aboutsummaryrefslogtreecommitdiff
path: root/prover_snapshots/coq/lib/sail/Sail2_state_lemmas.v
blob: c07016dc004bfc3bf3512c029a81ee44f7957ad8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
Require Import Sail2_values Sail2_prompt_monad Sail2_prompt Sail2_state_monad Sail2_state Sail2_state Sail2_state_lifting.
Require Import Sail2_state_monad_lemmas.

Local Open Scope equiv_scope.

(* Monad lifting *)

Lemma liftState_bind Regval Regs A B E {r : Sail2_values.register_accessors Regs Regval} {m : monad Regval A E} {f : A -> monad Regval B E} :
  liftState r (bind m f) === bindS (liftState r m) (fun x => liftState r (f x)).
induction m; simpl; autorewrite with state; auto using bindS_cong.
Qed.
Hint Rewrite liftState_bind : liftState.

(* TODO: I want a general tactic for this, but abstracting the hint db out
   appears to break.
   This does beta reduction when no rules apply to try and allow more rules to apply
   (e.g., the application of f to x in the above lemma may introduce a beta redex). *)
Ltac rewrite_liftState := rewrite_strat topdown (choice (progress try hints liftState) progress eval cbn beta).

Lemma liftState_return Regval Regs A E {r : Sail2_values.register_accessors Regs Regval} {a :A} :
  liftState (E:=E) r (returnm a) = returnS a.
reflexivity.
Qed.
Hint Rewrite liftState_return : liftState.

(*
Lemma Value_liftState_Run:
  List.In (Value a, s') (liftState r m s)
  exists t, Run m t a.
  by (use assms in \<open>induction r m arbitrary: s s' rule: liftState.induct\<close>;
      simp add: failS_def throwS_def returnS_def del: read_regvalS.simps;
      blast elim: Value_bindS_elim)

lemmas liftState_if_distrib[liftState_simp] = if_distrib[where f = "liftState ra" for ra]
*)
Lemma liftState_if_distrib Regs Regval A E {r x y} {c : bool} :
  @liftState Regs Regval A E r (if c then x else y) = if c then liftState r x else liftState r y.
destruct c; reflexivity.
Qed.
Lemma liftState_if_distrib_sumbool {Regs Regval A E P Q r x y} {c : sumbool P Q} :
  @liftState Regs Regval A E r (if c then x else y) = if c then liftState r x else liftState r y.
destruct c; reflexivity.
Qed.

Lemma Value_bindS_iff {Regs A B E} {f : A -> monadS Regs B E} {b m s s''} :
  List.In (Value b, s'') (bindS m f s) <-> (exists a s', List.In (Value a, s') (m s) /\ List.In (Value b, s'') (f a s')).
split.
* intro H.
  apply bindS_cases in H.
  destruct H as [(? & ? & ? & [= <-] & ? & ?) | [(? & [= <-] & ?) | (? & ? & ? & [= <-] & ? & ?)]];
  eauto.
* intros (? & ? & ? & ?).
  eauto with bindS_intros.
Qed.

Lemma Ex_bindS_iff {Regs A B E} {f : A -> monadS Regs B E} {m e s s''} :
  List.In (Ex e, s'') (bindS m f s) <-> List.In (Ex e, s'') (m s) \/ (exists a s', List.In (Value a, s') (m s) /\ List.In (Ex e, s'') (f a s')).
split.
* intro H.
  apply bindS_cases in H.
  destruct H as [(? & ? & ? & [= <-] & ? & ?) | [(? & [= <-] & ?) | (? & ? & ? & [= <-] & ? & ?)]];
  eauto.
* intros [H | (? & ? & H1 & H2)];
  eauto with bindS_intros.
Qed.

Lemma liftState_throw Regs Regval A E {r} {e : E} :
  @liftState Regval Regs A E r (throw e) = throwS e.
reflexivity.
Qed.
Lemma liftState_assert Regs Regval E {r c msg} :
  @liftState Regval Regs _ E r (assert_exp c msg) = assert_expS c msg.
destruct c; reflexivity.
Qed.
Lemma liftState_exit Regs Regval A E r :
  @liftState Regval Regs A E r (exit tt) = exitS tt.
reflexivity.
Qed.
Lemma liftState_exclResult Regs Regval E r :
  @liftState Regs Regval _ E r (excl_result tt) = excl_resultS tt.
reflexivity.
Qed.
Lemma liftState_barrier Regs Regval E r bk :
  @liftState Regs Regval _ E r (barrier bk) = returnS tt.
reflexivity.
Qed.
Lemma liftState_footprint Regs Regval E r :
  @liftState Regs Regval _ E r (footprint tt) = returnS tt.
reflexivity.
Qed.
Lemma liftState_choose_bool Regs Regval E r descr :
  @liftState Regs Regval _ E r (choose_bool descr) = choose_boolS tt.
reflexivity.
Qed.
(*declare undefined_boolS_def[simp]*)
Lemma liftState_undefined Regs Regval E r :
  @liftState Regs Regval _ E r (undefined_bool tt) = undefined_boolS tt.
reflexivity.
Qed.
Lemma liftState_maybe_fail Regs Regval A E r msg x :
  @liftState Regs Regval A E r (maybe_fail msg x) = maybe_failS msg x.
destruct x; reflexivity.
Qed.
Lemma liftState_and_boolM Regs Regval E r x y :
  @liftState Regs Regval _ E r (and_boolM x y) === and_boolS (liftState r x) (liftState r y).
unfold and_boolM, and_boolS.
rewrite liftState_bind.
apply bindS_cong; auto.
intros. rewrite liftState_if_distrib.
reflexivity.
Qed.
Lemma liftState_and_boolMP Regs Regval E P Q R r x y H :
  @liftState Regs Regval _ E r (@and_boolMP _ _ P Q R x y H) === and_boolSP (liftState r x) (liftState r y).
unfold and_boolMP, and_boolSP.
rewrite liftState_bind.
apply bindS_cong; auto.
intros [[|] [A]].
* rewrite liftState_bind;
  simpl;
  apply bindS_cong; auto;
  intros [a' A'];
  rewrite liftState_return;
  reflexivity.
* rewrite liftState_return.
  reflexivity.
Qed.

Lemma liftState_or_boolM Regs Regval E r x y :
  @liftState Regs Regval _ E r (or_boolM x y) === or_boolS (liftState r x) (liftState r y).
unfold or_boolM, or_boolS.
rewrite liftState_bind.
apply bindS_cong; auto.
intros. rewrite liftState_if_distrib.
reflexivity.
Qed.
Lemma liftState_or_boolMP Regs Regval E P Q R r x y H :
  @liftState Regs Regval _ E r (@or_boolMP _ _ P Q R x y H) === or_boolSP (liftState r x) (liftState r y).
unfold or_boolMP, or_boolSP.
rewrite liftState_bind.
simpl.
apply bindS_cong; auto.
intros [[|] [A]].
* rewrite liftState_return.
  reflexivity.
* rewrite liftState_bind;
  simpl;
  apply bindS_cong; auto;
  intros [a' A'];
  rewrite liftState_return;
  reflexivity.
Qed.
Hint Rewrite liftState_throw liftState_assert liftState_exit liftState_exclResult
             liftState_barrier liftState_footprint liftState_choose_bool
             liftState_undefined liftState_maybe_fail
             liftState_and_boolM liftState_and_boolMP
             liftState_or_boolM liftState_or_boolMP
           : liftState.

Lemma liftState_try_catch Regs Regval A E1 E2 r m h :
  @liftState Regs Regval A E2 r (try_catch (E1 := E1) m h) === try_catchS (liftState r m) (fun e => liftState r (h e)).
induction m; intros; simpl; autorewrite with state;
solve
[ auto
| erewrite try_catchS_bindS_no_throw; intros;
  only 2,3: (autorewrite with ignore_throw; reflexivity);
  apply bindS_cong; auto
].
Qed.
Hint Rewrite liftState_try_catch : liftState.

Lemma liftState_early_return Regs Regval A R E r x :
  liftState (Regs := Regs) r (@early_return Regval A R E x) = early_returnS x.
reflexivity.
Qed.
Hint Rewrite liftState_early_return : liftState.

Lemma liftState_catch_early_return (*[liftState_simp]:*) Regs Regval A E r m :
  liftState (Regs := Regs) r (@catch_early_return Regval A E m) === catch_early_returnS (liftState r m).
unfold catch_early_return, catch_early_returnS.
rewrite_liftState.
apply try_catchS_cong; auto.
intros [a | e] s'; auto.
Qed.
Hint Rewrite liftState_catch_early_return : liftState.

Lemma liftState_liftR Regs Regval A R E r m :
  liftState (Regs := Regs) r (@liftR Regval A R E m) === liftRS (liftState r m).
unfold liftR, liftRS.
rewrite_liftState.
reflexivity.
Qed.
Hint Rewrite liftState_liftR : liftState.

Lemma liftState_try_catchR Regs Regval A R E1 E2 r m h :
  liftState (Regs := Regs) r (@try_catchR Regval A R E1 E2 m h) === try_catchRS (liftState r m) (fun x => liftState r (h x)).
unfold try_catchR, try_catchRS. rewrite_liftState.
apply try_catchS_cong; auto.
intros [r' | e] s'; auto.
Qed.
Hint Rewrite liftState_try_catchR : liftState.
(*
Lemma liftState_bool_of_bitU_nondet Regs Regval :
  "liftState r (bool_of_bitU_nondet b) = bool_of_bitU_nondetS b"
  by (cases b; auto simp: bool_of_bitU_nondet_def bool_of_bitU_nondetS_def liftState_simp)
Hint Rewrite liftState_bool_of_bitU_nondet : liftState.
*)
Lemma liftState_read_memt Regs Regval A B E H rk a sz r :
  liftState (Regs := Regs) r (@read_memt Regval A B E H rk a sz) === read_memtS rk a sz.
unfold read_memt, read_memt_bytes, read_memtS, maybe_failS. simpl.
apply bindS_cong; auto.
intros [byte bit].
destruct (option_map _); auto.
Qed.
Hint Rewrite liftState_read_memt : liftState.

Lemma liftState_read_mem Regs Regval A B E H rk asz a sz r :
  liftState (Regs := Regs) r (@read_mem Regval A B E H rk asz a sz) === read_memS rk a sz.
unfold read_mem, read_memS, read_memtS. simpl.
unfold read_mem_bytesS, read_memt_bytesS.
repeat rewrite bindS_assoc.
apply bindS_cong; auto.
intros [ bytes | ]; auto. simpl.
apply bindS_cong; auto.
intros [byte bit].
rewrite bindS_returnS_left. rewrite_liftState.
destruct (option_map _); auto.
Qed.
Hint Rewrite liftState_read_mem : liftState.

Lemma liftState_write_mem_ea Regs Regval A E rk asz a sz r :
  liftState (Regs := Regs) r (@write_mem_ea Regval A E rk asz a sz) = returnS tt.
reflexivity.
Qed.
Hint Rewrite liftState_write_mem_ea : liftState.

Lemma liftState_write_memt Regs Regval A B E wk addr sz v t r :
  liftState (Regs := Regs) r (@write_memt Regval A B E wk addr sz v t) = write_memtS wk addr sz v t.
unfold write_memt, write_memtS.
destruct (Sail2_values.mem_bytes_of_bits v); auto.
Qed.
Hint Rewrite liftState_write_memt : liftState.

Lemma liftState_write_mem Regs Regval A B E wk addrsize addr sz v r :
  liftState (Regs := Regs) r (@write_mem Regval A B E wk addrsize addr sz v) = write_memS wk addr sz v.
unfold write_mem, write_memS, write_memtS.
destruct (Sail2_values.mem_bytes_of_bits v); simpl; auto.
Qed.
Hint Rewrite liftState_write_mem : liftState.

Lemma bindS_rw_left Regs A B E m1 m2 (f : A -> monadS Regs B E) s :
  m1 s = m2 s ->
  bindS m1 f s = bindS m2 f s.
intro H. unfold bindS. rewrite H. reflexivity.
Qed. 

Lemma liftState_read_reg_readS Regs Regval A E reg get_regval' set_regval' :
  (forall s, map_bind reg.(of_regval) (get_regval' reg.(name) s) = Some (reg.(read_from) s)) ->
  liftState (Regs := Regs) (get_regval', set_regval') (@read_reg _ Regval A E reg) === readS (fun x => reg.(read_from) (ss_regstate x)).
intros.
unfold read_reg. simpl. unfold readS. intro s.
erewrite bindS_rw_left. 2: {
  apply bindS_returnS_left.
}
specialize (H (ss_regstate s)).
destruct (get_regval' _ _) as [v | ]; only 2: discriminate H.
rewrite bindS_returnS_left.
simpl in *.
rewrite H.
reflexivity.
Qed.

Lemma liftState_write_reg_updateS Regs Regval A E get_regval' set_regval' reg (v : A) :
  (forall s, set_regval' (name reg) (regval_of reg v) s = Some (write_to reg v s)) ->
  liftState (Regs := Regs) (Regval := Regval) (E := E) (get_regval', set_regval') (write_reg reg v) === updateS (fun s => {| ss_regstate := (write_to reg v s.(ss_regstate)); ss_memstate := s.(ss_memstate); ss_tagstate := s.(ss_tagstate) |}).
intros. intro s.
unfold write_reg. simpl. unfold readS, seqS.
erewrite bindS_rw_left. 2: {
  apply bindS_returnS_left.
}
specialize (H (ss_regstate s)).
destruct (set_regval' _ _) as [v' | ]; only 2: discriminate H.
injection H as H1.
unfold updateS.
rewrite <- H1.
reflexivity.
Qed.
(*
Lemma liftState_iter_aux Regs Regval A E :
  liftState r (iter_aux i f xs) = iterS_aux i (fun i x => liftState r (f i x)) xs.
  by (induction i "\<lambda>i x. liftState r (f i x)" xs rule: iterS_aux.induct)
     (auto simp: liftState_simp cong: bindS_cong)
Hint Rewrite liftState_iter_aux : liftState.

lemma liftState_iteri[liftState_simp]:
  "liftState r (iteri f xs) = iteriS (\<lambda>i x. liftState r (f i x)) xs"
  by (auto simp: iteri_def iteriS_def liftState_simp)

lemma liftState_iter[liftState_simp]:
  "liftState r (iter f xs) = iterS (liftState r \<circ> f) xs"
  by (auto simp: iter_def iterS_def liftState_simp)
*)
Lemma liftState_foreachM Regs Regval A Vars E (xs : list A) (vars : Vars) (body : A -> Vars -> monad Regval Vars E) r :
  liftState (Regs := Regs) r (foreachM xs vars body) === foreachS xs vars (fun x vars => liftState r (body x vars)).
revert vars.
induction xs as [ | h t].
* reflexivity.
* intros vars. simpl.
  rewrite_liftState.
  apply bindS_cong; auto.
Qed.
Hint Rewrite liftState_foreachM : liftState.

Lemma foreachS_cong {A RV Vars E} xs vars f f' :
  (forall a vars, f a vars === f' a vars) ->
  @foreachS A RV Vars E xs vars f === foreachS xs vars f'.
intro H.
revert vars.
induction xs.
* reflexivity.
* intros. simpl.
  rewrite H.
  apply bindS_cong; auto.
Qed.

Add Parametric Morphism {Regs A Vars E : Type} : (@foreachS A Regs Vars E)
  with signature eq ==> eq ==> equiv ==> equiv as foreachS_morphism.
apply foreachS_cong.
Qed.

(*Tactic Notation "sail_rewrite" ident(hintdb) := rewrite_strat topdown (choice (hints hintdb) progress eval cbn beta).
Ltac sail_rewrite hintdb := rewrite_strat topdown (choice (hints hintdb) progress eval cbn beta).*)

Lemma liftState_genlistM Regs Regval A E r f n :
  liftState (Regs := Regs) r (@genlistM A Regval E f n) === genlistS (fun x => liftState r (f x)) n.
unfold genlistM, genlistS.
rewrite_liftState.
reflexivity.
Qed.
Hint Rewrite liftState_genlistM : liftState.

Add Parametric Morphism {A RV E : Type} : (@genlistS A RV E)
  with signature equiv ==> eq ==> equiv as genlistS_morphism.
intros f g EQ n.
unfold genlistS.
apply foreachS_cong.
intros m vars.
rewrite EQ.
reflexivity.
Qed.

Lemma liftState_choose_bools Regs Regval E descr n r :
  liftState (Regs := Regs) r (@choose_bools Regval E descr n) === choose_boolsS n.
unfold choose_bools, choose_boolsS.
rewrite_liftState.
reflexivity.
Qed.
Hint Rewrite liftState_choose_bools : liftState.

(*
Lemma liftState_bools_of_bits_nondet[liftState_simp]:
  "liftState r (bools_of_bits_nondet bs) = bools_of_bits_nondetS bs"
  unfolding bools_of_bits_nondet_def bools_of_bits_nondetS_def
  by (auto simp: liftState_simp comp_def)
Hint Rewrite liftState_choose_bools : liftState.
*)

Lemma liftState_internal_pick Regs Regval A E r (xs : list A) :
  liftState (Regs := Regs) (Regval := Regval) (E := E) r (internal_pick xs) === internal_pickS xs.
unfold internal_pick, internal_pickS.
unfold choose.
rewrite_liftState.
apply bindS_cong; auto.
intros.
destruct (nth_error _ _); auto.
Qed.
Hint Rewrite liftState_internal_pick : liftState.

Lemma liftRS_returnS (*[simp]:*) A R Regs E x :
  @liftRS A R Regs E (returnS x) = returnS x.
reflexivity.
Qed.

Lemma concat_singleton A (xs : list A) :
  concat (xs::nil) = xs.
simpl.
rewrite app_nil_r.
reflexivity.
Qed.

Lemma liftRS_bindS Regs A B R E (m : monadS Regs A E) (f : A -> monadS Regs B E) :
  @liftRS B R Regs E (bindS m f) === bindS (liftRS m) (fun x => liftRS (f x)).
intro s.
unfold liftRS, try_catchS, bindS, throwS, returnS.
induction (m s) as [ | [[a | [msg | e]] t]].
* reflexivity.
* simpl. rewrite flat_map_app. rewrite IHl. reflexivity.
* simpl. rewrite IHl. reflexivity.
* simpl. rewrite IHl. reflexivity.
Qed.

Lemma liftRS_assert_expS_True (*[simp]:*) Regs R E msg :
  @liftRS _ R Regs E (assert_expS true msg) = returnS tt.
reflexivity.
Qed.

(*
lemma untilM_domI:
  fixes V :: "'vars \<Rightarrow> nat"
  assumes "Inv vars"
    and "\<And>vars t vars' t'. \<lbrakk>Inv vars; Run (body vars) t vars'; Run (cond vars') t' False\<rbrakk> \<Longrightarrow> V vars' < V vars \<and> Inv vars'"
  shows "untilM_dom (vars, cond, body)"
  using assms
  by (induction vars rule: measure_induct_rule[where f = V])
     (auto intro: untilM.domintros)

lemma untilM_dom_untilS_dom:
  assumes "untilM_dom (vars, cond, body)"
  shows "untilS_dom (vars, liftState r \<circ> cond, liftState r \<circ> body, s)"
  using assms
  by (induction vars cond body arbitrary: s rule: untilM.pinduct)
     (rule untilS.domintros, auto elim!: Value_liftState_Run)

lemma measure2_induct:
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> nat"
  assumes "\<And>x1 y1. (\<And>x2 y2. f x2 y2 < f x1 y1 \<Longrightarrow> P x2 y2) \<Longrightarrow> P x1 y1"
  shows "P x y"
proof -
  have "P (fst x) (snd x)" for x
    by (induction x rule: measure_induct_rule[where f = "\<lambda>x. f (fst x) (snd x)"]) (auto intro: assms)
  then show ?thesis by auto
qed

lemma untilS_domI:
  fixes V :: "'vars \<Rightarrow> 'regs sequential_state \<Rightarrow> nat"
  assumes "Inv vars s"
    and "\<And>vars s vars' s' s''.
           \<lbrakk>Inv vars s; (Value vars', s') \<in> body vars s; (Value False, s'') \<in> cond vars' s'\<rbrakk>
            \<Longrightarrow> V vars' s'' < V vars s \<and> Inv vars' s''"
  shows "untilS_dom (vars, cond, body, s)"
  using assms
  by (induction vars s rule: measure2_induct[where f = V])
     (auto intro: untilS.domintros)

lemma whileS_dom_step:
  assumes "whileS_dom (vars, cond, body, s)"
    and "(Value True, s') \<in> cond vars s"
    and "(Value vars', s'') \<in> body vars s'"
  shows "whileS_dom (vars', cond, body, s'')"
  by (use assms in \<open>induction vars cond body s arbitrary: vars' s' s'' rule: whileS.pinduct\<close>)
     (auto intro: whileS.domintros)

lemma whileM_dom_step:
  assumes "whileM_dom (vars, cond, body)"
    and "Run (cond vars) t True"
    and "Run (body vars) t' vars'"
  shows "whileM_dom (vars', cond, body)"
  by (use assms in \<open>induction vars cond body arbitrary: vars' t t' rule: whileM.pinduct\<close>)
     (auto intro: whileM.domintros)

lemma whileM_dom_ex_step:
  assumes "whileM_dom (vars, cond, body)"
    and "\<exists>t. Run (cond vars) t True"
    and "\<exists>t'. Run (body vars) t' vars'"
  shows "whileM_dom (vars', cond, body)"
  using assms by (blast intro: whileM_dom_step)

lemmas whileS_pinduct = whileS.pinduct[case_names Step]

lemma liftState_whileM:
  assumes "whileS_dom (vars, liftState r \<circ> cond, liftState r \<circ> body, s)"
    and "whileM_dom (vars, cond, body)"
  shows "liftState r (whileM vars cond body) s = whileS vars (liftState r \<circ> cond) (liftState r \<circ> body) s"
proof (use assms in \<open>induction vars "liftState r \<circ> cond" "liftState r \<circ> body" s rule: whileS.pinduct\<close>)
  case Step: (1 vars s)
  note domS = Step(1) and IH = Step(2) and domM = Step(3)
  show ?case unfolding whileS.psimps[OF domS] whileM.psimps[OF domM] liftState_bind
  proof (intro bindS_ext_cong, goal_cases cond while)
    case (while a s')
    have "bindS (liftState r (body vars)) (liftState r \<circ> (\<lambda>vars. whileM vars cond body)) s' =
          bindS (liftState r (body vars)) (\<lambda>vars. whileS vars (liftState r \<circ> cond) (liftState r \<circ> body)) s'"
      if "a"
    proof (intro bindS_ext_cong, goal_cases body while')
      case (while' vars' s'')
      have "whileM_dom (vars', cond, body)" proof (rule whileM_dom_ex_step[OF domM])
        show "\<exists>t. Run (cond vars) t True" using while that by (auto elim: Value_liftState_Run)
        show "\<exists>t'. Run (body vars) t' vars'" using while' that by (auto elim: Value_liftState_Run)
      qed
      then show ?case using while while' that IH by auto
    qed auto
    then show ?case by (auto simp: liftState_simp)
  qed auto
qed
*)

Local Opaque _limit_reduces.
Ltac gen_reduces :=
  match goal with |- context[@_limit_reduces ?a ?b ?c] => generalize (@_limit_reduces a b c) end.

(* TODO: rewrite_liftState is performing really badly here.  We could add liftState_if_distrib
   to the hint db, but then it starts failing in a way that causes the whole rewriting to fail. *)

Lemma liftState_whileM RV Vars E r measure vars cond (body : Vars -> monad RV Vars E) :
  liftState (Regs := RV) r (whileMT vars measure cond body) === whileST vars measure (fun vars => liftState r (cond vars)) (fun vars => liftState r (body vars)).
unfold whileMT, whileST.
generalize (measure vars) as limit. intro.
revert vars.
destruct (Z.le_decidable 0 limit).
* generalize (Zwf_guarded limit) as acc.
  apply Wf_Z.natlike_ind with (x := limit).
  + intros [acc] *; simpl.
    match goal with |- context [Build_ArithFact _ ?prf] => generalize prf; intros ?Proof end.
    rewrite_liftState.
    setoid_rewrite liftState_if_distrib.
    apply bindS_cong; auto.
    destruct a; rewrite_liftState; auto.
    apply bindS_cong; auto.
    intros. destruct (_limit_reduces _). simpl.
    reflexivity.
  + clear limit H.
    intros limit H IH [acc] vars s. simpl.
    destruct (Z_ge_dec _ _); try omega.
    autorewrite with liftState.
    apply bindS_ext_cong; auto.
    intros. rewrite liftState_if_distrib.
    destruct a; autorewrite with liftState; auto.
    apply bindS_ext_cong; auto.
    intros.
    gen_reduces.
    replace (Z.succ limit - 1) with limit; try omega. intro acc'.
    apply IH.
  + assumption.
* intros. simpl.
  destruct (Z_ge_dec _ _); try omega.
  reflexivity.
Qed.

(*
lemma untilM_dom_step:
  assumes "untilM_dom (vars, cond, body)"
    and "Run (body vars) t vars'"
    and "Run (cond vars') t' False"
  shows "untilM_dom (vars', cond, body)"
  by (use assms in \<open>induction vars cond body arbitrary: vars' t t' rule: untilM.pinduct\<close>)
     (auto intro: untilM.domintros)

lemma untilM_dom_ex_step:
  assumes "untilM_dom (vars, cond, body)"
    and "\<exists>t. Run (body vars) t vars'"
    and "\<exists>t'. Run (cond vars') t' False"
  shows "untilM_dom (vars', cond, body)"
  using assms by (blast intro: untilM_dom_step)

lemma liftState_untilM:
  assumes "untilS_dom (vars, liftState r \<circ> cond, liftState r \<circ> body, s)"
    and "untilM_dom (vars, cond, body)"
  shows "liftState r (untilM vars cond body) s = untilS vars (liftState r \<circ> cond) (liftState r \<circ> body) s"
proof (use assms in \<open>induction vars "liftState r \<circ> cond" "liftState r \<circ> body" s rule: untilS.pinduct\<close>)
  case Step: (1 vars s)
  note domS = Step(1) and IH = Step(2) and domM = Step(3)
  show ?case unfolding untilS.psimps[OF domS] untilM.psimps[OF domM] liftState_bind
  proof (intro bindS_ext_cong, goal_cases body k)
    case (k vars' s')
    show ?case unfolding comp_def liftState_bind
    proof (intro bindS_ext_cong, goal_cases cond until)
      case (until a s'')
      have "untilM_dom (vars', cond, body)" if "\<not>a"
      proof (rule untilM_dom_ex_step[OF domM])
        show "\<exists>t. Run (body vars) t vars'" using k by (auto elim: Value_liftState_Run)
        show "\<exists>t'. Run (cond vars') t' False" using until that by (auto elim: Value_liftState_Run)
      qed
      then show ?case using k until IH by (auto simp: comp_def liftState_simp)
    qed auto
  qed auto
qed*)

Lemma liftState_untilM RV Vars E r measure vars cond (body : Vars -> monad RV Vars E) :
  liftState (Regs := RV) r (untilMT vars measure cond body) === untilST vars measure (fun vars => liftState r (cond vars)) (fun vars => liftState r (body vars)).
unfold untilMT, untilST.
generalize (measure vars) as limit. intro.
revert vars.
destruct (Z.le_decidable 0 limit).
* generalize (Zwf_guarded limit) as acc.
  apply Wf_Z.natlike_ind with (x := limit).
  + intros [acc] * s; simpl.
(* TODO    rewrite_liftState.*)
autorewrite with liftState.
    apply bindS_ext_cong; auto.
    intros. autorewrite with liftState.
    apply bindS_ext_cong; auto.
    intros. rewrite liftState_if_distrib.
    destruct a0; auto.
    destruct (_limit_reduces _). simpl.
    reflexivity.
  + clear limit H.
    intros limit H IH [acc] vars s. simpl.
    destruct (Z_ge_dec _ _); try omega.
    autorewrite with liftState.
    apply bindS_ext_cong; auto.
    intros. autorewrite with liftState; auto.
    apply bindS_ext_cong; auto.
    intros. rewrite liftState_if_distrib.
    destruct a0; autorewrite with liftState; auto.
    gen_reduces.
    replace (Z.succ limit - 1) with limit; try omega. intro acc'.
    apply IH.
  + assumption.
* intros. simpl.
  destruct (Z_ge_dec _ _); try omega.
  reflexivity.
Qed.

(*

text \<open>Simplification rules for monadic Boolean connectives\<close>

lemma if_return_return[simp]: "(if a then return True else return False) = return a" by auto

lemma and_boolM_simps[simp]:
  "and_boolM (return b) (return c) = return (b \<and> c)"
  "and_boolM x (return True) = x"
  "and_boolM x (return False) = x \<bind> (\<lambda>_. return False)"
  "\<And>x y z. and_boolM (x \<bind> y) z = (x \<bind> (\<lambda>r. and_boolM (y r) z))"
  by (auto simp: and_boolM_def)

lemma and_boolM_return_if:
  "and_boolM (return b) y = (if b then y else return False)"
  by (auto simp: and_boolM_def)

lemma and_boolM_return_return_and[simp]: "and_boolM (return l) (return r) = return (l \<and> r)"
  by (auto simp: and_boolM_def)

lemmas and_boolM_if_distrib[simp] = if_distrib[where f = "\<lambda>x. and_boolM x y" for y]

lemma or_boolM_simps[simp]:
  "or_boolM (return b) (return c) = return (b \<or> c)"
  "or_boolM x (return True) = x \<bind> (\<lambda>_. return True)"
  "or_boolM x (return False) = x"
  "\<And>x y z. or_boolM (x \<bind> y) z = (x \<bind> (\<lambda>r. or_boolM (y r) z))"
  by (auto simp: or_boolM_def)

lemma or_boolM_return_if:
  "or_boolM (return b) y = (if b then return True else y)"
  by (auto simp: or_boolM_def)

lemma or_boolM_return_return_or[simp]: "or_boolM (return l) (return r) = return (l \<or> r)"
  by (auto simp: or_boolM_def)

lemmas or_boolM_if_distrib[simp] = if_distrib[where f = "\<lambda>x. or_boolM x y" for y]

lemma if_returnS_returnS[simp]: "(if a then returnS True else returnS False) = returnS a" by auto

lemma and_boolS_simps[simp]:
  "and_boolS (returnS b) (returnS c) = returnS (b \<and> c)"
  "and_boolS x (returnS True) = x"
  "and_boolS x (returnS False) = bindS x (\<lambda>_. returnS False)"
  "\<And>x y z. and_boolS (bindS x y) z = (bindS x (\<lambda>r. and_boolS (y r) z))"
  by (auto simp: and_boolS_def)

lemma and_boolS_returnS_if:
  "and_boolS (returnS b) y = (if b then y else returnS False)"
  by (auto simp: and_boolS_def)

lemmas and_boolS_if_distrib[simp] = if_distrib[where f = "\<lambda>x. and_boolS x y" for y]

lemma and_boolS_returnS_True[simp]: "and_boolS (returnS True) c = c"
  by (auto simp: and_boolS_def)

lemma or_boolS_simps[simp]:
  "or_boolS (returnS b) (returnS c) = returnS (b \<or> c)"
  "or_boolS (returnS False) m = m"
  "or_boolS x (returnS True) = bindS x (\<lambda>_. returnS True)"
  "or_boolS x (returnS False) = x"
  "\<And>x y z. or_boolS (bindS x y) z = (bindS x (\<lambda>r. or_boolS (y r) z))"
  by (auto simp: or_boolS_def)

lemma or_boolS_returnS_if:
  "or_boolS (returnS b) y = (if b then returnS True else y)"
  by (auto simp: or_boolS_def)

lemmas or_boolS_if_distrib[simp] = if_distrib[where f = "\<lambda>x. or_boolS x y" for y]

lemma Run_or_boolM_E:
  assumes "Run (or_boolM l r) t a"
  obtains "Run l t True" and "a"
  | tl tr where "Run l tl False" and "Run r tr a" and "t = tl @ tr"
  using assms by (auto simp: or_boolM_def elim!: Run_bindE Run_ifE Run_returnE)

lemma Run_and_boolM_E:
  assumes "Run (and_boolM l r) t a"
  obtains "Run l t False" and "\<not>a"
  | tl tr where "Run l tl True" and "Run r tr a" and "t = tl @ tr"
  using assms by (auto simp: and_boolM_def elim!: Run_bindE Run_ifE Run_returnE)

lemma maybe_failS_Some[simp]: "maybe_failS msg (Some v) = returnS v"
  by (auto simp: maybe_failS_def)

text \<open>Event traces\<close>

lemma Some_eq_bind_conv: "Some x = Option.bind f g \<longleftrightarrow> (\<exists>y. f = Some y \<and> g y = Some x)"
  unfolding bind_eq_Some_conv[symmetric] by auto

lemma if_then_Some_eq_Some_iff: "((if b then Some x else None) = Some y) \<longleftrightarrow> (b \<and> y = x)"
  by auto

lemma Some_eq_if_then_Some_iff: "(Some y = (if b then Some x else None)) \<longleftrightarrow> (b \<and> y = x)"
  by auto

lemma emitEventS_update_cases:
  assumes "emitEventS ra e s = Some s'"
  obtains
    (Write_mem) wk addr sz v tag r
      where "e = E_write_memt wk addr sz v tag r \<or> (e = E_write_mem wk addr sz v r \<and> tag = B0)"
        and "s' = put_mem_bytes addr sz v tag s"
  | (Write_reg) r v rs'
      where "e = E_write_reg r v" and "(snd ra) r v (regstate s) = Some rs'"
        and "s' = s\<lparr>regstate := rs'\<rparr>"
  | (Read) "s' = s"
  using assms
  by (elim emitEventS.elims)
     (auto simp: Some_eq_bind_conv bind_eq_Some_conv if_then_Some_eq_Some_iff Some_eq_if_then_Some_iff)

lemma runTraceS_singleton[simp]: "runTraceS ra [e] s = emitEventS ra e s"
  by (cases "emitEventS ra e s"; auto)

lemma runTraceS_ConsE:
  assumes "runTraceS ra (e # t) s = Some s'"
  obtains s'' where "emitEventS ra e s = Some s''" and "runTraceS ra t s'' = Some s'"
  using assms by (auto simp: bind_eq_Some_conv)

lemma runTraceS_ConsI:
  assumes "emitEventS ra e s = Some s'" and "runTraceS ra t s' = Some s''"
  shows "runTraceS ra (e # t) s = Some s''"
  using assms by auto

lemma runTraceS_Cons_tl:
  assumes "emitEventS ra e s = Some s'"
  shows "runTraceS ra (e # t) s = runTraceS ra t s'"
  using assms by (elim emitEventS.elims) (auto simp: Some_eq_bind_conv bind_eq_Some_conv)

lemma runTraceS_appendE:
  assumes "runTraceS ra (t @ t') s = Some s'"
  obtains s'' where "runTraceS ra t s = Some s''" and "runTraceS ra t' s'' = Some s'"
proof -
  have "\<exists>s''. runTraceS ra t s = Some s'' \<and> runTraceS ra t' s'' = Some s'"
  proof (use assms in \<open>induction t arbitrary: s\<close>)
    case (Cons e t)
    from Cons.prems
    obtain s_e where "emitEventS ra e s = Some s_e" and "runTraceS ra (t @ t') s_e = Some s'"
      by (auto elim: runTraceS_ConsE simp: bind_eq_Some_conv)
    with Cons.IH[of s_e] show ?case by (auto intro: runTraceS_ConsI)
  qed auto
  then show ?thesis using that by blast
qed

lemma runTraceS_nth_split:
  assumes "runTraceS ra t s = Some s'" and n: "n < length t"
  obtains s1 s2 where "runTraceS ra (take n t) s = Some s1"
    and "emitEventS ra (t ! n) s1 = Some s2"
    and "runTraceS ra (drop (Suc n) t) s2 = Some s'"
proof -
  have "runTraceS ra (take n t @ t ! n # drop (Suc n) t) s = Some s'"
    using assms
    by (auto simp: id_take_nth_drop[OF n, symmetric])
  then show thesis by (blast elim: runTraceS_appendE runTraceS_ConsE intro: that)
qed

text \<open>Memory accesses\<close>

lemma get_mem_bytes_put_mem_bytes_same_addr:
  assumes "length v = sz"
  shows "get_mem_bytes addr sz (put_mem_bytes addr sz v tag s) = Some (v, if sz > 0 then tag else B1)"
proof (unfold assms[symmetric], induction v rule: rev_induct)
  case Nil
  then show ?case by (auto simp: get_mem_bytes_def)
next
  case (snoc x xs)
  then show ?case
    by (cases tag)
       (auto simp: get_mem_bytes_def put_mem_bytes_def Let_def and_bit_eq_iff foldl_and_bit_eq_iff
             cong: option.case_cong split: if_splits option.splits)
qed

lemma memstate_put_mem_bytes:
  assumes "length v = sz"
  shows "memstate (put_mem_bytes addr sz v tag s) addr' =
         (if addr' \<in> {addr..<addr+sz} then Some (v ! (addr' - addr)) else memstate s addr')"
  unfolding assms[symmetric]
  by (induction v rule: rev_induct) (auto simp: put_mem_bytes_def nth_Cons nth_append Let_def)

lemma tagstate_put_mem_bytes:
  assumes "length v = sz"
  shows "tagstate (put_mem_bytes addr sz v tag s) addr' =
         (if addr' \<in> {addr..<addr+sz} then Some tag else tagstate s addr')"
  unfolding assms[symmetric]
  by (induction v rule: rev_induct) (auto simp: put_mem_bytes_def nth_Cons nth_append Let_def)

lemma get_mem_bytes_cong:
  assumes "\<forall>addr'. addr \<le> addr' \<and> addr' < addr + sz \<longrightarrow>
                   (memstate s' addr' = memstate s addr' \<and> tagstate s' addr' = tagstate s addr')"
  shows "get_mem_bytes addr sz s' = get_mem_bytes addr sz s"
proof (use assms in \<open>induction sz\<close>)
  case 0
  then show ?case by (auto simp: get_mem_bytes_def)
next
  case (Suc sz)
  then show ?case
    by (auto simp: get_mem_bytes_def Let_def
             intro!: map_option_cong map_cong foldl_cong
                     arg_cong[where f = just_list] arg_cong2[where f = and_bit])
qed

lemma get_mem_bytes_tagged_tagstate:
  assumes "get_mem_bytes addr sz s = Some (v, B1)"
  shows "\<forall>addr' \<in> {addr..<addr + sz}. tagstate s addr' = Some B1"
  using assms
  by (auto simp: get_mem_bytes_def foldl_and_bit_eq_iff Let_def split: option.splits)

end
*)