
1

Guide to NumPy
Travis E. Oliphant, PhD

Brigham Young University
Provo, UT

January 6, 2005

This book is under restricted distribution using a Market-Determined Tempo-

rary, Distribution-Restriction (MDTDR) system (see http://www.trelgol.com) until

October 31, 2010 at the latest. If you receive this book, you are obligated to the

author not to re-distribute it until the temporary, distribution-restriction lapses. If

you have multiple users at an institution, you should either share a single copy us-

ing some form of digital library check-out, or buy multiple copies. The more copies

purchased, the sooner the documentation can be released from this inconvenient dis-

tribution restriction. Your support of this temporary distribution restriction will

enable this author and others like him to produce more quality books and software.

Contents

I NumPy from Python 10

1 Origins of NumPy 11

2 Object Essentials 16

2.1 Data-Type Descriptors . 17

2.2 Basic indexing (slicing) . 21

2.3 Memory Layout of ndarray . 23

2.3.1 Contiguous Memory Layout 24

2.3.2 Discontiguous memory layout 25

2.4 Universal Functions for arrays . 27

2.5 Summary of new features . 29

2.6 Summary of differences with Numeric 30

2.6.1 The list of necessary changes: 31

2.6.2 Recommended changes . 33

3 The Array Object 34

3.1 ndarray Object Attributes . 34

3.1.1 Memory Layout attributes . 34

3.1.2 Data Type attributes . 38

3.1.3 Other attributes . 39

3.1.4 Array Interface attributes . 40

3.2 ndarray Methods . 41

3.2.1 Array conversion . 42

3.2.2 Array shape manipulation . 45

3.2.3 Array item selection and manipulation 48

3.2.4 Array calculation . 53

3.3 Array Special Methods . 55

3.3.1 Methods for standard library functions 55

3.3.2 Basic customization . 58

2

CONTENTS 3

3.3.3 Container customization . 60

3.3.4 Arithmetic customization . 61

3.3.4.1 Binary . 61

3.3.4.2 In-place . 62

3.3.4.3 Unary operations 63

3.3.4.4 Array indexing . 64

3.3.5 Basic Slicing . 64

3.3.6 Advanced selection . 66

3.3.6.1 Integer . 66

3.3.6.2 Boolean . 68

3.3.7 Flat Iterator indexing . 69

4 Basic Routines 70

4.1 Creating arrays . 70

4.2 Operations on two or more arrays . 73

4.3 Printing arrays . 76

4.4 Functions redundant with methods 77

4.5 Dealing with types . 77

5 Additional Convenience Routines 79

5.1 Shape functions . 79

5.2 Basic functions . 81

5.3 Polynomial functions . 86

5.4 Array construction using index tricks 89

5.5 Two-dimensional functions . 90

5.6 More data type functions . 93

5.7 Functions that behave like ufuncs . 95

6 Scalar objects 96

6.1 Attributes of array scalars . 97

6.2 Methods of array scalars . 99

6.3 Defining New Types . 100

7 Data-type Descriptors 102

7.1 Attributes . 102

7.2 Construction . 104

7.3 Methods . 108

CONTENTS 4

8 Standard Classes 109

8.1 Big arrays . 110

8.2 Special attributes and methods recognized by NumPy 110

8.3 Matrix Objects . 111

8.4 Memory-mapped-file arrays . 112

8.5 Character arrays (NumPy.char) . 114

8.6 Record Arrays (NumPy.rec) . 114

8.7 Masked Arrays (NumPy.ma) . 115

8.8 Array Iterators . 115

8.8.1 Default iteration . 115

8.8.2 Flat iteration . 116

8.8.3 N-dimensional enumeration 116

8.8.4 Iterator for broadcasting . 117

9 Universal Functions 118

9.1 Description . 118

9.1.1 Broadcasting . 119

9.1.2 Output type determination 119

9.1.3 Use of internal buffers . 119

9.1.4 Error handling . 120

9.2 ufunc attributes . 121

9.3 Casting Rules . 122

9.4 ufunc Object methods . 123

9.4.1 Reduce . 125

9.4.2 Accumulate . 125

9.4.3 Reduceat . 126

9.4.4 Outer . 127

9.5 Available ufuncs . 128

9.5.1 Math operations . 128

9.5.2 Trigonometric functions . 130

9.5.3 Bit-twiddling functions . 131

9.5.4 Comparison functions . 132

9.5.5 Floating functions . 135

10 Basic Modules 137

10.1 Linear Algebra (linalg) . 137

10.2 Discrete Fourier Transforms (dft) 139

10.3 Random Numbers (random) . 143

10.3.1 Discrete Distributions . 144

CONTENTS 5

10.3.2 Continuous Distributions . 146

10.3.3 Miscellaneous utilities . 152

II C-API 154

11 New Python Types and C-Structures 155

11.1 New Python Types Defined . 156

11.1.1 PyArray Type (PyBigArray Type) 156

11.1.2 PyArrayDescr Type . 158

11.1.2.1 PyArray Type description 162

11.1.3 PyUFunc Type . 163

11.1.4 PyArrayIter Type . 165

11.1.5 PyArrayMultiIter Type . 167

11.1.6 ScalarArrayTypes . 168

11.2 Other C-Structures . 168

11.2.1 PyArray Dims . 168

11.2.2 PyArray Chunk . 169

11.2.3 PyArrayInterface . 169

11.2.4 Internally used structures . 170

11.2.4.1 PyUFuncLoopObject 171

11.2.4.2 PyUFuncReduceObject 171

11.2.4.3 PyArrayMapIter Type 171

12 Complete API 172

12.1 Configuration defines . 172

12.1.1 Guaranteed to be defined . 172

12.1.2 Possible defines . 173

12.2 Array Data Types . 173

12.2.1 Enumerated Types . 174

12.2.2 Defines . 174

12.2.2.1 Max and min values for integers 174

12.2.2.2 Number of bits in data types 175

12.2.2.3 Bit-width references to enumerated typenums 175

12.2.2.4 Integer that can hold a pointer 175

12.2.3 C-type names . 175

12.2.3.1 Boolean . 176

12.2.3.2 (Un)Signed Integer 176

12.2.3.3 (Complex) Floating point 176

12.2.3.4 Bit-width names . 176

CONTENTS 6

12.2.4 Printf Formatting . 177

12.3 Array API . 177

12.3.1 Array structure and data access 177

12.3.1.1 Data access . 178

12.3.2 Creating arrays . 179

12.3.2.1 From scratch . 179

12.3.2.2 From other objects 181

12.3.3 Dealing with types . 185

12.3.3.1 General check of Python Type 185

12.3.3.2 Data-type checking 185

12.3.3.3 Converting data types 188

12.3.3.4 New data types . 190

12.3.3.5 Special functions for PyArray OBJECT 191

12.3.4 Array flags . 191

12.3.4.1 Basic Array Flags 191

12.3.4.2 Combinations of array flags 192

12.3.4.3 Flag-like constants 192

12.3.4.4 Flag checking . 192

12.3.5 Array method alternative API 194

12.3.5.1 Conversion . 194

12.3.5.2 Shape Manipulation 195

12.3.5.3 Item selection and manipulation 197

12.3.5.4 Calculation . 198

12.3.6 Functions . 200

12.3.6.1 Array Functions . 200

12.3.6.2 Other functions . 202

12.3.7 Array Iterators . 203

12.3.8 Broadcasting (multi-iterators) 203

12.3.9 Array Scalars . 204

12.3.10Data-type descriptors . 205

12.3.11Conversion Utilities . 207

12.3.11.1 For use with PyArg ParseTuple 207

12.3.11.2 Other conversions 208

12.3.12Miscellaneous . 209

12.3.12.1 Importing the API 209

12.3.12.2 Internal Flexibility 210

12.3.12.3 Memory management 211

12.3.12.4 Threading support 212

CONTENTS 7

12.3.12.5 Priority . 213

12.3.12.6 Default buffers . 213

12.3.12.7 Other constants . 214

12.3.12.8 Miscellaneous Macros 214

12.4 UFunc API . 215

12.4.1 Constants . 215

12.4.2 Macros . 215

12.4.3 Functions . 216

12.4.4 Generic functions . 217

12.5 Importing the API . 219

13 How to extend Scipy 221

13.1 Writing an extension module . 221

13.2 Required subroutine . 222

13.3 Getting at array memory . 222

13.4 Creating a brand-new array . 222

13.5 Accessing elements of the array . 222

14 Beyond the Basics 223

14.1 Iterating over elements in the array. 223

14.2 Creating a new universal function . 223

14.3 Using the broadcasting interface in C 223

14.3.1 Simple Interface . 223

14.3.2 More general . 223

14.4 Adding a new data type for the ndarray 223

14.5 Subtyping the ndarray in C . 223

14.6 Calling other compiled libraries from Python 223

14.6.1 Hand-generated wrappers . 224

14.6.2 Using f2py . 224

14.6.3 Using weave . 224

14.7 Other tools installed separately . 224

14.7.1 Using PyRex . 224

14.7.2 Using ctypes . 224

14.7.3 Using SWIG . 225

14.7.4 Other tools . 225

14.7.4.1 Boost . 225

14.7.4.2 SIP . 225

14.7.4.3 PyFort . 225

CONTENTS 8

15 Code Explanations 226

15.1 Code generation . 226

15.2 Array Scalars . 226

15.3 N-d Array Iteration . 226

15.4 Advanced Indexing . 226

15.5 Universal Functions . 226

List of Tables

2.1 Built-in data types for an ndarray. The bold-face types correspond

to standard Python types . 20

3.1 Attributes of the ndarray. 35

3.2 Array conversion methods . 45

3.3 Array item selection and shape manipulation methods. If axis is an

argument, then the calculation is performed along that axis. An axis

value of None means the array is flattened before calculation proceeds. 52

3.4 Array object calculation methods. If axis is an argument, then the

calculation is performed along that axis. An axis value of None means

the array is flattened before calculation proceeds. 56

6.1 Array scalar types that inherit from basic Python types. The intc

array data type might also inherit from the IntType if it has the same

number of bits as the int array data type on your platform. 96

9.1 Universal function (ufunc) attributes. 122

10.1 Functions in numpy.dual (both in NumPy and SciPy) 137

9

Part I

NumPy from Python

10

Chapter 1

Origins of NumPy

NumPy builds on (and is a successor to) the successful Numeric array object. It’s

goal is to create a useful environment for scientific computing. In order to better

understand the people surrounding NumPy and (its library-package) SciPy, I will

explain a little about how SciPy and NumPy originated. As a graduate student

studying biomedical imaging at the Mayo Clinic in Rochester, MN. I came across

Python and its Numerical extension in 1998 while I was looking for ways to analyze

large data sets for Magnetic Resonance Imaging and Ultrasound using a high-level

language. I quickly fell in love with Python programming which is a remarkable

statement to make about a programming language. If I had not seen others with

the same view, I might have seriously doubted my sanity. I became rather involved

in the Numeric Python community, adding the C-API chapter to the Numeric

documentation (for which Paul Dubois graciously made me a co-author).

As I progressed with my thesis work, programming in Python was so enjoyable

that I felt inhibited when I worked with other programming frameworks. As a result,

when a task I needed to perform was not available in the core language, or in the

Numeric extension, I looked around and found C or Fortran code that performed

the needed task, wrapped it into Python (either by hand or using SWIG), and used

the new functionality in my programs.

Along the way, I learned a great deal about the underlying structure of Numeric

and grew to admire it’s simple but elegant structures that grew out of the mechanism

by which Python allows itself to be extended.

11

CHAPTER 1. ORIGINS OF NUMPY 12

NOTE

Numeric was originally written in 1995 largely by Jim Hugunin

while he was a graduate student at MIT. He received help from

many people including Jim Fulton, David Ascher, Paul DuBois,

and Konrad Hinsen. These individuals and many others added

comments, criticisms, and code which helped the Numeric exten-

sion reach stability. Jim Hugunin did not stay long as an active

member of the community — moving on to write Jython and, later,

Iron Python.

By operating in this need-it-make-it fashion I ended up with a substantial li-

brary of extension modules that helped Python + Numeric become easier to use

in a scientific setting. These early modules included raw input-output functions,

a special function library, an integration library, an ordinary differential equation

solver, some least-squares optimizers, and sparse matrix solvers. While I was doing

this laborious work, Pearu Peterson noticed that a lot of the routines I was wrap-

ping were written in Fortran and there was no simplified wrapping mechanism for

Fortran subroutines (like SWIG for C). He began the task of writing f2py which

made it possible to easily wrap Fortran programs into Python. I helped him a little

bit, mostly with testing and contributing early function-call-back code, but he put

forth the brunt of the work. His result was simply amazing to me. I’ve always been

impressed with f2py, especially because I knew how much effort writing and main-

taining extension modules could be. Anybody serious about scientific computing

with Python will appreciate that f2py is distributed along with NumPy.

When I finished my Ph.D. in 2001, Eric Jones (who had recently completed his

Ph.D. at Duke) contacted me because he had a collection of Python modules he had

developed as part of his thesis work as well. He wanted to combine his modules with

mine into one super package. Together with Pearu Peterson we joined our efforts,

and SciPy was born in 2001. Since then, many people have contributed module code

to SciPy including Fernando Perez, Prabhu Ramachandran, Charles Harris, David

Cooke, Gary Strangman, and Jean-Sebastien Roy. Others such as Travis Vaught,

David Morrill, Jeff Whitaker, and Louis Luangkesorn have contributed testing and

build support.

At the start of 2005, SciPy was at release 0.3 and relatively stable for an early

version number. Part of the reason it was difficult to stabilize SciPy was that the

array object upon which SciPy builds was undergoing a bit of an upheveal. At about

the same time as SciPy was being built, some Numeric users were hitting up against

the limited capabilities of Numeric. In particular, the ability to deal with memory

CHAPTER 1. ORIGINS OF NUMPY 13

mapped files (and associated alignment and swapping issues), record arrays, and

altered error checking modes were important but limited or non-existent in Numeric.

As a result, numarray was created by Perry Greenfield, Todd Miller, and Rick White

at the Space Science Telescope Institute as a replacement for Numeric. Numarray

used a very different implementation scheme as a mix of Python classes and C code

(which led to extreme slow downs in certain common uses). While improving some

capabilities, it was slow to pick up on the more advanced features of Numeric’s

universal functions (ufuncs) — never re-creating the C-API that SciPy depended

on. This made it difficult for SciPy to “convert” to numarray.

Many newcomers to scientific computing with Python were told that numarray

was the future and started developing for it. Very useful tools were developed

that could not be used with Numeric (because of numarray’s change in C-API),

and therefore could not be used easily in SciPy. This state of affairs was very

discouraging for me personally as it left the community fragmented. Some developed

for numarray, others developed as part of SciPy. A few people even rejected adopting

Python for scientific computing entirely because of the split. In addition, I estimate

that quite a few Python users simply stayed away from both SciPy and numarray,

leaving the community smaller than it could have been given the number of people

that use Python for science and engineering purposes. It should be recognized

that the split was not intentional, but simply an outgrowth of the different and

exacting demands of scientific computing users. My describing these events should

not be construed as assigning blame to anyone. I very much admire and appreciate

everyone I’ve met who is involved with scientific computing and Python. Using a

stretched biological metaphor, it is only through the process of dividing and merging

that better results are born. I think this is defintely the case with NumPy.

In early 2005, I decided to begin an effort to help bring the diverging community

together under a common framework if it were possible. I first looked at numarray

to see what could be done to add the missing features to make NumPy work with

it as a core array object. After a couple of days of studying numarray, I was not

enthusiastic about this approach. My familiarity with the Numeric code base no

doubt biased my opinion, but it seemed to me that the features of Numarray could

be added back to Numeric with a few fundamental changes to the core object. This

would make the transition of NumPy to a more enhanced array object much easier

in my mind.

Therefore, I began to construct this hybrid array object complete with an en-

hanced set of universal (broadcasting) functions that could deal with it. Along the

way, quite a few new features and significant enhancements were added to the array

object and its surrounding infrastructure. This book describes the result of that

CHAPTER 1. ORIGINS OF NUMPY 14

year-long effort which culminated with the release of NumPy in early 2006. I first

named the new package, SciPy Core, and used the scipy namespace. However, after

a few months of testing under that name, it became clear that a separate names-

pace was needed for the new package. As a result, a rapid search for a new name

resulted in actually coming back to the NumPy name which was the unofficial name

of Numerical Python but never the actual namespace. Because the new package

builds on the code-base of and is a successor to Numeric, I think the NumPy name

is fitting and hopefully not too confusing to new users.

This book only briefly outlines some of the infrastructure that surrounds the

basic objects in NumPy to provide the additional functionality contained in the older

Numeric package (i.e. LinearAlgebra, RandomArray, FFT). This infrastructure in

NumPy includes basic linear algebra routines, Fourier transform capabilities, and

random number generators. In addition, the f2py module is described in its own

documentation, and so is only briefly mentioned in the second part of the book.

There are also extensions to the standard Python distutils and testing frameworks

included with NumPy that are useful in constructing your own packages built on top

of NumPy. The central purpose of this book, however, is to describe and document

the basic NumPy system that is available under the numpy.core and numpy.lib

namespaces.

NOTE

The numpy namespace includes all names under the numpy.core

and numpy.lib namespaces as well. Thus, import numpy will also

import the names from numpy.core and numpy.lib (along with fft,

ifft, rand, and randn from from the other standard libraries). This

is the recommended way to use numpy.

The following table gives a brief outline of the sub-packages contained in numpy

package.

CHAPTER 1. ORIGINS OF NUMPY 15

Sub-Package Purpose Comments

core basic objects all names exported to numpy

lib additional utilities all names exported to numpy

linalg basic linear algebra old LinearAlgebra from Numeric

dft discrete Fourier transforms old FFT from Numeric

random random number generators old RandomArray from Numeric

distutils enhanced build and distribution improvements for standard distutils

testing unit-testing utility functions useful for testing

f2py automatic wrapping of Fortran code a useful utility needed by SciPy

Chapter 2

Object Essentials

NumPy provides two fundamental objects: an N-dimensional array object (ndarray)

and a universal function object (ufunc). There are other objects that build on top

of these which you may find useful in your work, and these will be discussed later.

The current chapter will provide background information on just the ndarray and

the ufunc that will be important for understanding the attributes and methods to

be discussed later.

An N-dimensional array is a homogeneous collection of “items” indexed using N

integers. There are two essential pieces of information that define an N-dimensional

array: 1) the shape of the array, and 2) the kind of item the array is composed

of. The shape of the array is a tuple of N integers, one for each dimension, that

provides information on how far the index can vary along that dimension (see tip).

It is also necessary to specify the kind of item the array is composed of. Because

every ndarray is a homogeneous collection of exactly the same data-type, every

item takes up the same size block of memory, and each block of memory in the

array is interpreted in exactly the same way1.

i TIP

All arrays in base NumPy are indexed starting at 0 and ending at

M-1 following the Python convention.

For example, consider the following piece of code:

1By using OBJECT arrays, one can effectively have heterogeneous arrays, but the system still
sees each element of the array as exactly the same thing (a reference to a Python object).

16

CHAPTER 2. OBJECT ESSENTIALS 17

>>> a = array([[1,2,3],[4,5,6]])

>>> a.shape

(2, 3)

>>> a.dtype

<type ’int32 arrtype’>

NOTE

for all code in this book it is assumed that you have first entered

from numpy import *. In addition, any previously defined arrays

are still defined for subsequent examples.

This code defines an array of size 2 × 3 composed of 32-bit integer elements

(on my 32-bit platform) which consumes 4 bytes per element. We can index into

this two-dimensional array using two integers: the first integer running from 0 to 1

inclusive and the second from 0 to 2 inclusive. For example, index (1, 1) selects the

element with value 5:

>>> a[1,1]

5

2.1 Data-Type Descriptors

In NumPy, an ndarray is an N -dimensional array of items where each item takes up

a fixed number of bytes. Typically, this fixed number of bytes represents an integer

or a floating-point number. However, this fixed number of bytes could also repre-

sent an arbitrary record made up of any collection of data types. NumPy achieves

this flexibility through the use of data-type-descriptor (dtypedescr) objects. Ev-

ery array has an associated dtypedescr object which describes the layout of the

array data. Every dtypedescr object, in turn, has an associated Python type-object

that determines exactly what type of Python object is returned when an element

of the array is accessed. The dtypedescr objects are flexible enough to contain ref-

erences to arrays of other dtypedescr objects and, therefore, can be used to define

nested records. This advanced functionality will described in better detail later

as it is mainly useful for the recarray (record array) subclass that will be defined

later. However, all ndarrays can enjoy the flexibility provided by the dtypedescr

objects. Figure 2.1 provides a conceptual diagram showing the relationship between

the ndarray, its associated data-type-descriptor object, and an array-scalar that is

returned when a single-element of the array is accessed. Note that the data-type

CHAPTER 2. OBJECT ESSENTIALS 18

descriptor
data−type

header ...
ndarray

scalar
array

head

Figure 2.1: Conceptual diagram showing the relationship between the three fun-
damental objects used to describe the data in an array: 1) the ndarray itself, 2)
the data-type-descriptor that details the layout of a single fixed-size element of the
array, 3) the array-scalar Python object that is returned when a single element of
the array is accessed.

descriptor points to the type-object of the array scalar. An array scalar is returned

using the type-object and a particular element of the ndarray.

Every dtypedescr object is based on one of 21 built-in dtypedescr objects. These

built-in objects allow numeric operations on a wide-variety of integer, floating-point,

and complex data types. Associated with each data-type-descriptor is a Python type

object whose instances are array scalars. This type-object can be obtained using

the dtype attribute of both the dtypedescr object and the ndarray itself. Python

typically defines only one data-type of a particular data class (one integer type, one

floating-point type, etc.). This can be convenient for some applications that don’t

need to be concerned with all the ways data can be represented in a computer. For

scientific applications, however, this is not always true. As a result, in NumPy, their

are 21 different fundamental Python data-type-descriptor objects built-in. These

descriptors are mostly based on the types available in the C language that CPython

is written in. However, there are a few types that are extremely flexible, such as

string, unicode, void, and object.

The fundamental data-types are shown in Table 2.1. Along with their (mostly)

C-derived names, the integer, float, and complex data-types are also available using

a bit-width convention so that an array of the right size can always be ensured (e.g.

int8, float64, complex128). The C-like names are also accessible using a character

code which is also shown in the table. Names for the data types that would clash

with standard Python object names are followed by a trailing underscore, ’ ’. These

data types are so named because they use the same underlying precision as the

corresponding Python data types. Most scientific users should be able to use the

array-enhanced scalar objects in place of the Python objects. The array-enhanced

CHAPTER 2. OBJECT ESSENTIALS 19

scalars inherit from the Python objects they can replace and should act like them

under all circumstances.

i TIP

The array types bool , int , complex , float , object , uni-

code , and str are enhanced-scalars. They are very similar to

the standard Python types (without the trailing underscore) and

inherit from them (except for bool and object). They can be used

in place of the standard Python types whenever desired. Whenever

a data type is required, as an argument, the standard Python types

are recognized as well.

Three of the data types are flexible in that they can have items that are of an

arbitrary size: the str type, the unicode type, and the void type. While, you

can specify an arbitrary size for the type, every item in the array is still of that

specified size. The void type, for example, allows for arbitrary records to be defined

as elements of the array, and can be used to define exotic types built on top of the

basic ndarray.

NOTE

The two types intp and uintp are not separate types. They are

names bound to a specific integer type just large enough to hold a

memory address (a pointer) on the platform.

WARNING

Numeric Compatibility: If you used old typecode characters in

your Numeric code (which was never recommended), you will need

to change some of them to the new characters. In particular,

the needed changes are ’c->’S1’, ’b’->’B’, ’1’->’b’, ’s’->’h’, ’w’-

>’H’, and ’u’->’I’. These changes make the typecharacter conven-

tion more consistent with other Python modules such as the struct

module.

The fundamental data-types are arranged into a hierarchy of Python type-

objects shown in Figure 2.2. Each of the leaves on this hierarchy correspond to

actual data-types that arrays can have (in other words, there is a built in dtype-

descr object associated with each of these data-types). They also correspond to new

CHAPTER 2. OBJECT ESSENTIALS 20

Table 2.1: Built-in data types for an ndarray. The bold-face types correspond to
standard Python types

Type Bit-Width Character

bool boolXX ’?’

byte intXX ’b’

short ’h’

intc ’i’

int ’l’

longlong ’q’

intp ’p’

ubyte uintXX ’B’

ushort ’H’

uintc ’I’

uint ’L’

ulonglong ’Q’

uintp ’P’

single floatXX ’f’

float ’d’

longfloat ’g’

csingle complexXX ’F’

complex ’D’

clongfloat ’G’

object ’O’

str ’S#’

unicode ’U#’

void ’V#’

CHAPTER 2. OBJECT ESSENTIALS 21

Figure 2.2: Hierarchy of type objects representing the array data types. Not shown
are the two integer types intp and uintp which just point to the integer type
that holds a pointer for the platform. All the number types can be obtained using
bit-width names as well.

Python objects that can be created. These new objects are “scalar” types corre-

sponding to each fundamental data-type. Their purpose is to smooth out the rough

edges that result when mixing scalar and array operations. These scalar objects will

be discussed in more detail in Chapter 6. The other types in the hierarchy define

particular categories of types. These categories can be useful for testing whether or

not a data-type is of a particular class (using issubclass).

2.2 Basic indexing (slicing)

Indexing is a powerful tool in Python and NumPy takes full advantage of this

power. In fact, some of capabilities of Python’s indexing were first established by

the needs of Numeric users2. Indexing is also called slicing in Python, and slicing

2For example, the ability to index with a comma separated list of objects and have it correspond
to indexing with a tuple is a feature added to Python at the request of the NumPy community.
The Ellipsis object was also added to Python explicitly for the NumPy community. Extended

CHAPTER 2. OBJECT ESSENTIALS 22

for an ndarray works very similarly as it does for other Python sequences. There

are three big differences: 1) slicing can be done over multiple dimensions, 2) exactly

one ellipsis object can be used to indicate several dimensions at once, 3) slicing

cannot be used to expand the size of an array (unlike lists).

A few examples should make slicing more clear. Suppose A is a 10 × 20 array,

then A[3] is the same as A[3, :] and represents the 4th length-20 “row” of the array.

On the other hand, A[:, 3] represents the 4th length-10 “column” of the array. Every

third element of the 4th column can be selected as A[:: 3, 3]. Ellipses can be used to

replace zero or more “:” terms. In other words, an Ellipsis object expands to zero

or more full slice objects (“:”) so that the total number of dimensions in the slicing

tuple matches the number of dimensions in the array. Thus, if A is 10×20×30×40,

then A[3 :, ..., 4] is equivalent to A[3 :, :, :, 4] while A[..., 3] is equivalent to A[:, :, :, 3].

The following code illustrates some of these concepts:

>>> a = arange(60).reshape(3,4,5); print a

[[[0 1 2 3 4]

[5 6 7 8 9]

[10 11 12 13 14]

[15 16 17 18 19]]

[[20 21 22 23 24]

[25 26 27 28 29]

[30 31 32 33 34]

[35 36 37 38 39]]

[[40 41 42 43 44]

[45 46 47 48 49]

[50 51 52 53 54]

[55 56 57 58 59]]]

slicing (wherein a step can be provided) was also a feature added to Python because of Numeric.

CHAPTER 2. OBJECT ESSENTIALS 23

>>> print a[...,3]

[[3 8 13 18]

[23 28 33 38]

[43 48 53 58]]

>>> print a[1,...,3]

[23 28 33 38]

>>> print a[:,:,2]

[[2 7 12 17]

[22 27 32 37]

[42 47 52 57]]

>>> print a[0,::2,::2]

[[0 2 4]

[10 12 14]]

2.3 Memory Layout of ndarray

On a fundamental level, an N -dimensional array object is just a one-dimensional se-

quence of memory with fancy indexing code that maps an N -dimensional index into

a one-dimensional index. The one-dimensional index is necessary on some level be-

cause that is how memory is addressed in a computer. The fancy indexing, however,

can be very helpful for translating our ideas into computer code. This is because

many concepts we wish to model on a computer have a natural representation as

an N -dimensional array. While this is especially true in science and engineering,

it is also applicable to many other arenas which can be appreciated by considering

the popularity of the spreadsheet as well as “image processing” applications.

WARNING

Some high-level languages give pre-eminence to a particular use of

2-dimensional arrays as Matrices. In NumPy, however, the core

object is the more general N -dimensional array. NumPy defines a

matrix object as a sub-class of the N-dimensional array.

In order to more fully understand the array object along with its attributes

and methods it is important to learn more about how an N -dimensional array is

represented in the computer’s memory. A complete understanding of this layout is

only essential for optimizing algorithms operating on general purpose arrays. But,

even for the casual user, an understanding of memory layout will help to explain

the use of certain array attributes that may otherwise be mysterious.

CHAPTER 2. OBJECT ESSENTIALS 24

11109876543210

C

11109

876

543

210

(0,0) (0,2)

(1,0) (1,2)(1,1)

(2,2)

(3,2)

(0,1)

(2,0)

(3,0)

(2,1)

(3,1)

Fortran

11

10

9

8

7

6

5

4

3

2

1

0

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

(1,3)

(2,3)

(0,3)

Figure 2.3: Options for memory layout of a 2-dimensional array.

2.3.1 Contiguous Memory Layout

There is a fundamental ambiguity in how the mapping to a one-dimensional index

can take place which is illustrated for a 2-dimensional array in Figure 2.3. In that

figure, each block represents a chunk of memory that is needed for representing

the underlying array element. For example, each block could represent the 8 bytes

needed to represent a double-precision floating point number. In the figure, two

arrays are shown, a 4x3 array and a 3x4 array. Each of these arrays takes 12 blocks

of memory shown as a single, contiguous segment. How this memory is used to

form the abstract 2-dimensional array can vary, however, and the ndarray object

supports both styles. Which style is in use can be interrogated by the use of the

flags attribute which returns a dictionary of the state of array flags.

In the C-style of N -dimensional indexing shown on the left of Figure 2.3 the

last N -dimensional index “varies the fastest.” In other words, to move through

computer memory sequentially, the last index is incremented first, followed by the

second-to-last index and so forth. Some of the algorithms in NumPy that deal with

N -dimensional arrays work best with this kind of data.

In the Fortran-style of N -dimensional indexing shown on the right of Figure 2.3,

the first N -dimensional index “varies the fastest.” Thus, to move through computer

memory sequentially, the first index is incremented first until it reaches the limit in

that dimension, then the second index is incremented and the first index reset to

zero. While NumPy can be compiled without the use of a Fortran compiler, several

modules of the full installation of NumPy (available separately) rely on underlying

algorithms written in Fortran. Algorithms that work on N -dimensional arrays that

are written in Fortran typically expect Fortran-style arrays.

CHAPTER 2. OBJECT ESSENTIALS 25

The two-styles of memory layout for arrays are connected through the transpose

operation. Thus, if A is a (contiguous) C-style array, then the same block of mem-

ory can be used to represent AT as a (contiguous) Fortran-style array. This kind

of understanding can be useful when trying to optimize the wrapping of Fortran

subroutines, or if a more detailed understanding of how to write algorithms for

generally-indexed arrays is desired. But, fortunately, the casual user who does not

care if an array is copied occasionally to get it into the right orientation needed for

a particular algorithm can forget about how the array is stored in memory and just

visualize it as an N -dimensional array (that is, after all, the whole point of creating

the ndarray object in the first place).

2.3.2 Discontiguous memory layout

Both of the examples presented above are single-segment arrays where the entire

array is visited by sequentially marching through memory one element at a time.

When an algorithm in C or Fortran expects an N-dimensional array, this single

segment (of a certain fundamental type) is usually what is expected along with

the shape N -tuple. With a single-segment of memory representing the array, the

one-dimensional index into computer memory can always be computed from the

N -dimensional index. This concept is explored further in the following paragraphs.

Let ni be the value of the ith index into an array whose shape is represented by

the N integers di (i = 0 . . .N − 1). Then, the one-dimensional index into a C-style

contiguous array is

nC =
N−1∑

i=0

ni

N−1∏

j=i+1

dj

while the one-dimensional index into a Fortran-style contiguous array is

nF =

N−1∑

i=0

ni

i−1∏

j=0

dj .

In these formulas we are assuming that

m∏

j=k

dj = dkdk+1 · · · dm−1dm

so that if m < k, the product is 1. While perfectly general, these formulas may be

a bit confusing at first glimpse. Let’s see how they expand out for determining the

one-dimensional index corresponding to the element (1, 3, 2) of a 4× 5× 6 array. If

CHAPTER 2. OBJECT ESSENTIALS 26

the array is stored as Fortran contiguous, then

nF = n0 · (1) + n1 · (4) + n2 · (4 · 5)

= 1 + 3 · 4 + 2 · 20 = 53.

On the other hand, if the array is stored as C contiguous, then

nC = n0 · (5 · 6) + n1 · (6) + n2 · (1)

= 1 · 30 + 3 · 6 + 2 · 1 = 50.

The general pattern should be more clear from these examples.

The formulas for the one-dimensional index of the N-dimensional arrays reveal

what results in an important generalization for memory layout. Notice that each

formula can be written as

nX =

N−1∑

i=0

nis
X
i

where sX
i gives the stride for dimension i3. Thus, for C and Fortran contiguous

arrays respectively we have

sC
i =

N−1∏

j=i+1

dj = di+1di+2 · · · dN−1,

sF
i =

i−1∏

j=0

dj = d0d1 · · · di−1.

The stride is how many elements in the underlying one-dimensional layout of

the array one must jump in order to get to the next array element of a specific

dimension in the N-dimensional layout. Thus, in a C-style 4× 5× 6 array one must

jump over 30 elements to increment the first index by one, so 30 is the stride for

the first dimension (sC
0 = 30). If, for each array, we define a strides tuple with N

integers, then we have pre-computed and stored an important piece of how to map

the N -dimensional index to the one-dimensional one used by the computer.

In addition to providing a pre-computed table for index mapping, by allowing the

strides tuple to consist of arbitrary integers we have provided a more general layout

for the N -dimensional array. As long as we always use the strides information to

move around in the N -dimensional array, we can use any convenient layout we wish

for the underlying representation as long as it is regular enough to be defined by

3Our definition of stride here is an element-based stride, while the strides attribute returns a
byte-based stride. The byte-based stride is the element itemsize multiplied by the element-based
stride.

CHAPTER 2. OBJECT ESSENTIALS 27

constant jumps in each dimension. The ndarray object of NumPy uses this strides

information and therefore the underlying memory of an ndarray can be layed out

dis-contiguously.

NOTE

Several algorithms in NumPy work on arbitrarily strided arrays.

However, some algorithms require single-segment arrays. When an

irregularly strided array is passed in to such aglorithms, a copy is

automatically made.

An important situation where irregularly strided arrays occur is array indexing.

Consider again Figure 2.3. In that figure a high-lighted sub-array is shown. Define

C to be the 4 × 3 C contiguous array and F to be the 3 × 4 Fortran contiguous

array. The highlighted areas can be written respectively as C[1:3,1:3] and F [1:3,1:3].

As evidenced by the corresponding highlighted region in the one-dimensional view

of the memory, these sub-arrays are neither C contiguous nor Fortran contiguous.

However, they can still be represented by an ndarray object using the same striding

tuple as the original array used. Therefore, a regular indexing expression on an

ndarray can always produce an ndarray object without copying any data. This is

sometimes referred to as the “view” feature of array indexing, and one can see that

it is enabled by the use of striding information in the underlying ndarray object.

The greatest benefit of this feature is that it allows indexing to be done very rapidly

and without exploding memory usage (because no copies of the data are made).

2.4 Universal Functions for arrays

NumPy provides a wealth of mathematical functions that operate on arbitrary array

objects. From algebraic functions such as addition and multiplication to trigono-

metric functions such as sin, and cos. Each universal function (ufunc) is an instance

of a general class so that function behavior is the same. All ufuncs perform element-

by-element operations over an array or a set of arrays (for multi-input functions).

The ufuncs themselves and their methods are documented in Part 9.

One important aspect of ufunc behavior that should be introduced early, how-

ever, is the idea of broadcasting. Broadcasting is used in several places throughout

NumPy and is therefore worth early exposure. To understand the idea of broad-

casting, you first have to be conscious of the fact that all ufuncs are always element-

by-element operations. In other words, suppose we have a ufunc with two inputs

and one output (e.g. addition) and the inputs are both arrays of shape 4 × 6 × 5.

CHAPTER 2. OBJECT ESSENTIALS 28

Then, the output is going to be 4 × 6 × 5, and will be the result of applying the

underlying function (e.g. +) to each pair of inputs to produce the output at the

corresponding N -dimensional location.

Broadcasting allows ufuncs to deal in a meaningful way with inputs that do not

have exactly the same shape. In particular, the first rule of broadcasting is that

if all input arrays do not have the same number of dimensions, then a “1” will

be repeatedly pre-pended to the shapes of the smaller arrays until all the arrays

have the same number of dimensions. The second rule of broadcasting ensures that

arrays with a size of 1 along a particular dimension act as if they had the size of the

array with the largest shape along that dimension. The value of the array element

is assumed to be the same along that dimension for the “broadcasted” array. After

application of the broadcasting rules, the sizes of all arrays still must match.

While a little tedious to explain, the broadcasting rules are easy to pick up by

looking at a couple of examples. Suppose there is a ufunc with two inputs, A and

B. Now supposed that A has shape 4 × 6 × 5 while B has shape 4 × 6 × 1. The

ufunc will proceed to compute the 4 × 6 × 5 output as if B had been 4 × 6 × 5 by

assuming that B[..., k] = B[..., 0] for k = 1, 2, 3, 4.

Another example illustrates the idea of adding 1’s to the beginning of the array

shape-tuple. Suppose A is the same as above, but B is a length 5 array. Because

of the first rule, B will be interpreted as a 1× 1× 5 array, and then because of the

second rule B will be interpreted as a 4 × 6× 5 array by repeating the elements of

B in the obvious way. If it is desired, instead, to add 1’s to the end of the array

shape, then dimensions can always be added using the newaxis name in NumPy.

One important aspect of broadcasting is the calculation of functions on regularly

spaced grids. For example, suppose it is desired to show a portion of the multipli-

cation table by computing the function a ∗ b on a grid with a running from 6 to 9

and b running from 12 to 16. The following code illustrates how this could be done

using ufuncs and broadcasting.

>>> a = arange(6, 10); print a

[6 7 8 9]

>>> b = arange(12, 17); print b

[12 13 14 15 16]

>>> table = a[:,newaxis] * b

>>> print table

[[72 78 84 90 96]

[84 91 98 105 112]

[96 104 112 120 128]

[108 117 126 135 144]]

CHAPTER 2. OBJECT ESSENTIALS 29

2.5 Summary of new features

More information about using arrays in Python can be found in the old Numeric

documentation at http://numeric.scipy.org http://numeric.scipy.org. Quite a

bit of that documentation is still accurate, especially in the discussion of array

basics. There are significant differences, however, and this book seeks to explain

them in detail. The following list tries to summarize the significant new features

(over Numeric) available in the ndarray and ufunc objects of NumPy:

1. more data types (all standard C-data types plus complex floats, boolean,

string, unicode, and void *);

2. flexible data types where each array can have a different itemsize (but all

elements of the same array still have the same itemsize);

3. data types are true Python types contained in a hierarchy of types;

4. data descriptors define the data-type with support for data-descriptors with

fields and subarrays which allows record arrays with nested records;

5. many more array methods in addition to functional counterparts;

6. attributes more clearly distinguished from methods (attributes are intrinsic

parts of an array so that setting them changes the array itself);

7. array scalars covering all data types which inherit from Python scalars when

appropriate;

8. arrays can be misaligned, swapped, and in Fortran order in memory (facilitates

memory-mapped arrays);

9. arrays can be more easily read from text files and created from buffers;

10. arrays can be quickly written to files in text and/or binary mode;

11. arrays inherit from big arrays which do not define the sequence, or buffer

protocol and can therefore be very large on 64-bit platforms.

12. fancy indexing can be done on arrays using integer sequences and boolean

masks;

13. coercion rules are altered for mixed scalar / array operations so that scalars

(anything that produces a 0-dimensional array internally) will not determine

the output type in such cases.

CHAPTER 2. OBJECT ESSENTIALS 30

14. when coercion is needed, temporary buffer-memory allocation is limited to a

user-adjustable size;

15. errors are handled through the IEEE floating point status flags and there is

flexibility on a per function / module / builtin level for handling these errors;

16. one can register an error callback function in Python to handle errors are set

to ’call’ for their error handling;

17. ufunc reduce, accumulate, and reduceat can take place using a different type

then the array type if desired (without copying the entire array);

18. ufunc output arrays passed in can be a different type than expected from the

calculation;

19. arbitrary classes can be passed through ufuncs (array wrap and array priority);

20. ufuncs can be easily created from Python functions;

21. ufuncs have attributes to detail their behavior, including a dynamic doc string

that automatically generates the calling signature;

22. several new ufuncs (frexp, modf, ldexp, isnan, isfinite, isinf, signbit);

23. new types can be registered with the system so that specialized ufunc loops

can be written over new type objects;

24. C-API enhanced so that more of the functionality is available from compiled

code;

25. C-API enhanced so array structure access can take place through macros;

26. new iterator objects created for easy handling in C of discontiguous arrays;

27. types have more functions associated with them (no magic function lists in

the C-code). Any function needed is part of the type structure.

All of these enhancements will be documented more thoroughly in the remaining

portions of this book.

2.6 Summary of differences with Numeric

An attempt was made to retain backwards compatibility with Numeric all the way

to the C-level. This was mostly accomplished, with a few changes that needed to be

made for consistency of the new system. If you are just starting out with NumPy,

then this section may be skipped.

CHAPTER 2. OBJECT ESSENTIALS 31

i TIP

There is a module called convertcode.py that is distributed with

NumPy. This script takes a Python filename <name>.py as an ar-

gument, saves a copy <name>.orig, and makes any needed changes

to the script. This script only makes the necessary name replace-

ment changes, and should handle many needs. The script is also

availabel as a module NumPy.convertcode.

Throughout this book, warnings are inserted when compatibility issues with

old Numeric are raised. Here you can find a summary of all the differences that

may need changing in your code to work with the new NumPy.base ndarray object.

While you may not need to make any changes to get code to run with the ndarray

object, you will likely want to make changes to take advantage of the new features

of NumPy.base. Note that Numeric and NumPy can both be loaded together,

however, so you can use both simultaneously while you make the transition. If you

have Numeric 24.0, they should even be able to use each other’s memory.

2.6.1 The list of necessary changes:

1. Importing

(a) import Numeric –> import numpy as Numeric

(b) import Numeric as XX –> import numpy as XX

(c) from Numeric import <name1>,...<nameN> –> from numpy import

<name1>,...,<nameN>

(d) from Numeric import * –> from numpy import * (this may clobber more

names and therefore require further fixes to your code but then you didn’t

do this regularly anyway did you). The recommended procedure if this

replacement causes problems is to fix the use of from Numeric import *

to one of the previous three approaches and then continue.

(e) Similar name changes need to be made for MLab (numpy.lib.mlab), Lin-

earAlgebra (numpy.linalg), RandomArray (numpy.random), RNG (numpy.random),

and FFT (numpy.dft).

(f) multiarray and umath (if you used them directly) are now numpy.core.multiarray

and numpy.core.umath.

2. The old names under LinearAlgebra, RandomArray, and FFT are still there

but they are not advertised in this book. The old interfaces for RNG are gone,

for now. The functionality is available under NumPy.basic.random.

CHAPTER 2. OBJECT ESSENTIALS 32

3. Method name changes and methods converted to attributes

(a) arr.typecode() –> arr.dtypechar

(b) arr.iscontiguous() –> arr.flags.contiguous

(c) arr.byteswapped() –> arr.byteswap()

(d) arr.toscalar() –> arr.item()

(e) arr.itemsize() –> arr.itemsize

(f) arr.spacesaver() eliminated

(g) arr.savespace() eliminated

4. arr.flat now returns an indexable 1-D iterator. This behaves correctly when

passed to a function, but if you expected methods or attributes on arr.flat

— besides .copy() — then you will need to replace arr.flat with arr.ravel() or

arr.flatten().

5. If you used the construct arr.shape=<tuple>, this will not work for array

scalars. You cannot set the shape of an array-scalar (you can read it though).

As a result, for more general code you should use arr=arr.reshape(<tuple>)

which works for both array-scalars and arrays.

6. Some of the typecode characters have changed to be more consistent with

other Python modules (array and struct). Numeric –> numpy

(a) ’c’ –> ’S1’, ’B’

(b) ’b’ –> ’B’

(c) ’1’ –> ’b’

(d) ’s’ –> ’h’

(e) ’w’ –> ’H’

(f) ’u’ –> ’I’

7. UserArray is no longer available because the ndarray can be sub-classed with-

out the extra help.

8. Keyword and argument changes

(a) All typecode= keywords have been changed to dtype=.

(b) The savespace keyword argument has been removed from all functions

where it was present (array, sarray, asarray, ones, and zeros). The sarray

function is equivalent to asarray.

CHAPTER 2. OBJECT ESSENTIALS 33

9. Character arrays work differently now (there are no character arrays but only

string arrays whose basic element size can be any size). An ’S1’ array is

similar to a Character array in many ways but depending on how you were

using character arrays you may want to use a uint8 array.

2.6.2 Recommended changes

1. Convert typecharacters to bitwidth type names or c-type names.

2. Convert use of uppercase Int32, Float, etc., to lower case int32, float, etc.

3. Convert use of functions to method calls where appropriate (but notice the

possibly different default arguments).

4. Look for ways to take advantage of advanced slicing.

5. Remove any kludges you inserted to eliminate problems with Numeric that

are now gone.

6. Look for ways to take advantage of new features.

