LinBox fields implement the concept which is specified in the field archetype.
Some implement a basic ring concept rather than a field (inv and div are partial functions). Ring representations with additional functions are also found in the linbox/ring directory.
|
Classes |
class | FieldAbstract |
| field base class. More...
|
class | FieldArchetype |
| field specification and archetypical instance. More...
|
class | FieldEnvelope |
| Derived class used to implement the field archetype. More...
|
struct | GivaroField |
| give LinBox fields an allure of Givaro Fields More...
|
class | GivaroGfq |
class | GivaroMontg |
| wrapper of Givaro's Montgomery<Std32>. More...
|
class | GivaroZpz |
| wrapper of Givaro's ZpzDom. More...
|
class | Hom |
| map element of source ring(field) to target ring More...
|
class | LidiaGfq |
| defines the Galois Field GF(pk). More...
|
struct | Local2_32 |
| Fast arithmetic mod 2^32, including gcd. More...
|
class | ModularBalance< int > |
| template <> More...
|
class | Modular< int32 > |
| template <> More...
|
class | Modular< int8 > |
| Specialization of Modular to signed 8 bit element type with efficient dot product. More...
|
class | Modular< double > |
| template <> More...
|
class | Modular< int32 > |
| template <> More...
|
class | Modular< int16 > |
| Specialization of Modular to short element type with efficient dot product. More...
|
class | UnparametricRandIter< NTL::GF2E > |
| template<> More...
|
struct | NTL_zz_p |
| long ints modulo a positive integer. More...
|
struct | NTL_PID_zz_p |
| extend Wrapper of zz_p from NTL. Add PID functions More...
|
class | ParamFuzzy |
class | PIR_ntl_ZZ_p |
| extend Wrapper of ZZ_p from NTL. Add PIR functions More...
|
class RR. |
Rational number field. This field is provided as a convenience in a few places. Use with caution because expression swell.
This specialization allows the UnparametricField} template class to be used to wrap NTL's RR class as a LinBox field.
|
template<> NTL::RR & | LinBox::UnparametricField< NTL::RR >::init (NTL::RR &x, const integer &y) const |
template<> integer & | LinBox::UnparametricField< NTL::RR >::convert (integer &x, const NTL::RR &y) const |
template<> NTL::RR & | LinBox::UnparametricField< NTL::RR >::inv (NTL::RR &x, const NTL::RR &y) const |
template<> bool | LinBox::UnparametricField< NTL::RR >::isZero (const NTL::RR &x) const |
template<> bool | LinBox::UnparametricField< NTL::RR >::isOne (const NTL::RR &x) const |
template<> NTL::RR & | LinBox::UnparametricField< NTL::RR >::invin (NTL::RR &x) const |
template<> std::ostream & | LinBox::UnparametricField< NTL::RR >::write (std::ostream &os) const |
template<> NTL::RR & | LinBox::UnparametricRandIter< NTL::RR >::random (NTL::RR &elt) const |
NTL_ZZ_p |
Arbitrary precision integers modulus a positive integer.
While NTL allows any integer to serve as the modulus, only prime moduli yield fields. Therefore, while arthmetic operations may be valid for any modulus, only prime moduli are supported in this implementation. The primality of the modulus will not be checked, so it is the programmer's responsibility to supply a prime modulus. These specializations allow the UnparametricField} template class to be used to wrap NTL's { ZZ} class as a LinBox field.
|
template<> NTL::ZZ_p & | LinBox::UnparametricField< NTL::ZZ_p >::init (NTL::ZZ_p &x, const integer &y) const |
| Initialization of field element from an integer. Behaves like C++ allocator construct. This function assumes the output field element x has already been constructed, but that it is not already initialized. This done by converting to a std::string : inefficient but correct.
|