aboutsummaryrefslogtreecommitdiff
path: root/model/riscv_mem.sail
blob: 3549e8007fe66ea0e8a9f0c5c434289b8cbcdd92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/* Physical memory model.
 *
 * This assumes that the platform memory map has been defined, so that accesses
 * to MMIO regions can be dispatched.
 */

function is_aligned_addr forall 'n. (addr : xlenbits, width : atom('n)) -> bool =
  unsigned(addr) % width == 0

// only used for actual memory regions, to avoid MMIO effects
function phys_mem_read forall 'n, 'n >= 0. (t : ReadType, addr : xlenbits, width : atom('n), aq : bool, rl: bool, res : bool) -> MemoryOpResult(bits(8 * 'n)) =
  match (t, __RISCV_read(addr, width, aq, rl, res)) {
    (Instruction, None()) => MemException(E_Fetch_Access_Fault),
    (Data, None())        => MemException(E_Load_Access_Fault),
    (_, Some(v))          => { print_mem("mem[" ^ t ^ "," ^ BitStr(addr) ^ "] -> " ^ BitStr(v));
                               MemValue(v) }
  }

function checked_mem_read forall 'n, 'n > 0. (t : ReadType, addr : xlenbits, width : atom('n), aq : bool, rl : bool, res: bool) -> MemoryOpResult(bits(8 * 'n)) =
  /* treat MMIO regions as not executable for now. TODO: this should actually come from PMP/PMA. */
  if   t == Data & within_mmio_readable(addr, width)
  then mmio_read(addr, width)
  else if within_phys_mem(addr, width)
  then phys_mem_read(t, addr, width, aq, rl, res)
  else MemException(E_Load_Access_Fault)

/* Atomic accesses can be done to MMIO regions, e.g. in kernel access to device registers. */

$ifdef RVFI_DII
val rvfi_read : forall 'n, 'n > 0. (xlenbits, atom('n), MemoryOpResult(bits(8 * 'n))) -> unit effect {wreg}
function rvfi_read (addr, width, result) = {
  rvfi_exec->rvfi_mem_addr() = addr;
  match result {
  MemValue(v) =>
    if width <= 8
    then {
      rvfi_exec->rvfi_mem_wdata() = zero_extend(v,64);
      rvfi_exec->rvfi_mem_wmask() = to_bits(8,width)
    } else (),
  MemException(_) => ()
  };
}
$else
val rvfi_read : forall 'n, 'n > 0. (xlenbits, atom('n), MemoryOpResult(bits(8 * 'n))) -> unit
function rvfi_read (addr, width, value) = ()
$endif

/* NOTE: The rreg effect is due to MMIO. */
$ifdef RVFI_DII
val mem_read : forall 'n, 'n > 0. (xlenbits, atom('n), bool, bool, bool) -> MemoryOpResult(bits(8 * 'n)) effect {wreg, rmem, rreg, escape}
$else
val mem_read : forall 'n, 'n > 0. (xlenbits, atom('n), bool, bool, bool) -> MemoryOpResult(bits(8 * 'n)) effect {rmem, rreg, escape}
$endif

function mem_read (addr, width, aq, rl, res) = {
 let result : MemoryOpResult(bits(8 * 'n)) =
  if (aq | res) & (~ (is_aligned_addr(addr, width)))
  then MemException(E_Load_Addr_Align)
  else match (aq, rl, res) {
    (false, true,  false) => throw(Error_not_implemented("load.rl")),
    (false, true,  true)  => throw(Error_not_implemented("lr.rl")),
    (_, _, _)             => checked_mem_read(Data, addr, width, aq, rl, res)
  };
 rvfi_read(addr, width, result);
 result
}

val MEMea = {lem: "MEMea", coq: "MEMea", _: "memea"} : forall 'n.
  (xlenbits, atom('n)) -> unit effect {eamem}
val MEMea_release = {lem: "MEMea_release", coq: "MEMea_release", _: "memea"} : forall 'n.
  (xlenbits, atom('n)) -> unit effect {eamem}
val MEMea_strong_release = {lem: "MEMea_strong_release", coq: "MEMea_strong_release", _: "memea"} : forall 'n.
  (xlenbits, atom('n)) -> unit effect {eamem}
val MEMea_conditional = {lem: "MEMea_conditional", coq: "MEMea_conditional", _: "memea"} : forall 'n.
  (xlenbits, atom('n)) -> unit effect {eamem}
val MEMea_conditional_release = {lem: "MEMea_conditional_release", coq: "MEMea_conditional_release", _: "memea"} : forall 'n.
  (xlenbits, atom('n)) -> unit effect {eamem}
val MEMea_conditional_strong_release = {lem: "MEMea_conditional_strong_release", coq: "MEMea_conditional_strong_release", _: "memea"} : forall 'n.
  (xlenbits, atom('n)) -> unit effect {eamem}

val mem_write_ea : forall 'n. (xlenbits, atom('n), bool, bool, bool) -> MemoryOpResult(unit) effect {eamem, escape}

function mem_write_ea (addr, width, aq, rl, con) = {
  if (rl | con) & (~ (is_aligned_addr(addr, width)))
  then MemException(E_SAMO_Addr_Align)
  else match (aq, rl, con) {
    (false, false, false) => MemValue(MEMea(addr, width)),
    (false, true,  false) => MemValue(MEMea_release(addr, width)),
    (false, false, true)  => MemValue(MEMea_conditional(addr, width)),
    (false, true , true)  => MemValue(MEMea_conditional_release(addr, width)),
    (true,  false, false) => throw(Error_not_implemented("store.aq")),
    (true,  true,  false) => MemValue(MEMea_strong_release(addr, width)),
    (true,  false, true)  => throw(Error_not_implemented("sc.aq")),
    (true,  true , true)  => MemValue(MEMea_conditional_strong_release(addr, width))
  }
}

// only used for actual memory regions, to avoid MMIO effects
function phys_mem_write forall 'n. (addr : xlenbits, width : atom('n), data: bits(8 * 'n), aq : bool, rl : bool, con : bool) -> MemoryOpResult(bool) = {
  print_mem("mem[" ^ BitStr(addr) ^ "] <- " ^ BitStr(data));
  MemValue(__RISCV_write(addr, width, data, aq, rl, con))
}

// dispatches to MMIO regions or physical memory regions depending on physical memory map
function checked_mem_write forall 'n, 'n > 0. (addr : xlenbits, width : atom('n), data: bits(8 * 'n), aq : bool, rl : bool, con : bool) -> MemoryOpResult(bool) =
  if   within_mmio_writable(addr, width)
  then mmio_write(addr, width, data)
  else if within_phys_mem(addr, width)
  then phys_mem_write(addr, width, data, aq, rl, con)
  else MemException(E_SAMO_Access_Fault)

/* Atomic accesses can be done to MMIO regions, e.g. in kernel access to device registers. */

$ifdef RVFI_DII
val rvfi_write : forall 'n, 'n > 0. (xlenbits, atom('n), bits(8 * 'n)) -> unit effect {wreg}
function rvfi_write (addr, width, value) = {
  rvfi_exec->rvfi_mem_addr() = addr;
  if width <= 8 then {
    rvfi_exec->rvfi_mem_wdata() = zero_extend(value,64);
    rvfi_exec->rvfi_mem_wmask() = to_bits(8,width);
  }
}
$else
val rvfi_write : forall 'n, 'n > 0. (xlenbits, atom('n), bits(8 * 'n)) -> unit
function rvfi_write (addr, width, value) = ()
$endif

/* NOTE: The wreg effect is due to MMIO, the rreg is due to checking mtime. */
val mem_write_value : forall 'n, 'n > 0. (xlenbits, atom('n), bits(8 * 'n), bool, bool, bool) -> MemoryOpResult(bool) effect {wmv, rreg, wreg, escape}

function mem_write_value (addr, width, value, aq, rl, con) = {
  rvfi_write(addr, width, value);
  if (rl | con) & (~ (is_aligned_addr(addr, width)))
  then MemException(E_SAMO_Addr_Align)
  else match (aq, rl, con) {
    (true,  false, false) => throw(Error_not_implemented("store.aq")),
    (true,  false, true)  => throw(Error_not_implemented("sc.aq")),
    (_, _, _)             => checked_mem_write(addr, width, value, aq, rl, con)
  }
}

val MEM_fence_rw_rw = {lem: "MEM_fence_rw_rw", coq: "MEM_fence_rw_rw", _: "skip"} : unit -> unit effect {barr}
val MEM_fence_r_rw  = {lem: "MEM_fence_r_rw", coq: "MEM_fence_r_rw", _: "skip"}  : unit -> unit effect {barr}
val MEM_fence_r_r   = {lem: "MEM_fence_r_r", coq: "MEM_fence_r_r", _: "skip"}   : unit -> unit effect {barr}
val MEM_fence_rw_w  = {lem: "MEM_fence_rw_w", coq: "MEM_fence_rw_w", _: "skip"}  : unit -> unit effect {barr}
val MEM_fence_w_w   = {lem: "MEM_fence_w_w", coq: "MEM_fence_w_w", _: "skip"}   : unit -> unit effect {barr}
val MEM_fence_w_rw  = {lem: "MEM_fence_w_rw", coq: "MEM_fence_w_rw", _: "skip"}  : unit -> unit effect {barr}
val MEM_fence_rw_r  = {lem: "MEM_fence_rw_r", coq: "MEM_fence_rw_r", _: "skip"}  : unit -> unit effect {barr}
val MEM_fence_r_w   = {lem: "MEM_fence_r_w", coq: "MEM_fence_r_w", _: "skip"}   : unit -> unit effect {barr}
val MEM_fence_w_r   = {lem: "MEM_fence_w_r", coq: "MEM_fence_w_r", _: "skip"}   : unit -> unit effect {barr}

val MEM_fence_tso = {lem: "MEM_fence_tso", coq: "MEM_fence_tso", _: "skip"} : unit -> unit effect {barr}

val MEM_fence_i     = {lem: "MEM_fence_i", coq: "MEM_fence_i", _: "skip"}     : unit -> unit effect {barr}