set

Λ = Z a1 + · · ·+ Z ak

is called a lattice. Any system of vectors b1, . . . , bk is called a basis of Λ if

Λ = Z b1 + · · ·+ Z bk.

From now on, let b1, . . . , bk be a fixed basis of Λ. The positive definite matrix

G(b1, . . . , bk) =








bt
1
· b1 . . . bt

1
· bk

...
...

bt
k · b1 . . . bt

k · bk








is called the Gram matrix of b1, . . . , bk. The square root of the determinant of

G(b1, . . . , bk) is the discriminant d(Λ) of the lattice Λ. d(Λ) does not depend on

the choice of the basis b1, . . . , bk.

We denote by [Λ] the set R b1 + · · ·+ R bk. For given x = x1b1 + · · ·+ xkbk ∈ [Λ],

its length `(x) is defined by

`(x) = ‖x‖2

2
= xt · x = (x1, . . . , xk) · G(b1, . . . , bk) ·








x1

...

xk








.

5.1 Defining lattices in KASH

To create a lattice in KASH, the Lat routine should be used. Suppose that we

want to enter the lattice

∆ = Z g1 + Z g2 = Z




1

2



 + Z




2

1



 .

First, we enter the matrix G = (g1|g2) ∈ Z2×2 in KASH.

kash> G := Mat(Z,[[1,2],[2,1]]);

[1 2]

[2 1]

5 LATTICES 55

-

6

�
�
�
�
�
��

������*

�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�

��

����������

�������������������

��������������������������

��������������������������

��������������������������

�������������������

����������

��

∆ = Z g1 + Z g2

The following assignment creates ∆ in KASH.

kash> Delta := Lat(G);

Basis:

[1 2]

[2 1]

Let’s look closely at this example. There are many different ways to call the Lat

routine in KASH (refer to the reference manual for a detailed description). The

way we used above is to pass a list containing a basis of the lattice to be entered4.

The Lat returns a new object, named Delta, which represents the lattice ∆ in

KASH. Like orders, every lattice in KASH has a fixed basis (two lattices are

considered to be distinct in KASH if their bases differ). Thus, computing the

Gram matrix of a lattice in KASH using the LatGram function means computing

the Gram matrix of the fixed basis assigned to a lattice.

4Here, g1 and g2 are given over Z. Of course, g1 and g2 might also be defined over Q or

R to create the lattice. However, some lattice algorithms are faster if all its basis vectors are

defined as matrices over Z.

5 LATTICES 56

kash> LatGram(Delta);

[5 4]

[4 5]

Invoking LatDisc, it is easy to calculate the discriminant of ∆.

kash> LatDisc(Delta);

3

5.2 Lattice Elements

In KASH, a lattice element of Λ is any element from [Λ] (of course, mathematically

this convention is slight incorrect because of Λ 6= [Λ]). To enter a lattice element

in KASH, there are two different ways using the LatElt routine. Assume that

x ∈ [Λ] is given by x = x1b1 + · · ·+ xkbk. The first way to call LatElt is to pass

the vector x itself, the second one is to pass the coefficients x1, . . . , xk in a list.

Suppose, that we want to enter the lattice elements

a =




4

2



 = 2 g1, b =
3

2




1

1



 =
1

2
g1 +

1

2
g2.

The examples below demonstrate both ways of calling the LatElt routine.

kash> a := LatElt(Delta,Mat(Z,[[4,2]]));

[0 2]

kash> b := LatElt(Delta,Mat(R,[[3/2,3/2]]));

[0.5 0.5]

These assignments are tantamount to

kash> a := LatElt(Delta,[0,2]);

[0 2]

kash> b := LatElt(Delta,[1/2,1/2]);

[0.5 0.5]

Let’s look more closely at these examples. In the first example we pass the vectors

a and b themselves. Notice that KASH automatically computes the representa-

tions of a and b with respect to the fixed basis g1, g2 of ∆. Such a representation is

printed whenever KASH prints a lattice element. Let’s do some simple arithmetic.

5 LATTICES 57

kash> a+b;

[0.5 2.5]

kash> a-b;

[-0.5 1.5]

kash> 5*a;

[0 10]

The length of a lattice element can be computed by invoking the LatEltLength

routine.

kash> LatEltLength(a);

20

kash> LatEltLength(b);

4.5

To obtain the vector which corresponds to a given lattice element, the LatEltVec

routine should be used.

kash> LatEltVec(a);

[4]

[2]

kash> LatEltVec(b);

[1.5]

[1.5]

Notice that the vectors returned by LatEltVec are given as columns. However,

the Lat and LatElt routines both do not distinguish between vectors given as

columns or as rows. Thus, the following assignment again creates a.

kash> a := LatElt(Delta,Mat(Z,[[4],[2]]));

[0 2]

5.3 Shortest vectors

Let L, U be any real numbers with 0 ≤ L < U and let y denote any lattice

element from [Λ]. We define S ⊆ [Λ] by setting

S = S(L, U) = {x ∈ [Λ] |L ≤ `(x) ≤ U}. (1)

5 LATTICES 58

Using the KASH function LatShortestElt, we can determine a lattice element

z ∈ Λ such that

`(z − y) = min{`(x − y) | x ∈ Λ, x − y ∈ S}. (2.1)

Before invoking the LatShortestElt routine, you have to initialize the bounds

L, U and the lattice element y. To set the bounds L, U and the reference

vector y in KASH, the functions LatEnumLowerBound, LatEnumUpperBound and

LatEnumRefVec should be used. Each of these routines requires two arguments.

The first argument is always the lattice, whereas the second one either holds

the bound or the reference vector. If L (respectively U) is not initialized, KASH

uses the default bound 0 (respectively +∞). When y is not initialized, the

LatShortestElt routine computes z ∈ Λ ∩ S such that

0 < `(z) = min{`(x) | x ∈ Λ ∩ S, x 6= 0}. (2.2)

The following examples will demonstrate the use of the LatShortestElt func-

tion (refer to reference manual for a detailed description of the LatShortestElt

routine).

Assume that we want to determine a non-zero element z ∈ ∆ such that z has

minimal length. To do this just enter

kash> LatShortestElt(Delta);

[[1 -1]]

Notice that LatShortestElt actually returns a list containing lattice elements.

Here, we are interested only in the first entry.

kash> LatEltVec(last[1]);

[-1]

[1]

kash> LatEltLength(last2[1]);

2

Suppose now that we want to compute an element z ∈ Λ which is closest to the

vector y = 3

2

(
1

1

)

.

5 LATTICES 59

kash> y := LatElt(Delta,Mat(R,[[3/2,3/2]]));

[0.5 0.5]

kash> LatEnumRefVec(Delta,y);;

kash> LatShortestElt(Delta);

[[1 0]]

5.4 Enumerating lattices

Let L, U ∈ R and y ∈ [Λ] as in 5.3. Earlier, we saw how to compute a shortest

lattice element z ∈ ∆ element satisfying (2.1), respectively (2.2). Now we are

going to enumerate all z ∈ Λ with z − y ∈ S (y initialized), respectively all non–

zero z ∈ Λ∩ S (y not initiliazed). After setting L, U and y appropriately, we use

the LatEnum function in conjunction with a while loop (see 6.1). The following

example should clarify the method. We compute all z ∈ ∆ with 0 < `(z) ≤ 10.

kash> LatEnumReset(Delta);

kash> LatEnumUpperBound(Delta,10);

10

kash> while LatEnum(Delta) do

> Print(LatEnumElt(Delta));

> od;

[1 -2]

[2 -2]

[0 -1]

[1 -1]

[2 -1]

[-1 0]

Let’s look closely at this example. The LatEnumReset routine resets the bounds

L, U to their defaults and undefines the reference vector. Here, we call the routine

LatEnumReset to avoid unexpected results due to your prior definitions. The

LatEnum successively computes all the elements we want. Each time LatEnum is

invoked, this routine tries to find another element which meets the conditions

formed by the bounds L, U and the reference vector y. If LatEnum is successful,

it returns true and the element found by LatEnum can be accessed using the

LatEnumElt function. When LatEnum returns false, this indicates that there

5 LATTICES 60

are no more elements satisfying the conditions. In this case, the enumeration

is finished. As you may have noticed, LatEnum did not return all z ∈ Λ with

0 < `(z) ≤ 10. Because `(z) = `(−z), it will only return half the number of

elements if the reference vector is not initialized.

Finally, we compute all z ∈ ∆ with 2 < `(z − y) < 5 where y = 3

2

(
1

1

)

.

kash> LatEnumReset(Delta);

kash> LatEnumLowerBound(Delta,2);

2

kash> LatEnumUpperBound(Delta,5);

5

kash> y := LatElt(Delta,Mat(R,[[3/2,3/2]]));

[0.5 0.5]

kash> LatEnumRefVec(Delta,y);

[0.5 0.5]

kash> while LatEnum(Delta) do

> Print(LatEnumElt(Delta));

> od;

[2 -1]

[0 0]

[1 1]

[-1 2]

Notice that any changes to L, U or y reset the enumeration process of LatEnum.

6 THE PROGRAMMING LANGUAGE 61

6 The Programming Language

We have already seen many examples of two key elements of KASH’s program-

ming language, the expression statement (a command or expression) and the

assignment statement. This section discusses the elements of more elaborate

programming. It assumes that the reader is already familiar with another con-

ventional programming language. It is not intended to be an introduction to

computer programming !

The approach in this section is informal, and uses extensive examples to illustrate

syntax and features of the KASH programming language. Refer to the reference

manual for a detailed description of the programming language.

6.1 While

while condition do statements od;

The while loop executes the statement sequence statements while the condition,

an expression that is either true or false, evaluates to true. In the following

example all primes between 2 and 20 are computed.

kash> L := [];

[]

kash> p := 2;

2

kash> while p < 20 do Add(L,p); p := NextPrime(p); od;

kash> L;

[2, 3, 5, 7, 11, 13, 17, 19]

You can display intermediate results in the repetition by invoking the Print

function, which takes a variable number of objects to be printed. The output

of Print looks exactly like the displayed representation of these objects by the

main loop. Notice that no space or newline is printed between the objects. The

example below demonstrates the use of Print.

kash> p := 2;

2

kash> while p < 20 do Print(p,"\n"); p := NextPrime(p); od;

6 THE PROGRAMMING LANGUAGE 62

2

3

5

7

11

13

17

19

6.2 Repeat

Repeat statements until condition;

The repeat loop executes the statement sequence statements until the condition

evaluates to true. The difference between the while loop and the repeat until

loop is that the statements in the repeat until loop are executed at least once,

while the statements in the while loop are not executed at all if the condition is

false at the first iteration. In the below example we again compute all primes

between 2 and 20.

kash> L := [];

[]

kash> p := 2;

2

kash> repeat Add(L,p); p := NextPrime(p); until p > 20;

kash> L;

[2, 3, 5, 7, 11, 13, 17, 19]

6.3 For

for var in list do statements od;

The effect of the for loop is to execute the statements for every element of the

list. The for loop can be used in conjunction with any kind of list. You can, for

instance, loop over a range to compute 15! in the following way.

kash> f := 1;

6 THE PROGRAMMING LANGUAGE 63

1

kash> for i in [1..7] do f := f*i; od;

kash> f;

5040

6.4 If

if condition1 then statements1

{ elif condition2 then statements2 } [else statements3] fi;

The if statement allows one to execute statements depending on the values of

some conditions. The execution is done as follows.

First the condition1 following the if is evaluated. If it evaluates to true, the

statement sequence statements1 after the first then is executed, and the execution

of the if statement is complete.

Otherwise the condition2 following the elif are evaluated in turn. There may

be any number of elif parts, possibly none at all. As soon as an expression

evaluates to true, the corresponding statement sequence statements2 is executed

and execution of the if statement is complete.

If the if expression and all, if any, elif expressions evaluate to false and there

is an else part, which is optional, its statement sequence statements3 is executed

and the execution of the if statement is complete. If there is no else part, the

if statement is complete without executing any statement sequence.

In the example below we first compute all fields Q(
√−p) with a rational prime

p ∈ [2, 20], putting them in a list named L. Then we print those fields from L

having a non-trivial class group.

kash> L := [];

[]

kash> p := 2;

2

kash> # Compute fields

kash> while p < 20 do

> Add(L,OrderMaximal(Order(Poly(Zx,[1,0,p]))));

> p := NextPrime(p);

6 THE PROGRAMMING LANGUAGE 64

> od;

kash> # Print all fields having a non-trivial class group

kash> for o in L do

> if OrderClassGroup(o)[1] > 1 then Print(o,"\n"); fi;

> od;

Generating polynomial: x^2 + 5

Discriminant: -20

class number 2

class group structure C2

cyclic factors of the class group:

<2, [1, 1]>

Generating polynomial: x^2 + 13

Discriminant: -52

class number 2

class group structure C2

cyclic factors of the class group:

<2, [1, 1]>

Generating polynomial: x^2 + 17

Discriminant: -68

class number 4

class group structure C4

cyclic factors of the class group:

<6, [5, 1]>

6.5 Writing Functions

You have already seen how to use the functions of the KASH library, i.e., how

to apply them to arguments. This section will show you how to write your own

functions.

Writing a function that prints ‘hello, world.’ on the screen is a simple exercise in

KASH.

kash> hello := function()

> Print("hello, world.\n");

6 THE PROGRAMMING LANGUAGE 65

> end;

function () ... end

This function when called will only execute the Print statement in the second

line. This will print the string ‘hello, world.’ on the screen followed by a newline

character \n that causes the KASH prompt to appear on the next line rather than

immediately following the printed characters.

kash> hello();

hello, world.

The function definition has the following syntax.

function(arguments) statements end

A function definition starts with the keyword function followed by the formal

parameter list arguments enclosed in parentheses. The formal parameter list may

be empty, as in the example. Several parameters are separated by commas. Note

that there must be no semicolon behind the closing parenthesis. The function

definition is terminated by the keyword end.

A KASH function is an expression like integers, sums and lists. It therefore may

be assigned to a variable. The terminating semicolon in the example does not

belong to the function definition but terminates the assignment of the function

to the name hello. Unlike in the case of integers, sums, and lists, the value

of the function hello is echoed in the abbreviated fashion function () ...

end. This shows the most interesting part of a function: its formal parameter

list (which is empty in this example). The complete value of hello is returned if

you use the Print function.

kash> Print(hello);

function ()

Print("hello, world.\n");

The hello is however not a typical example, as no value is returned; instead only

a string is printed.

A more useful function is given in the following example. We define a function

sign which shall determine the sign of a number.

6 THE PROGRAMMING LANGUAGE 66

kash> sign := function(x)

> if x < 0 then

> return -1;

> elif x > 0 then

> return 1;

> else

> return 0;

> fi;

> end;

function (x) ... end

kash> sign(-10); sign(0); sign(10);

-1

0

1

A function gcd that computes the greatest common divisor of two integers by

Euclid’s algorithm will need a variable in addition to the formal arguments.

kash> gcd := function(a,b)

> local c;

> while b <> 0

> do

> c := b;

> b := a mod b;

> a := c;

> od;

> return c;

> end;

function (a, b) ... end

kash> gcd(66,78);

6

The additional variable c is declared as a local variable in the local statement

of the function definition. The local statement, if present, must be the first

statement of a function definition. When several local variables are declared in

only one local statement, they are separated by commas.

6 THE PROGRAMMING LANGUAGE 67

The variable c is indeed a local variable that is local to the function gcd. If you

try to use the value of c in the main loop, you will see that c has no assigned

value unless you have already assigned a value to the variable c in the main loop.

In this case the local nature of c in the function gcd prevents the value of the c

in the main loop from being overwritten.

We say that in a given scope an identifier identifies a unique variable. A scope

is a lexical part of a program text. There is the global scope that encloses the

entire program text, and there are local scopes that range from the function

keyword, denoting the beginning of a function definition, to the corresponding

end keyword. A local scope introduces new variables whose identifiers are given

in the formal argument list and the local declaration of the function. The usage

of an identifier in a program text refers to the variable in the innermost scope

that has this identifier as its name.

A INSTALLATION 68

A Installation

KASH is currently available in binary form for several architectures. For instal-

lation, simply ftp an appropriate file from

ftp.math.tu-berlin.de (/pub/algebra/Kant/Kash/),

which is compatible with your system and uncompress it. Then set the UNIX

environment variable KASH to the lib subdirectory in your KASH directory. For

example, type setenv KASH /usr/local/kash/lib.

For more information about KASH and KANT V4 via WWW, our address is

http://www.math.tu-berlin.de/algebra/

B CUSTOMIZING KASH 69

B Customizing KASH

For variables used in more than one session, it may be useful to set up the

file .kashrc (respectively kashrc when using MS DOS or OS/2) in your home

directory. When KASH is executed, these variables are automatically initialized.

C PVM, KASH AND KANT V4 70

C PVM, KASH and KANT V4

In this section we assume that pvm release 3.3 or higher is already installed on

your system resp. network. In all examples given below we assume that donald

and primus are HP-workstations and teltow and buckow are SUN’s.

There are two distinct modes for running pvm and KASH together: By simply

instructing KASH to use pvm

PvmUse(true);

several of the underlying KANT V4 functions, such as OrderMaximal (the different

p-maximal overorders will be computed on different machins), OrderClassGroup

(creation of the factorbasis and computation of suitable “relations” use pvm),

OrderUnitsIndep (same as classgroup), OrderUnitsFund (computation of p-

maximl overorders) and OrderNormEquation, are enabled to use pvm. This mode

will be called KANT V4-pvm.

The second mode is the KASH-pvm mode, in which pvm-applications can be

written using the KASH language. This is especially useful when computing a

large series of examples or just experimenting with parallel algorithms.

C.1 Installing KANT V4-pvm and KASH-pvm

First retrieve KASH binaries for each architecture you intend to use pvm on. Un-

pack each binary and place it in the appropriate directory for the architecture (In

our example: place the HP-binaries in ~/pvm3/bin/HPPA and the SUN-binaries

into ~/pvm3/bin/SUN4). Currently, sun (SUN4), IBM (RS6K), PA-Risc (HPPA),

PC-Linux (LINUX) and Silicon Graphics (SGI5) are supported. In each direc-

tory, create hardlinks hardlinks from kash to kash slave.x, kant slave.x and

pvm watch.x.

cd ~/pvm3/bin/HPPA

ln kash kash_slave.x

ln kash kant_slave.x

ln kash pvm_watch.x

and

C PVM, KASH AND KANT V4 71

cd ~/pvm3/bin/SUN4

ln kash kash_slave.x

ln kash kant_slave.x

ln kash pvm_watch.x

In each direktory you should now have three files.

C.2 KANT V4-pvm

To start pvm simply type (in KASH)

kash> PvmUse(true);

kash> Exec("pvm");

pvmd already running.

pvm> add teltow donald buckow

3 successful

HOST DTID

teltow 80000

donald c0000

buckow 100000

pvm> conf

4 hosts, 1 data format

HOST DTID ARCH SPEED

primus 40000 HPPA 1000

teltow 80000 SUN4 1000

donald c0000 HPPA 1000

buckow 100000 SUN4 1000

pvm> quit

pvmd still running.

kash>

Now all KANT V4-functions that support pvm will use it. For example

OrderMaximal(Order(Z, 2, 3^4*5^4*7^4*11^4));

C PVM, KASH AND KANT V4 72

will use all three slaves (teltow, buckow and donald), the fourth (primus) is the

master. Unless especially requested (PvmUseMastersHost(true); no slave will

run on the master. A watch (see C.4) is available which provides information

on what is currently happening. To exit the pvm-shell and stop pvm after all

computations are finished, enter halt. Be careful not to do this while running

KASH, as it will cause KASH to cease as well.

In this mode, there is a built–in security system which takes care of networking

problems such as workstations being shut-down or processes being killed. In

every such case, the current task will be redistributed, so that there is no need

to worry about restarting such processes.

C.3 KASH-pvm

It is now easy to write parallel programs in KASH! Before giving the details

needed for using pvm, a short example will be discussed:

Be sure that the slave will be able to find all init-files; we recommend using the

KASH environment variable to achieve this. Next start KASH.

After the banner appears, enter

kash> PvmInit();

true

kash> PvmStartSlave(["donald", "primus", "buckow", "teltow"]);

4

kash> o := OrderMaximal(Order(Z, 4, 2));

Generating polynomial: x^4 - 2

Discriminant: -2048

kash> PvmSendAll("PvmGetEval();\n");

kash> PvmRead();

Print from donald : OK, enjoy it...

Print from primus : OK, enjoy it...

Print from buckow : OK, enjoy it...

Print from teltow : OK, enjoy it...

kash> p := 2;;

kash> for i in [1..12] do

C PVM, KASH AND KANT V4 73

> PvmSendNext(Factor(p*o)); p := NextPrime(p); od;

kash> l:=[];;

kash> for i in [1..12] do l[i] := PvmGet()[2][2]; od;

kash> PvmGet();

false

kash> l[1][1][1] * l[2][1][1];

[6 0 2 4]

[0 3 1 1]

[0 0 1 0]

[0 0 0 1]

kash> PvmExit();

What has just happened? In order to initialize all of the Pvm... stuff, PvmInit

must be entered at the beginning of each session. Since our (sample) pvm consists

of four machines, four slaves were started. A maximal of 3 jobs per machine is

the default value. This means that only 3 jobs can be waiting or active on any

one slave simultaneously, but, of course, you will be able to run as many jobs as

you like — just wait for the first job to finish before sending the fourth. After

creating a maximal order using KASH, a slave was started on all machines with

the function PvmGetEval();, which is defined in the library. This function simply

waits for data and sends it back. The main point is that evaluation of data is

only performed at the slave! The next step in the example sends the order to all

slaves. (This could be omitted and sent at each task.)

In the next step, read(); is entered; this is an abbreviation for receive all data

and print it. If nothing seems to happen, wait a bit and try again. On some

systems it may take up to 2 minutes to start the slave. If nothing has happened

for 5 minutes, you are in trouble (see C.5).

Now we can finally begin to use the slave(s): The next two entries ask them to

perform some factorizations. Remember that all evaluations take place on the

slave, so even p*o is computed on the slave.

To collect the results, we have used the function PvmGet();, which returns either

false if no data has arrived or a list containing valid data if the first entry is

1. The data format received is [1, [1, [...]]], the first 1 meaning that

C PVM, KASH AND KANT V4 74

the slave provided an answer, which is contained in the second argument of that

list. The second 1 simply shows that the slave received valid data. The second

argument of that list ... is the evaluated data sent from the master. In the

above example, the message false after the function call PvmGet(); means that

there is no more data to receive from the slave.

Use PvmExit(); to kill all slaves. Note however, that this will not stop the pvm

daemon. To stop pvm use (after PvmExit())

Exec("pvm");

pvmd already running.

pvm> halt

For a more sophisticated example, enter:

kash> Read("PvmClassgroup.kash");

Now you should have a new function PvmClassgroup(n, b) which computes the

classgroup’s of all monic irrdeducible polynomials of degree n and coefficients

bounded by b.

All files in the src directory starting with Pvm may be used to illustrate some

features of KASH-pvm.

C.4 pvm-watch

To monitor some of the activities of the pvm you may use the watch. After

starting pvm (PvmUse(true); or PvmInit();) you may use PvmUseWatch(true).

Notification of all data sent by the master using PvmSendNext, PvmSendAll and

PvmSendLast, and, to some extent, the response of the slave is now provided.

C.5 Trouble shooting

In addition to the watch (see C.4) (all) data normally printed on the screen of

the slave will go into a file named /tmp/pvml.uid with uid being your user id.

This file always resides on the /tmp-directory of the machine running the master.

A lot of information can be obtained by simultanously reading this file.

D PRINTLEVEL 75

D Printlevel

Here is a (uncomplete) list of printlevels that are useful to find out what KASH

is doing during computations. Please have a look at the PRINTLEVEL function for

details.

Function Printlevel

EltApproximation ORDER ELT APPROX

EltCon ORDER ELT CON

EltIsInIdeal ORDER ELT IS IN IDEAL

EltListAbsDisc REL EXT DISC

EltMove ORDER MOVE

EltNorm ORDER ELT NORM

EltRoot ORDER ELT ROOT

EltSimplify ORDER ELT SIMPLIFY

Factor ORDER PRIME FACTORIZE

Ideal ORDER IDEAL

Ideal2EltNormalAssure ORDER IDEAL 2 NORMAL ASSURE

Ideal2EltNormalAssure ORDER IDEAL 2 NORMAL CHECK

IdealBasis ORDER IDEAL 2 Z

IdealCollection ORDER MODULE

IdealGenerators, Ideal2EltAssure ORDER IDEAL 2 ASSURE

IdealIsIntegral ORDER IDEAL IS INTEGRAL

IdealPrimeElt ORDER IDEAL PRIME ELT

ideal operation ∗ ORDER IDEAL MULT

ideal operation / ORDER IDEAL INVERT INTEGRAL

ideal operation / ORDER IDEAL ORDER ELT DIV

Lat LAT CREATE

Order ORDER MULT TABLE CREATE

OrderAbs ORDER ABS

OrderClassGroup CLASS GROUP CHECK

OrderClassGroup ORDER CLASS GROUP CALC

OrderDisc ORDER DISC CALC

OrderIsSubfield ORDER IS SUBFIELD

OrderKextDisc K EXT DISC

D PRINTLEVEL 76

Function Printlevel

OrderKextGenAbs, K EXT GEN

OrderKextGenRel

OrderMaximal RND2 PP

OrderMaximal ROUND2

OrderMerge MERGE

OrderMergeUnit ORDER MERGE UNIT

OrderMinkowski ORDER MINKOWSKI BOUND

OrderNormEquation ORDER LAT NORM EQUATION

OrderNormEquation RELNEQ

OrderPrec, Order ORDER BASIS REAL CREATE

OrderReg ORDER REG CALC

OrderRegLowBound ORDER REG LBOUND CALC

OrderRelNF REL EXT NF

OrderSubfield SEARCH FIELD

OrderTorsionUnit ORDER TORSION SUBGROUP CALC

OrderUnitsFund ORDER MERGE UNIT,

ORDER UNITS CAP SUBORDER,

ORDER UNITS FUND CALC,

ORDER UNITS FUND CHECK,

ORDER UNITS INDEP CALC,

ORDER UNITS LLL REDUCE,

ORDER UNITS LOGS CALC

OrderUnitsIndep ORDER MERGE UNIT,

ORDER UNITS INDEP CALC,

ORDER UNITS LLL REDUCE,

ORDER UNITS LOGS CALC

OrderUnitsPMaximal ORDER UNITS P MAXIMAL,

ORDER UNITS P MAXIMAL CHECK

