aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Makefile8
-rw-r--r--handwritten_support/0.11/riscv_extras.lem (renamed from handwritten_support/0.7.1/riscv_extras.lem)85
-rw-r--r--handwritten_support/0.11/riscv_extras_sequential.lem (renamed from handwritten_support/0.7.1/riscv_extras_sequential.lem)39
-rw-r--r--model/riscv_analysis.sail176
-rw-r--r--model/riscv_insts_base.sail44
5 files changed, 303 insertions, 49 deletions
diff --git a/Makefile b/Makefile
index 51b8a52..138dbac 100644
--- a/Makefile
+++ b/Makefile
@@ -127,12 +127,12 @@ endif
# Feature detect if we are on the latest development version of Sail
# and use an updated lem file if so. This is just until the opam
-# version catches up with changes to the monad embedding.
-SAIL_LATEST := $(shell $(SAIL) -emacs 1>&2 2> /dev/null; echo $$?)
+# version catches up with changes to the barrier type.
+SAIL_LATEST := $(shell $(SAIL) -has_feature FEATURE_UNION_BARRIERS 1>&2 2> /dev/null; echo $$?)
ifeq ($(SAIL_LATEST),0)
-RISCV_EXTRAS_LEM = riscv_extras.lem
+RISCV_EXTRAS_LEM = 0.11/riscv_extras.lem
else
-RISCV_EXTRAS_LEM = 0.7.1/riscv_extras.lem
+RISCV_EXTRAS_LEM = riscv_extras.lem
endif
all: ocaml_emulator/riscv_ocaml_sim_$(ARCH) c_emulator/riscv_sim_$(ARCH) riscv_isa riscv_coq riscv_hol riscv_rmem
diff --git a/handwritten_support/0.7.1/riscv_extras.lem b/handwritten_support/0.11/riscv_extras.lem
index c1a52c9..f4ade26 100644
--- a/handwritten_support/0.7.1/riscv_extras.lem
+++ b/handwritten_support/0.11/riscv_extras.lem
@@ -8,17 +8,17 @@ open import Sail2_prompt
type bitvector 'a = mword 'a
-let MEM_fence_rw_rw () = barrier Barrier_RISCV_rw_rw
-let MEM_fence_r_rw () = barrier Barrier_RISCV_r_rw
-let MEM_fence_r_r () = barrier Barrier_RISCV_r_r
-let MEM_fence_rw_w () = barrier Barrier_RISCV_rw_w
-let MEM_fence_w_w () = barrier Barrier_RISCV_w_w
-let MEM_fence_w_rw () = barrier Barrier_RISCV_w_rw
-let MEM_fence_rw_r () = barrier Barrier_RISCV_rw_r
-let MEM_fence_r_w () = barrier Barrier_RISCV_r_w
-let MEM_fence_w_r () = barrier Barrier_RISCV_w_r
-let MEM_fence_tso () = barrier Barrier_RISCV_tso
-let MEM_fence_i () = barrier Barrier_RISCV_i
+let MEM_fence_rw_rw () = barrier (Barrier_RISCV_rw_rw ())
+let MEM_fence_r_rw () = barrier (Barrier_RISCV_r_rw ())
+let MEM_fence_r_r () = barrier (Barrier_RISCV_r_r ())
+let MEM_fence_rw_w () = barrier (Barrier_RISCV_rw_w ())
+let MEM_fence_w_w () = barrier (Barrier_RISCV_w_w ())
+let MEM_fence_w_rw () = barrier (Barrier_RISCV_w_rw ())
+let MEM_fence_rw_r () = barrier (Barrier_RISCV_rw_r ())
+let MEM_fence_r_w () = barrier (Barrier_RISCV_r_w ())
+let MEM_fence_w_r () = barrier (Barrier_RISCV_w_r ())
+let MEM_fence_tso () = barrier (Barrier_RISCV_tso ())
+let MEM_fence_i () = barrier (Barrier_RISCV_i ())
val MEMea : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
val MEMea_release : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
@@ -27,13 +27,13 @@ val MEMea_conditional : forall 'rv 'a 'e. Size 'a => bitvector 'a
val MEMea_conditional_release : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
val MEMea_conditional_strong_release : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
-let MEMea addr size = write_mem_ea Write_plain addr size
-let MEMea_release addr size = write_mem_ea Write_RISCV_release addr size
-let MEMea_strong_release addr size = write_mem_ea Write_RISCV_strong_release addr size
-let MEMea_conditional addr size = write_mem_ea Write_RISCV_conditional addr size
-let MEMea_conditional_release addr size = write_mem_ea Write_RISCV_conditional_release addr size
+let MEMea addr size = write_mem_ea Write_plain () addr size
+let MEMea_release addr size = write_mem_ea Write_RISCV_release () addr size
+let MEMea_strong_release addr size = write_mem_ea Write_RISCV_strong_release () addr size
+let MEMea_conditional addr size = write_mem_ea Write_RISCV_conditional () addr size
+let MEMea_conditional_release addr size = write_mem_ea Write_RISCV_conditional_release () addr size
let MEMea_conditional_strong_release addr size
- = write_mem_ea Write_RISCV_conditional_strong_release addr size
+ = write_mem_ea Write_RISCV_conditional_strong_release () addr size
val MEMr : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
val MEMr_acquire : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
@@ -42,22 +42,26 @@ val MEMr_reserved : forall 'rv 'a 'b 'e. Size 'a, Size 'b => inte
val MEMr_reserved_acquire : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
val MEMr_reserved_strong_acquire : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
-let MEMr addrsize size hexRAM addr = read_mem Read_plain addr size
-let MEMr_acquire addrsize size hexRAM addr = read_mem Read_RISCV_acquire addr size
-let MEMr_strong_acquire addrsize size hexRAM addr = read_mem Read_RISCV_strong_acquire addr size
-let MEMr_reserved addrsize size hexRAM addr = read_mem Read_RISCV_reserved addr size
-let MEMr_reserved_acquire addrsize size hexRAM addr = read_mem Read_RISCV_reserved_acquire addr size
-let MEMr_reserved_strong_acquire addrsize size hexRAM addr = read_mem Read_RISCV_reserved_strong_acquire addr size
-
-val write_ram : forall 'rv 'a 'b 'e. Size 'a, Size 'b =>
- integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
-let write_ram addrsize size hexRAM address value =
- write_mem_val value
-
-val read_ram : forall 'rv 'a 'b 'e. Size 'a, Size 'b =>
- integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
-let read_ram addrsize size hexRAM address =
- read_mem Read_plain address size
+let MEMr addrsize size hexRAM addr = read_mem Read_plain addrsize addr size
+let MEMr_acquire addrsize size hexRAM addr = read_mem Read_RISCV_acquire addrsize addr size
+let MEMr_strong_acquire addrsize size hexRAM addr = read_mem Read_RISCV_strong_acquire addrsize addr size
+let MEMr_reserved addrsize size hexRAM addr = read_mem Read_RISCV_reserved addrsize addr size
+let MEMr_reserved_acquire addrsize size hexRAM addr = read_mem Read_RISCV_reserved_acquire addrsize addr size
+let MEMr_reserved_strong_acquire addrsize size hexRAM addr = read_mem Read_RISCV_reserved_strong_acquire addrsize addr size
+
+val MEMw : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
+val MEMw_release : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
+val MEMw_strong_release : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
+val MEMw_conditional : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
+val MEMw_conditional_release : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
+val MEMw_conditional_strong_release : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
+
+let MEMw addrsize size hexRAM addr = write_mem Write_plain addrsize addr size
+let MEMw_release addrsize size hexRAM addr = write_mem Write_RISCV_release addrsize addr size
+let MEMw_strong_release addrsize size hexRAM addr = write_mem Write_RISCV_strong_release addrsize addr size
+let MEMw_conditional addrsize size hexRAM addr = write_mem Write_RISCV_conditional addrsize addr size
+let MEMw_conditional_release addrsize size hexRAM addr = write_mem Write_RISCV_conditional_release addrsize addr size
+let MEMw_conditional_strong_release addrsize size hexRAM addr = write_mem Write_RISCV_conditional_strong_release addrsize addr size
val load_reservation : forall 'a. Size 'a => bitvector 'a -> unit
let load_reservation addr = ()
@@ -67,6 +71,14 @@ let speculate_conditional_success () = excl_result ()
let match_reservation _ = true
let cancel_reservation () = ()
+val sys_enable_writable_misa : unit -> bool
+let sys_enable_writable_misa () = true
+declare ocaml target_rep function sys_enable_writable_misa = `Platform.enable_writable_misa`
+
+val sys_enable_rvc : unit -> bool
+let sys_enable_rvc () = true
+declare ocaml target_rep function sys_enable_rvc = `Platform.enable_rvc`
+
val plat_ram_base : forall 'a. Size 'a => unit -> bitvector 'a
let plat_ram_base () = wordFromInteger 0
declare ocaml target_rep function plat_ram_base = `Platform.dram_base`
@@ -99,6 +111,10 @@ val plat_enable_misaligned_access : unit -> bool
let plat_enable_misaligned_access () = false
declare ocaml target_rep function plat_enable_misaligned_access = `Platform.enable_misaligned_access`
+val plat_enable_pmp : unit -> bool
+let plat_enable_pmp () = false
+declare ocaml target_rep function plat_enable_pmp = `Platform.enable_pmp`
+
val plat_mtval_has_illegal_inst_bits : unit -> bool
let plat_mtval_has_illegal_inst_bits () = false
declare ocaml target_rep function plat_mtval_has_illegal_inst_bits = `Platform.mtval_has_illegal_inst_bits`
@@ -135,3 +151,6 @@ let prerr_bits msg bs = prerr_endline (msg ^ (show_bitlist (bits_of bs)))
val print_bits : forall 'a. Size 'a => string -> bitvector 'a -> unit
let print_bits msg bs = () (* print_endline (msg ^ (show_bitlist (bits_of bs))) *)
+
+val print_dbg : string -> unit
+let print_dbg msg = ()
diff --git a/handwritten_support/0.7.1/riscv_extras_sequential.lem b/handwritten_support/0.11/riscv_extras_sequential.lem
index c1a52c9..ac70ee5 100644
--- a/handwritten_support/0.7.1/riscv_extras_sequential.lem
+++ b/handwritten_support/0.11/riscv_extras_sequential.lem
@@ -8,17 +8,17 @@ open import Sail2_prompt
type bitvector 'a = mword 'a
-let MEM_fence_rw_rw () = barrier Barrier_RISCV_rw_rw
-let MEM_fence_r_rw () = barrier Barrier_RISCV_r_rw
-let MEM_fence_r_r () = barrier Barrier_RISCV_r_r
-let MEM_fence_rw_w () = barrier Barrier_RISCV_rw_w
-let MEM_fence_w_w () = barrier Barrier_RISCV_w_w
-let MEM_fence_w_rw () = barrier Barrier_RISCV_w_rw
-let MEM_fence_rw_r () = barrier Barrier_RISCV_rw_r
-let MEM_fence_r_w () = barrier Barrier_RISCV_r_w
-let MEM_fence_w_r () = barrier Barrier_RISCV_w_r
-let MEM_fence_tso () = barrier Barrier_RISCV_tso
-let MEM_fence_i () = barrier Barrier_RISCV_i
+let MEM_fence_rw_rw () = barrier (Barrier_RISCV_rw_rw ())
+let MEM_fence_r_rw () = barrier (Barrier_RISCV_r_rw ())
+let MEM_fence_r_r () = barrier (Barrier_RISCV_r_r ())
+let MEM_fence_rw_w () = barrier (Barrier_RISCV_rw_w ())
+let MEM_fence_w_w () = barrier (Barrier_RISCV_w_w ())
+let MEM_fence_w_rw () = barrier (Barrier_RISCV_w_rw ())
+let MEM_fence_rw_r () = barrier (Barrier_RISCV_rw_r ())
+let MEM_fence_r_w () = barrier (Barrier_RISCV_r_w ())
+let MEM_fence_w_r () = barrier (Barrier_RISCV_w_r ())
+let MEM_fence_tso () = barrier (Barrier_RISCV_tso ())
+let MEM_fence_i () = barrier (Barrier_RISCV_i ())
val MEMea : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
val MEMea_release : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
@@ -52,7 +52,7 @@ let MEMr_reserved_strong_acquire addrsize size hexRAM addr = read_mem Read_RISCV
val write_ram : forall 'rv 'a 'b 'e. Size 'a, Size 'b =>
integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
let write_ram addrsize size hexRAM address value =
- write_mem_val value
+ write_mem Write_plain address size value
val read_ram : forall 'rv 'a 'b 'e. Size 'a, Size 'b =>
integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
@@ -67,6 +67,14 @@ let speculate_conditional_success () = excl_result ()
let match_reservation _ = true
let cancel_reservation () = ()
+val sys_enable_writable_misa : unit -> bool
+let sys_enable_writable_misa () = true
+declare ocaml target_rep function sys_enable_writable_misa = `Platform.enable_writable_misa`
+
+val sys_enable_rvc : unit -> bool
+let sys_enable_rvc () = true
+declare ocaml target_rep function sys_enable_rvc = `Platform.enable_rvc`
+
val plat_ram_base : forall 'a. Size 'a => unit -> bitvector 'a
let plat_ram_base () = wordFromInteger 0
declare ocaml target_rep function plat_ram_base = `Platform.dram_base`
@@ -99,6 +107,10 @@ val plat_enable_misaligned_access : unit -> bool
let plat_enable_misaligned_access () = false
declare ocaml target_rep function plat_enable_misaligned_access = `Platform.enable_misaligned_access`
+val plat_enable_pmp : unit -> bool
+let plat_enable_pmp () = false
+declare ocaml target_rep function plat_enable_pmp = `Platform.enable_pmp`
+
val plat_mtval_has_illegal_inst_bits : unit -> bool
let plat_mtval_has_illegal_inst_bits () = false
declare ocaml target_rep function plat_mtval_has_illegal_inst_bits = `Platform.mtval_has_illegal_inst_bits`
@@ -135,3 +147,6 @@ let prerr_bits msg bs = prerr_endline (msg ^ (show_bitlist (bits_of bs)))
val print_bits : forall 'a. Size 'a => string -> bitvector 'a -> unit
let print_bits msg bs = () (* print_endline (msg ^ (show_bitlist (bits_of bs))) *)
+
+val print_dbg : string -> unit
+let print_dbg msg = ()
diff --git a/model/riscv_analysis.sail b/model/riscv_analysis.sail
index 34572f8..ec8c96f 100644
--- a/model/riscv_analysis.sail
+++ b/model/riscv_analysis.sail
@@ -10,6 +10,8 @@ let GPRstr : vector(32, dec, string) = [ "x31", "x30", "x29", "x28", "x27", "x26
let CIA_fp = RFull("CIA")
let NIA_fp = RFull("NIA")
+$ifndef FEATURE_UNION_BARRIER
+
function initial_analysis (instr:ast) -> (regfps,regfps,regfps,niafps,diafp,instruction_kind) = {
iR = [| |] : regfps;
oR = [| |] : regfps;
@@ -180,3 +182,177 @@ function initial_analysis (instr:ast) -> (regfps,regfps,regfps,niafps,diafp,inst
};
(iR,oR,aR,Nias,Dia,ik)
}
+
+$else
+
+function initial_analysis (instr:ast) -> (regfps,regfps,regfps,niafps,diafp,instruction_kind) = {
+ iR = [| |] : regfps;
+ oR = [| |] : regfps;
+ aR = [| |] : regfps;
+ ik = IK_simple() : instruction_kind;
+ Nias = [| NIAFP_successor() |] : niafps;
+ Dia = DIAFP_none() : diafp;
+
+ match instr {
+ EBREAK() => (),
+ UTYPE(imm, rd, op) => {
+ if (rd == 0) then () else oR = RFull(GPRstr[rd]) :: oR;
+ },
+ RISCV_JAL(imm, rd) => {
+ if (rd == 0) then () else oR = RFull(GPRstr[rd]) :: oR;
+ let offset : bits(64) = EXTS(imm) in
+ Nias = [| NIAFP_concrete_address (PC + offset) |];
+ ik = IK_branch();
+ },
+ RISCV_JALR(imm, rs, rd) => {
+ if (rs == 0) then () else iR = RFull(GPRstr[rs]) :: iR;
+ if (rd == 0) then () else oR = RFull(GPRstr[rd]) :: oR;
+ let offset : bits(64) = EXTS(imm) in
+ Nias = [| NIAFP_indirect_address() |];
+ ik = IK_branch();
+ },
+ BTYPE(imm, rs2, rs1, op) => {
+ if (rs2 == 0) then () else iR = RFull(GPRstr[rs2]) :: iR;
+ if (rs1 == 0) then () else iR = RFull(GPRstr[rs1]) :: iR;
+ ik = IK_branch();
+ let offset : bits(64) = EXTS(imm) in
+ Nias = [| NIAFP_concrete_address(PC + offset), NIAFP_successor() |];
+ },
+ ITYPE(imm, rs, rd, op) => {
+ if (rs == 0) then () else iR = RFull(GPRstr[rs]) :: iR;
+ if (rd == 0) then () else oR = RFull(GPRstr[rd]) :: oR;
+ },
+ SHIFTIOP(imm, rs, rd, op) => {
+ if (rs == 0) then () else iR = RFull(GPRstr[rs]) :: iR;
+ if (rd == 0) then () else oR = RFull(GPRstr[rd]) :: oR;
+ },
+ RTYPE(rs2, rs1, rd, op) => {
+ if (rs2 == 0) then () else iR = RFull(GPRstr[rs2]) :: iR;
+ if (rs1 == 0) then () else iR = RFull(GPRstr[rs1]) :: iR;
+ if (rd == 0) then () else oR = RFull(GPRstr[rd]) :: oR;
+ },
+ CSR(csr, rs1, rd, is_imm, op) => {
+ let isWrite : bool = match op {
+ CSRRW => true,
+ _ => if is_imm then unsigned(rs1) != 0 else unsigned(rs1) != 0
+ };
+ iR = RFull(csr_name(csr)) :: iR;
+ if ~(is_imm) then {
+ iR = RFull(GPRstr[rs1]) :: iR;
+ };
+ if isWrite then {
+ oR = RFull(csr_name(csr)) :: oR;
+ };
+ oR = RFull(GPRstr[rd]) :: oR;
+ },
+ LOAD(imm, rs, rd, unsign, width, aq, rl) => { /* XXX "unsigned" causes name conflict in lem shallow embedding... */
+ if (rs == 0) then () else iR = RFull(GPRstr[rs]) :: iR;
+ if (rd == 0) then () else oR = RFull(GPRstr[rd]) :: oR;
+ aR = iR;
+ ik =
+ match (aq, rl) {
+ (false, false) => IK_mem_read (Read_plain),
+ (true, false) => IK_mem_read (Read_RISCV_acquire),
+ (true, true) => IK_mem_read (Read_RISCV_strong_acquire),
+
+ _ => internal_error("LOAD type not implemented in initial_analysis")
+ }
+ },
+ STORE(imm, rs2, rs1, width, aq, rl) => {
+ if (rs2 == 0) then () else iR = RFull(GPRstr[rs2]) :: iR;
+ if (rs1 == 0) then () else iR = RFull(GPRstr[rs1]) :: iR;
+ if (rs1 == 0) then () else aR = RFull(GPRstr[rs1]) :: aR;
+ ik =
+ match (aq, rl) {
+ (false, false) => IK_mem_write (Write_plain),
+ (false, true) => IK_mem_write (Write_RISCV_release),
+ (true, true) => IK_mem_write (Write_RISCV_strong_release),
+
+ _ => internal_error("STORE type not implemented in initial_analysis")
+ }
+ },
+ ADDIW(imm, rs, rd) => {
+ if (rs == 0) then () else iR = RFull(GPRstr[rs]) :: iR;
+ if (rd == 0) then () else oR = RFull(GPRstr[rd]) :: oR;
+ },
+ SHIFTW(imm, rs, rd, op) => {
+ if (rs == 0) then () else iR = RFull(GPRstr[rs]) :: iR;
+ if (rd == 0) then () else oR = RFull(GPRstr[rd]) :: oR;
+ },
+ RTYPEW(rs2, rs1, rd, op) => {
+ if (rs2 == 0) then () else iR = RFull(GPRstr[rs2]) :: iR;
+ if (rs1 == 0) then () else iR = RFull(GPRstr[rs1]) :: iR;
+ if (rd == 0) then () else oR = RFull(GPRstr[rd]) :: oR;
+ },
+ FENCE(pred, succ) => {
+ ik =
+ match (pred, succ) {
+ (_ : bits(2) @ 0b11, _ : bits(2) @ 0b11) => IK_barrier (Barrier_RISCV_rw_rw ()),
+ (_ : bits(2) @ 0b10, _ : bits(2) @ 0b11) => IK_barrier (Barrier_RISCV_r_rw ()),
+ (_ : bits(2) @ 0b10, _ : bits(2) @ 0b10) => IK_barrier (Barrier_RISCV_r_r ()),
+ (_ : bits(2) @ 0b11, _ : bits(2) @ 0b01) => IK_barrier (Barrier_RISCV_rw_w ()),
+ (_ : bits(2) @ 0b01, _ : bits(2) @ 0b01) => IK_barrier (Barrier_RISCV_w_w ()),
+ (_ : bits(2) @ 0b01, _ : bits(2) @ 0b11) => IK_barrier (Barrier_RISCV_w_rw ()),
+ (_ : bits(2) @ 0b11, _ : bits(2) @ 0b10) => IK_barrier (Barrier_RISCV_rw_r ()),
+ (_ : bits(2) @ 0b10, _ : bits(2) @ 0b01) => IK_barrier (Barrier_RISCV_r_w ()),
+ (_ : bits(2) @ 0b01, _ : bits(2) @ 0b10) => IK_barrier (Barrier_RISCV_w_r ()),
+
+ (_ : bits(2) @ 0b00, _ : bits(2) @ 0b00) => IK_simple (),
+
+ _ => internal_error("barrier type not implemented in initial_analysis")
+ };
+ },
+ FENCE_TSO(pred, succ) => {
+ ik =
+ match (pred, succ) {
+ (_ : bits(2) @ 0b11, _ : bits(2) @ 0b11) => IK_barrier (Barrier_RISCV_tso ()),
+ _ => internal_error("barrier type not implemented in initial_analysis")
+ };
+ },
+ FENCEI() => {
+ ik = IK_simple (); // for RMEM, should morally be Barrier_RISCV_i
+ },
+ LOADRES(aq, rl, rs1, width, rd) => {
+ if (rs1 == 0) then () else iR = RFull(GPRstr[rs1]) :: iR;
+ if (rd == 0) then () else oR = RFull(GPRstr[rd]) :: oR;
+ aR = iR;
+ ik = match (aq, rl) {
+ (false, false) => IK_mem_read (Read_RISCV_reserved),
+ (true, false) => IK_mem_read (Read_RISCV_reserved_acquire),
+ (true, true) => IK_mem_read (Read_RISCV_reserved_strong_acquire),
+ (false, true) => internal_error("LOADRES type not implemented in initial_analysis")
+ };
+ },
+ STORECON(aq, rl, rs2, rs1, width, rd) => {
+ if (rs2 == 0) then () else iR = RFull(GPRstr[rs2]) :: iR;
+ if (rs1 == 0) then () else iR = RFull(GPRstr[rs1]) :: iR;
+ if (rs1 == 0) then () else aR = RFull(GPRstr[rs1]) :: aR;
+ if (rd == 0) then () else oR = RFull(GPRstr[rd]) :: oR;
+ ik = match (aq, rl) {
+ (false, false) => IK_mem_write (Write_RISCV_conditional),
+ (false, true) => IK_mem_write (Write_RISCV_conditional_release),
+ (true, true) => IK_mem_write (Write_RISCV_conditional_strong_release),
+
+ (true, false) => internal_error("STORECON type not implemented in initial_analysis")
+ };
+ },
+ AMO(op, aq, rl, rs2, rs1, width, rd) => {
+ if (rs2 == 0) then () else iR = RFull(GPRstr[rs2]) :: iR;
+ if (rs1 == 0) then () else iR = RFull(GPRstr[rs1]) :: iR;
+ if (rs1 == 0) then () else aR = RFull(GPRstr[rs1]) :: aR;
+ if (rd == 0) then () else oR = RFull(GPRstr[rd]) :: oR;
+ ik = match (aq, rl) {
+ (false, false) => IK_mem_rmw (Read_RISCV_reserved, Write_RISCV_conditional),
+ (false, true) => IK_mem_rmw (Read_RISCV_reserved, Write_RISCV_conditional_release),
+ (true, false) => IK_mem_rmw (Read_RISCV_reserved_acquire,
+ Write_RISCV_conditional),
+ (true, true) => IK_mem_rmw (Read_RISCV_reserved_acquire,
+ Write_RISCV_conditional_release)
+ };
+ },
+ _ => ()
+ };
+ (iR,oR,aR,Nias,Dia,ik)
+}
+
+$endif
diff --git a/model/riscv_insts_base.sail b/model/riscv_insts_base.sail
index 14a626e..636170b 100644
--- a/model/riscv_insts_base.sail
+++ b/model/riscv_insts_base.sail
@@ -564,6 +564,31 @@ union clause ast = FENCE : (bits(4), bits(4))
mapping clause encdec = FENCE(pred, succ)
<-> 0b0000 @ pred @ succ @ 0b00000 @ 0b000 @ 0b00000 @ 0b0001111
+/* For future versions of Sail where barriers can be parameterised */
+$ifdef FEATURE_UNION_BARRIER
+
+function clause execute (FENCE(pred, succ)) = {
+ match (pred, succ) {
+ (_ : bits(2) @ 0b11, _ : bits(2) @ 0b11) => __barrier(Barrier_RISCV_rw_rw()),
+ (_ : bits(2) @ 0b10, _ : bits(2) @ 0b11) => __barrier(Barrier_RISCV_r_rw()),
+ (_ : bits(2) @ 0b10, _ : bits(2) @ 0b10) => __barrier(Barrier_RISCV_r_r()),
+ (_ : bits(2) @ 0b11, _ : bits(2) @ 0b01) => __barrier(Barrier_RISCV_rw_w()),
+ (_ : bits(2) @ 0b01, _ : bits(2) @ 0b01) => __barrier(Barrier_RISCV_w_w()),
+ (_ : bits(2) @ 0b01, _ : bits(2) @ 0b11) => __barrier(Barrier_RISCV_w_rw()),
+ (_ : bits(2) @ 0b11, _ : bits(2) @ 0b10) => __barrier(Barrier_RISCV_rw_r()),
+ (_ : bits(2) @ 0b10, _ : bits(2) @ 0b01) => __barrier(Barrier_RISCV_r_w()),
+ (_ : bits(2) @ 0b01, _ : bits(2) @ 0b10) => __barrier(Barrier_RISCV_w_r()),
+
+ (_ : bits(2) @ 0b00, _ : bits(2) @ 0b00) => (),
+
+ _ => { print("FIXME: unsupported fence");
+ () }
+ };
+ RETIRE_SUCCESS
+}
+
+$else
+
function clause execute (FENCE(pred, succ)) = {
match (pred, succ) {
(_ : bits(2) @ 0b11, _ : bits(2) @ 0b11) => __barrier(Barrier_RISCV_rw_rw),
@@ -584,6 +609,8 @@ function clause execute (FENCE(pred, succ)) = {
RETIRE_SUCCESS
}
+$endif
+
mapping bit_maybe_r : bits(1) <-> string = {
0b1 <-> "r",
0b0 <-> ""
@@ -617,6 +644,21 @@ union clause ast = FENCE_TSO : (bits(4), bits(4))
mapping clause encdec = FENCE_TSO(pred, succ)
<-> 0b1000 @ pred @ succ @ 0b00000 @ 0b000 @ 0b00000 @ 0b0001111
+$ifdef FEATURE_UNION_BARRIER
+
+function clause execute (FENCE_TSO(pred, succ)) = {
+ match (pred, succ) {
+ (_ : bits(2) @ 0b11, _ : bits(2) @ 0b11) => __barrier(Barrier_RISCV_tso()),
+ (_ : bits(2) @ 0b00, _ : bits(2) @ 0b00) => (),
+
+ _ => { print("FIXME: unsupported fence");
+ () }
+ };
+ RETIRE_SUCCESS
+}
+
+$else
+
function clause execute (FENCE_TSO(pred, succ)) = {
match (pred, succ) {
(_ : bits(2) @ 0b11, _ : bits(2) @ 0b11) => __barrier(Barrier_RISCV_tso),
@@ -628,6 +670,8 @@ function clause execute (FENCE_TSO(pred, succ)) = {
RETIRE_SUCCESS
}
+$endif
+
mapping clause assembly = FENCE_TSO(pred, succ)
<-> "fence.tso" ^ spc() ^ fence_bits(pred) ^ sep() ^ fence_bits(succ)