/OPE CORPORATION

Persistent Programming with ZODB

10th International Python Conference
Alexandria, Virginia
February 4, 2002

Jeremy Hylton and Barry Warsaw ==
{jeremy,barry}@zope.com /‘__

%

What is Persistence?

(C) 2002 Zope Corp

e Automatic management of object
state; maintained across program
Invocation

e Frees programmer from writing
explicit code to dump objects into

fi
e A
0

es
lows programmer to focus on

nject model for application

V=
i ZODB Approach to Persistence

(C) 2002 Zope Corp

e Minimal impact on existing Python
code (transparency)

e Serialization (pickle) to store objects
e Transactions to control updates

e Pluggable backend storages to write
to disk

//:_. Alternatives to ZODB
—
e Many:

- flat files, relational database, structured
data (XML), BerkeleyDB, shelve

e Each has limitations
— Seldom matches app object model

— Limited expressiveness / supports few
native types

— Requires explicit app logic to read and
write data

ZODB -- the Software

(C) 2002 Zope Corp.

Object database for Zope
— Designed by Jim Fulton
— Started as BoboPOS

Extracted for non-Zope use
— Andrew Kuchling

Source release w/distutils from Zope Corp.
— January 2002

Wiki: http://www.zope.org/Wikis/ZODB

- info central for ZODB

http://www.zope.org/Wikis/ZODB

V=
/__. Software architecture
"

(C) 2002 Zope Corp.

e StandaloneZODB packages
— Persistence, ZODB, ZEO
— ExtensionClass, sundry utilities

e ZODB contains
— DB, Connection
— Several storages
e Compatibility
— Runs with Python 2.0 and higher

— ExtensionClass has some limitations
e No cycle GC, no weak refs, ...

((__J ZODB Architecture (1)

—

(C) 2002 Zope Corp.

Persistence

//:_. Public Components

(C) 2002 Zope Corp.

e Components with public APIs

— Database
e allows application to open connections

e connection: app interface for accessing
objects

— Transaction:

e app interface for making changes permanent

— Persistent base class
e Logically distinction from ZODB

V=
[Internal Components
—

(C) 2002 Zope Corp.

e Storage

— manage persistent representation on
disk

e ZEO

— Share storage among multiple
processes, machines

V=
[s Future ZODB Architecture
—
e ZODB4 will isolate components

— Persistent, Transaction interfaces
separate

— Database, Storage stay in ZODB

e Advantages

— Allows other databases, e.g. object-
relational mapping

— Use Persistence, Transaction without
Z0DB

10

7__, Key ZODB Concepts

(C) 2002 Zope Corp.

e Persistence by reachability
e Transactions

e Resource management
— Multiple threads
— Memory and caching

11

//:_. Persistence by Reachability

(C) 2002 Zope Corp.

e All objects reachable from root
stored in database

— Root mapping provided by database

e Each persistent object stored
independently

— use pickle
— all non-persistent attributes included
— customize with ___getstate_ ()

12

V=
2. Transactions
- (C) 2002 Zope Corp.

e Coordinate update of objects

— Modified objects associated with
transaction

- Commit makes modification persistent
— Abort reverts to previous state

e Means to cope with failure
— Conflicting updates
— Something goes wrong with system

13

-~
£ Resource Management
—

(C) 2002 Zope Corp.

e Threads

— One thread per transaction
— Controlled sharing via transactions

e Memory
— Database contains many objects

e Too many to fit in memory

— Objects moved in and out of memory
e ZODB manages this automatically
e Knobs exposed to applications

14

//;_. Writing Persistent Applications

(C) 2002 Zope Corp.

e This section will:
— Introduce a simple application
— Show how to make it persistent

15

7__. (Very) Simple Group Calendar

(C) 2002 Zope Corp

e Calendar which can display a whole
month, or a single day, with events

e Can create new appointments with
rendezvous information

e Can invite people to an appointment

16

7__. Group Calendar Objects

(C) 2002 Zope Corp

* Calendar — holds appointments
keyed by subject and date (sorted)

* Person — has a name; later updated
to username, realname

* Appointment — holds date, duration,
subject, location, list of participants

e (a driver script)

17

0

Required imports

(C) 2002 Zope Corp.

e Applications must import ZODB first, either
explicitly or implicitly through a package reference

e Importing ZODB has side-effects (this will be fixed
in ZODB4).

import ZODB

from ZODB.DB import DB

from ZODB.FileStorage import FileStorage

from BTrees.O0OBTree import OOBTree

Works as side-effect of importing ZODB above

from Persistence import Persistent

18

//;_. Creating persistent classes
—

(C) 2002 Zope Corp.

e All persistent classes must inherit from
Persistence.Persistent

from Persistence import Persistent

class Person (Persistent):

..

19

7

Application boilerplate

(C) 2002 Zope Corp.

e C(Create a storage

e Create a database object that uses the storage

e Open a connection to the database

e Get the root object (and perhaps add app collections)

fs =
db =
conn

root

FileStorage(‘cal.fs’)
DB (fs)
= DB.open ()

= conn.root ()

1f not root.has key(‘collectionName’) :

20

root[‘collectionName’] = OOBTree ()

get transaction () .commit ()

7

Using transactions

e After making changes
— Get the current transaction
— Commit or abort it

calendar = root| ‘calendar’]
calendar.add appointment (app)
get transaction () .commit ()

..or..

get transaction() .abort ()

21

(C) 2002 Zope Corp.

V=
i Writing persistent classes
S

(C) 2002 Zope Corp

e Persistent if reachable from the root
e Persistency by storing/loading pickles

e ZODB must know when an object is
accessed or changed

e Automatic (transparent) for attribute
access

e Some common Python idioms require
explicit interactions

22

//;_. Persistence by reachability

(C) 2002 Zope Corp.

e Persistent object must be reachable from
the root object, which ZODB creates
automatically

person = Person (name)
people = root|[‘people’]
1f not people.has key(name) :

people[name] = person

get transaction () .commit ()

23

V=
/__. What state is saved?

(C) 2002 Zope Corp

e Objects to be stored in ZODB must
be picklable.

e ZODB pickles all object attributes
- Looks in ___dict___
— Loads pickled state into __dict___

e Classes can override behavior

- via ___getstate_ () and ___setstate_ ()

24

V=
i References to other objects
_—

(C) 2002 Zope Corp.

e Sub-objects are pickled by value except:
— Persistent sub-objects are pickled by reference

— Classes, modules, and functions are pickled by
name

— Upon unpickling instances, __init__ () is not
called unless the class defined a
__getinitargs___ () method at pickle-time

— See the Python 2.2 pickle module documentation
for more rules regarding extension types, etc.

25

V=
£ Automatic notice of changes
_—

(C) 2002 Zope Corp.

e Changes to an object via attribute
access are noticed automatically by
the persistence machinery

— Implemented as tp_getattr hook in C

person.name = ‘Barry Warsaw’

get transaction () .commit ()

26

V=
f il Mutable attributes
—

(C) 2002 Zope Corp.

e Mutable non-Persistent sub-objects, e.q.
builtin types (list, dict), instances

e Changes not caught by ZODB
— Attribute hook only works for parent
— Must mark parent as changed (_p_changed)

class Appointment (Persistent) :
..
def add person(self, person):
self.participants.append (person)
self. p changed =1

27

—

PersistentMapping

(C) 2002 Zope Corp.

e Persistent, near-dictionary-like
semantics

— In StandaloneZODB, inherits from
UserDict

e It fiddles with _p_changed for you:

>>> person.contacts
<PersistentMapping instance at 81445d8>
>>> person.contacts|[‘Barry’] = barry

>>> get transaction () .commit ()

28

V=
/__. PersistentList

(C) 2002 Zope Corp

e Provides list-like semantics while
taking care of _p changed fiddling

e In StandaloneZODB only (for now)

— Inspired by Andrew Kuchling’s
SourceForge project (zodb.sf.net)

e Inherits from UserList

29

Z Handling unpicklable objects

(C) 2002 Zope Corp.

class F(Persistent):
def 1nit (self, filename):
self.fp = open(filename)
def getstate (self):
return self.fp.name
SIEN s e MENN(sel f, f1lename) :
self.fp = open(filename)
>>> root[‘files’] = F(‘/etc/passwd’)
>>> get transaction () .commit ()

>>2>

30

O\

Volatile attributes

(C) 2002 Zope Corp.

e Attributes not to be stored
persistently should be prefixed
with v

class F(Persistent):
def 1init (self, filename):

self. v fp = open(filename)

>>> root[‘files’] = F(‘/etc/passwd’)

>>> get transaction () .commit ()

later..

>>> root[‘files’]. dict

{}

31

7__. Python special methods
— (C) 2002 Zope Corp.
e ExtensionClass has some limits
— post-1.5.2 methods
— Reversed binops, e.g. __radd___
— Comparisons with other types

— Ported to Python 2.2, but not being
actively maintained.

e Not fundamental to approach
- Future implementation will not use E.C.

32

/-
£ Managing object evolution
"
e Methods and data can change
— Add or delete attributes
— Methods can also be redefined

e Classes stored by reference

— Instances gets whatever version is
imported

e get/setstate_ () can handle data
— Provide compatibility with old pickles, or

— Update all objects to new representation
33

__setstate ()
(©) 2002 Zope Corp.
class Person (Persistent):
def 1nit (self, name):
self.name = name
>>> barry = Person(‘Barry Warsaw’)
>>> root|[‘people’ | [Ybarry’] = barry

>>> get transaction () .commit ()

34

0

__setstate () con’t

(C) 2002 Zope Corp.

class Person (Persistent):

def init (self, username,realname) :
self.username = username
self.realname = realname

def setstate (self, d):
self.realname = name = d[‘name’]
username = name.split() [0].lower ()

self.username = username

35

/__. Transactions and Persistence
—

(C) 2002 Zope Corp.

e This section will:
— Explain the purpose of transactions
— Show how to add transactions to app

36

V=
i Using Transactions

(C) 2002 Zope Corp.

e ZODB adds builtin get transaction ()
— Side-effect of import ZODB

e Each thread gets its own transaction
— get transaction() checks thread id

e Threads are isolated
— Each thread should use its own DB connection
- Changes registered with conn that loaded object
— Synchronization occurs at transaction boundaries

37

O\

ACID properties

e Atomic

— All updates performed, or none
e Consistent

— Responsibility of application

— Changes should preserve object invariants
e [solated

— Each transaction sees consistent state
— Transactions occur in serializable order

e Durable
— After a commit, change will survive crash

38

(C) 2002 Zope Corp.

V=
i Optimistic concurrency control
_—

(C) 2002 Zope Corp.

e Two alternatives to isolation
— Locking: transaction locks object it modifies
— Optimistic: abort transactions that conflict
e ZODB is optimistic
— Assume conflicts are uncommon

— If conflict occurs, abort later transaction

o Effect on programming style
— Any operation may raise ConflictError
— Wrap all code in try/except for this
— Redo transaction if it fails

39

V=
/__. Transaction boundaries
"

(C) 2002 Zope Corp.

e Under application control

e Transaction begin is implicit
— Begins when object loaded or modified

* get transaction () .commit ()

— Make changes permanent

* get transaction () .abort ()

— Revert to previously committed state

40

//:_. Write conflicts

(C) 2002 Zope Corp.

e Transactions must be serializable

e Two transactions change object
concurrently

— Only one change can succeed
— Other raises ConflictError on commit()

e Handling ConflictError
— Abort transaction, and retry
— Application-level conflict resolution

41

//:_. Conflicts and Consistency

(C) 2002 Zope Corp.

e New method on Calendar object

def make appointment (self, apt, attendees):
self.add appointment (apt)
for person in attendees:
if person.is available (apt.date, apt.duration):
person.add appointment (apt)
apt.add person (person)

— Guarantees appointments don’t conflict

e Consider two calls at same time
— Data race on is_available()?
— Conflict raised when object commits

42

0

Conflict Example

(C) 2002 Zope Corp.

def updatel (cal, attendees):
apt = Appointment (“refrigerator policy”,
Time (“2/5/2002 10:00”), Time (“0:30"))
cal . .make appointment (apt, attendees)

def updateZ(cal, attendees):
apt = Appointment (“curly braces”,
Time (“2/5/2002 10:00”), Time(“1:00"))
cal .make appointment (apt, attendees)

Two calls at once results in one error

Traceback (most recent call last):

File “<stdin>”, line 1, in ?
File “ZODB/Transaction.py”, line 233, in commit
File “ZODB/Connection.py”, line 347, in commit
File “ZODB/FileStorage.py”, line 634, in store
ConflictError: database conflict error (serial was
034144749675e55d, now 03414442940clbdd)

43

2. Read conflicts (1)
- (C) 2002 Zope Corp.
e \What if transaction never commits?
— Operation is read-only
— Must still have consistent view

e Always read current object revision

— If another transaction modifies the
object, the current revision is not
consistent

— ReadConflictError raised in this case
— May need to sync() connection

44

//:_. Read conflicts (2)

(C) 2002 Zope Corp.

e Example with transactions T1, T2

— Sequence of operations
e T1: Read O1
e T2: Read O1, O2
e T2: Write O1, O2
e T2: Commit
e T1: Read O2 - ReadConflictError

— Can’t provide consistent view
e T1 already saw old revision of O1
e Can’t read new revision of O2

45

i Multi-version concurrency control
—

(C) 2002 Zope Corp.

e Planned for ZODB4

— Allow transactions to proceed with old
data

e In previous example, T1 would see version of
O2 from before T2

— Eliminate conflicts for read-only
transactions

e Limited solution exists now
— Define _p_independent()

e Return true if it's safe to read old revision

46

7

Example transaction wrapper

(C) 2002 Zope Corp.

from ZODB.POSException import ConflictError

def wrapper (func, retry=1):
while 1:

try:
func ()
get transaction () .commit ()

except ConflictError:

1f retry:
get transaction () .abort()
retry -= 1
continue
else:
break

47

V=
i Application-level conflict resolution
S

(C) 2002 Zope Corp.

e Objects can implement their own (write)
conflict resolution logic
e Define _p_resolveConflict() method

— Arguments (unpickled object states)
e Original object state
e Committed state for last transaction
e State for transaction that conflicts

— Returns new state or None or raises error

e Requires careful design
— Can’t access other objects at resolution time
— Must store enough info in object state to resolve

48

Conflicts and ZEO
J (C) 2002 Zope Corp.
e ZEO uses asyncore for I/O
— Invalidation msgs arrive asynchronously
— Processed when transaction commits

e Application must either
— Start asyncore mainloop
— Synchronize explicitly

e Connection method sync()
e Call when transaction begins

49

O\

Subtransactions

(C) 2002 Zope Corp.

e YOU can create subtransactions
within a main transaction

— individually commit and abort
subtransactions

— not “truly committed” until containing
transaction is committed

e Primarily for reducing in-memory
footprint

>>> get transaction () .commit (1)

50

V=
/__. Practical Considerations
"

(C) 2002 Zope Corp.

e This section will:
— Help you select components
— Discuss sys admin issues
— Manage resources effectively

51

O\

BTrees

(C) 2002 Zope Corp.
from BTrees.O0OBTree 1import OOBTree

e Mapping type implemented as Btree
— Implemented in C for performance

— Several flavors with object or int
key/values

e OOBTree, IIBTree, OIBTree, IOBTree
e Limited memory footprint
— Dictionary keeps everything in memory

— BTree divided into buckets
e Not all buckets in memory at once

52

/-
2 Pros and cons of various storages
—

(C) 2002 Zope Corp.

e FileStorage
— Widely used (the default)

- Large in-memory index
e StandaloneZODB has a smaller index

— Stores everything in one big file
e BerkeleyDB storage

— Uses transactional BerkeleyDB

— Large blobs (pickles) may cause performance
problems

e Others:
— OracleStorage, MappingStorage, ...

53

7__. Object revisions
— (C) 2002 Zope Corp.
e Each update creates new revision
— Storages (may) keep old revisions
— Allows application to undo changes
— Must pack storage to remove revisions

54

&__. Packing

(C) 2002 Zope Corp.

e Some storages store multiple object
revisions

— Used for undo

— Eventually used for multi-version
concurrency control

e Old object revisions consume space

e Pack storages to reclaim
- Can’t undo
— Experimental garbage collection

55

7__. Storage management
— (C) 2002 Zope Corp.
e FileStorage
— Packing
— Backing up
— Recover
e Berkeley storage
— Packing
— Backing up
— Berkeley maintenance
— Tuning

56

//:_. When to use ZEO

(C) 2002 Zope Corp

e Storages may only be opened with a
single process

— Although it may be multithreaded

e ZEO allows multiple processes to
open a storage simultaneously

e Processes can be distributed over a
network

e /EO cache provides read-only data if
server fails

57

2 ZEO Cache
- (C) 2002 Zope Corp.
e Disk-based cache for objects
— Server sends invalidations on update
— Checks validity when client connects

e Persistent caching
— Reuse cache next time client is opened
— Default is not persistent

e /ZEO connections

- Attempts new connection in background
when server fails
58

//:_. ZEO management

(C) 2002 Zope Corp.

e StorageServer

— Run as separate process
e May want to run under init or rc.d

— ZEQO/start.py provided as startup script
e ClientStorage

from ZEO.ClientStorage import ClientStorage
s = ClientStorage((“server.host”, 3400))

e Persistent cache

S ClientStorage (host port, client=%“abc”)

59

V=
7 zLOG
J (C) 2002 Zope Corp.

e Zope logging mechanism
— More flexible than writing to stderr

e Controlled by environment vars
- STUPID_LOG_FILE
- STUPID_LOG_SEVERITY

e Severity levels
— 300 to -300; 0 is default
— -100 provides more details
— -300 provides enormous detail

60

7

Storage migration

(C) 2002 Zope Corp.

e Storages can be migrated via the iterator
protocol

SIC

dst

dst.
dst.

61

High level interface
Low level interface

= FileStorage (“foo.fs”)
= Full ("BDB”) # Berkeley storage
copyTransactionsFrom(src)

close ()

//:_. Advanced Topics

(C) 2002 Zope Corp.

e This section will:
— Describe ZODB internals
— Discuss data structures
— Introduce various advanced features

62

/"‘
2l Internals: Object state

(C) 2002 Zope Corp.

e Objects in memory

— Four states
e Unsaved
e Up-to-date
e Changed
e Ghost

— Ghost is placeholder
e No attributes loaded

e p_deactivate()

63

e
/__. Internals: Connection Cache
"

(C) 2002 Zope Corp.

e Each connection has an object cache
— Objects referenced by OID

— Objects may be ghosts

e All loads go through cache
— Cache access to recent objects
— Prevent multiple copies of one object

— Creates ghost unless attribute needed

e Note: dir() doesn’t behave correctly with
ghosts

64

//:_. Internals: Cache Size

(C) 2002 Zope Corp.

e Controlled by DB & Connection

e Methods on DB object

— Affects all conns associated with DB

e DB(..., cache_size=400,
cache_deactivate_after=60)

e setCacheSize(size)

e setCacheDeactiveAfter(size)
e cacheFullSweep(age)

e cacheMinimize(age)

— Size is objects; after/age is seconds

65

//;_. Advanced topics

(C) 2002 Zope Corp.

e Undo

— Transactional

— destructive
e Deprecated, but used as fallback

e \/ersions

66

//:_. Transactional Undo

(C) 2002 Zope Corp.

e Implemented by writing a new
transaction

e Supports redo

e Supported by FileStorage and
BerkeleyDB storage (Full)

1f db.supportsTransactionalUndo () :

db.undo (txn 1d)
get transaction () .commit ()

67

%

undoLog()
e undolLog(start, stop [, func])
— Returns a dictionary

— Entries describe undoable transactions
between start & stop time (sec. since
epoch)

— Optional func is a filter function

e Takes a dictionary describing each txn
e Returns true if txn matches criteria

68

//:_. UndoError

(C) 2002 Zope Corp.

e ZODB.POSException.UndoError

— raised when undo() is passed a txn id for
a hon-undoable transaction

— Packing can cause transactions to be
non-undoable

69

//:_. Versions

(C) 2002 Zope Corp.

e Like a long running, named
transaction

e If a change to an object is made in a
version, all subsequent changes
must occur in that version until;

— version is committed
— version is aborted

e Otherwise, VersionLockError

70

0

Opening a version

(C) 2002 Zope Corp.

1f db.supportsVersions () :

db.open (version="myversion”)

Commit some changes, then
db.commitVersion (Y“myversion”)
.. or ..

db.abortVersion (“myversion”)

/1

//:_. Database API

(C) 2002 Zope Corp.

\\ 7/

open (version="", transaction=None, temporary=0)

e open() returns new Connection object
— If version specified, work in a “version”
— If transaction specified, close connection on commit
— If temporary specified, do not use connection pool

e DB keeps pool of connections (and their caches) to reuse
e Default pool size is 7
e Locking prevents more than 7 non-temporary connections
e Separate pools for versions
e pack(t=None, days=0)
— Pack revisions older than t (default is now)
— Optional days subtracts days from t

72

