
The Matplotlib User’s Guide

John Hunter

June 15, 2005

2

Contents

1 Introduction 5
1.1 Migrating from matlab . 6
1.2 Numerix . 8

1.2.1 Choosing Numeric or numarray . 8
1.3 Backends . 9
1.4 Integrated development environments . 9
1.5 Interactive . 10
1.6 Customization using .matplotlibrc . 11

1.6.1 RC file format . 11
1.6.2 Which rc file is used? . 12

1.7 Installing . 12
1.7.1 Compiling matplotlib . 12
1.7.2 Installing on windows . 13
1.7.3 Package managers: (rpms, apt, fink) . 14
1.7.4 Getting feedback from matplotlib . 14

2 The pylab interface 17
2.1 Simple plots . 17
2.2 More on plot . 19

2.2.1 Multiple lines . 19
2.2.2 Controlling line properties . 20

2.3 Color arguments . 22
2.4 Loading and saving data . 23

2.4.1 Loading and saving ASCII data . 23
2.4.2 Loading and saving binary data . 24
2.4.3 Processing several data files . 24

2.5 axes and figures . 24
2.5.1 figure . 25
2.5.2 subplot . 26
2.5.3 axes . 28

2.6 Text . 29
2.6.1 Basic text commands . 29
2.6.2 Text properties . 30
2.6.3 Text layout . 30
2.6.4 mathtext . 33

2.7 Images . 34
2.7.1 Axes images . 35
2.7.2 Figure images . 36
2.7.3 Scaling and color mapping . 37
2.7.4 Image origin . 38

3

2.8 Bar charts, histograms and errorbar plots . 38
2.9 Pseudocolor and scatter plots . 39
2.10 Spectral analysis . 39
2.11 Axes properties . 40
2.12 Legends and tables . 40
2.13 Navigation . 40

2.13.1 Classic toolbar . 41
2.13.2 toolbar2 . 41

2.14 Event handling . 42
2.15 Customizing plot defaults . 44

3 Font finding and properties 45

4 Collections 47

5 Tick locators and formatters 49
5.1 Tick locating . 49
5.2 Tick formatting . 50
5.3 Example 1: major and minor ticks . 50
5.4 Example 2: date ticking . 51

6 Cookbook 55
6.1 Plot elements . 55

6.1.1 Horizontal or vertical lines/spans . 55
6.1.2 Fill the area between two curves . 55

6.2 Text . 55
6.2.1 Adding a ylabel on the right of the axes . 55

6.3 Data analysis . 56
6.3.1 Linear regression . 56
6.3.2 Polynomial regression . 57

6.4 Working with images . 58
6.4.1 Loading existing images into matplotlib . 58
6.4.2 Blending several axes images using alpha . 59
6.4.3 Creating a mosaic of images . 60
6.4.4 Defining your own colormap . 61

6.5 Output . 61
6.5.1 Printing to standard output . 61

7 Matplotlib API 63
7.1 The matplotlib backends . 63

7.1.1 The renderer and graphics context . 64
7.1.2 The figure canvases . 65

7.2 The matplotlib Artists . 65
7.3 pylab interface internals . 65

A A sample .matplotlibrc 71

B mathtext symbols 75

C matplotlib source code license 77

4

Chapter 1

Introduction

matplotlib is a library for making 2D plots of arrays in python. Although it has its origins in emulating the
matlabTM graphics commands, it does not require matlab, and can be used in a pythonic, object oriented
way. Although matplotlib is written primarily in pure python, it makes heavy use of Numeric/numarray
and other extension code to provide good performance even for large arrays.

matplotlib is designed with the philosophy that you should be able to create simple plots with just a
few commands, or just one! If you want to see a histogram of your data, you shouldn’t need to instantiate
objects, call methods, set properties, and so it; it should just work.

For years, I used to use matlab exclusively for data analysis and visualization. matlab excels at making
nice looking plots easy. When I began working with EEG data, I found that I needed to write applications
to interact with my data, and developed and EEG analysis application in matlab. As the application grew
in complexity, interacting with databases, http servers, manipulating complex data structures, I began to
strain against the limitations of matlab as a programming language, and decided to start over in python.
python more than makes up for all of matlab’s deficiencies as a programming language, but I was having
difficulty finding a 2D plotting package (for 3D VTK more than exceeds all of my needs).

When I went searching for a python plotting package, I had several requirements:

• Plots should look great - publication quality. One important requirement for me is that the text looks
good (antialiased, etc)

• Postscript output for inclusion with TEX documents

• Embeddable in a graphical user interface for application development

• Code should be easy enough that I can understand it and extend it.

• Making plots should be easy.

Finding no package that suited me just right, I did what any self-respecting python programmer would do:
rolled up my sleeves and dived in. Not having any real experience with computer graphics, I decided to
emulate matlab’s plotting capabilities because that is something matlab does very well. This had the added
advantage that many people have a lot of matlab experience, and thus they can quickly get up to steam
plotting in python. From a developer’s perspective, having a fixed user interface (the pylab interface) has
been very useful, because the guts of the code base can be redesigned without affecting user code.

The matplotlib code is conceptually divided into three parts: the pylab interface is the set of functions
provided by matplotlib.pylab which allow the user to create plots with code quite similar to matlab figure
generating code. The matplotlib frontend or matplotlib API is the set of classes that do the heavy lifting,
creating and managing figures, text, lines, plots and so on. This is an abstract interface that knowns
nothing about output. The backends are device dependent drawing devices, aka renderers, that transform
the frontend representation to hardcopy or a display device. Example backends: PS creates postscript

5

hardcopy, SVG creates scalar vector graphics hardcopy, Agg creates PNG output using the high quality
antigrain library that ships with matplotlib - http://antigrain.com, GTK embeds matplotlib in a GTK
application, GTKAgg uses the antigrain renderer to create a figure and embed it a GTK application, and so
on for WX, Tkinter, FLTK. . . .

matplotlib is used by many people in many different contexts. Some people want to automatically
generate postscript files to send to a printer or publishers. Others deploy matplotlib on a web application
server to generate PNG output for inclusion in dynamically generated web pages. Some use matplotlib
interactively from the python shell in Tkinter on windows. My primary use is to embed matplotlib in a
GTK EEG application that runs on windows, linux and OS X.

Because there are so many ways people want to use a plotting library, there is a certain amount of
complexity inherent in configuring the library so that it will work naturally the way you want it to. To
manage this, a number of choices must be made when compiling and running matplotlib: do you want to
use it in a graphical user interface (GUI) or just to generate hardcopy; which array package will you use?

Most of this chapter will explain these options and how to configure them. Before diving into these
details, let’s take a detour comparing a typical matplotlib script with it’s analog in matlab.

1.1 Migrating from matlab

Using matplotlib should come naturally if you have ever plotted with matlab, and should be fairly straight-
forward if you haven’t. Like all interpreted languages used for serious number crunching, python has an
extension module for processing numeric arrays. Numerical python has been around since the early days,
and already comes with many matlab compatible analysis functions, which matplotlib extends. The example
code below shows two complete scripts: on the left hand side is python with matplotlib, and on the right is
matlab.

Figure 1.1: Colored noise signal and power spectrum generated with matlab as shown in Listing 1.1. Compare
with matplotlib in Figure 1.2.

Both scripts do the same thing: generate a white noise vector, convolve it with an exponential function,
add it to a sine wave, plot the signal in one subplot and plot the power spectrum in another.

6

Listing 1.1: matplotlib and matlab

python % matlab
from pylab import ∗ % no import nece s sa ry

dt = 0.01 dt = 0 . 0 1 ;
t = arange (0 ,10 , dt) t = [0 : dt : 1 0] ;
nse = randn (l en (t)) nse = randn (s i z e (t)) ;
r = exp(−t /0 . 05) r = exp(−t /0 . 05) ;

cnse = conv (nse , r) ∗dt cnse = conv (nse , r) ∗dt ;
cnse = cnse [: l en (t)] cnse = cnse (1 : l ength (t)) ;
s = 0 .1∗ s i n (2∗ pi ∗ t) + cnse s = 0 .1∗ s i n (2∗ pi ∗ t) + cnse ;

subplot (211) subplot (211)
p l o t (t , s) p l o t (t , s)
subplot (212) subplot (212)
psd (s , 512 , 1/dt) psd (s , 512 , 1/dt)

The major differences are 1) Numeric has a functions for creating arrays (arange above) whereas matlab
has the handy notation [0:dt:10], 2) python uses square brackets rather than parentheses for array indexing,
and there are some small differences in how do array lengths, sizes, and indexing. But the differences are
minute compared to the similarities: 1) matlab and Numeric both do array processing and have a variety of
functions that efficiently operate on arrays and scalars, 2) moderately sophisticated signal processing (white
noise, convolution, power spectra) is achieved in only a few lines of clear code and 3) plots are simple,
intuitive and attractive (compare Figures 1.2 and Figures 1.1).

Figure 1.2: Colored noise signal and power spectrum generated with python matplotlib as shown in List-
ing 1.1. Compare with matlab in Figure 1.1. Note that the waveforms are not identical because they were
generated from random signals!

7

1.2 Numerix

Numeric is a python module for efficiently processing arrays of numeric data. While highly optimized for
performance and very stable, some limitations in the design made it inefficient for very large arrays, and
developers decided it was better to start with a new array package to solve some of these design prob-
lems and numarray was born. matplotlib requires one of Numeric or numarray to operate. If you have
no experience with either, you are strongly advised to install one of the packages and read through some
of the documentation before continuing, as this manual assumes you are familiar with one of them; see
http://www.pfdubois.com/numpy/ and http://www.stsci.edu/resources/software_hardware/numarray.

Currently the python computing community is in a state of transition from Numeric to numarray, but
this is happening slowly, in part because numarray is slower than Numeric for smallish arrays, and in part
because a large code base is written around Numeric (notably scipy). This latter concern should become
less problematic with the numarray/Numeric compatibility layer. For the near term, however, there will be
users who want to use one package or the other.

Fortunately, several numarray/Numeric developers are codevelopers of matplotlib, giving matplotlib full
Numeric and numarray compatibility, thanks in large part to Todd Miller’s matplotlib.numerix module and
the numarray compatibility layer for extension code. This allows you to choose between Numeric or numarray
at the prompt or in a config file. Thus when you do

import matp lo t l i b and a l l the numerix f unc t i on s
from pylab import ∗

you’ll not only get all the matplotlib pylab interface commands, but most of the Numeric or numarray
package as well (depending on your numerix setting). All of the array creation and manipulation functions
are imported, such as array, arange, take, where, etc, as well as the functions and classes outside the main
module, such as mean, randn, fft and much more. To may your matplotlib scripts as portable as possible
with respect to your choice of array packages, it is advised not to explicitly import Numeric or numarray.
Rather, you should use matplotlib.numerix where possible, either by using the functions imported by pylab,
or by explicitly importing the numerix module, as in

crea t e a numerix namespace
import matp lo t l ib . numerix as n
x = n . arange (100)
y = n . take (x , range (10 ,20))

For the remainder of this manual, the term numerix is used to mean either the Numeric or numarray
package.

1.2.1 Choosing Numeric or numarray

To select numarray or Numeric from the prompt, run your matplotlib script with

> python myscript.py --numarray # use numarray
> python myscript.py --Numeric # use Numeric

Typically, however, users will choose one or the other and make this setting in their rc file using either
numerix : Numeric or numerix : numarray; see Section 1.6.

Some of the matplotlib extension code operates on Numeric or numarray arrays, eg the image and
transforms modules. To get optimum performance, you should compile matplotlib with the proper flag for
the library you will be using most. Set the NUMERIX variable in setup.py before building. Note that this
is different from the numerix variable in .matplotlibrc. The former affects the matplotlib at compile
time, the latter at run time. All of your matplotlib scripts should run without error regardless of these two
settings, but to get optimum performance, they should agree. numarray builds for win32 are available on
the download page.

If your NUMERIX compile time setting and numerix rc file setting do not agree, your performance can
suffer 10-fold. Before compiling matplotlib, edit setup.py and .matplotlibrc to make sure these settings

8

agree. If you are using a precompiled version of matplotlib, eg a windows installer, make sure you choose the
installer that agrees with the array package you use most. The installer labelled ’numarray’ is for numarray
users, whereas the unlabelled installer is for Numeric users.

1.3 Backends

The matplotlib backends are responsible for taking the figure representation and transferring this to a display
device, either a hardcopy image (*.jpg, *.png, *.ps, *.svg, etc) or a GUI window that you can interact
with. There are many GUIs for python: pygtk, wxpython, Tkinter, PyQT, pyfltk, and more, and matplotlib
supports most of them.

In choosing your backend, the following considerations are important

• What kind of output do you require? Any matplotlib installation can generate PS and SVG. For
other hardcopy formats, different backends have different capabilities. Agg can only generate png but
produces the highest quality output (antialiased, alpha). The native GTK and WX backends support
many more image formats (JPG, TIFF, . . .) but can only be used in GUI mode and produce lower
quality images. The GUI hybrid backends (WXAgg, GTKAgg, Tkagg, FLTKAgg) have the same
limitations and capabilities as Agg.

• Do you want to produce plots interactively from the python shell? Because most GUIs have a mainloop,
they become unresponsive to input outside of their mainloop once they are launched. Thus you often
need to use a custom shell to work interactively with a GUI application from the shell (pycrust for wx,
PyShell for gtk). A notable exception is Tkinter, which can be controlled from a standard python shell
or ipython. Fernando Perez, the author of ipython, has written a pylab mode that lets you use WX,
GTK or Tk interactively from the python shell. If you want to work interactively with matplotlib, this
is the recommended approach.

• What platform do you work most on? Do you want to embed matplotlib in an application that
you distribute across platforms? Do you need a GUI interface? Each of the python GUIs work
on all major platforms, but some are easier than others to install. Each have different advantages:
GTK is natural for linux and has excellent looking widgets but is a tough install on OS X. Tkinter
is deployed with most python installations but has primitive looking widgets. wxpython has native
widgets but can be difficult to install. Windows users note: the enthought edition of python from
http: // www. enthought. com/ python comes with Tkinter and wxpython included.

• What features do you need? Some of the matplotlib features including alpha blending, antialiasing,
images and mathtext are not ported to all backends. Agg and the GUIAgg hybrids support all mat-
plotlib features (agg is a core matplotlib backend). postscript, native gtk and native wx do not support
alpha or antialiasing. svg supports everything except mathtext (which will be added soon hopefully).

• Do you need dynamic images such as animation? The GUI backends vary in their ability to support
rapid updating of the image canvas. GTKAgg is currently the fastest backend for animation, with
FLTKAgg a close second.

Once you have decided on which backends you want to install, make sure you install the GUI required
toolkits (and devel versions if you are using a package manager). Then edit setup.py and .matplotlibrc
files to reflect these choices as described below.

1.4 Integrated development environments

If you work primarily in an integrated development environment such as idle, pycrust, SciTE, Pythonwin,
you will probably want to set your default backend to be compatible with the GUI your IDE uses. See

9

Table 1.1 for a summary of the various python IDEs and their matplotlib compatibility.1

IDE GUI Backends and Options
idle Tkinter Works best with TkAgg if idle is launched with -n
pycrust WX Works best with WX/WXAgg
Scintilla and SciTE GTK Should work with GTK/GTKAgg backends but untested
pythonwin MFC Unknown

Table 1.1: python IDEs and matplotlib compatibility.

1.5 Interactive

By default, matplotlib defers drawing until the end of the script because drawing can be an expensive
opertation, and in often you don’t want to update the plot every time a single property is changed, only
once after all the properties have changed. But in interactive mode, eg from the python shell, you usually
do want to update the plot with every command, eg, after changing the xlabel or the marker style of a line.
To do this, you need to set interactive : True in your configuration file; see Section 1.6.

There are many python shells out there: the standard python shell, ipython, PyShell, pysh, pycrust. Some
of these are GUI dependent (PyShell/pycrust) and some are not (ipython, pysh). As discussed in backends
Section 1.3, not all shells are compatible with all matplotlib backends because of GUI mainloop issues. With
a non-GUI python shell such as the standard python shell, ipython or pysh, the TkAgg backend is the best
choice for interactive use. Just set backend : TkAgg and interactive : True in your .matplotlibrcfile
and fire up python. Then

using matp lo t l i b i n t e r a c t i v e l y from the python s h e l l
>>> from pylab import ∗
>>> p lo t ([1 , 2 , 3])
>>> x l ab e l (’hi mom’)

should work out of the box. Note, in batch mode, ie when making figures from scripts, interactive mode can
be slow since it redraws the figure with each command. So you may want to think carefully before making
this the default behavior.

Unfortunately, due to the ’mainloop’ cycle of GUI toolkits, it is not yet possible to use matplotlib from
an arbitrary python shell with the other GUI backends. You must use a custom python shell that runs the
GUI is a separate thread.

The recommended way to use matplotlib interactively from a shell is with ipython, which has an pylab
mode that detects your matplotlib .matplotlibrc file and makes the right settings to run matplotlib with
your GUI of choice in interactive mode using threading. gtk users will need to make sure that they have
compiled gtk with threading for this to work. Using ipython in pylab mode is basically a nobrainer because
it knows enough about matplotlib internals to make all the right settings for you internally.

peds−pc311 :˜> ipython −pylab
Python 2 . 3 . 3 (#2 , Apr 13 2004 , 1 7 : 4 1 : 2 9)
Type "copyright" , "credits" or "license" for more in fo rmat ion .

IPython 0 . 6 . 5 −− An enhanced I n t e r a c t i v e Python .
? −> In t roduc t i on to IPython’s features.

%magic -> Information about IPython’ s ’magic’ % func t i on s .
he lp −> Python’s own help system.

object? -> Details about ’ ob j e c t ’. ?object also works , ?? prints more.

1If you have experience with these or other IDEs and matplotlib backends to help me finish this table, please contact me or
the matplotlib-devel mailing list.

10

Welcome to pylab , a matplotlib -based Python environment.

help(matplotlib) -> generic matplotlib information.

help(matlab) -> matlab -compatible commands from matplotlib.

help(plotting) -> plotting commands.

>>> plot(rand(20), rand(20), ’go’)

Note that you did not need to import any matplotlib names because in pylab mode ipython will import
them for you. ipython turns on interactive mode for you, and also provides a run command so you can run
matplotlib scripts from the matplotlib shell and then interactively update your figure. ipython will turn off
interactive mode during a run command for efficiency, and then restore the interactive state at the end of
the run.

>>> cd python/ p r o j e c t s / matp lo t l i b / examples /
/home/ jdhunter /python/ p r o j e c t s / matp lo t l i b / examples
>>> run s imp l e p l o t . py
>>> t i t l e (’a new title’ , c o l o r=’r’)

The pylab interface provides 4 commands that are useful for interactive control. Note again that the inter-
actgive setting primarily controls whether the figure is redrawn with each plotting command. isinteractive
returns the interactive setting, ion turns interactive on, ioff turns it off, and draw forces a redraw of the
entire figure. Thus when working with a big figure in which drawing is expensive, you may want to turn
matplotlib’s interactive setting off temporarily to avoid the performance hit

>>> run myb ig f a t f i gu r e . py
>>> i o f f () # turn updates o f f
>>> t i t l e (’now how much would you pay?’)
>>> x t i c k l a b e l s (f o n t s i z e =20, c o l o r=’green’)
>>> draw () # f o r c e a draw
>>> s a v e f i g (’alldone’ , dpi=300)
>>> c l o s e ()
>>> ion () # turn updates back on
>>> p lo t (rand (20) , mfc=’g’ , mec=’r’ , ms=40, mew=4, l s=’--’ , lw=3)

1.6 Customization using .matplotlibrc

Almost all of the matplotlib settings and figure properties can be customized with a plain text file .matplotlibrc.
This file is installed with the rest of the matplotlib data (fonts, icons, etc) into a directory determined by
distutils. Before compiling matplotlib, it resides in the same dir as setup.py and will be copied into your
install path. Typical locations for this file are

C:\Python23\share\matplotlib\.matplotlibrc # windows
/usr/local/share/matplotlib/.matplotlibrc # linux and friends

By default, the installer will overwrite the existing file in the install path, so if you want to preserve your’s,
please move it to your HOME dir and set the environment variable if necessary.

In the rc file, you can set your backend (Section 1.3), your numerix setting (Section 1.2), whether you’ll
be working interactively (Section 1.5) and default values for most of the figure properties.

1.6.1 RC file format

Blank lines, or lines starting with a comment symbol, are ignored, as are trailing comments. Other lines
must have the format

key : va l # opt i ona l comment

11

where key is some property like backend, lines.linewidth, or figure.figsize and val is the value of
that property. Example entries for these properties are

th i s i s a comment and i s ignored
backend : GTKAgg # the d e f au l t backend
l i n e s . l i n ew id th : 0 . 5 # l i n e width in po in t s
f i g u r e . f i g s i z e : 8 , 6 # f i g u r e s i z e in inche s

A complete sample rc file is shown in Appendix A.
The matplotlib rc values are read into a dictionary rcParams which contains the key/value pairs. You

can changes these values within a script by importing this dictionary. For example, to require that a given
script uses numarray, you could do

from matp lo t l ib import rcParams
rcParams [’numerix’] = ’numarray’

from pylab import ∗

Additionally, the commands matplotlib.rc and matplotlib.rcdefaults can be used to dynamically cus-
tomize the defaults during a script execution (discussed below).

1.6.2 Which rc file is used?

matplotlib will search for an rc file in the following locations

• The current directory - this allows you to have a project specific configuration that differs from your
default configuration

• Your HOME dir. On linux and other UNIX operating systems, this environment variable is set by
default. Windows users can set in the My Computer properties

• PATH/.matplotlibrc where PATH is the return value of matplotlib.get data path(). This function
looks where distutils would have installed the file - if it doesn’t find it there, it checks for the environment
variable MATPLOTLIBDATA and uses that if found. The latter should be set if you are installing
matplotlib to a nonstandard location. Eg, if you install matplotlib with python setup.py build
--prefix=/home/jdhunter then set matplotlib data to /home/jdhunter/share/matplotlib.

• After all that, if it cannot find your rc file, it will issue a warning and use defaults. This is not
recommended!

1.7 Installing

matplotlib requires at a minimum python 2.2+, Numeric or numarray and freetype. To get the most out
of matplotlib, you will want to build some of the optional GUI and image extensions, discussed below.
Matplotlib is known to work on linux, unix, win32 and OS X platforms.

1.7.1 Compiling matplotlib

You will need to have recent versions of freetype (¿= 2.1.7), libpng and zlib installed on your system. If
you are using a package manager, also make sure the devel versions of these packages are also installed (eg
freetype-devel).

The top of setup.py contains some flags controlling which backends will be built. If you want to use a
GUI backend, you will need either Tkinter, pygtk or wxpython installed on your system, from src or from
a package manager including the devel packages. You can choose which backends to enable by setting the
flags in setup.py, but the ’auto’ flags will work in most cases, as matplotlib tries to find a GUI and build the
backend accordingly. If you know you don’t want a particular backend or extension, you can set that flag to
False.

12

Most users will want to set BUILD AGG = 1 and one or more of the GUI backends to True. Exceptions to
this are if you know you don’t need a GUI (eg a web server) or you only want to produce vector graphics.

If you have installed prerequisites to nonstandard places and need to inform matplotlib where they are,
edit setupext.py an add the base dirs to the ’basedir’ dictionary entry for your sys.platform. Eg, if the header
to some required library is in /some/path/include/somheader.h, put /some/path in the basedir list for
your platform.

Note, matplotlib works with with Numeric or numarray, but it is important that you set NUMERIX in
setup.py to the array package you typically use, for efficiency reasons. For performace, it is critical that the
numerix settings in setup.py and in your .matplotlibrc file are the same, and are the same as the array
package you typically use.

Note that if you install matplotlib anywhere other than the default location, you will need to set the
MATPLOTLIBDATA environment variable to point to the install base dir. Eg, if you install matplotlib with
python setup.py build --prefix=/home/jdhunter then set MATPLOTLIBDATA to
/home/jdhunter/share/matplotlib.

1.7.2 Installing on windows

If you don’t already have python installed, you may want to consider using the enthought edition of python,
which has scipy, Numeric, and wxpython, plus a lot of other goodies, preinstalled - http://www.enthought.com/python
. With the enthought edition of python + matplotlib installer, the following backends should work out of
the box: agg, wx, wxagg, tkagg, ps and svg.

For standard python installations, you will also need to install either Numeric or numarray in addition
to the matplotlib installer. matplotlib provides installers for Numeric and numarray users. It is important
that you pick the matplotlib installer that corresponds to your array package. Ie, if you mostly work with
numarray arrays, use the matplotlib numarray installer. matplotlib has a ’numerix’ setting in the matplotlib
rc file should make sure this setting corresponds to your preferred array package; Sections 1.2 and 1.6. With
a standard python + Numeric/numarray + matplotlib, the following backends should work on windows:
agg, tkagg, ps, svg. If you want others, eg a wx, wxagg, gtk or gtkagg, you’ll need to install the requisite
GUI toolkits. This is fairly easy, as both wxpython and pygtk come with windows friendly installers. The
latter includes an additional requirement of the GTK runtime.

All of the GUI backends run on windows, but TkAgg is probably the best for interactive use from the
standard python shell or ipython. The windows installer (*.exe) on the download page contains all the code
you need to get up and running. However, there are many examples that are not included in the windows
installer. If you want to try the many demos that come in the matplotlib src distribution, download the zip
file and look in the examples subdir.

Important: There are known conflicts with some of the backends with some python IDEs such as pycrust,
idle. If you want to use matplotlib from an IDE, please consult http://matplotlib.sf.net/backends.html
for compatibility information. You will have the greatest likelihood of success if you run the examples from
the command shell or by double clicking on them, rather than from an IDE. If you are interactively generating
plots, your best bet is TkAgg from the standard python shell or ipython.

OS X

All of the backends run on OS X. fink users consult the fink section below. Another option is http://www.stecf.org/macosxscisoft
which packages many scientific packages for python on OS X, including matplotlib, although it is designed
for astronomical analysis.

If you want to compile yourself on OS X, make sure you read the compiling instructions above. You will
need to install freetype2, libpng and zlib via fink or from src. You will also need the base libraries for a given
backend. Eg, if you want to run TkAgg, you will need a python with Tkinter; if you want to use WxAgg,
install wxpython. See Section 1.3 for a more comprehensive discussion of the various backend requirements.
Edit setup.py to configure the backends you want to build as described above.

13

Note when running a GUI backend in OSX, you should launch your programs with pythonw rather than
python, or you may get nonresponsive GUIs.

1.7.3 Package managers: (rpms, apt, fink)

RPMS

To build all the backends on a binary linux distro such as redhat, you ccgneed to install a number of the
devel libs (and whatever dependencies they require), I suggest

• matplotlib core: zlib, zlib-devel, libpng, libpng-devel, freetype, freetype-devel, freetype-utils

• gtk backend: gtk2-devel, gtk+-devel, pygtk2, glib-devel, pygtk2-devel, gnome-libs-devel, pygtk2-libglade

• tk backend: tcl, tk, tkinter

• wx, wxagg backend. The wxpython rpms.

Debian

Vittorio Palmisano ¡redclay@email.it¿ maintails the debian packages at http://mentors.debian.net.
He provides the following instructions

• add these lines to your /etc/apt/sources.list:

deb http://anakonda.altervista.org/debian packages/
deb-src http://anakonda.altervista.org/debian sources/

• then run

> apt-get update
> apt-get install python-matplotlib python-matplotlib-doc

fink

fink users should use Jeffrey Whitaker’s matplotlib fink package, which supports the GTK, TkAgg, GTKAgg,
PS, WX, WXAgg and Agg backends - http://fink.sourceforge.net/pdb/package.php/matplotlib-py23.

1.7.4 Getting feedback from matplotlib

matplotlib uses a verbose setting, defined in the matplotlibrc file, to determine how much information to
report.

verbose.level : error # one of silent, error, helpful, debug, debug-annoying
verbose.fileo : sys.stdout # a log filename, sys.stdout or sys.stderr
verbose.erro : sys.stderr # a log filename, sys.stdout or sys.stderr

These settings control how much information matplotlib gives you at runtime and where it goes. Ther
verbosity levels are: silent, error, helpful, debug, debug-annoying. At the error level, you will
only get error messages. Any level is inclusive of all the levels below it. Ie, if your setting is helpful, you’ll
also get all the error messages. If you setting is debug, you’ll get all the error and helpful messages.
It is not recommended to make your setting silent because you will not even get error messages. When
submitting problems to the mailing-list, please set verbose to helpful or debug and paste the output into
your report.

14

The verbose.fileo setting gives the destination for any calls to the verbose report function. The
verbose.erro setting gives the destination for any calls to verbose error reporting function. These objects
can a filename or a full path to a filename, sys.stderr, or sys.stdout. You can override the rc default
verbosity from the command line by giving the flags --verbose-LEVEL where LEVEL is one of the legal levels,
eg --verbose-error --verbose-helpful.

You can access the verbose instance in your code from matplotlib import verbose.

15

16

Chapter 2

The pylab interface

Although matplotlib has a full object oriented API (see Chapter 7), the primary way people create plots is
via the pylab interface, which can be imported with

from pylab import ∗

This import command brings in all of the matplotlib code needed to produce plots, the extra matlab com-
patible, non-plotting functions found in matplotlib.mlab and all of the matplotlib.numerix code needed to
create and manipulate arrays. The latter import depends on your numerix setting in .matplotlibrc, as
described in Sections 1.2 and 1.6; ie, when you import pylab, you will either get all of Numeric or all of
numarray depending on your numerix setting.

matplotlib is organized around figures and axes. The figure contains an arbitrary number of axes,
which can be placed anywhere in the figure you want, including over other axes. You can directly create
and manage your own figures and axes, but if you don’t, matplotlib will try and do the right thing by
automatically creating default figures and axes for you if you issue a plot command before creating a figure
or axes.

There are two ways of working in the pylab interface: interactively or in script mode. When working
interactively, you want every plotting command to update the figure. Under the hood, this means that
the canvas is redrawn after every command that affects the figure. When working in script mode, this is
inefficient. In this case, you only want the figure to be drawn once, either to the GUI window or saved
to a file. To handle these two cases, matplotlib has an interactive setting in .matplotlibrc. When
interactive : True, the figure will be redrawn with each command. When interactive : False, the
figure will be drawn only when there is a call to show or savefig. In the examples that follow, I’ll assume
you have set interactive : True in your .matplotlibrc file and are working from an interactive python
shell using a compatible backend. Please make sure you have read and understood Sections 1.6, 1.3 and 1.4
before trying these examples.

2.1 Simple plots

Just about the simplest plot you can create is

>>> from pylab import ∗
>>> p lo t ([1 , 2 , 3])

I have set my backend to backend : TkAgg, which causes the plot in Figure 2.1 to appear, with navigation
controls for interactive panning and zooming.

I can continue to decorate the plot with labels and titles

>>> x l ab e l (’time (s)’)
>>> y l ab e l (’volts’)
>>> t i t l e (’A really simple plot’)

17

Figure 2.1: A simple plot shown in the TkAgg graphical user interface. Navigation controls shown below
the figure provide an easy way to pan and zoom around your figures, and a save dialog allows you to save
your figure after you have set the pan and zoom.

>>> g r id (True)

and the updated figure is shown in Figure 2.2.

Figure 2.2: A simple plot decorated with some text labels and an axes grid

At this point we’re getting a little bored plotting [1,2,3]. matplotlib is designed around plotting numerix
arrays, and can handle large arrays efficiently. To create a regularly sampled 1 Hz sine wave use the arange
and sin methods methods provided by numerix which produces the plot shown in Figure 2.3.

>>> t = arange (0 . 0 , 3 . 0 , 0 . 05) # in matlab t = [0 . 0 : 0 . 0 5 : 3 . 0] ;
>>> s = s i n (2∗ pi ∗ t)
>>> p lo t (t , s)

Note that the two plots are superimposed. matplotlib (and matlabTM) have a hold state. When hold is
on, subsequent plotting commands are superimposed over previous commands. When hold is off, the plot

18

Figure 2.3: A sine wave added to the simple plot. This may not be what we wanted. Because the hold state
was on, the two plots were superimposed.

is cleared with every plotting command. This is controlled by the hold command, which can be called like
hold(True) or hold(False). The default setting is in .matplotlibrc as axes.hold : True, which you
can change according to your preferences. To clear the previous plot and reissue the plot command for just
the sine wave, you can use cla to clear the current axes and clf to clear the current figure, or simply turn
the hold state off.

>>> hold (Fa l se)
>>> p lo t (t , s)

2.2 More on plot

2.2.1 Multiple lines

plot is a versatile command, and will create an arbitrary number of lines with different line styles and
markers. This example plots a sine wave and a damped exponential using the default line styles

>>> c l f () # c l e a r the f i g u r e
>>> t = arange (0 . 0 , 5 . 0 , 0 . 05)
>>> s1 = s i n (2∗ pi ∗ t)
>>> s2 = s1 ∗ exp(−t)
>>> p lo t (t , s1 , t , s2)

If you plot multiple lines in a single plot command, the line color will cycle through a list of predefined colors.
The default line color and line style are determined by the rc parameters lines.style and lines.color.
You can include an optional third string argument to each line in the plot command, which specifies any of
the line style, marker style and line color. To plot the above using a green dashed line with circle markers,
and a red dotted line with circle markers, as shown in Figure 2.4,

>>> c l f ()
>>> p lo t (t , s1 , ’g--o’ , t , s2 , ’r:s’)
>>> l egend ((’sine wave’ , ’damped exponential’))

The color part of the format string applies only to the facecolor of 2D plot markers like circles, tri-
angles, and squares. The edgecolor of these markers will be determined by the default rc parameter
lines.markeredgecolor and can be defined for individual lines using the methods discussed below.

19

Figure 2.4: All line plots take an optional third string argument, which is composed of (optionally) a line
color (eg, ’r’, ’g’, ’k’), a line style (eg, ’-’, ’–’, ’:’) and a line marker (’o’, ’s’, ’d’). The sine wave line (green
dashed line with circle markers) is created with ’g–o’. The legend command will automatically create a
legend for all the lines in the plot.

2.2.2 Controlling line properties

In the last section, we showed how to choose the default line properties using plot format strings. For finer
grained control, you can set any of the attributes of a matplotlib.lines.Line2D instance. There are three
ways to do this: using keyword arguments, calling the line methods directly, or using the setp command.
The line properties are shown in Table 2.1.

Property Value
alpha The alpha transparency on 0-1 scale
antialiased True or False - use antialised rendering
color A matplotlib color arg
data clipping Whether to use numeric to clip data
label A string optionally used for legend
linestyle One of -- : -. -
linewidth A float, the line width in points
marker One of + , o . s v x > <, etc
markeredgewidth The line width around the marker symbol
markeredgecolor The edge color if a marker is used
markerfacecolor The face color if a marker is used
markersize The size of the marker in points

Table 2.1: Line properties; see pylab.plot for more marker styles

Using keyword arguments to control line properties

You can set any of the line properties listed in Table 2.1 using keyword arguments to the plot command.
The following command plots large green diamonds with a red border

>>> p lo t (t , s1 , markers i ze =15, marker=’d’ , \
. . . marke r f aceco l o r=’g’ , markeredgeco lor=’r’)

20

Using setp to control line properties

You can set any of the line properties listed in Table 2.1 using the setp command. Set operates on the
return value of the plot command (a list of lines), so you need to save the lines. You can use an arbitrary
number of key/value pairs

>>> l i n e s = p lo t (t , s1)
>>> se tp (l i n e s , markers i ze =15, marker=’d’ , \
. . . marke r f aceco lo r=’g’ , markeredgeco lor=’r’)

setp can either operate on a single instance or a sequence of instances (in the example code above, lines
is a length one sequence of lines). Under the hood, if you pass a keyword arg named something, setp looks
for a method of the object called set something and will call it with the value you pass. If set something
does not exist, then an exception will be raised.

Using matplotlib.lines.Line2D methods

You can also call Line2D methods directly. The return value of plot is a sequence of matplotlib.lines.Line2D
instances. Note in the example below, I use tuple unpacking with the “,” to extract the first element of the
sequence as line: line, = plot(t, s1)

>>> l i n e , = p lo t (t , s1)
>>> l i n e . s e t ma rk e r s i z e (15)
>>> l i n e . se t marker (’d’)
>>> l i n e . s e t ma rk e r f a c e c o l o r (’g’)
>>> l i n e . s e t marke r edgeco l o r (’r’)

Note, however, that we haven’t issued any pylab commands after the initial plot command so the figure
will not be redrawn even though interactive mode is set. To trigger a redraw, you can simply resize the
figure window a little or call the draw method. The fruits of your labors are shown in Figure 2.5.

>>> draw ()

Figure 2.5: Large green diamonds with red borders, created with three different recipes.

Abbreviated method names

When working from an interactive python shell, typing ’markerfacecolor’ can be a pain – too many keystrokes.
The matplotlib.lines.Line2D class provides a number of abbreviated method names, listed in Table 2.2.
Thus you can, for example, call

21

Abbreviation Fullname
aa antialiased
c color
ls linestyle
lw linewidth
mec markeredgecolor
mew markeredgewidth
mfc markerfacecolor
ms markersize

Table 2.2: Abbreviated names for line properties. You can use any of the line customization methods above
with abbreviated names.

no an t i a l i a s i n g , th i ck green markeredge l i n e s
>>> p lo t (range (10) , ’ro’ , aa=False , mew=2, mec=’g’)

2.3 Color arguments

matplotlib is fairly tolerant of a number of formats for passing color information. As discussed above, you
can use and of the single character color strings listed in Table 2.3. Additionally, anywhere a color character
string is accepted, you can also use a grayscale, hex or RGB color argument.

Figure 2.6: Lots of different ways to specify colors generated from Listing 2.1– not necessarily recommended
for aesthetic quality!

Listing 2.1: Wild and wonderful ways to specify colors; see Figure 2.6
from pylab import ∗

ax i s background in dark s l a t e gray
subplot (111 , ax i sbg =(0.1843 , 0 .3098 , 0 .3098))

22

t = arange (0 . 0 , 1 . 0 , 0 . 01)
s = s i n (2∗2∗ pi ∗ t)

ye l low c i r c l e s with red edge c o l o r
p l o t (t , s , ’yo’ , markeredgeco lor=’r’)
x l ab e l (’time (s)’ , c o l o r=’b’) # x l ab e l i s b lue
y l ab e l (’voltage (mV)’ , c o l o r =0.5) # y l ab e l i s l i g h t gray
t i t l e ("Don’t try this at home , folks" , c o l o r=’#afeeee’)

b blue
g green
r red
c cyan
m magenta
y yellow
k black
w white
0.75 a grayscale intensity (any float in [0,1]
#2F4F4F an RGB hex color string, eg, this example is dark slate gray
(0.18, 0.31, 0.31) an RGB tuple; this is also dark slate gray

Table 2.3: Color format strings, which can be used to set the line or text properties, eg the line, the marker
edgecolor or marker facecolor.

2.4 Loading and saving data

pylab provides support for loading and saving ASCII arrays or vectors with the load and save com-
mand. matplotlib.numerix provides support for loading and saving binary arrays with the fromstring
and tostring methods.

2.4.1 Loading and saving ASCII data

Suppose you have an ASCII file of measured times and voltages like so

0.0000 0.4911
0.0500 0.5012
0.1000 0.7236
0.1500 1.1756
... and so on

You can load that data into an array X with the load command. The shape of X is numSamples rows by 2
columns, with the first column containing the time points and the second column containing the measured
voltages. You can use numerix array indexing to extract the two columns into the 1D arrays t and s

X = load (’../data/ascii_data.dat’)
t = X[: , 0] # the f i r s t column
s = X[: , 1] # the second row
p lo t (t , s , ’o’)

Likewise, you can save array or vector data in an ASCII file with the save command. The following
script was used to create the sample data above

23

from pylab import ∗
t = arange (0 . 0 , 1 . 0 , 0 . 05)
s = s i n (2∗ pi ∗ t) + 0 .5∗ rand (l en (t))
X = ze ro s ((l en (t) , 2) , Float)
X[: , 0] = t
X[: , 1] = s
save (’../data/ascii_data.dat’ , X)

2.4.2 Loading and saving binary data

ASCII is bloated and slow for working with large arrays, and so binary data should be used if performance
is a consideration. To save the array X in binary form, use the numerix tostring method

open the f i l e f o r wr i t i ng binary and wr i t e the binary s t r i n g
f i l e (’../data/binary_data.dat’ , ’wb’) . wr i t e (X. t o s t r i n g ())

This data can later be loaded into a numerix array using fromstring. This method takes two arguments,
a string and a data type (note that numarray users can use fromfile which is more efficient for importing
data directly from a file).

load the data as a s t r i n g
s = f i l e (’../data/binary_data.dat’ , ’rb’) . read ()

convert to 1D numerix array o f type Float
X = f romst r ing (s , Float)

reshape to numSamples rows by 2 columns
X. shape = len (X) /2 , 2
t = X[: , 0] # the f i r s t column
s = X[: , 1] # the second row
p lo t (t , s , ’o’)

Note that although Numerix and numarray use different typecode arguments (Numeric uses strings whereas
numarray uses type objects), the matplotlib.numerix compatibility layer provides symbols which will work
with either numerix rc setting.

2.4.3 Processing several data files

Since python is a programming language par excellence, it is easy to process data in batch. When I started
the gradual transition from a full time matlab user to a full time python user, I began processing my data
in python and saving the results to data files for plotting in matlab. When that became too cumbersome,
I decided to write matplotlib so I could have all the functionality I needed in one environment. Here is a
brief example showing how to iterate over several data files, named basename001.dat, basename002.dat,
basename003.dat, ... basename100.dat and plot all of the traces to the same axes. I’ll assume for this
example that each file is a 1D ASCII array, which I can load with the load command.

hold (True) # se t the hold s t a t e to be on
for i in range (1 ,101) : #s t a r t at 1 , end at 100

fname = ’basename%03d.dat’%i # %03d pads the i n t e g e r s with z e ro s
x = load (fname)
p l o t (x)

2.5 axes and figures

All the examples thus far used implicit figure and axes creation. You can use the functions figure, subplot,
and axes to explicitly control this process. Let’s take a look at what happens under the hood when you

24

issue the commands

>>> from pylab import ∗
>>> p lo t ([1 , 2 , 3])

When plot is called, the pylab interface makes a call to gca() (“get current axes”) to get a reference
to the current axes. gca in turn, makes a call to gcf to get a reference to the current figure. gcf, finding
that no figure has been created, creates the default figure figure() and returns it. gca will then return the
current axes of that figure if it exists, or create the default axes subplot(111) if it does not. Thus the code
above is equivalent to

>>> from pylab import ∗
>>> f i g u r e ()
>>> subplot (111)
>>> p lo t ([1 , 2 , 3])

2.5.1 figure

You can create and manage an arbitrary number of figures using the figure command. The standard way to
create a figure is to number them from 1 . . . N . A call to figure(1) creates figure 1 if it does not exist, makes
figure 1 active (gcf will return a reference to it), and returns the matplotlib.figure.Figure instance. The
syntax of the figure command is

def f i g u r e (num=1,
f i g s i z e = None , # de f a u l t s to rc f i g u r e . f i g s i z e
dpi = None , # de f a u l t s to rc f i g u r e . dpi
f a c e c o l o r = None , # de f a u l t s to rc f i g u r e . f a c e c o l o r
edgeco l o r = None , # de f a u l t s to rc f i g u r e . edgeco l o r
frameon = True , # whether to draw the f i g u r e frame
) :

figsize gives the figure size in inches and is width by height. Eg, to create a figure 12 inches wide and 2 inches
high, you can call figure(figsize=(12,2)). dpi gives the dots per inch of your display device. Increasing
this number effectively creates a higher resolution figure. facecolor and edgecolor determine the face and
edge color of the figure rectangular background. This is what gives the figure a gray background in the GUI
figures such as Figure 2.1. You can turn this background completely off by setting frameon=False. The
default for saving figures is to have a white face and edge color, and all of these properties can be customized
using the rc parameters figure.* and savefig.*.

In typical usage, you will only provide the figure number, and let your rc parameters govern the other
figure attributes

>>> f i g u r e (1)
>>> p lo t ([1 , 2 , 3])
>>> f i g u r e (2)
>>> p lo t ([4 , 5 , 6])
>>> t i t l e (’big numbers’) # f i g u r e 2 t i t l e
>>> f i g u r e (1)
>>> t i t l e (’small numbers’) # f i g u r e 1 t i t l e

You can close a figure simply by clicking on the close “x” in the GUI window, or by issuing the close
command. close can be used to close the current figure, a figure referenced by number, a given figure
instance, or all figures

• close() by itself closes the current figure

• close(num) closes figure number num

• close(num) closes figure number num

25

• close(fig) where fig is a figure instance closes that figure

• close(’all’) closes all the figure windows

If you close a figure directly, eg close(2) the previous current figure is restored to the current figure. clf
is used to clear the current figure without closing it.

If you save the return value of the figure command, you can call any of the methods provided by
matplotlib.figure.Figure, for example, you can set the figure facecolor

>>> f i g = f i g u r e (1)
>>> f i g . s e t f a c e c o l o r (’g’)

or use setp for the same purpose

>>> se tp (f i g , f a c e c o l o r=’g’)

2.5.2 subplot

axes and subplot are both used to create axes in a figure. subplot is used more commonly, and creates
axes assuming a regular grid of axes numRows by numCols. For example, to create two rows and one column
of axes, you would use subplot(211) to create the upper axes and subplot(212) to create the lower axes.
The last digit counts across the rows.

Figure 2.7: Multiple rows of axes created with the subplot command, as shown in Listing 2.2

Listing 2.2: Generating multiple axes with subplot; see Figure 2.7
from pylab import ∗

def f (t) :
’a damped oscillation’

return cos (2∗ pi ∗ t) ∗ exp(−t)

t1 = arange (0 . 0 , 5 . 0 , 0 . 1)
t2 = arange (0 . 0 , 5 . 0 , 0 . 0 2)

26

the upper subplot ; 2 rows , 1 column , subplot #1
subplot (211)
l = p lo t (t1 , f (t1) , ’bo’ , t2 , f (t2) , ’k’)
g r id (True)
t i t l e (’A tale of 2 subplots’)
y l ab e l (’Damped oscillation’)

the lower subplot ; 2 rows , 1 column , subplot #2
subplot (212)
p l o t (t2 , cos (2∗ pi ∗ t2) , ’r>’)
g r id (True)
x l ab e l (’time (s)’)
y l ab e l (’Undamped’)

Likewise, to create two columns and one row of axes, you would use subplot(121) to create the left axes
and subplot(122) to create the right axes. If the total number of axes exceeds single digits, use comma
separated arguments to subplot. For example, the lower right panel of a 3 x 4 grid of axes is created with
subplot(3,4,12). matplotlib uses matlab style indexing in creating figures and axes, so subplot(3,4,1)
is the first subplot, not subplot(3,4,0).

The subplot command returns a matplotlib.axes.Subplot instance, which is derived from matplotlib.axes.Axes.
Thus you can call and Axes or Subplot method on it. When creating multiple subplots with the same axes,
for example the same time axes, sometimes it helps to turn off the x tick labeling for all but the lowest plot.
Here is some example code

subplot (211)
p l o t ([1 , 2 , 3] , [1 , 2 , 3])
se tp (gca () , ’xticklabels’ , [])

subp lot (212)
p l o t ([1 , 2 , 3] , [1 , 4 , 9])

Likewise, with multiple columns and shared y axes, you may want turn off the ytick labels for all but
the first row. The subplot command returns a matplotlib.axes.Subplot instance, which is derived from
matplotlib.axes.Axes. Thus you can call and Axes or Subplot method on it. Subplot defines some helper
methods (is first row, is first col, is last row, is last col, to help you conditionally set subplot
properties, eg

cnt = 0
for i in range (numRows) :

for j in range (numCols) :
cnt += 1
ax = subplot (numRows , numCols , cnt)
p l o t (blah , blah)
i f ax . i s l a s t r o w () : x l ab e l (’time (s)’)
i f ax . i s f i r s t c o l () : y l ab e l (’volts’)

Here is some example code to create multiple figures and axes, using the figure and subplot command
to control the current figure and axes.

from pylab import ∗

t = arange (0 . 0 , 2 . 0 , 0 . 01)
s1 = s i n (2∗ pi ∗ t)
s2 = s i n (4∗ pi ∗ t)

f i g u r e (1)
subplot (211)

27

p lo t (t , s1)
subplot (212)
p l o t (t , 2∗ s1)

f i g u r e (2)
p l o t (t , s2)

now switch back to f i g u r e 1 and make some changes to the upper
subplot
f i g u r e (1)
subplot (211)
p l o t (t , s2 , ’gs’)
se tp (gca () , x t i c k l a b e l s = [])

show ()

2.5.3 axes

When you need a finer grained control over axes placement than afforded by subplot, use the funcaxes
command. The axes command in initialized with a rectangle code[left, bottom, width, height] in relative
figure coordinates. left, bottom = (0, 0) is the bottom left of the of the figure canvas, and a width/height
of 1 spans the figure width/height. This to create an axes that entirely fills the figure canvas, you would do
axes([0, 1, 0, 1]). This may not be a good idea, because it leaves no room for text labels. axes([0.25,
0.25, 0.5, 0.5]) creates an axes offset by one quarter of the figure width and height on all sides.

There are several ways to use the axes command; in all cases, a matplotlib.axes.Axes instance is
returned

• axes() by itself creates a default full subplot(111) window axis

• axes(rect, axisbg=’w’) where rect=[left, bottom, width, height] in normalized (0,1) units.
axisbg is the background color for the axis, default white.

• axes(ax) where ax is an axes instance makes ax current.

gca returns the current axes instance and cla clears the current axes. You can use the axes command lay
the axes exactly where you want them, including to overlaying one axes on top of another, as in this example

Listing 2.3: Custom axes; see Figure 2.8
from pylab import ∗

crea t e some data to use f o r the p l o t
dt = 0.001
t = arange (0 . 0 , 10 . 0 , dt)
r = exp(−t [: 1 0 0 0] / 0 . 0 5) # impulse re sponse
x = randn (l en (t))
s = convolve (x , r , mode=2) [: l en (x)]∗ dt # co l o r ed no i s e

the main axes i s subplot (111) by d e f au l t
p l o t (t , s)
ax i s ([0 , 1 , 1 .1∗min(s) , 2∗max(s)])
x l ab e l (’time (s)’)
y l ab e l (’current (nA)’)
t i t l e (’Gaussian colored noise’)

th i s i s an i n s e t axes over the main axes

28

Figure 2.8: Using the axes command to create inset axes over another axes; see Listing 2.3

a = axes ([. 6 5 , . 6 , . 2 , . 2] , ax i sbg=’y’)
n , bins , patches = h i s t (s , 400 , normed=1)
t i t l e (’Probability’)
se tp (a , x t i c k s = [] , y t i c k s = [])

th i s i s another i n s e t axes over the main axes
a = axes ([0 . 2 , 0 . 6 , . 2 , . 2] , ax i sbg=’y’)
p l o t (t [: l en (r)] , r)
t i t l e (’Impulse response’)
se tp (a , xlim =(0 , .2) , x t i c k s = [] , y t i c k s = [])

2.6 Text

matplotlib has excellent text support, including newline separated text with arbitrary rotations and math-
ematical expressions. freetype2 support produces very nice, antialiased fonts, that look good even at small
raster sizes. It includes its own font manager, thanks to Paul Barrett, which implements a cross platform,
W3C compliant font finding algorithm. You have total control over every text property (font size, font
weight, text location and color, etc) with sensible defaults set in the rc file. And significantly for those
interested in mathematical or scientific figures, matplotlib implements a large number of TEX math symbols
and commands, to support mathematical expressions anywhere in your figure. To get the most out of text in
matplotlib, you should use a backend that supports freetype2 and mathtext, notably all the *Agg backends
(see Section 1.3).

2.6.1 Basic text commands

The following commands are used to create text in the pylab interface

• xlabel(s) - add a label s to the x axis

• ylabel(s) - add a label s to the y axis

29

• title(s) - add a title s to the axes

• text(x, y, s) - add text s to the axes at x, y in data coords

• figtext(x, y, s) - add text to the figure at x, y in relative 0-1 figure coords

2.6.2 Text properties

The text properties are listed in Table 2.4. As with lines, there are three ways to set text properties: using
keyword arguments to a text command, calling setp on a text instance or a sequence of text instances, or
calling an instance method on a text instance. These three are illustrated below

keyword args
>>> x l ab e l (’time (s)’ , c o l o r=’r’ , s i z e =16)
>>> t i t l e (’Fun with text’ , ho r i zon ta l a l i gnment=’left’)

use s e t
>>> l a b e l s = getp (gca () , ’xticklabels’)
>>> se tp (l ab e l s , ’color’ , ’g’ , r o t a t i on =45)

in s tance methods
>>> l = y l ab e l (’volts’)
>>> l . s e t we i gh t (’bold’)

Property Value
alpha The alpha transparency on 0-1 scale
color A matplotlib color arg
family set the font family, eg ’sans-serif’, ’cursive’, ’fantasy’
fontangle the font slant, one of ’normal’, ’italic’, ’oblique’
horizontalalignment ’left’, ’right’ or ’center’
multialignment ’left’, ’right’ or ’center’ only for multiline strings
name the font name, eg, ’Sans’, ’Courier’, ’Helvetica’
position the x,y location
variant the font variant, eg ’normal’, ’small-caps’
rotation the angle in degrees for rotated text
size the fontsize in points, eg, 8, 10, 12
style the font style, one of ’normal’, ’italic’, ’oblique’
text set the text string itself
verticalalignment ’top’, ’bottom’ or ’center’
weight the font weight, eg ’normal’, ’bold’, ’heavy’, ’light’

Table 2.4: Properties of matplotlib.text.Text

See the example http://matplotlib.sourceforge.net/examples/fonts_demo_kw.py which makes exten-
sive use of font properties for more information. See also Chapter 3 for more discussion of the font finder
algorithm and the meaning of these properties.

2.6.3 Text layout

You can layout text with the alignment arguments horizontalalignment, verticalalignment, and multialign-
ment. horizontalalignment controls whether the x positional argument for the text indicates the left, center
or right side of the text bounding box. verticalalignment controls whether the y positional argument for the
text indicates the bottom, center or top side of the text bounding box. multialignment, for newline separated
strings only, controls whether the different lines are left, center or right justified. Here is an example which

30

uses the text command to show the various alignment possibilities. The use of transform=ax.transAxes
throughout the code indicates that the coordinates are given relative to the axes bounding box, with 0,0
being the lower left of the axes and 1,1 the upper right.

Figure 2.9: Aligning text with horizontalalignment, verticalalignment, and multialignment options to the
text command; see Listing 2.4

Listing 2.4: Aligning text; see Figure 2.9
from pylab import ∗
from matp lo t l i b . patches import Rectangle

bu i ld a r e c t ang l e in axes coords
l e f t , width = .25 , . 5
bottom , he ight = .25 , . 5
r i g h t = l e f t + width
top = bottom + he ight
ax = gca ()
p = Rectangle ((l e f t , bottom) , width , height ,

f i l l =False ,
)

axes coo rd ina t e s are 0 ,0 i s bottom l e f t and 1 ,1 i s upper r i g h t
p . s e t t r an s f o rm (ax . transAxes)
p . s e t c l i p o n (Fa l se)
ax . add patch (p)

31

ax . t ex t (l e f t , bottom , ’left top’ ,
ho r i zon ta l a l i gnment=’left’ ,
v e r t i c a l a l i g nmen t=’top’ ,
t rans form=ax . transAxes)

ax . t ex t (l e f t , bottom , ’left bottom’ ,
ho r i zon ta l a l i gnment=’left’ ,
v e r t i c a l a l i g nmen t=’bottom’ ,
t rans form=ax . transAxes)

ax . t ex t (r ight , top , ’right bottom’ ,
ho r i zon ta l a l i gnment=’right’ ,
v e r t i c a l a l i g nmen t=’bottom’ ,
t rans form=ax . transAxes)

ax . t ex t (r ight , top , ’right top’ ,
ho r i zon ta l a l i gnment=’right’ ,
v e r t i c a l a l i g nmen t=’top’ ,
t rans form=ax . transAxes)

ax . t ex t (r ight , bottom , ’center top’ ,
ho r i zon ta l a l i gnment=’center’ ,
v e r t i c a l a l i g nmen t=’top’ ,
t rans form=ax . transAxes)

ax . t ex t (l e f t , 0 . 5∗ (bottom+top) , ’right center’ ,
ho r i zon ta l a l i gnment=’right’ ,
v e r t i c a l a l i g nmen t=’center’ ,
r o t a t i on=’vertical’ ,
t rans form=ax . transAxes)

ax . t ex t (l e f t , 0 . 5∗ (bottom+top) , ’left center’ ,
ho r i zon ta l a l i gnment=’left’ ,
v e r t i c a l a l i g nmen t=’center’ ,
r o t a t i on=’vertical’ ,
t rans form=ax . transAxes)

ax . t ex t (0 . 5∗ (l e f t+r i gh t) , 0 . 5∗ (bottom+top) , ’middle’ ,
ho r i zon ta l a l i gnment=’center’ ,
v e r t i c a l a l i g nmen t=’center’ ,
t rans form=ax . transAxes)

ax . t ex t (r ight , 0 . 5∗ (bottom+top) , ’centered’ ,
ho r i zon ta l a l i gnment=’center’ ,
v e r t i c a l a l i g nmen t=’center’ ,
r o t a t i on=’vertical’ ,
t rans form=ax . transAxes)

ax . t ex t (l e f t , top , ’rotated\nwith newlines’ ,
ho r i zon ta l a l i gnment=’center’ ,
v e r t i c a l a l i g nmen t=’center’ ,
r o t a t i on =45,
trans form=ax . transAxes)

32

ax i s (’off’)

2.6.4 mathtext

matplotlib supports TEX mathematical expressions anywhere a text string can be used, as long as the
string is delimited by “$” on both sides, as in r′5λ′; embedded mathtext strings, such as in
r′Theansweris5λ′ are not currently supported. A large set of the TEX symbols from the com-
puter modern fonts are provided. Subscripting and superscripting are supported, as well as the over/under
style of subscripting with \sum, \int etc.

Note that matplotlib does not use or require that TEX be installed on your system, as it does not use it.
Rather, it uses the parsing module pyparsing to parse the TEX expression, and does the layout manually
in the matplotlib.mathtext module using the font information provided by matplotlib.ft2font.
The spacing elements \/ and \hspace{num} are provided. \/ inserts a small space, and \hspace{num} inserts
a fraction of the current fontsize. Eg, if num=0.5 and the fontsize is 12.0, \hspace{0.5} inserts 6 points of
space.

Licensing

The computer modern fonts this package uses are part of the BaKoMa fonts, which are (in my understanding)
free for noncommercial use. For commercial use, please consult the licenses in fonts/ttf and the author Basil
K. Malyshev - see also http://www.mozilla.org/projects/mathml/fonts/encoding/license-bakoma.txt
and the file BaKoMa-CM.Fonts in the matplotlib fonts dir.

Note that all the code in this module is distributed under the matplotlib license, and a truly free implemen-
tation of mathtext for either freetype or ps would simply require deriving another concrete implementation
from the Fonts class defined in this module which used free fonts.

Using mathtext

Any text element can use math text. You need to use raw strings (preceed the quotes with an r), and
surround the string text with dollar signs, as in TEX.

pla in text
t i t l e (’alpha > beta’)

math text
t i t l e (r ’$\alpha > \beta$’)

To make subscripts and superscripts use the underscore and caret symbols, as in

t i t l e (r ’$\alpha_i > \beta^i$’)

You can also use a large number of the TEX symbols, as in \infty, \leftarrow, \sum, \int; see Ap-
pendix B for a complete list. The over/under subscript/superscript style is also supported. To write the
sum of xi from 0 to ∞ (

∑∞
i=0 xi), you could do

t ex t (1 , −0.6 , r ’$\sum_{i=0}^\infty x_i$’)

The default font is italics for mathematical symbols. To change fonts, eg, to write ’sin’ in a roman font,
enclose the text in a font command, as in

t ex t (1 , 2 , r ’s(t) = $\cal{A}\rm{sin}(2 \omega t)$’)

Here ’s’ and ’t’ are variable in italics font (default), ’sin’ is in roman font, and the amplitude ’A’ is in
caligraphy font. The fonts \cal, \rm, \it and \tt are allowed.

Fairly complex TEX expressions render correctly; you can compare the expression

s = r’$\cal{R}\prod_{i=\alpha}^\infty a_i\rm{sin}(2 \pi f x_i)$’

33

rendered by TEX below and by matplotlib in Figure 2.10.

R
∞∏

i=α

aisin(2πfxi) (2.1)

Figure 2.10: Incorpating TEX expressions into your figure; see Listing 2.5

Listing 2.5: Using mathtext; see Figure 2.10
from pylab import ∗
use a custom axes to prov ide room f o r the l a r g e l a b e l s used below
ax = axes ([. 2 , . 2 , . 7 , . 7] , ax i sbg=’y’)

generate some random symbols to p l o t
x = rand (40)
p l o t (x [: −1] , x [1 :] , ’go’ , markeredgeco lor=’k’ , markers i ze =14)

th i s i s j u s t a made up equat ion that has nothing to do with the
p lo t !
s = r ’$\cal{R}\prod_{i=\alpha}^\infty a_i\rm{sin}(2 \pi f x_i)$’

t ex t (0 . 2 , 1 . 2 , s , f o n t s i z e =20)
ax i s ([−0 .2 , 1 . 2 , −0.2 , 1 . 8])

subs c r i p t s , s u p e r s c r i p t s and groups with {} are supported
x l ab e l (’Δ_i^j’ , f o n t s i z e=’x-large’)
y l ab e l (’Δ_{i+1}^j’ , f o n t s i z e=’x-large’)

2.7 Images

matplotlib provides support for working with raw image data in numerix arrays. Currently, there is no
support for loading image data from image files such as PNG, TIFF or JPEG, though this is on the TODO
list. If you need to load data from existing image files, one good solution is to use The Python Imaging

34

Library to load the data and convert this to a numerix array - see Recipe 6.4.1. The following examples will
assume you have your image data loaded into a numerix array, either luminance (MxN), RGB (MxNx3) or
RGBA (MxNx4).

2.7.1 Axes images

An axes image is created with im = imshow(X) where X is a numerix array an im is a matplotlib.image.AxesImage
instance. The image is rescaled to fit into the current axes box. Here is some example code to display an
image

crea t e a random MxN numerix array and p lo t i t as an axes image
from pylab import ∗
X = rand (20 ,20)
im = imshow(X)

imshow a command in the pylab interface. This is a thin wrapper of the matplotlib.Axes.imshow method,
which can be called from any Axes instance, eg ax.imshow(X).

There are two parameters that determine how the image is resampled into the axes bounding box: in-
terpolation and aspect. The following interpolation schemes are available: bicubic, bilinear, blackman100,
blackman256, blackman64, nearest, sinc144, sinc256, sinc64, spline16, and spline36. The default interpola-
tion method is given by the value of image.interpolation in your .matplotlibrc file. aspect can be either
preserve or free which will constrain the aspect ratio of the image or not, respectively. The default aspect
setting is given by the value of the rc parameter image.aspect.

The full syntax of the imshow command is

imshow (X, # the numerix array
cmap = None , # the matp lo t l i b . c o l o r s . Colormap in s tanc e
norm = None , # the norma l i za t i on in s t ance
aspect=None , # the aspect s e t t i n g
i n t e r p o l a t i o n=None , # the i n t e r p o l a t i o n method
alpha =1.0 , # the alpha transparency value
vmin = None , # the min f o r image s c a l i n g
vmax = None , # the max f o r image s c a l i n g
o r i g i n=None) : # the image o r i g i n

When None, these parameters will assume a default value, in many cases determined by the rc setting.
The meaning of cmap, norm, vmin, vmax, and origin will be explained in sections below.

The following shows a simple command which creates an image using bilinear interpolation, shown in
Figure 2.11.

Listing 2.6: Axes images; see Figure 2.11
from pylab import ∗

de l t a = 0.025
generate a mesh o f x and y vec to r s
x = y = arange (−3.0 , 3 . 0 , d e l t a)
X, Y = meshgrid (x , y)
c r ea t e 2D gauss ian d i s t r i b u t i o n s
Z1 = b iva r i a t e no rma l (X, Y, 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0)
Z2 = b iva r i a t e no rma l (X, Y, 1 . 5 , 0 . 5 , 1 , 1)

p lo t the d i f f e r e n c e o f Gaussians with b l i n e a r i n t e r p o l a t i o n
im = imshow(Z2−Z1 , i n t e r p o l a t i o n=’bilinear’)
ax i s (’off’)

You can create an arbitrary number of axes images inside a single axes, and these will be composed via
alpha blending. However, if you want to blend several images, you must make sure that the hold state is

35

Figure 2.11: Simple axes image; code in Listing 2.6

True and that the alpha of the layered images is less than 1.0; if alpha=1.0 then the image on top will totally
obscure the images below. Because the image blending is done using antigrain (regardless of your backend
choice), you can blend images even on backends which don’t support alpha (eg, postscript). This is because
the alpha blending is done in the frontend and the blended image is transferred directly to the backend as
an RGB pixel array. See Recipe 6.4.2 for an example of how to layer images.

2.7.2 Figure images

Often times you want to be able to look at your raw image data directly, without interpolation. This is the
function of figure images, which do a pixel-by-pixel transfer of your image data to the figure canvas 1. Figure
images are drawn first, and thus can become the background of other matplotlib drawing commands.

In the pylab interface, figure images are created with the figimage command, which unlike imshow,
does not accept an interpolation or aspect keyword argument because no image resampling is used. If the
pixel extent of the figure image extends beyond the figure canvas, the image will simply be truncated. The
basic syntax is figimage(X, xo=0, yo=0) where X is luminance (MxN), RGB (MxNx3) or RGBA (MxNx4)
numerix array and xo, yo are pixel offsets from the origin (see Section 2.7.4). You can use figimage to create
a figure image that fills the entire canvas with no x or y offsets, or you can make multiple calls to figimage
with different x and y offsets to create a mosaic of images, as shown in Recipe 6.4.3.

The full syntax of the figimage command is

f i g image (X, # the numerix array
xo=0, # the x o f f s e t
yo=0, # the y o f f s e t
alpha =1.0 , # the alpha transparency
norm=None , # the matp lo t l i b . c o l o r s . norma l i za t i on in s t ance
cmap=None , # the matp lo t l i b . c o l o r s . Colormap in s tance
vmin=None , # the min f o r image s c a l i n g
vmax=None , # the max f o r image s c a l i n g
o r i g i n=None) # the image o r i g i n

1If you want a resampled image to occupy the full space of the figure canvas, you can achieve this by specifying a custom
axes that fills the figure canvas axes([0, 1, 0, 1]) and using imshow.

36

The cmap, norm, vmin, vmax and origin arguments are explained in the sections below.
pylab.figimage is a thin wrapper of matplotlib.figure.figimage and you can generate figure images

directly with the pythonic API using fig.figimage(X) where fig is a Figure instance.

2.7.3 Scaling and color mapping

In addition to supporting raw image RGB and RGBA formats, matplotlib will scale and map luminance
data for MxN float (luminance) arrays. The conversion from luminance data to RGBA occurs in two steps:
scaling and color mapping.

Scaling is the process of normalizing an MxN floating point array to the 0,1 interval, by mapping vmin to
0.0 and vmax to 1.0, where vmin and vmax are user defined parameters. If either are None, the min and max
of the image data will be used, respectively. Scaling is handled by a matplotlib.colors.normalization
instance, which defaults to normalization(vmin=None, vmax=None) - ie, the default is to scale the image
so that the minimum of the luminance array is zero and the maximum of the luminance array is one.

Typically, you will not create a normalization instance yourself, but may set vmin or vmax in the keyword
arguments of the image creation function. In this case, a normalization instance is created for you, and your
vmin, vmax settings are applied. If you do supply a normalization instance for the norm argument, vmin
and vmax will be ignored. See Table 2.5 for some examples of image normalization commands and their
interpretation.

command interpretation
>>> imshow(X) X ≤ min(X) → 0 and X ≥ max(X) → 1
>>> imshow(X, vmax=10) X ≤ min(X) → 0 and X ≥ 10 → 1
>>> imshow(X, vmin=0, vmax=10) X ≤ 0 → 0 and X ≥ 10 → 1
>>> anorm=normalize(2,8)
>>> imshow(X, norm=anorm) X ≤ 2 → 0 and X ≥ 8 → 1

Table 2.5: Example image normalization commands and their interpretation

Once the luminance data are normalized, they color mapper transforms the normalized data to RGBA
using a matplotlib.colors.Colormap instance. Common colormaps are defined in matplotlib.cm, includ-
ing cm.jet and cm.gray. If the cmap argument to an image command is None, the default is given by he
rc parameter image.cmap.

The keyword arguments cmap, norm, vmin, vmax control color mapping and scaling in the image con-
struction commands. Once the images have been created, several commands exist to interactively control the
color map of the current image. Like the current figure (gcf) and the current axes (gca), matplotlib keeps
track of the current image (gci) to determine which image to apply the commands which affect image prop-
erties. To interactively set the image normalization limits, use clim(vmin=None, vmax=None), where vmin
and vmax have the same meaning as above. To interactively change the colormap, use jet or gray (More
colormaps and colormap commands are planned).. These latter commands not only change the colormap of
the current image, they also set the default for future images.

For quantitative plotting of pseduocolor images, use the colorbar function to provide a colorbar asso-
ciated with the iamge, Here is an example interactive session controlling image scaling and color mapping
with a colorbar

>>> imshow (X) # p lo t the luminance image X
>>> c l im (−1 ,2) # s c a l e the image
>>> j e t () # use colormap j e t
>>> co l o rba r () # add a co l o rba r to the cur rent axes
>>> gray () # use g r ay s c a l e ; image and co l o rba r are updated

The image scaling and color mapping are handled by the mixin base class matplotlib.colors.ScalarMappable.

37

2.7.4 Image origin

Depending on your data, it may be more natural to plot your data with the image origin up (X[0,0] is
upper left) or down (X[0,0] is lower left). matplotlib supports these two modes with the origin parameter,
which can be supplied as an optional keyword argument to the image commands imshow and figimage with
the default set by the rc parameter image.origin. To plot an image with the origin in the upper left, pass
origin=’upper’ and with the image in the lower left, pass origin=’lower’, as shown in Figure 2.12.

Figure 2.12: Controlling the image origin with the origin keyword argument to imshow and figimage; see
Listing 2.7.

Listing 2.7: Setting the image origin; see Figure 2.12
from pylab import ∗

x = arange (100 . 0) ; x . shape = 10 ,10

subplot (211)
t i t l e (’blue should be up’)
imshow (x , o r i g i n=’upper’ , i n t e r p o l a t i o n=’nearest’)

subplot (212)
t i t l e (’blue should be down’)
imshow (x , o r i g i n=’lower’ , i n t e r p o l a t i o n=’nearest’)

2.8 Bar charts, histograms and errorbar plots

Use the bar function to create simple bar plots. The simplest form of this function is simply bar(x,y)
which creates bars with their left edge at x and height y. There are a number of options to support more
sophisticated bar plots, including stacked bar plots and bar plots with errorbars. The signature of the bar
method is

def bar (l e f t , he ight , width =0.8 , bottom=0,

38

c o l o r=’b’ , y e r r=None , xe r r=None ,
e c o l o r=’k’ , c ap s i z e=3
) :

2.9 Pseudocolor and scatter plots

2.10 Spectral analysis

matplotlib provides a number of matlab compatible functions for computing and plotting spectral analysis
results. All of them are based on Welch’s Averaged Periodogram Method [Bendat and Piersol, 1986] using
the numerix fft method for the fast fourier transforms. The spectral plotting functions are psd for the
power spectral density, csd for the cross spectral density, and cohere for the coherence (normalized cross
spectral density).

s igna tu r e and d e f a u l t s f o r arguments to a t yp i c a l
sp e c t r a l a n a l y s i s f unc t i on
def psd (x , NFFT=256 , Fs=2, detrend=mlab . detrend none ,

window=mlab . window hanning , nover lap=0) :

In addition to the time series arguments x/y, these functions take a number of optional parameters. The
averaged periodogram method chops the time series into NFFT length segments which overlap by noverlap
samples. The default values are NFFT=256 and noverlap=0. Each of the functions will compute the spectral
analysis and then generate a plot window with frequency on the x-axis - if you want the frequency axis to
be properly scaled, you should provide the sampling frequency Fs.

Each of the segments will be detrended and windowed before the fft, according to the values of detrend
and window. Unlike matlab, in which these arguments are strings, in matplotlib they are functions. Several
helper functions are provided in matplotlib.mlab for detrending and windowing:

• mlab.detrend none - no detrending

• mlab.detrend mean - remove the mean of each segment before fft

• mlab.detrend linear - remove the best fit line of each segment before fft

• mlab.window none - no windowing

• mlab.window hanning - multiply each segment by a Hanning window

An example power spectra calculation is shown in Listing 1.1 and the output in Figure 1.2.
You can create a spectrogram with the specgram function. specgram splits the data into NFFT length

segments and plots the instantaneous power in each segment along the y axis using a pseudocolor plot, unlike
psd which averages the power across each segment.

Listing 2.8: Instantaneous power spectra with specgram; see Figure 2.13
from pylab import ∗

dt = 0.0005
t = arange (0 . 0 , 20 . 0 , dt)
a 100 Hz s i g n a l
s1 = s i n (2∗ pi ∗100∗ t)

c r ea t e a t r an s i e n t ” ch i rp ” at 400 Hz
s2 = 2∗ s i n (2∗ pi ∗400∗ t)
mask = where (l o g i c a l a nd (t >10, t <12) , 1 . 0 , 0 . 0)
s2 = s2 ∗ mask

39

Figure 2.13: A spectrogram generated by Listing 2.8

add some no i s e in to the mix
nse = 0.01∗ randn (l en (t))

x = s1 + s2 + nse # the s i g n a l
NFFT = 1024 # the length o f the windowing segments
Fs = in t (1 . 0/ dt) # the sampling f requency

Pxx i s the segments x f r e q s array o f in s tantaneous power , f r e q s i s
the f requency vector , b ins are the c en t e r s o f the time b ins in which
the power i s computed , and im i s the matp lo t l i b . image . AxesImage
in s tance
Pxx , f r eq s , bins , im = specgram (x , NFFT=NFFT, Fs=Fs , nover lap =900)
co l o rba r ()

2.11 Axes properties

2.12 Legends and tables

2.13 Navigation

matplotlib comes with two navigation toolbars for the graphical user interfaces: classic and toolbar2. You
can use these to change the view limits of the axes in the figure. toolbar2 superceeds classic and was designed
to overcome shortcomings of the classic toolbar. The default toolbar is determined by the toolbar parameter
in .matplotlibrc.

40

2.13.1 Classic toolbar

You can pan and zoom on the X and Y axis for any combination of the axes that are plotted. If you have a
wheel mouse, you can move bidirectionally by scrolling the wheel over the controls. For examples, the wheel
mouse can be used to pan left or right by scrolling over either of the left arrow or right arrow buttons, so
you never have to move the mouse to pan the x-axis left and right. If you don’t have a wheel mouse, buy
one!

The left widget that says ’All’ on the controls on the bottom of Figure 2.14 is a drop down menu used
to select which axes the controls affect. You can select all, none, single, or combinations of axes. The first
set of 4 controls are used to pan left, pan right, zoom in and zoom out on the x axes. The second set are
used to pan up, pan down, zoom in and zoom out on the y axes. The remaining buttons are used to redraw
the figure, save (PNG or JPEG) the figure, or to close the figure window.

Figure 2.14: The classic toolbar, discussed in Section 2.13.1

2.13.2 toolbar2

The toolbar2 buttons (see Figure 2.15 behave very differently from the classic the classic matplotlib toolbar
(else why introduce a new one!) despite the visual similarity of the forward and back buttons.

The Forward and Back buttons are akin to the web browser forward and back buttons. They are used to
navigate back and forth between previously defined views. They have no meaning unless you have already
navigated somewhere else using the pan and zoom buttons. This is analogous to trying to click ’back’ on
your web browser before visiting a new page. Nothing happens. Home always takes you to the first view. For
Home, Forward and Back, think web browser where data views are web pages. Use the Pan/Zoom and Zoom
to rectangle buttons, discussed below, to define new views.

The Pan/Zoom button has two modes: pan and zoom. Click this toolbar button to activate this mode.
Then put your mouse somewhere over an axes.

• Mode 1: Press the left mouse button and hold it, dragging it to a new position. When you release
it, the data under the point where you pressed will be moved to the point where you released. If you
press ’x’ or ’y’ while panning, the motion will be contrained to the x or y axis, respectively

41

• Mode 2: Press the right mouse button, dragging it to a new position. The x axis will be zoomed in
proportionate to the rightward movement and zoomed out proportionate to the leftward movement.
Ditto for the yaxis and up/down motions. The point under your mouse when you begin the zoom
should remain in place, allowing you to zoom to an arbitrary point in the figure. You can use the
modifier keys ’x’, ’y’ or ’CONTROL’ to constrain the zoom to the x axes, the y axes, or aspect ratio
preserve, respectively.

The Zoom to rectangle button: Click this toolbar button to activate this mode. Put your mouse
somewhere over and axes and press the left mouse button. Drag the mouse while holding the button to a
new location and release. The axes view limits will be zoomed to the rectangle you have defined. There is
also an experimental ’zoom out to rectangle’ in this mode with the right button, which will place your entire
axes in the region defined by the zoom out rectangle.

The Subplot Configuration button: Use this tool to configure the parameters of the subplot: the left,
right, top, bottom, space between the rows and space between the columns.

The Save button: click this button to launch a file save dialog. All the *Agg backends know how to save
the following image types: PNG, PS, EPS, SVG. There is no support currently in Agg for writing to JPEG,
TIFF (the regular wx and gtk backends handle these types). It is possible to use matplotlib/agg + PIL to
convert agg images to one of these other formats if required. I can provide a recipe for you. I prefer PNG
over JPG and TIFF, which is why I haven’t worked too hard to include these other image formats in agg.

Figure 2.15: The newfangled toolbar2, discussed in Section 2.13.2

2.14 Event handling

When visualizing data, it’s often helpful to get some interactive input from the user. All graphical user
interfaces (GUIs) provide event handling to determine things like key presses, mouse position, and button
clicks. matplotlib supports a number of GUIs, and provides an interface to the GUI event handling via the
mpl connect and mpl disconnect methods of the pylab interface (API users will probably want to use their
GUIs event handling directly, but do have the option of using their FigureCanvas.mpl connect method).

42

matplotlib uses a callback event handling mechanism. The basic idea is that you register an event that
you want to listen for, and the figure canvas, will call a user defined function when that event occurs. For
example, if you want to know where the user clicks a mouse on your figure, you could define a function

th i s func t i on w i l l be c a l l e d with every c l i c k
def c l i c k (event) :

print ’you clicked’ , event . x , event . y

r e g i s t e r t h i s f unc t i on with the event handler
c id = connect (’button_press_event’ , c l i c k) } .

Then whenever the user clicks anywhere on the figure canvas, your function will be called and passed
a matplotlib.backend bases.MplEvent instance. The event instance will have the following attributes
defined.

Property Meaning
x x position - pixels from left of canvas
y y position - pixels from bottom of canvas
button button pressed None, 1, 2, 3
inaxes the Axes instance if mouse is over axes (or None)
xdata x coord of mouse in data coords (None if mouse isn’t over axes)
ydata y coord of mouse in data coords (None if mouse isn’t over axes)
name The string name of the event
canvas The FigureCanvas instance the event occured in
key The key press if any, eg ’a’, ’b’, ’1’. Also records ’control and ’shift’

Table 2.6: The event attributes

You can connect to the following events: ’button press event’, ’button release event’, ’motion notify event’,
’key press event’, and ’key release event’.

You can connect multiple event handlers, and later disconnect them if you want with the disconnect
function

r e g i s t e r t h i s f unc t i on with the event handler
def c l i c k 1 (event) : pass
def c l i c k 2 (event) : pass
c id1 = connect (’key_press_event’ , c l i c k 1) } .
c id2 = connect (’key_press_event’ , c l i c k 2) } .

. . . l a t e r on
d i s connec t (c id1) # now only c l i c k 2 i s connected

Here’s an example to get the mouse location in data coordinates as the mouse moves

Connect to the mouse move event and pr in t the l o c a t i o n o f the mouse
in data coo rd ina t e s i f the mouse i s over an axes
from pylab import ∗

p lo t (arange (10))

def on move (event) :
get the x and y p i x e l coords
x , y = event . x , event . y

i f event . inaxes :
print ’data coords’ , event . xdata , event . ydata

43

connect (’motion_notify_event’ , on move)

show ()

2.15 Customizing plot defaults

44

Chapter 3

Font finding and properties

matplotlib.fonts.font manager is module for finding, managing, and using fonts across-platforms. This
module provides a single FontManager that can be shared across backends and platforms. The findfont()
method returns the best TrueType (TTF) font file in the local or system font path that matches the specified
FontProperties. The FontManager also handles Adobe Font Metrics (AFM) font files for use by the PostScript
backend.

The design is based on the W3C Cascading Style Sheet, Level 1 (CSS1) font specification (http://www.w3.org/TR/1998/REC-CSS2-19980512).
Future versions may implement the Level 2 or 2.1 specifications.

The font.family property has five values: ’serif’ (e.g. Times), ’sans-serif’ (e.g. Helvetica), ’cursive’ (e.g.
Zapf-Chancery), ’fantasy’ (e.g. Western), and ’monospace’ (e.g. Courier). Each of these font families has a
default list of font names in decreasing order of priority associated with them. You describe which family
you want by choosing, eg, family=’serif’, and the font manager will search the font.serif list looking for
one of the named fonts on your system. The lists are user configurable, and reside in your .matplotlibrc.

This allows you to choose your family in your matplotlib script and the font manager will try and find
the best font no matter which platform you run on.

• The font.style property has three values: normal (or roman), italic or oblique. The oblique style
will be used for italic, if it is not present.

• The font.variant property has two values: normal or small-caps. For TrueType fonts, which are
scalable fonts, small-caps is equivalent to using a font size of ’smaller’, or about 83

• The font.weight property has effectively 13 values: normal, bold, bolder, lighter, 100, 200, 300, ...,
900. Normal is the same as 400, and bold is 700. bolder and lighter are relative values with respect to
the current weight.

• The font.stretch property has 11 values: ultra-condensed, extra-condensed, condensed, semi-condensed,
normal, semi-expanded, expanded, extra-expanded, ultra-expanded, wider, and narrower. This prop-
erty is not currently implemented.

• The font.size property has 11 values: xx-small, x-small, small, medium, large, x-large, xx-large,
larger, smaller, length (such as 12pt), and percentage. larger and smaller are relative values. percentage
is not yet implemented.

Here is an example using the font properties to illustrate the different fonts

from pylab import ∗

subplot (111 , ax i sbg=’w’)
al ignment = {’horizontalalignment’ : ’center’ , ’verticalalignment’ : ’center’}

45

Show fami ly opt ions

fami ly = [’serif’ , ’sans -serif’ , ’cursive’ , ’fantasy’ , ’monospace’]
t = text (−0.8 , 0 . 9 , ’family’ , s i z e=’large’ , ∗∗ al ignment)
yp = [0 . 7 , 0 . 5 , 0 . 3 , 0 . 1 , −0.1 , −0.3 , −0.5]
for k in range (5) :

i f k == 2 :
t = text (−0.8 , yp [k] , f ami ly [k] , f ami ly=fami ly [k] ,

name=’Script MT’ , ∗∗ al ignment)
else :

t = text (−0.8 , yp [k] , f ami ly [k] , f ami ly=fami ly [k] , ∗∗ al ignment)

Show s t y l e opt ions
s t y l e = [’normal’ , ’italic’ , ’oblique’]
t = text (−0.4 , 0 . 9 , ’style’ , ∗∗ al ignment)
for k in range (3) :

t = text (−0.4 , yp [k] , s t y l e [k] , f ami ly=’sans -serif’ , s t y l e=s t y l e [k] ,
∗∗ al ignment)

Show var i ant opt ions
var i an t= [’normal’ , ’small -caps’]
t = text (0 . 0 , 0 . 9 , ’variant’ , ∗∗ al ignment)
for k in range (1) :

t = text (0 . 0 , yp [k] , va r i an t [k] , f ami ly=’serif’ , va r i an t=var i ant [k] ,
∗∗ al ignment)

Show weight opt ions
weight = [’light’ , ’normal’ , ’medium’ , ’semibold’ , ’bold’ , ’heavy’ , ’black’]
t = text (0 . 4 , 0 . 9 , ’weight’ , ∗∗ al ignment)
for k in range (7) :

t = text (0 . 4 , yp [k] , weight [k] , weight=weight [k] ,
∗∗ al ignment)

Show s i z e opt ions
s i z e = [’xx-small’ , ’x-small’ , ’small’ , ’medium’ , ’large’ ,

’x-large’ , ’xx-large’]
t = text (0 . 8 , 0 . 9 , ’size’ , ∗∗ al ignment)
for k in range (7) :

t = text (0 . 8 , yp [k] , s i z e [k] , s i z e=s i z e [k] ,
∗∗ al ignment)

x = 0
Show bold i t a l i c
t = text (x , 0 . 1 , ’bold italic’ , s t y l e=’italic’ ,

weight=’bold’ , s i z e=’x-small’ ,
∗∗ al ignment)

t = text (x , 0 . 2 , ’bold italic’ ,
s t y l e = ’italic’ , weight=’bold’ , s i z e=’medium’ ,
∗∗ al ignment)

t = text (x , 0 . 3 , ’bold italic’ ,
s t y l e=’italic’ , weight=’bold’ , s i z e=’x-large’ ,
∗∗ al ignment)

ax i s ([−1 , 1 , 0 , 1])
s a v e f i g (’../figures/fonts_demo_kw.png’)
s a v e f i g (’../figures/fonts_demo_kw.eps’)
show ()

46

Chapter 4

Collections

47

48

Chapter 5

Tick locators and formatters

The matplotlib.ticker module contains classes to support completely configurable tick locating and for-
matting. Although the locators know nothing about major or minor ticks, they are used by the Axis class to
support major and minor tick locating and formatting. Generic tick locators and formatters are provided,
as well as domain specific custom locators an formatters.

5.1 Tick locating

Choosing tick locations and formats is a difficult and essential part of making nice looking graphs. The
matplotlib.ticker module divides the workload between two bases classes: the locators and the formatters.
Each axis (eg the xaxis and yaxis) has a major and minor tick locator and a major and minor tick formatter.
The default minor tick locators always return the empty list, ie, there are no minor ticks. Each of these can
be set independently, and it is easy for the user to create and plug-in a custom tick locator or formatter.

The matplotlib.ticker.Locator class is the base class for all tick locators. The locators handle au-
toscaling of the view limits based on the data limits, and choosing the tick locations. The most generally
useful tick locator is MultipleLocator. You initialize this with a base, eg 10, and it picks axis limits and
ticks that are multiples of your base. The class AutoLocator contains a MultipleLocator instance, and
dynamically updates it based upon the data and zoom limits. This should provide much more intelligent
automatic tick locations both in figure creation and in navigation than in prior versions of matplotlib. See
Tables 5.1 and 5.2 for a summary of the basic and date tick locators.

Class Summary
NullLocator No ticks
IndexLocator locator for index plots (eg where x = range(len(y))
LinearLocator evenly spaced ticks from min to max
LogLocator logarithmically ticks from min to max
MultipleLocator ticks and range are a multiple of base; either integer or float
AutoLocator choose a MultipleLocator and dynamically reassign

Table 5.1: The basic tick locators

You can define your own locator by deriving from Locator. You must override the call method,
which returns a sequence of locations, and you will probably want to override the autoscale method to set
the view limits from the data limits. If you want to override the default locator, use one of the above or a
custom locator and pass it to the x or y axis instance. The relevant methods are

ax . xax i s . s e t ma j o r l o c a t o r (xmajorLocator)
ax . xax i s . s e t m ino r l o c a t o r (xminorLocator)
ax . yax i s . s e t ma j o r l o c a t o r (ymajorLocator)

49

Class Summary
MinuteLocator locate minutes
HourLocator locate hours
DayLocator locate specifed days of the month
WeekdayLocator Locate days of the week, eg MO, TU
MonthLocator locate months, eg 7 for july
YearLocator locate years that are multiples of base
RRuleLocator locate using a matplotlib.dates.rrulewrapper. The rrulewrapper is a simple wrapper around a dateutils.rrule https://moin.conectiva.com.br/DateUtil which allow almost arbitrary date tick specifications. See examples/date demo rrule.py.

Table 5.2: The tick locators specialized for date plots; these reside in the matplotlib.dates module

ax . yax i s . s e t m ino r l o c a t o r (yminorLocator)

The default minor locator is the NullLocator, eg no minor ticks on by default.

5.2 Tick formatting

Tick formatting is the process of converting the numeric tick location into a suitable string, and is controlled
by classes derived from matplotlib.ticker.Formatter. The formatter operates on a single tick value (and
its tick position) and returns a string to the axis. The tick formatters are summarized in Table 5.3.

Class Summary
NullFormatter no labels on the ticks
FixedFormatter set the strings manually for the labels
FuncFormatter user defined function sets the labels
FormatStrFormatter use a sprintf format string
IndexFormatter cycle through fixed strings by tick position
ScalarFormatter default formatter for scalars; autopick the fmt string
LogFormatter formatter for log axes
DateFormatter use an strftime string to format the date

Table 5.3: The tick formatting classes

You can derive your own formatter from the Formatter base class by simply overriding the call method.
The formatter class has access to the axis view and data limits.

To control the major and minor tick label formats, use one of the following methods::

ax . xax i s . s e t ma jo r f o rmat t e r (xmajorFormatter)
ax . xax i s . s e t m ino r f o rmat t e r (xminorFormatter)
ax . yax i s . s e t ma jo r f o rmat t e r (ymajorFormatter)
ax . yax i s . s e t m ino r f o rmat t e r (yminorFormatter)

5.3 Example 1: major and minor ticks

In this example, the xaxis has major ticks that are multiples of 20 and minor ticks that are multiples of
5. The ticks are formatted with an integer format string formatter ’%d’. The minor ticks are unlabelled
(NullFormatter).

The MultipleLocator ticker class is used to place ticks on multiples of some base. The FormatStrFormatter
uses a string format string (eg’%d’ or ’%1.2f’ or ’%1.1f cm’) to format the tick.

Note that the pylab interface grid command changes the grid settings of the major ticks of the y and
y axis together. If you want to control the grid of the minor ticks for a given axis, use for example
ax.xaxis.grid(True, which=’minor’). See Figure 5.1.

50

Figure 5.1: Creating custom major and minor tick locators and formatters; see Listing 5.1

Listing 5.1: Custom tickers and formatters; see Figure 5.1
from pylab import ∗
import the t i c k l o c a t o r and formatte r c l a s s e s
from matp lo t l i b . t i c k e r import Mult ip leLocator , FormatStrFormatter

majorLocator = Mult ip leLocator (20) # mu l t i p l e s o f 20
majorFormatter = FormatStrFormatter (’%d’) # in t e g e r format s t r i n g
minorLocator = Mult ip leLocator (5) # mu l t i p l e s o f 5

my f a v o r i t e p l o t !
t = arange (0 . 0 , 100 .0 , 0 . 1)
s = s i n (0 . 1∗ pi ∗ t) ∗exp(−t ∗0 .01)

ax = subplot (111)
p l o t (t , s)

now ju s t s e t the major and minor l o c a t o r s and fo rmat t e r s
ax . xax i s . s e t ma j o r l o c a t o r (majorLocator)
ax . xax i s . s e t ma jo r f o rmat t e r (majorFormatter)

#f o r the minor t i ck s , use no l a b e l s ; d e f au l t NullFormatter
ax . xax i s . s e t m ino r l o c a t o r (minorLocator)

5.4 Example 2: date ticking

Making nice date/time plots requires custom tick locating and formatting. matplotlib converts all datetimes
to days since 0001-01-01, and uses a floating point number to represent fractions of days. The functions
date2num and num2date are used to convert back and forth between python datetimes and these floating
point numbers.

The example below uses the matplotlib.finance module to get some historical quotes from yahoo’s

51

historical quotes server. The datetime start and end points are specified using a python’s datetime module.
Major ticks are on the months (MonthLocator) and minor ticks are on Mondays (WeekdayLocator). Only
the major ticks are labelled, using a strftime format string (DateFormatter). Finally since the y axis is a
stock price, a string formatter (FormatStrFormatter) is used to place dollar signs on the y tick labels.

Figure 5.2: Providing custom tick locators and formatters for financial/date plots; see Listing 5.2.

Listing 5.2: Custom date tick locators and formatters; see Figure 5.2
import datet ime
from pylab import ∗
from matp lo t l i b . dates import MONDAY, SATURDAY
from matp lo t l i b . f i n anc e import quo t e s h i s t o r i c a l y ah o o
from matp lo t l i b . dates import MonthLocator , WeekdayLocator , DateFormatter
from matp lo t l i b . t i c k e r import FormatStrFormatter

the s t a r t and end date range f o r the f i n a n c i a l p l o t s
date1 = datet ime . date (2003 , 1 , 1)
date2 = datet ime . date (2004 , 4 , 12)

the t i c k l o c a t o r s and fo rmat t e r s
mondays = WeekdayLocator (MONDAY) # every monday
months = MonthLocator () # every month
monthsFmt = DateFormatter (’%b %d’) # looks l i k e May 01
dol larFmt = FormatStrFormatter (’$%0.2f’) # do l l a r s !

get some f i n a n c i a l data from the f i nanc e module
quotes = quo t e s h i s t o r i c a l y ah o o (

’INTC’ , date1 , date2)
i f not quotes : raise SystemExit # f a i l s a f e

ex t r a c t the date and opening p r i c e s from the quote tup l e s
dates = [q [0] for q in quotes]
opens = [q [1] for q in quotes]

52

plo t da t e w i l l choose a d e f au l t date t i c k e r and formatte r
ax = subplot (111)
p l o t da t e (dates , opens , markeredgeco lor=’k’)

but we ’ l l o v e r r i d e the d e f au l t with our custom l o c a t o r s and
format t e r s
ax . xax i s . s e t ma j o r l o c a t o r (months)
ax . xax i s . s e t ma jo r f o rmat t e r (monthsFmt)
ax . xax i s . s e t m ino r l o c a t o r (mondays)

format the y ax i s in d o l l a r s
ax . yax i s . s e t ma jo r f o rmat t e r (dol larFmt)

c a l l au to s ca l e to p ick i n t e l l i g e n t view l im i t s based on our major
t i c k l o c a t o r
ax . au to s ca l e v i ew ()

ro ta t e the x l a b e l s f o r n i c e r viewing
l a b e l s = ax . g e t x t i c k l a b e l s ()
se tp (l ab e l s , ’rotation’ , 45 , f o n t s i z e =10)

g r id (True)

53

54

Chapter 6

Cookbook

6.1 Plot elements

6.1.1 Horizontal or vertical lines/spans

It is often useful to draw a line that stretches from the left to the right side of the axes at a given height,
eg to represent a y-axis threshold. In this case, the left and right are plotted in axes coordinates (0 and
1 respectively), and the y coordinate is in data coordinates. Plotted this way, the horizontal extent of the
line will not change if you interactively change the xlimits, eg by using the pan navigation tool. Although
you can create these lines yourself using matplotlib.lines.Line2D instances and setting the appropriate
transforms, several helper functions are provided to make this easier.

6.1.2 Fill the area between two curves

The fill command takes a list of vertices and draws a polygon. A filled area between two curves is simply a
large polygon. All you need to do is get the vertices in the correct order, which basically means reversing
the order of the x,y pairs in one of the lines, so that path across the vertices of the polygon is continuous.
Here is a simple example

Listing 6.1: Fill the area between two curves; see Figure 6.1
from pylab import ∗
x1 = arange (0 , 2 , 0 . 0 1)
y1 = s i n (2∗ pi ∗x1)
y2 = s i n (4∗ pi ∗x1) + 2

rev e r s e x and y2 so the polygon f i l l s in order
x = concatenate ((x1 , x1 [: : − 1]))
y = concatenate ((y1 , y2 [: : − 1]))

p = f i l l (x , y , f a c e c o l o r=’g’)

6.2 Text

6.2.1 Adding a ylabel on the right of the axes

To make a ylabel on the right, use the text command. You need to set the transform to use axes coordi-
nates (ax.transAxes), rotate the text vertically, make the horizontal alignment left, the vertical alignment
centered. Note that x, y = 1, 0.5 is the right, middle of the axes in axes coordinates. You also need to turn

55

Figure 6.1: Fill the area between two curves; see Listing 6.1.

off clipping, so the text can appear outside the axes w/o being clipped by the axes bounding box, which is
the default behavior.

t ex t (1 . 0 2 , 0 . 5 , ’volts’ ,
ho r i zon ta l a l i gnment=’left’ ,
v e r t i c a l a l i g nmen t=’center’ ,
r o t a t i on=’vertical’ ,
t rans form=gca () . transAxes ,
c l i p o n=False)

6.3 Data analysis

6.3.1 Linear regression

One of the most common tasks in analyzing data is a linear regression of one variable on another. matplotlib
provides polyfit in the matplotlib.mlab module for general polynomial regression.

Listing 6.2: Best fit line; see Figure 6.2
from pylab import ∗

Generate some t e s t data ; y i s a l i n e a r func t i on o f x + nse
x = arange (0 . 0 , 2 . 0 , 0 . 0 5)
nse = 0.3∗ randn (l en (x))
y = 2+ 3∗x + nse

the b e s t f i t l i n e from p o l y f i t ; you can do a rb i t r a r y order
polynomia ls but here we take advantage o f a l i n e being a f i r s t order
polynomial
m, b = p o l y f i t (x , y , 1)

p lo t the data with blue c i r c l e s and the best f i t with a th i ck

56

Figure 6.2: Estimating a best fit line for some random data; see Listing 6.2.

so l i d black l i n e
p l o t (x , y , ’bo’ , x , m∗x+b , ’-k’ , l i n ew id th =2)
y l ab e l (’regression’)
g r id (True)

6.3.2 Polynomial regression

polyfit can also be used for general polynomial fitting. The signature of polyfit is coeffs = polyfit(x, y,
N) where N is the order of the polynomial. The best fit can be obtained from the coefficients and the x data
using best = polyval(x, coeefs). coeffs are the coefficients of the polynomial coeffs = pk, . . . , p1, p0.

The algorithm for polyfit is taken from Mathworld’s Least Squares Fitting Polynomial and Vandermonde
Matrix entries [Weisstein, 2002]. To do a best fit polynomial regression of order N of y onto x. We must
solve an N -dimensional system of equations; eg, for N = 2

p2 ∗ x2
0 + p1 ∗ x0 + p0 = y1

p2 ∗ x2
1 + p1 ∗ x1 + p0 = y1

p2 ∗ x2
2 + p1 ∗ x2 + p0 = y2

. . .

p2 ∗ x2
k + p1 ∗ xk + p0 = yk

If X is a the Vandermonde Matrix computed from x, then the polynomial least squares solution is given by
the p in X ∗ p = y where X is a x by N + 1 matrix, p is a N + 1 length vector, and y is a len(x) by 1 vector.
This equation can be solved as

p = (X̄X)−1 ∗ X̄ ∗ y (6.1)

where X̄ is the transpose of X and the -1 superscript denotes the inverse. For more info, see Mathworld1,
1http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html

57

Figure 6.3: Estimating a best fit cubic for some random data; see Listing 6.3

but note that the k’s and n’s in the superscripts and subscripts on that page are problematic. The linear
algebra is correct, however.

Listing 6.3: est fit polynomial; see Figure 6.3
from pylab import ∗

Generate some t e s t data ; y i s a poly func t i on o f x + nse
x = arange (0 . 0 , 2 . 0 , 0 . 0 5)
nse = 0.6∗ randn (l en (x))
y = 1 .1 + 3.2∗ x + 0.1∗ x∗∗2 + 2∗x∗∗3 + nse

the b e s t f i t l i n e from p o l y f i t
c o e f f s = p o l y f i t (x , y , 3)

p lo t the data with blue c i r c l e s and the best f i t with a th i ck
s o l i d black l i n e
besty = po lyva l (c o e f f s , x)
p l o t (x , y , ’bo’ , x , besty , ’-k’ , l i n ew id th =2)
y l ab e l (’polynomial regression’)
g r id (True)

6.4 Working with images

6.4.1 Loading existing images into matplotlib

Currently matplotlib only supports plotting images from numerix arrays, either luminance, RGB or RGBA.
If you have some existing data in an image file format such as PNG, JPEG or TIFF, you can load this
into matplotlib by first loading the file into PIL - http://www.pythonware.com/products/pil and then
converting this to a numerix array using fromstring / tostring methods

import Image

58

from pylab import ∗

im = Image . open (’../data/leo_ratner.jpg’)
s = im . t o s t r i n g () # convert PIL image −> s t r i n g

convert s t r i n g −> numerix array o f f l o a t s
rgb = f romst r ing (s , UInt8) . astype (Float) /255 .0

r e s i z e to RGB array
rgb = r e s i z e (rgb , (im . s i z e [1] , im . s i z e [0] , 3))

imshow (rgb , i n t e r p o l a t i o n=’nearest’)
ax i s (’off’) # don ’ t d i sp l ay the image ax i s
show ()

6.4.2 Blending several axes images using alpha

You can compose several axes images on top of one another using alpha blending, as described in Section 2.7.1.
If your hold state is True, multiple calls to imshow will cause the image arrays to be resampled to the axes
bounding box and blended. Of course, the uppermost images must have alpha less than one, or else they will
be fully opaque and hence the lower images will be invisible. Note that you can blend images from arrays of
different shapes as well as blending images with different colormaps and interpolation schemes. The example
below creates a black and white checkboard using a grayscale colormap and then blends a color image over
it, as shown in Figure 6.4.

Figure 6.4: Layering axes images using alpha blending; see Listing 6.4.

Listing 6.4: Alpha-blending multiple images; see Figure 6.4
from pylab import ∗

def func3 (x , y) :
return (1− x /2 .0 + x∗∗5 + y∗∗3) ∗exp(−x∗∗2−y∗∗2)

59

make these sma l l e r to i n c r e a s e the r e s o l u t i o n
dx , dy = 0 .05 , 0 .05
x = arange (−3.0 , 3 . 0 , dx)
y = arange (−3.0 , 3 . 0 , dy)
X,Y = meshgrid (x , y)
extent = min (x) , max(x) , min (y) , max(y)

make an 8 by 8 chessboard
Z1 = array (([0 , 1] ∗ 4 + [1 , 0] ∗ 4) ∗4) ; Z1 . shape = 8 ,8
im1 = imshow(Z1 , cmap=cm. gray ,

i n t e r p o l a t i o n=’nearest’ , extent=extent)

prevents the axes from c l e a r i n g on next command
hold (True)

Z2 = func3 (X, Y)
im2 = imshow(Z2 , cmap=cm. j e t , alpha =.9 ,

i n t e r p o l a t i o n=’bilinear’ , extent=extent)
ax i s (’off’)

6.4.3 Creating a mosaic of images

You can compose several figure images into a mosaic using the figimage command, as discussed Section 2.7.2.
If your hold state is True, multiple calls to figimage(X, xo, yo). xo and yo are the pixel offsets from
the origin (the origin can be either upper left or lower left, as discussed in Section 2.7.4). The code below
using color mapping to place two images on the diagonal. Note that you can use different kinds of arrays
(luminance, RGB, RGBA) and different colormaps when creating figure mosaics. See Figure 6.5.

Figure 6.5: Creating a mosaic using figimage; see Listing 6.5.

60

Listing 6.5: Creating figure mosaics; see Figure 6.5
from pylab import ∗
rc (’axes’ , hold=True)
rc (’image’ , o r i g i n=’upper’)

Z = arange (40000 . 0) ; Z . shape = 200 ,200
Z [: , 5 0 :] = 1
im1 = f ig image (Z , xo=0, yo=0)
im2 = f ig image (Z , xo=100 , yo=100 , alpha =.8)

6.4.4 Defining your own colormap

Perry Greenfield has provided a nice framework with matplotlib.colors.LinearSegmentedColormap to
define new colormaps. You can create new colormaps fairly easy by following the example of jet in
matplotlib.cm. Here are the steps

• define your rgb linear segments in matplotlib.cm, following the lead of the jet data dictionary in
that module

• add an entry to the datad dictionary in that module which maps rc string names for your color map
to the dictionary you just defined.

• instantiate a single instance of your colormap in cm, following the example

j e t = c o l o r s . LinearSegmentedColormap (’jet’ , j e t da t a , LUTSIZE)

• add a pylab function which has the same name as your colormap, following the example of pylab.jet.

Now anyone can use the colormap interactively from the shell, by setting it as the default image.cmap in rc,
etc. Please submit your changes to the matplotlib-devel mailing list.

6.5 Output

6.5.1 Printing to standard output

In some instances, it is nice to be able to print to a file object, eg sys.stdot, for example in a web application
server where the creation of a temporary file storing the images is a wasted step. The antigrain backend
accepts a file object to the savefig command and will print a PNG to it. Thus to print to standard output,
you could do

import sys
import matp lo t l ib
th i s i s not supported ac ro s s a l l backends , as o f matp lot l ib −0.63
matp lo t l i b . use (’Agg’)
from pylab import ∗
p lo t ([1 , 2 , 3])
s a v e f i g (sys . s tdout)

61

62

Chapter 7

Matplotlib API

The pylab interface does a lot of work for you under the hood, creating and managing multiple figure
windows, directing your plotting commands to the current axes and figure, managing the interactive state,
and so on. But that is all it does: all of the plotting is handled by a set of classes that the user can instantiate
directly. If you are developing a GUI application, or simply don’t want any hidden magic in your plots, you
can create any plots using pure OO code that you could create with the pylab interface.

From a developer standpoint, the pylab interface has been a blessing in disguise. Because the interface
was fixed by the Mathworks before the start of matplotlib provided considerable freedom to redesign the
guts of the plotting library – the object model can be totally revamped and the user interface remains fixed.

The matplotlib code is divided conceptually into 3 parts: the matlab interface, the matplotlib Artists,
and the backend renderers. The pylab interface was covered in Chapter 2. This module pylab is comprised
mainly of code to manage the multiple figure windows across backends, and provide a thin, procedural
wrapper around the object oriented plotting code. The matplotlib Artists are a series of classes that derive
from matplotlib.artist.Artist, so named because these are the objects that actually draw into the figure;
see Figure 7.3. The backend renderers each implement a common drawing interface that actually puts the ink
on the paper, eg creating a postscript document, filling an antigrain pixel buffer, or calling the gtk drawing
code.

This chapter delves into matplotlib internals to give a clearer picture of how things work and how they
are organized. Some of this material may be of interest only to developers, but most of it should shed light
for anyone who wants to be able to exploit the full capabilities of matplotlib. The normal path of figure
creation in matplotlib is pylab interface → creates artists → calls to the backend renderer. This section will
invert that process, starting with the backend, which is where the drawing actually takes place. This is the
natural order of presentation because the backend knows nothing about Artists, which in turn known nothing
about the pylab interface. After the overview of the backend API, there is a discussion of the matplotlib
artists; this is the section that is most useful to users, particularly those who want to embed matplotlib in an
application. The final section shows how the pylab interface controls the backends and artists – this section
is probably of interest to developers and the terminally curious.

7.1 The matplotlib backends

The backend consists of a number of related base classes that together define a drawing API. The original
backend was GTK, and the drawing API is heavily based on the GTK drawing model, which is very simple.
There are three essential classes defined in matplotlib.backend bases: RendererBase, GraphicsContextBase
and FigureCanvasBase. In addition, there are some classes for use with the GUI backends to define the inter-
face to the toolbars and event handling. The RendererBase, aka renderer handles all the drawing primitives
in display coordinates, typical renderer methods are draw text and draw lines. The GraphicsContextBase,
aka textitgraphics context stores information about the graphics properties, such as linewidth, cap or join

63

style, color, alpha translucency. The FigureCanvasBase, aka figure canvas, is primarily a container class to
hold the Figure instance; this facilitates separation of the Figure from the backend dependent code. For
GUI backends, the figure canvas should be a GUI widget embeddable in a GUI window.

7.1.1 The renderer and graphics context

The renderer defines the low-level matplotlib drawing API; all of the drawing commands are done in display
coordinates. The matplotlib Artist classes handle all of the layout and transformation issue, and pass the
primitive drawing commands on to the renderer. The renderers know nothing about the matplotlib Artists,
and nothing about the pylab interface. Their one and only job is to get ink onto the canvas. The graphics
context stores information about the objects to be drawn, their color, linewidths, cap and join styles, alpha
transparency, etc. Taken together, you can use the backend renderer and graphics context directly to make
drawings. This may not be advisable, since the whole purpose of the matplotlib Artists and pylab interface
is to simplify the process of getting ink onto the canvas, but it is possible. However, it is potentially useful to
developers who may want to extend the capabilities of matplotlib, eg, to implement block diagram drawing.

Every backend in matplotlib/backends defines a Renderer that inherits from RendererBase; some also
define a backend dependent GraphicsContext, while other simply use the GraphicsContextBase for storing
the information and do all the work of translating these values in the Renderer. This is the approach the
Agg backend uses, shown in the listing below.

Figure 7.1: Drawing directly with the backend renderer and graphics context; see Listing 7.1

Listing 7.1: Drawing with the agg renderer; see Figure 7.1
working d i r e c t l y with rendere r and graph i c s context s p r im i t i v e s
from matp lo t l i b . font manager import FontPropert i e s
from matp lo t l i b . backends . backend agg import RendererAgg
from matp lo t l i b . t rans forms import Value

a 400x400 canvas at 72 dpi canvas
dpi = Value (7 2 . 0)
o = RendererAgg (400 ,400 , dpi)

64

the graph i c s context
gc = o . new gc ()

draw the background white
gc . s e t f o r e g r ound (’w’)
f a c e = (1 , 1 , 1) # white
o . d raw rec tang l e (gc , face , 0 , 0 , 400 , 400)

the gc ’ s know about c o l o r s t r i n g s , and can handle any matp lo t l ib
co l o r arguments (hex s t r i n g s , rgb , format s t r i n g s , e t c)
gc . s e t f o r e g r ound (’g’)
gc . s e t l i n ew i d t h (4)
f a c e = (1 , 0 , 0) # must be rgb
o . draw rec tang l e (gc , face , 10 , 50 , 100 , 200)

draw a t r an s l u c en t e l l i p s e
rgb = (0 , 0 , 1)
gc . s e t a l pha (0 . 5)
o . draw arc (gc , rgb , 100 , 100 , 100 , 100 , 360 , 360)

draw a dashed l i n e
gc . s e t da sh e s (0 , [5 , 1 0])
gc . s e t j o i n s t y l e (’miter’)
gc . s e t c a p s t y l e (’butt’)
gc . s e t l i n ew i d t h (3 . 0)
o . d raw l i n e s (gc , (50 , 100 , 150 , 200 , 250) , (400 , 100 , 300 , 200 , 250))

draw some text us ing the matp lo t l i b font manager
prop = FontPropert i e s (s i z e =40)
gc . s e t f o r e g r ound (’b’)
o . draw text (gc , 100 , 300 , "That’s all folks!" , prop , −45, 0)

there i s no standard rendere r i n t e r f a c e to save the input to a f i l e ,
as t h i s i s the job o f the f i g u r e canvas . Here I make the c a l l that
the f i g u r e canvas would make f o r the an t i g r a i n render
o . r ende r e r . wr i te png (’../figures/renderer_agg.png’)

7.1.2 The figure canvases

7.2 The matplotlib Artists

7.3 pylab interface internals

Let’s look at the simplest matplotlib script and walk through what happens under the hood. This section
will be of interest mainly to developers or those curious about matplotlib internals - it can be safely skipped
by others. We’ll assume you are using one of the GUI backends, eg GTKAgg and have are running this as
a script (interactive : False)

from pylab import ∗
p lo t ([1 , 2 , 3])
show ()

65

Figure 7.2: The inheritance diagram for The FigureCanvas hierarchy. The FigureCanvas is a backend
dependent class which contains a figure instance. For GUI backends, the canvas should be a GUI widget
embeddable in a GUI window. Some of the GUIs have backends with both native drawing and antigrain
drawing (GTK/GTKAgg, WX/WXAgg), which is readily achieved with multiple inheritance.

Line 1: from pylab import *

When any matplotlib code is imported the first time, the matplotlib. init .py code is called. The pri-
mary thing the init code does is find and parse your rc file, or if it fails fall back on a set of default parameters.
Once this is done, pylab proceeds to import all of the matplotlib.numerix and matplotlib.mlab symbols
into the namespace, and loads the backend from matplotlib.backends, which use the rc information to
load four functions from the backend module specified by the rc backend parameter. The pylab interface
requires only four functions from the backend: new figure manager, error msg, draw if interactive, and
show

• new figure manager is responsible for creating a new instance from a backend dependent class de-
rived from matplotlib.backend bases.FigureManager; this class wraps GUI window creation and
management.

• error msg displays an error message; for image backends this message is printed to the file object
determined by the rc parameter verbose.erro and for GUI backends it is typically displayed in a GUI
dialog box.

• draw if interactive is called after every pylab drawing command (plot, setp, xlim, . . .) and
updates the figure window with the new information only if interactive is True.

• show raises all the GUI figure windows and triggers a command to draw the figure.

66

Figure 7.3: The matplotlib Artist hierarchy. The primitive Artists are the Patches, Line2D, Text, AxesImage,
FigureImage and Collection classes. All other artists are composites of these. For example a Tick is comprised
of a Line2D instance and a Text instance, which make up the tick line and tick label; the Axis is comprised
of a list of Ticks and a Text axis label; see Figure 7.4.

Figure 7.4: The Artist containment hierarchy. The top level Artist is the matplotlib.figure.Figure,
which contains all of the other Artist instances. The attribute names are given in lower case, and the object
type is listed below in upper case. If the attribute is a sequence, for example the figure contains a list of
Axes, then the connecting edge is labeled 0 . . . n and the object type is in square brackets to indicate a list,
eg [Axes]. Some redundant information is omitted; for example, the yaxis contains the equivalent objects
that the xaxis contains, the minorTicks have the same containment hierarchy as the majorTicks, and so on.

The pylab interface also imports a Gcf instance from the matplotlib. matlab helpers module, which
manages the current figure and current axes. The pylab interface defines gcf and gca to get a reference to
the current figure and axes, which in turn are interfaces to the Gcf class that does the real lifting.

Line 2: plot([1,2,3])

All of the pylab functions are defined similarly: they get the current axes and forward the call on to
the corresponding matplotlib.axes.Axes method, which does the real work. The plot command in the
example below calls gca to get the current axes. If no figure or axes has been defined at the time of this call,
the are created one on the fly using default parameters from the rc file; ultimately the new figure manager
backend method is called to provide new figures when needed, and the default subplot(111) is added to
the figure if no other axes has been defined.

The new figure manager method deserves a bit more attention, because this creates the central object
that contains all the other objects relevant to the creation of a single figure. matplotlib.backend bases.FigureManagerBase
is a container class for the figure window (a GUI window) and figure canvas (a GUI widget which can be
drawn upon). The figure canvas derives from matplotlib.backend bases.FigureCanvasBase, and contains
the matplotlib.figure.Figure instance.

Once the current axes is obtained by gca, plot forwards the call to Axes.plot. If an exception is raise,

67

Figure 7.5: The pylab interface function new figure manager returns a backend dependent concrete imple-
mentation of matplotlib.backend bases.FigureManagerBase, which contains the figure canvas and figure
window. The attribute names are shown in lower case, and the backend dependent classes are shown in upper
case. The standard attribute naming system allows the matlab interface to make calls across backends to
the figure canvas and figure.

the backend error msg method is called with the traceback to display it. If the code is successful, the
backend draw if interactive method is called which will update the plot if the rc parameter interactive
is True, and finally the return value is returned.

def p lo t (∗ args , ∗∗kwargs) :
try :

l i n e s = gca () . p l o t (∗ args , ∗∗kwargs)
except ValueError , msg :

msg = r a i s e m s g t o s t r (msg)
error msg (msg)

else :
d r aw i f i n t e r a c t i v e ()
return l i n e s

p l o t . d o c = Axes . p l o t . d o c

The matplotlib.axes.Axes.plot method parses the *args and **kwargs, creates the requested line
objects, and adds them to its list of Line2D instances. It will also extract the x and y data range and use
these to update the data limits of the axes, which is turn will be used to autoscale the view limits. No
drawing code is actually issued, but is deferred until later.

68

Line 3: show()

show is an interface to realize and show the GUI windows. For image backends, eg Agg, PS or SVG, it is
superfluous. The image backends will draw the figure on a call to savefig, and ignore a show call. Each GUI
backend defines show to realize all of the GUI windows, and start the GUI mainloop. For this reason, the
call to show is blocking, and should be the last line of the script. Here is a representative show method from
matplotlib.backends.backend gtk

def show (mainloop=True) :
"""

Show all the figures and enter the gtk main loop

This should be the last line of your script

"""

for manager in Gcf . g e t a l l f i g man a g e r s () :
manager . window . show ()

i f gtk . ma in l eve l () == 0 and mainloop :
i f gtk . pygtk ve r s i on >= (2 ,4 , 0) : gtk . main ()
else : gtk . mainloop ()

Typically, the GUI backends binds the realize or expose event of the GUI window to ultimately trigger
the Figure.draw method of the Figure instance contained by the FigureCanvas. In the show function
above, manager.window.show() will trigger an expose event in pygtk. The gtk backend binds the ex-
pose event to the FigureCanvasGTK.expose event method. If the canvas has not yet been drawn, the
expose event method will create a RendererGTK instance (which derives from the common drawing API
in matplotlib.backends.RendererBase) and then call Figure.draw(renderer), which in turn passes the
draw command on to each Artist instance it contains; see Figure 7.4 for the Artist containment hierarchy.
Each Artist instance defines the draw method, and contains a transform to transform itself to display coor-
dinates. For example, the Line2D instance will transform its x and y data to display coordinates, and then
call the appropriate renderer method, eg RendererGTK.draw lines, which expects x and y data in display
coordinates. In this case, the GTK renderer draw lines method makes the appropriate calls to the GTK
drawing API, and the screen is updated; see Figure 7.6.

Figure 7.6: The typical sequence of steps triggered in the backend code by the call to show that ultimately
gets the ink on the canvas.

69

70

Appendix A

A sample .matplotlibrc

MATPLOTLIBRC FORMAT
#
This i s a sample matp lo t l i b c on f i gu r a t i on f i l e I t should be placed
in your home d i r (Linux and f r i e n d s) or in the matp lo t l i b data path ,
i s , where matp lo t l i b i n s t a l l s i t ’ s data f i l e s (fonts , e t c) . On
windows , t h i s would be , f o r example , C:\ Python23\ share \matp lo t l ib
#
By de fau l t , the i n s t a l l e r w i l l ove rwr i t e the e x i s t i n g f i l e in the
i n s t a l l path , so i f you want to pre s e rve your ’ s , p l e a s e move i t to
your HOME d i r and s e t the environment va r i ab l e i f nece s sa ry .
#
This f i l e i s bes t viewed in a ed i t o r which supports python mode
syntax h i g h l i g h t i n g
#
Blank l i n e s , or l i n e s s t a r t i n g with a comment symbol , are ignored ,
as are t r a i l i n g comments . Other l i n e s must have the format
#
key : va l # opt i ona l comment
#
Colors : f o r the c o l o r va lue s below , you can e i t h e r use
− a matp lo t l i b c o l o r s t r i ng , such as r , k , or b
− an rgb tuple , such as (1 . 0 , 0 . 5 , 0 . 0)
− a hex s t r i ng , such as f f 0 0 f f (no ’# ’ symbol)
− a s c a l a r g r ay s c a l e i n t e n s i t y such as 0 .75

CONFIGURATION BEGINS HERE
backend : Agg # the d e f au l t backend
numerix : Numeric # Numeric or numarray
i n t e r a c t i v e : Fa l se # see http :// matp lo t l i b . s ou r c e f o r g e . net / i n t e r a c t i v e . html

LINES
See http :// matp lo t l i b . s ou r c e f o r g e . net / matp lo t l i b . l i n e s . html f o r more
in format ion on l i n e p r op e r t i e s . Note a n t i a l i a s e d render ing l ook s
better , but can be s lower . I f you want f a s t a n t i a l i a s e d render ing ,
use the agg backend (or TkAgg , or GTKAgg)
l i n e s . l i n ew id th : 0 . 5 # l i n e width in po in t s
l i n e s . l i n e s t y l e : − # so l i d l i n e
l i n e s . c o l o r : b # blue ; c o l o r format or hex s t r i n g
l i n e s . marker : None # the d e f au l t marker
l i n e s . marke r f aceco l o r : b

71

l i n e s . markeredgeco lor : k
l i n e s . markeredgewidth : 1 . 0
l i n e s . markers i ze : 6 # markers ize , in po in t s
l i n e s . a n t i a l i a s e d : True # render l i n e s in a n t i a l i s e d (no j a g g i e s)
l i n e s . d a t a c l i pp i n g : Fa l se # Use data c l i p p i n g in add i t i on to viewport

c l i p p i n g . Use fu l i f you p lo t long data
s e t s with only a f r a c t i o n in the viewport

Patches
Patches are g raph i c a l ob j e c t s that f i l l 2D space , l i k e polygons or
c i r c l e s . See
http :// matp lo t l i b . s ou r c e f o r g e . net / matp lo t l i b . patches . html f o r more
in format ion on patch p r op e r t i e s
patch . l i n ew id th : 1 . 0 # edge width in po in t s
patch . f a c e c o l o r : b
patch . edgeco l o r : k
patch . a n t i a l i a s e d : True # render patches in a n t i a l i s e d (no j a g g i e s)

FONT
#
font p r op e r t i e s used by text . Text . s e e
http :// matp lo t l i b . s ou r c e f o r g e . net / matp lo t l i b . f on t s . html f o r more
in format ion on font p r op e r t i e s . The 6 font p r op e r t i e s used f o r f ont
matching are g iven below with t h e i r d e f au l t va lue s .
#
The font . f ami ly property has f i v e va lue s : ’ s e r i f ’ (e . g . Times) ,
’ sans−s e r i f ’ (e . g . He lve t i ca) , ’ c u r s i v e ’ (e . g . Zapf−Chancery) ,
’ fantasy ’ (e . g . Western) , and ’ monospace ’ (e . g . Cour ier) . Each o f
these font f am i l i e s has a d e f au l t l i s t o f f ont names in dec r ea s ing
order o f p r i o r i t y a s s o c i a t ed with them .
#
The font . s t y l e property has three va lue s : normal (or roman) , i t a l i c
or ob l i que . The ob l i que s t y l e w i l l be used f o r i t a l i c , i f i t i s not
present .
#
The font . va r i an t property has two va lue s : normal or small−caps . For
TrueType fonts , which are s c a l a b l e fonts , small−caps i s equ iva l en t
to us ing a font s i z e o f ’ sma l l e r ’ , or about 83% of the cur rent font
s i z e .
#
The font . weight property has e f f e c t i v e l y 13 va lue s : normal , bold ,
bolder , l i g h t e r , 100 , 200 , 300 , . . . , 900 . Normal i s the same as
400 , and bold i s 700 . bo lder and l i g h t e r are r e l a t i v e va lue s with
re sp e c t to the cur rent weight .
#
The font . s t r e t c h property has 11 va lue s : u l t ra−condensed ,
extra−condensed , condensed , semi−condensed , normal , semi−expanded ,
expanded , extra−expanded , u l t ra−expanded , wider , and narrower . This
property i s not cu r r en t l y implemented .
#
The font . s i z e property has 11 va lue s : xx−small , x−small , small ,
medium , la rge , x−l a rge , xx−l a rge , l a r g e r , smal l e r , l ength (such as
12pt) , and percentage . l a r g e r and sma l l e r are r e l a t i v e va lue s .
percentage i s not yet implemented .
#
font . f ami ly : sans−s e r i f

72

f on t . s t y l e : normal
f ont . va r i an t : normal
f ont . weight : medium
font . s t r e t c h : normal
f ont . s i z e : medium
font . s e r i f : New Century Schoolbook , Century Schoolbook L , Utopia , ITC

. . . Bookman , Bookman , Bitstream Vera S e r i f , Nimbus Roman No9 L , Times New Roman,

. . . Times , Palat ino , Charter , s e r i f
f ont . sans−s e r i f : Lucida Grande , Verdana , Geneva , Lucida , Bitstream Vera Sans ,

. . . Ar ia l , He lvet i ca , sans−s e r i f
f ont . c u r s i v e : Apple Chancery , Text i l e , Zapf Chancery , Sand , cu r s i v e
font . f antasy : Comic Sans MS, Chicago , Charcoal , Impact , Western , f antasy
font . monospace : Andale Mono , Bitstream Vera Sans Mono , Nimbus Mono L , Cour ier

. . .New, Courier , Fixed , Terminal , monospace

TEXT
text p r op e r t i e s used by text . Text . See
http :// matp lo t l i b . s ou r c e f o r g e . net / matp lo t l i b . Text . html f o r more
in format ion on text p r op e r t i e s
t ex t . c o l o r : k # black

AXES
de f au l t f a c e and edge co lo r , d e f au l t t i c k s i z e s ,
de f au l t f o n t s i z e s f o r t i c k l a b e l s , and so on
axes . hold : True # whether to c l e a r the axes by d e f au l t on
axes . f a c e c o l o r : w # background co l o r ; white
axes . edgeco l o r : k # edge c o l o r ; b lack
axes . l i n ew id th : 2 . 0 # edge l i n ew id th
axes . g r id : Fa l se # d i sp l ay g r id or not
axes . t i t l e s i z e : 20 # f o n t s i z e o f the axes t i t l e
axes . l a b e l s i z e : 14 # f o n t s i z e o f the x any y l a b e l s
axes . l a b e l c o l o r : k # black

TICKS
t i c k . major . s i z e : 4 # major t i c k s i z e in po in t s
t i c k . minor . s i z e : 2 # minor t i c k s i z e in po in t s
t i c k . major . pad : 4 # d i s t anc e to major t i c k l a b e l in po in t s
t i c k . minor . pad : 4 # d i s t anc e to the minor t i c k l a b e l in po in t s
t i c k . c o l o r : k # co l o r o f the t i c k l a b e l s
t i c k . l a b e l s i z e : 14 # f o n t s i z e o f the t i c k l a b e l s

Grids
g r id . c o l o r : 0 .75 # gr id c o l o r
g r id . l i n e s t y l e : : # dotted
g r id . l i n ew id th : 0 . 5 # in po in t s

FIGURE
f i g u r e . f i g s i z e : 8 , 6 # f i g u r e s i z e in inche s
f i g u r e . dpi : 80 # f i g u r e dots per inch
f i g u r e . f a c e c o l o r : 0 .75 # f i g u r e f a c e c o l o r ; 0 .75 i s s c a l a r gray
f i g u r e . edgeco l o r : w # f i g u r e edgeco l o r ; w i s white

images
image . aspect : f r e e # f r e e | pre s e rve

73

image . i n t e r p o l a t i o n : b i l i n e a r # see he lp (imshow) f o r opt ions
image . cmap : j e t # gray | j e t
image . l u t : 256 # the s i z e o f the colormap lookup tab l e
image . o r i g i n : upper # lower | upper

SAVING FIGURES
the d e f au l t s a v e f i g params can be d i f f e r e n t f o r the GUI backends .
Eg , you may want a h igher r e s o l u t i on , or to make the f i g u r e
background white
s a v e f i g . dpi : 200 # f i g u r e dots per inch
s a v e f i g . f a c e c o l o r : w # f i g u r e f a c e c o l o r ; 0 .75 i s s c a l a r gray
s a v e f i g . edgeco l o r : w # f i g u r e edgeco l o r ; w i s white

tk . window focus : Fa l se # Maintain s h e l l f o cu s f o r TkAgg

74

Appendix B

mathtext symbols

75

76

Appendix C

matplotlib source code license

All of the matplotlib src code is distributed under the Python Software Foundation (PSF) license, which
permits commercial and noncommercial free use and redistribution as long as the conditions below are met.
The VERSION string below is replaced by the current matplotlib version number with each release.

LICENSE AGREEMENT FOR MATPLOTLIB VERSION

1. This LICENSE AGREEMENT is between the John D. Hunter ("JDH"), and the
Individual or Organization ("Licensee") accessing and otherwise using
matplotlib software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, JDH
hereby grants Licensee a nonexclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use matplotlib VERSION
alone or in any derivative version, provided, however, that JDH’s
License Agreement and JDH’s notice of copyright, i.e., "Copyright (c)
2002-2004 John D. Hunter; All Rights Reserved" are retained in
matplotlib VERSION alone or in any derivative version prepared by
Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates matplotlib VERSION or any part thereof, and wants to
make the derivative work available to others as provided herein, then
Licensee hereby agrees to include in any such work a brief summary of
the changes made to matplotlib VERSION.

4. JDH is making matplotlib VERSION available to Licensee on an "AS
IS" basis. JDH MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, JDH MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF MATPLOTLIB VERSION
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. JDH SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF MATPLOTLIB
VERSION FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR

77

LOSS AS A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING
MATPLOTLIB VERSION, OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF
THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between JDH and
Licensee. This License Agreement does not grant permission to use JDH
trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

8. By copying, installing or otherwise using matplotlib VERSION,
Licensee agrees to be bound by the terms and conditions of this License
Agreement.

78

Bibliography

Julius S. Bendat and Allan G. Piersol. Random Data: Analysis and Measurement Procedures. John Wiley
& Sons, New York, 1986.

Eric W. Weisstein. CRC Concise Encyclopedia of Mathematics. Chapman & Hall/CRC, second edition
edition, 2002.

79

