/* Jim - A small embeddable Tcl interpreter * * Copyright 2005 Salvatore Sanfilippo * Copyright 2005 Clemens Hintze * Copyright 2005 patthoyts - Pat Thoyts * Copyright 2008,2009 oharboe - Øyvind Harboe - oyvind.harboe@zylin.com * Copyright 2008 Andrew Lunn * Copyright 2008 Duane Ellis * Copyright 2008 Uwe Klein * Copyright 2008 Steve Bennett * Copyright 2009 Nico Coesel * Copyright 2009 Zachary T Welch zw@superlucidity.net * Copyright 2009 David Brownell * * The FreeBSD license * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE JIM TCL PROJECT ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * JIM TCL PROJECT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation * are those of the authors and should not be interpreted as representing * official policies, either expressed or implied, of the Jim Tcl Project. **/ #define __JIM_CORE__ #define JIM_OPTIMIZATION /* comment to avoid optimizations and reduce size */ #ifndef JIM_ANSIC #define JIM_DYNLIB /* Dynamic library support */ #endif /* JIM_ANSIC */ #include #include #include #include #include #include #include #include #include #endif #ifdef __FreeBSD__ #include #include #include #include #include #include #define NEED_ENVIRON_EXTERN (1) #endif #ifndef JIM_ANSIC #define JIM_DYNLIB /* Dynamic library support for UNIX and WIN32 */ #endif /* JIM_ANSIC */ #include #include /* Include the platform dependent libraries for * dynamic loading of libraries. */ #ifdef JIM_DYNLIB #include #endif /* JIM_DYNLIB */ #include #include #include "jim.h" #ifdef HAVE_BACKTRACE #include #endif /* For INFINITY, even if math functions are not enabled */ #include /* ----------------------------------------------------------------------------- * Global variables * ---------------------------------------------------------------------------*/ /* A shared empty string for the objects string representation. * Jim_InvalidateStringRep knows about it and don't try to free. */ static char *JimEmptyStringRep = (char*) ""; /* ----------------------------------------------------------------------------- * Required prototypes of not exported functions * ---------------------------------------------------------------------------*/ static void JimChangeCallFrameId(Jim_Interp *interp, Jim_CallFrame *cf); static void JimFreeCallFrame(Jim_Interp *interp, Jim_CallFrame *cf, int flags); static int ListSetIndex(Jim_Interp *interp, Jim_Obj *listPtr, int index, Jim_Obj *newObjPtr, int flags); static Jim_Obj *Jim_ExpandDictSugar(Jim_Interp *interp, Jim_Obj *objPtr); static void SetDictSubstFromAny(Jim_Interp *interp, Jim_Obj *objPtr); static void JimSetFailedEnumResult(Jim_Interp *interp, const char *arg, const char *badtype, const char *prefix, const char * const *tablePtr, const char *name); static const Jim_HashTableType JimVariablesHashTableType; const char *tt_name(int type); /* ----------------------------------------------------------------------------- * Utility functions * ---------------------------------------------------------------------------*/ /* Glob-style pattern matching. */ static int JimStringMatch(const char *pattern, int patternLen, const char *string, int stringLen, int nocase) { while(patternLen) { switch(pattern[0]) { case '*': while (pattern[1] == '*') { pattern++; patternLen--; } if (patternLen == 1) return 1; /* match */ while(stringLen) { if (JimStringMatch(pattern+1, patternLen-1, string, stringLen, nocase)) return 1; /* match */ string++; stringLen--; } return 0; /* no match */ break; case '?': if (stringLen == 0) return 0; /* no match */ string++; stringLen--; break; case '[': { int not, match; pattern++; patternLen--; not = pattern[0] == '^'; if (not) { pattern++; patternLen--; } match = 0; while(1) { if (pattern[0] == '\\') { pattern++; patternLen--; if (pattern[0] == string[0]) match = 1; } else if (pattern[0] == ']') { break; } else if (patternLen == 0) { pattern--; patternLen++; break; } else if (pattern[1] == '-' && patternLen >= 3) { int start = pattern[0]; int end = pattern[2]; int c = string[0]; if (start > end) { int t = start; start = end; end = t; } if (nocase) { start = tolower(start); end = tolower(end); c = tolower(c); } pattern += 2; patternLen -= 2; if (c >= start && c <= end) match = 1; } else { if (!nocase) { if (pattern[0] == string[0]) match = 1; } else { if (tolower((int)pattern[0]) == tolower((int)string[0])) match = 1; } } pattern++; patternLen--; } if (not) match = !match; if (!match) return 0; /* no match */ string++; stringLen--; break; } case '\\': if (patternLen >= 2) { pattern++; patternLen--; } /* fall through */ default: if (!nocase) { if (pattern[0] != string[0]) return 0; /* no match */ } else { if (tolower((int)pattern[0]) != tolower((int)string[0])) return 0; /* no match */ } string++; stringLen--; break; } pattern++; patternLen--; if (stringLen == 0) { while(*pattern == '*') { pattern++; patternLen--; } break; } } if (patternLen == 0 && stringLen == 0) return 1; return 0; } int JimStringCompare(const char *s1, int l1, const char *s2, int l2, int nocase) { unsigned char *u1 = (unsigned char*) s1, *u2 = (unsigned char*) s2; int diff; if (nocase == 0) { while(l1 && l2) { diff = (int)*u1-*u2; if (diff) { goto done; } u1++; u2++; l1--; l2--; } diff = l1-l2; } else { while(l1 && l2) { diff = tolower((int)*u1)-tolower((int)*u2); if (diff) { goto done; } u1++; u2++; l1--; l2--; } diff = l1-l2; } if (diff == 0) { return 0; } done: return diff < 0 ? -1 : 1; } /* Search 's1' inside 's2', starting to search from char 'index' of 's2'. * The index of the first occurrence of s1 in s2 is returned. * If s1 is not found inside s2, -1 is returned. */ int JimStringFirst(const char *s1, int l1, const char *s2, int l2, int index) { int i; if (!l1 || !l2 || l1 > l2) return -1; if (index < 0) index = 0; s2 += index; for (i = index; i <= l2-l1; i++) { if (memcmp(s2, s1, l1) == 0) return i; s2++; } return -1; } int JimStringLast(const char *s1, int l1, const char *s2, int l2) { const char *p; if (!l1 || !l2 || l1 > l2) return -1; /* Now search for the needle */ for (p = s2 + l2 - 1; p != s2 - 1; p--) { if (*p == *s1 && memcmp(s1, p, l1) == 0) { return p - s2; } } return -1; } int Jim_WideToString(char *buf, jim_wide wideValue) { const char *fmt = "%" JIM_WIDE_MODIFIER; return sprintf(buf, fmt, wideValue); } int Jim_StringToWide(const char *str, jim_wide *widePtr, int base) { char *endptr; *widePtr = strtoull(str, &endptr, base); if ((str[0] == '\0') || (str == endptr) ) return JIM_ERR; if (endptr[0] != '\0') { while(*endptr) { if (!isspace(*endptr)) { return JIM_ERR; } endptr++; } } return JIM_OK; } int Jim_DoubleToString(char *buf, double doubleValue) { int len; len = sprintf(buf, "%.12g", doubleValue); /* Add a final ".0" if it's a number. But not * for NaN or InF */ while (*buf) { if (*buf == '.' || isalpha(*buf)) { /* inf -> Inf, nan -> Nan */ if (*buf == 'i' || *buf == 'n') { *buf = toupper(*buf); } return len; } buf++; } *buf++ = '.'; *buf++ = '0'; *buf = '\0'; return len + 2; } int Jim_StringToDouble(const char *str, double *doublePtr) { char *endptr; *doublePtr = strtod(str, &endptr); if (str[0] == '\0' || endptr[0] != '\0' || (str == endptr)) { return JIM_ERR; } return JIM_OK; } static jim_wide JimPowWide(jim_wide b, jim_wide e) { jim_wide i, res = 1; if ((b==0 && e!=0) || (e<0)) return 0; for(i=0; i' in the bug report." JIM_NL); } #endif abort(); } /* ----------------------------------------------------------------------------- * Memory allocation * ---------------------------------------------------------------------------*/ void *Jim_Alloc(int size) { /* We allocate zero length arrayes, etc. to use a single orthogonal codepath */ return malloc(size); } void Jim_Free(void *ptr) { free(ptr); } void *Jim_Realloc(void *ptr, int size) { return realloc(ptr, size); } char *Jim_StrDup(const char *s) { return strdup(s); } char *Jim_StrDupLen(const char *s, int l) { char *copy = Jim_Alloc(l+1); memcpy(copy, s, l+1); copy[l] = 0; /* Just to be sure, original could be substring */ return copy; } /* ----------------------------------------------------------------------------- * Time related functions * ---------------------------------------------------------------------------*/ /* Returns microseconds of CPU used since start. */ static jim_wide JimClock(void) { struct timeval tv; gettimeofday(&tv, NULL); return (jim_wide)tv.tv_sec*1000000 + tv.tv_usec; } /* ----------------------------------------------------------------------------- * Hash Tables * ---------------------------------------------------------------------------*/ /* -------------------------- private prototypes ---------------------------- */ static int JimExpandHashTableIfNeeded(Jim_HashTable *ht); static unsigned int JimHashTableNextPower(unsigned int size); static int JimInsertHashEntry(Jim_HashTable *ht, const void *key); /* -------------------------- hash functions -------------------------------- */ /* Thomas Wang's 32 bit Mix Function */ unsigned int Jim_IntHashFunction(unsigned int key) { key += ~(key << 15); key ^= (key >> 10); key += (key << 3); key ^= (key >> 6); key += ~(key << 11); key ^= (key >> 16); return key; } /* Generic hash function (we are using to multiply by 9 and add the byte * as Tcl) */ unsigned int Jim_GenHashFunction(const unsigned char *buf, int len) { unsigned int h = 0; while(len--) h += (h<<3)+*buf++; return h; } /* ----------------------------- API implementation ------------------------- */ /* reset an hashtable already initialized with ht_init(). * NOTE: This function should only called by ht_destroy(). */ static void JimResetHashTable(Jim_HashTable *ht) { ht->table = NULL; ht->size = 0; ht->sizemask = 0; ht->used = 0; ht->collisions = 0; } /* Initialize the hash table */ int Jim_InitHashTable(Jim_HashTable *ht, const Jim_HashTableType *type, void *privDataPtr) { JimResetHashTable(ht); ht->type = type; ht->privdata = privDataPtr; return JIM_OK; } /* Resize the table to the minimal size that contains all the elements, * but with the invariant of a USER/BUCKETS ration near to <= 1 */ int Jim_ResizeHashTable(Jim_HashTable *ht) { int minimal = ht->used; if (minimal < JIM_HT_INITIAL_SIZE) minimal = JIM_HT_INITIAL_SIZE; return Jim_ExpandHashTable(ht, minimal); } /* Expand or create the hashtable */ int Jim_ExpandHashTable(Jim_HashTable *ht, unsigned int size) { Jim_HashTable n; /* the new hashtable */ unsigned int realsize = JimHashTableNextPower(size), i; /* the size is invalid if it is smaller than the number of * elements already inside the hashtable */ if (ht->used >= size) return JIM_ERR; Jim_InitHashTable(&n, ht->type, ht->privdata); n.size = realsize; n.sizemask = realsize-1; n.table = Jim_Alloc(realsize*sizeof(Jim_HashEntry*)); /* Initialize all the pointers to NULL */ memset(n.table, 0, realsize*sizeof(Jim_HashEntry*)); /* Copy all the elements from the old to the new table: * note that if the old hash table is empty ht->size is zero, * so Jim_ExpandHashTable just creates an hash table. */ n.used = ht->used; for (i = 0; i < ht->size && ht->used > 0; i++) { Jim_HashEntry *he, *nextHe; if (ht->table[i] == NULL) continue; /* For each hash entry on this slot... */ he = ht->table[i]; while(he) { unsigned int h; nextHe = he->next; /* Get the new element index */ h = Jim_HashKey(ht, he->key) & n.sizemask; he->next = n.table[h]; n.table[h] = he; ht->used--; /* Pass to the next element */ he = nextHe; } } assert(ht->used == 0); Jim_Free(ht->table); /* Remap the new hashtable in the old */ *ht = n; return JIM_OK; } /* Add an element to the target hash table */ int Jim_AddHashEntry(Jim_HashTable *ht, const void *key, void *val) { int index; Jim_HashEntry *entry; /* Get the index of the new element, or -1 if * the element already exists. */ if ((index = JimInsertHashEntry(ht, key)) == -1) return JIM_ERR; /* Allocates the memory and stores key */ entry = Jim_Alloc(sizeof(*entry)); entry->next = ht->table[index]; ht->table[index] = entry; /* Set the hash entry fields. */ Jim_SetHashKey(ht, entry, key); Jim_SetHashVal(ht, entry, val); ht->used++; return JIM_OK; } /* Add an element, discarding the old if the key already exists */ int Jim_ReplaceHashEntry(Jim_HashTable *ht, const void *key, void *val) { Jim_HashEntry *entry; /* Try to add the element. If the key * does not exists Jim_AddHashEntry will suceed. */ if (Jim_AddHashEntry(ht, key, val) == JIM_OK) return JIM_OK; /* It already exists, get the entry */ entry = Jim_FindHashEntry(ht, key); /* Free the old value and set the new one */ Jim_FreeEntryVal(ht, entry); Jim_SetHashVal(ht, entry, val); return JIM_OK; } /* Search and remove an element */ int Jim_DeleteHashEntry(Jim_HashTable *ht, const void *key) { unsigned int h; Jim_HashEntry *he, *prevHe; if (ht->size == 0) return JIM_ERR; h = Jim_HashKey(ht, key) & ht->sizemask; he = ht->table[h]; prevHe = NULL; while(he) { if (Jim_CompareHashKeys(ht, key, he->key)) { /* Unlink the element from the list */ if (prevHe) prevHe->next = he->next; else ht->table[h] = he->next; Jim_FreeEntryKey(ht, he); Jim_FreeEntryVal(ht, he); Jim_Free(he); ht->used--; return JIM_OK; } prevHe = he; he = he->next; } return JIM_ERR; /* not found */ } /* Destroy an entire hash table */ int Jim_FreeHashTable(Jim_HashTable *ht) { unsigned int i; /* Free all the elements */ for (i = 0; i < ht->size && ht->used > 0; i++) { Jim_HashEntry *he, *nextHe; if ((he = ht->table[i]) == NULL) continue; while(he) { nextHe = he->next; Jim_FreeEntryKey(ht, he); Jim_FreeEntryVal(ht, he); Jim_Free(he); ht->used--; he = nextHe; } } /* Free the table and the allocated cache structure */ Jim_Free(ht->table); /* Re-initialize the table */ JimResetHashTable(ht); return JIM_OK; /* never fails */ } Jim_HashEntry *Jim_FindHashEntry(Jim_HashTable *ht, const void *key) { Jim_HashEntry *he; unsigned int h; if (ht->size == 0) return NULL; h = Jim_HashKey(ht, key) & ht->sizemask; he = ht->table[h]; while(he) { if (Jim_CompareHashKeys(ht, key, he->key)) return he; he = he->next; } return NULL; } Jim_HashTableIterator *Jim_GetHashTableIterator(Jim_HashTable *ht) { Jim_HashTableIterator *iter = Jim_Alloc(sizeof(*iter)); iter->ht = ht; iter->index = -1; iter->entry = NULL; iter->nextEntry = NULL; return iter; } Jim_HashEntry *Jim_NextHashEntry(Jim_HashTableIterator *iter) { while (1) { if (iter->entry == NULL) { iter->index++; if (iter->index >= (signed)iter->ht->size) break; iter->entry = iter->ht->table[iter->index]; } else { iter->entry = iter->nextEntry; } if (iter->entry) { /* We need to save the 'next' here, the iterator user * may delete the entry we are returning. */ iter->nextEntry = iter->entry->next; return iter->entry; } } return NULL; } /* ------------------------- private functions ------------------------------ */ /* Expand the hash table if needed */ static int JimExpandHashTableIfNeeded(Jim_HashTable *ht) { /* If the hash table is empty expand it to the intial size, * if the table is "full" dobule its size. */ if (ht->size == 0) return Jim_ExpandHashTable(ht, JIM_HT_INITIAL_SIZE); if (ht->size == ht->used) return Jim_ExpandHashTable(ht, ht->size*2); return JIM_OK; } /* Our hash table capability is a power of two */ static unsigned int JimHashTableNextPower(unsigned int size) { unsigned int i = JIM_HT_INITIAL_SIZE; if (size >= 2147483648U) return 2147483648U; while(1) { if (i >= size) return i; i *= 2; } } /* Returns the index of a free slot that can be populated with * an hash entry for the given 'key'. * If the key already exists, -1 is returned. */ static int JimInsertHashEntry(Jim_HashTable *ht, const void *key) { unsigned int h; Jim_HashEntry *he; /* Expand the hashtable if needed */ if (JimExpandHashTableIfNeeded(ht) == JIM_ERR) return -1; /* Compute the key hash value */ h = Jim_HashKey(ht, key) & ht->sizemask; /* Search if this slot does not already contain the given key */ he = ht->table[h]; while(he) { if (Jim_CompareHashKeys(ht, key, he->key)) return -1; he = he->next; } return h; } /* ----------------------- StringCopy Hash Table Type ------------------------*/ static unsigned int JimStringCopyHTHashFunction(const void *key) { return Jim_GenHashFunction(key, strlen(key)); } static const void *JimStringCopyHTKeyDup(void *privdata, const void *key) { int len = strlen(key); char *copy = Jim_Alloc(len+1); JIM_NOTUSED(privdata); memcpy(copy, key, len); copy[len] = '\0'; return copy; } static void *JimStringKeyValCopyHTValDup(void *privdata, const void *val) { int len = strlen(val); char *copy = Jim_Alloc(len+1); JIM_NOTUSED(privdata); memcpy(copy, val, len); copy[len] = '\0'; return copy; } static int JimStringCopyHTKeyCompare(void *privdata, const void *key1, const void *key2) { JIM_NOTUSED(privdata); return strcmp(key1, key2) == 0; } static void JimStringCopyHTKeyDestructor(void *privdata, const void *key) { JIM_NOTUSED(privdata); Jim_Free((void*)key); /* ATTENTION: const cast */ } static void JimStringKeyValCopyHTValDestructor(void *privdata, void *val) { JIM_NOTUSED(privdata); Jim_Free((void*)val); /* ATTENTION: const cast */ } #if 0 static Jim_HashTableType JimStringCopyHashTableType = { JimStringCopyHTHashFunction, /* hash function */ JimStringCopyHTKeyDup, /* key dup */ NULL, /* val dup */ JimStringCopyHTKeyCompare, /* key compare */ JimStringCopyHTKeyDestructor, /* key destructor */ NULL /* val destructor */ }; #endif /* This is like StringCopy but does not auto-duplicate the key. * It's used for intepreter's shared strings. */ static const Jim_HashTableType JimSharedStringsHashTableType = { JimStringCopyHTHashFunction, /* hash function */ NULL, /* key dup */ NULL, /* val dup */ JimStringCopyHTKeyCompare, /* key compare */ JimStringCopyHTKeyDestructor, /* key destructor */ NULL /* val destructor */ }; /* This is like StringCopy but also automatically handle dynamic * allocated C strings as values. */ static const Jim_HashTableType JimStringKeyValCopyHashTableType = { JimStringCopyHTHashFunction, /* hash function */ JimStringCopyHTKeyDup, /* key dup */ JimStringKeyValCopyHTValDup, /* val dup */ JimStringCopyHTKeyCompare, /* key compare */ JimStringCopyHTKeyDestructor, /* key destructor */ JimStringKeyValCopyHTValDestructor, /* val destructor */ }; typedef struct AssocDataValue { Jim_InterpDeleteProc *delProc; void *data; } AssocDataValue; static void JimAssocDataHashTableValueDestructor(void *privdata, void *data) { AssocDataValue *assocPtr = (AssocDataValue *)data; if (assocPtr->delProc != NULL) assocPtr->delProc((Jim_Interp *)privdata, assocPtr->data); Jim_Free(data); } static const Jim_HashTableType JimAssocDataHashTableType = { JimStringCopyHTHashFunction, /* hash function */ JimStringCopyHTKeyDup, /* key dup */ NULL, /* val dup */ JimStringCopyHTKeyCompare, /* key compare */ JimStringCopyHTKeyDestructor, /* key destructor */ JimAssocDataHashTableValueDestructor /* val destructor */ }; /* ----------------------------------------------------------------------------- * Stack - This is a simple generic stack implementation. It is used for * example in the 'expr' expression compiler. * ---------------------------------------------------------------------------*/ void Jim_InitStack(Jim_Stack *stack) { stack->len = 0; stack->maxlen = 0; stack->vector = NULL; } void Jim_FreeStack(Jim_Stack *stack) { Jim_Free(stack->vector); } int Jim_StackLen(Jim_Stack *stack) { return stack->len; } void Jim_StackPush(Jim_Stack *stack, void *element) { int neededLen = stack->len+1; if (neededLen > stack->maxlen) { stack->maxlen = neededLen < 20 ? 20 : neededLen*2; stack->vector = Jim_Realloc(stack->vector, sizeof(void*)*stack->maxlen); } stack->vector[stack->len] = element; stack->len++; } void *Jim_StackPop(Jim_Stack *stack) { if (stack->len == 0) return NULL; stack->len--; return stack->vector[stack->len]; } void *Jim_StackPeek(Jim_Stack *stack) { if (stack->len == 0) return NULL; return stack->vector[stack->len-1]; } void Jim_FreeStackElements(Jim_Stack *stack, void (*freeFunc)(void *ptr)) { int i; for (i = 0; i < stack->len; i++) freeFunc(stack->vector[i]); } /* ----------------------------------------------------------------------------- * Parser * ---------------------------------------------------------------------------*/ /* Token types */ #define JIM_TT_NONE 0 /* No token returned */ #define JIM_TT_STR 1 /* simple string */ #define JIM_TT_ESC 2 /* string that needs escape chars conversion */ #define JIM_TT_VAR 3 /* var substitution */ #define JIM_TT_DICTSUGAR 4 /* Syntax sugar for [dict get], $foo(bar) */ #define JIM_TT_CMD 5 /* command substitution */ #define JIM_TT_SEP 6 /* word separator */ #define JIM_TT_EOL 7 /* line separator */ #define JIM_TT_EOF 8 /* end of script */ /* Additional token types needed for expressions */ #define JIM_TT_SUBEXPR_START 10 #define JIM_TT_SUBEXPR_END 11 #define JIM_TT_EXPR_INT 12 #define JIM_TT_EXPR_DOUBLE 13 /* Operator token types start here */ #define JIM_TT_EXPR_OP 15 /* Parser states */ #define JIM_PS_DEF 0 /* Default state */ #define JIM_PS_QUOTE 1 /* Inside "" */ #define JIM_PS_DICTSUGAR 2 /* Tokenising abc(def) into 4 separate tokens */ /* Parser context structure. The same context is used both to parse * Tcl scripts and lists. */ struct JimParserCtx { const char *prg; /* Program text */ const char *p; /* Pointer to the point of the program we are parsing */ int len; /* Left length of 'prg' */ int linenr; /* Current line number */ const char *tstart; const char *tend; /* Returned token is at tstart-tend in 'prg'. */ int tline; /* Line number of the returned token */ int tt; /* Token type */ int eof; /* Non zero if EOF condition is true. */ int state; /* Parser state */ int comment; /* Non zero if the next chars may be a comment. */ }; #define JimParserEof(c) ((c)->eof) #define JimParserTstart(c) ((c)->tstart) #define JimParserTend(c) ((c)->tend) #define JimParserTtype(c) ((c)->tt) #define JimParserTline(c) ((c)->tline) static int JimParseScript(struct JimParserCtx *pc); static int JimParseSep(struct JimParserCtx *pc); static int JimParseEol(struct JimParserCtx *pc); static int JimParseCmd(struct JimParserCtx *pc); static int JimParseVar(struct JimParserCtx *pc); static int JimParseBrace(struct JimParserCtx *pc); static int JimParseStr(struct JimParserCtx *pc); static int JimParseComment(struct JimParserCtx *pc); static char *JimParserGetToken(struct JimParserCtx *pc, int *lenPtr, int *typePtr, int *linePtr); /* Initialize a parser context. * 'prg' is a pointer to the program text, linenr is the line * number of the first line contained in the program. */ static void JimParserInit(struct JimParserCtx *pc, const char *prg, int len, int linenr) { pc->prg = prg; pc->p = prg; pc->len = len; pc->tstart = NULL; pc->tend = NULL; pc->tline = 0; pc->tt = JIM_TT_NONE; pc->eof = 0; pc->state = JIM_PS_DEF; pc->linenr = linenr; pc->comment = 1; } static int JimParseScript(struct JimParserCtx *pc) { while(1) { /* the while is used to reiterate with continue if needed */ if (!pc->len) { pc->tstart = pc->p; pc->tend = pc->p-1; pc->tline = pc->linenr; pc->tt = JIM_TT_EOL; pc->eof = 1; return JIM_OK; } switch(*(pc->p)) { case '\\': if (*(pc->p+1) == '\n') return JimParseSep(pc); else { pc->comment = 0; return JimParseStr(pc); } break; case ' ': case '\t': case '\r': if (pc->state == JIM_PS_DEF) return JimParseSep(pc); else { pc->comment = 0; return JimParseStr(pc); } break; case '\n': case ';': pc->comment = 1; if (pc->state == JIM_PS_DEF) return JimParseEol(pc); else return JimParseStr(pc); break; case '[': pc->comment = 0; return JimParseCmd(pc); break; case '$': pc->comment = 0; if (JimParseVar(pc) == JIM_ERR) { pc->tstart = pc->tend = pc->p++; pc->len--; pc->tline = pc->linenr; pc->tt = JIM_TT_STR; return JIM_OK; } else return JIM_OK; break; case '#': if (pc->comment) { JimParseComment(pc); continue; } else { return JimParseStr(pc); } default: pc->comment = 0; return JimParseStr(pc); break; } return JIM_OK; } } static int JimParseSep(struct JimParserCtx *pc) { pc->tstart = pc->p; pc->tline = pc->linenr; while (*pc->p == ' ' || *pc->p == '\t' || *pc->p == '\r' || (*pc->p == '\\' && *(pc->p+1) == '\n')) { if (*pc->p == '\\') { pc->p++; pc->len--; pc->linenr++; } pc->p++; pc->len--; } pc->tend = pc->p-1; pc->tt = JIM_TT_SEP; return JIM_OK; } static int JimParseEol(struct JimParserCtx *pc) { pc->tstart = pc->p; pc->tline = pc->linenr; while (*pc->p == ' ' || *pc->p == '\n' || *pc->p == '\t' || *pc->p == '\r' || *pc->p == ';') { if (*pc->p == '\n') pc->linenr++; pc->p++; pc->len--; } pc->tend = pc->p-1; pc->tt = JIM_TT_EOL; return JIM_OK; } /* Todo. Don't stop if ']' appears inside {} or quoted. * Also should handle the case of puts [string length "]"] */ static int JimParseCmd(struct JimParserCtx *pc) { int level = 1; int blevel = 0; pc->tstart = ++pc->p; pc->len--; pc->tline = pc->linenr; while (1) { if (pc->len == 0) { break; } else if (*pc->p == '[' && blevel == 0) { level++; } else if (*pc->p == ']' && blevel == 0) { level--; if (!level) break; } else if (*pc->p == '\\') { pc->p++; pc->len--; if (*pc->p == '\n') pc->linenr++; } else if (*pc->p == '{') { blevel++; } else if (*pc->p == '}') { if (blevel != 0) blevel--; } else if (*pc->p == '\n') pc->linenr++; pc->p++; pc->len--; } pc->tend = pc->p-1; pc->tt = JIM_TT_CMD; if (*pc->p == ']') { pc->p++; pc->len--; } return JIM_OK; } static int JimParseVar(struct JimParserCtx *pc) { int brace = 0, stop = 0, ttype = JIM_TT_VAR; pc->tstart = ++pc->p; pc->len--; /* skip the $ */ pc->tline = pc->linenr; if (*pc->p == '{') { pc->tstart = ++pc->p; pc->len--; brace = 1; } if (brace) { while (!stop) { if (*pc->p == '}' || pc->len == 0) { pc->tend = pc->p-1; stop = 1; if (pc->len == 0) break; } else if (*pc->p == '\n') pc->linenr++; pc->p++; pc->len--; } } else { /* Include leading colons */ while (*pc->p == ':') { pc->p++; pc->len--; } while (!stop) { if (!((*pc->p >= 'a' && *pc->p <= 'z') || (*pc->p >= 'A' && *pc->p <= 'Z') || (*pc->p >= '0' && *pc->p <= '9') || *pc->p == '_')) stop = 1; else { pc->p++; pc->len--; } } /* Parse [dict get] syntax sugar. */ if (*pc->p == '(') { int count = 1; while (count && pc->len) { pc->p++; pc->len--; if (*pc->p == '\\' && pc->len >= 2) { pc->p += 2; pc->len -= 2; } else if (*pc->p == '(') { count++; } else if (*pc->p == ')') { count--; } } if (*pc->p != '\0') { pc->p++; pc->len--; } ttype = JIM_TT_DICTSUGAR; } pc->tend = pc->p-1; } /* Check if we parsed just the '$' character. * That's not a variable so an error is returned * to tell the state machine to consider this '$' just * a string. */ if (pc->tstart == pc->p) { pc->p--; pc->len++; return JIM_ERR; } pc->tt = ttype; return JIM_OK; } static int JimParseBrace(struct JimParserCtx *pc) { int level = 1; pc->tstart = ++pc->p; pc->len--; pc->tline = pc->linenr; while (1) { if (*pc->p == '\\' && pc->len >= 2) { pc->p++; pc->len--; if (*pc->p == '\n') pc->linenr++; } else if (*pc->p == '{') { level++; } else if (pc->len == 0 || *pc->p == '}') { level--; if (pc->len == 0 || level == 0) { pc->tend = pc->p-1; if (pc->len != 0) { pc->p++; pc->len--; } pc->tt = JIM_TT_STR; return JIM_OK; } } else if (*pc->p == '\n') { pc->linenr++; } pc->p++; pc->len--; } return JIM_OK; /* unreached */ } static int JimParseStr(struct JimParserCtx *pc) { int newword = (pc->tt == JIM_TT_SEP || pc->tt == JIM_TT_EOL || pc->tt == JIM_TT_NONE || pc->tt == JIM_TT_STR); if (newword && *pc->p == '{') { return JimParseBrace(pc); } else if (newword && *pc->p == '"') { pc->state = JIM_PS_QUOTE; pc->p++; pc->len--; } pc->tstart = pc->p; pc->tline = pc->linenr; while (1) { if (pc->len == 0) { pc->tend = pc->p-1; pc->tt = JIM_TT_ESC; return JIM_OK; } switch(*pc->p) { case '\\': if (pc->state == JIM_PS_DEF && *(pc->p+1) == '\n') { pc->tend = pc->p-1; pc->tt = JIM_TT_ESC; return JIM_OK; } if (pc->len >= 2) { if (*(pc->p+1) == '\n') { pc->linenr++; } pc->p++; pc->len--; } break; case '(': /* If the following token is not '$' just keep going */ if (pc->len > 1 && pc->p[1] != '$') { break; } case ')': /* Only need a separate ')' token if the previous was a var */ if (*pc->p == '(' || pc->tt == JIM_TT_VAR) { if (pc->p == pc->tstart) { /* At the start of the token, so just return this char */ pc->p++; pc->len--; } pc->tend = pc->p-1; pc->tt = JIM_TT_ESC; return JIM_OK; } break; case '$': case '[': pc->tend = pc->p-1; pc->tt = JIM_TT_ESC; return JIM_OK; case ' ': case '\t': case '\n': case '\r': case ';': if (pc->state == JIM_PS_DEF) { pc->tend = pc->p-1; pc->tt = JIM_TT_ESC; return JIM_OK; } else if (*pc->p == '\n') { pc->linenr++; } break; case '"': if (pc->state == JIM_PS_QUOTE) { pc->tend = pc->p-1; pc->tt = JIM_TT_ESC; pc->p++; pc->len--; pc->state = JIM_PS_DEF; return JIM_OK; } break; } pc->p++; pc->len--; } return JIM_OK; /* unreached */ } int JimParseComment(struct JimParserCtx *pc) { while (*pc->p) { if (*pc->p == '\n') { pc->linenr++; if (*(pc->p-1) != '\\') { pc->p++; pc->len--; return JIM_OK; } } pc->p++; pc->len--; } return JIM_OK; } /* xdigitval and odigitval are helper functions for JimParserGetToken() */ static int xdigitval(int c) { if (c >= '0' && c <= '9') return c-'0'; if (c >= 'a' && c <= 'f') return c-'a'+10; if (c >= 'A' && c <= 'F') return c-'A'+10; return -1; } static int odigitval(int c) { if (c >= '0' && c <= '7') return c-'0'; return -1; } /* Perform Tcl escape substitution of 's', storing the result * string into 'dest'. The escaped string is guaranteed to * be the same length or shorted than the source string. * Slen is the length of the string at 's', if it's -1 the string * length will be calculated by the function. * * The function returns the length of the resulting string. */ static int JimEscape(char *dest, const char *s, int slen) { char *p = dest; int i, len; if (slen == -1) slen = strlen(s); for (i = 0; i < slen; i++) { switch(s[i]) { case '\\': switch(s[i+1]) { case 'a': *p++ = 0x7; i++; break; case 'b': *p++ = 0x8; i++; break; case 'f': *p++ = 0xc; i++; break; case 'n': *p++ = 0xa; i++; break; case 'r': *p++ = 0xd; i++; break; case 't': *p++ = 0x9; i++; break; case 'v': *p++ = 0xb; i++; break; case '\0': *p++ = '\\'; i++; break; case '\n': *p++ = ' '; i++; break; default: if (s[i+1] == 'x') { int val = 0; int c = xdigitval(s[i+2]); if (c == -1) { *p++ = 'x'; i++; break; } val = c; c = xdigitval(s[i+3]); if (c == -1) { *p++ = val; i += 2; break; } val = (val*16)+c; *p++ = val; i += 3; break; } else if (s[i+1] >= '0' && s[i+1] <= '7') { int val = 0; int c = odigitval(s[i+1]); val = c; c = odigitval(s[i+2]); if (c == -1) { *p++ = val; i ++; break; } val = (val*8)+c; c = odigitval(s[i+3]); if (c == -1) { *p++ = val; i += 2; break; } val = (val*8)+c; *p++ = val; i += 3; } else { *p++ = s[i+1]; i++; } break; } break; default: *p++ = s[i]; break; } } len = p-dest; *p = '\0'; return len; } /* Returns a dynamically allocated copy of the current token in the * parser context. The function perform conversion of escapes if * the token is of type JIM_TT_ESC. * * Note that after the conversion, tokens that are grouped with * braces in the source code, are always recognizable from the * identical string obtained in a different way from the type. * * For exmple the string: * * {expand}$a * * will return as first token "expand", of type JIM_TT_STR * * While the string: * * expand$a * * will return as first token "expand", of type JIM_TT_ESC */ char *JimParserGetToken(struct JimParserCtx *pc, int *lenPtr, int *typePtr, int *linePtr) { const char *start, *end; char *token; int len; start = JimParserTstart(pc); end = JimParserTend(pc); if (start > end) { if (lenPtr) *lenPtr = 0; if (typePtr) *typePtr = JimParserTtype(pc); if (linePtr) *linePtr = JimParserTline(pc); token = Jim_Alloc(1); token[0] = '\0'; return token; } len = (end-start)+1; token = Jim_Alloc(len+1); if (JimParserTtype(pc) != JIM_TT_ESC) { /* No escape conversion needed? Just copy it. */ memcpy(token, start, len); token[len] = '\0'; } else { /* Else convert the escape chars. */ len = JimEscape(token, start, len); } if (lenPtr) *lenPtr = len; if (typePtr) *typePtr = JimParserTtype(pc); if (linePtr) *linePtr = JimParserTline(pc); return token; } /* The following functin is not really part of the parsing engine of Jim, * but it somewhat related. Given an string and its length, it tries * to guess if the script is complete or there are instead " " or { } * open and not completed. This is useful for interactive shells * implementation and for [info complete]. * * If 'stateCharPtr' != NULL, the function stores ' ' on complete script, * '{' on scripts incomplete missing one or more '}' to be balanced. * '"' on scripts incomplete missing a '"' char. * * If the script is complete, 1 is returned, otherwise 0. */ int Jim_ScriptIsComplete(const char *s, int len, char *stateCharPtr) { int level = 0; int state = ' '; while(len) { switch (*s) { case '\\': if (len > 1) s++; break; case '"': if (state == ' ') { state = '"'; } else if (state == '"') { state = ' '; } break; case '{': if (state == '{') { level++; } else if (state == ' ') { state = '{'; level++; } break; case '}': if (state == '{') { level--; if (level == 0) state = ' '; } break; } s++; len--; } if (stateCharPtr) *stateCharPtr = state; return state == ' '; } /* ----------------------------------------------------------------------------- * Tcl Lists parsing * ---------------------------------------------------------------------------*/ static int JimParseListSep(struct JimParserCtx *pc); static int JimParseListStr(struct JimParserCtx *pc); int JimParseList(struct JimParserCtx *pc) { if (pc->len == 0) { pc->tstart = pc->tend = pc->p; pc->tline = pc->linenr; pc->tt = JIM_TT_EOL; pc->eof = 1; return JIM_OK; } switch(*pc->p) { case ' ': case '\n': case '\t': case '\r': if (pc->state == JIM_PS_DEF) return JimParseListSep(pc); else return JimParseListStr(pc); break; default: return JimParseListStr(pc); break; } return JIM_OK; } int JimParseListSep(struct JimParserCtx *pc) { pc->tstart = pc->p; pc->tline = pc->linenr; while (*pc->p == ' ' || *pc->p == '\t' || *pc->p == '\r' || *pc->p == '\n') { pc->p++; pc->len--; } pc->tend = pc->p-1; pc->tt = JIM_TT_SEP; return JIM_OK; } int JimParseListStr(struct JimParserCtx *pc) { int newword = (pc->tt == JIM_TT_SEP || pc->tt == JIM_TT_EOL || pc->tt == JIM_TT_NONE); if (newword && *pc->p == '{') { return JimParseBrace(pc); } else if (newword && *pc->p == '"') { pc->state = JIM_PS_QUOTE; pc->p++; pc->len--; } pc->tstart = pc->p; pc->tline = pc->linenr; while (1) { if (pc->len == 0) { pc->tend = pc->p-1; pc->tt = JIM_TT_ESC; return JIM_OK; } switch(*pc->p) { case '\\': pc->p++; pc->len--; break; case ' ': case '\t': case '\n': case '\r': if (pc->state == JIM_PS_DEF) { pc->tend = pc->p-1; pc->tt = JIM_TT_ESC; return JIM_OK; } else if (*pc->p == '\n') { pc->linenr++; } break; case '"': if (pc->state == JIM_PS_QUOTE) { pc->tend = pc->p-1; pc->tt = JIM_TT_ESC; pc->p++; pc->len--; pc->state = JIM_PS_DEF; return JIM_OK; } break; } pc->p++; pc->len--; } return JIM_OK; /* unreached */ } /* ----------------------------------------------------------------------------- * Jim_Obj related functions * ---------------------------------------------------------------------------*/ /* Return a new initialized object. */ Jim_Obj *Jim_NewObj(Jim_Interp *interp) { Jim_Obj *objPtr; /* -- Check if there are objects in the free list -- */ if (interp->freeList != NULL) { /* -- Unlink the object from the free list -- */ objPtr = interp->freeList; interp->freeList = objPtr->nextObjPtr; } else { /* -- No ready to use objects: allocate a new one -- */ objPtr = Jim_Alloc(sizeof(*objPtr)); } /* Object is returned with refCount of 0. Every * kind of GC implemented should take care to don't try * to scan objects with refCount == 0. */ objPtr->refCount = 0; /* All the other fields are left not initialized to save time. * The caller will probably want to set them to the right * value anyway. */ /* -- Put the object into the live list -- */ objPtr->prevObjPtr = NULL; objPtr->nextObjPtr = interp->liveList; if (interp->liveList) interp->liveList->prevObjPtr = objPtr; interp->liveList = objPtr; return objPtr; } /* Free an object. Actually objects are never freed, but * just moved to the free objects list, where they will be * reused by Jim_NewObj(). */ void Jim_FreeObj(Jim_Interp *interp, Jim_Obj *objPtr) { /* Check if the object was already freed, panic. */ if (objPtr->refCount != 0) { Jim_Panic(interp,"!!!Object %p freed with bad refcount %d, type=%s", objPtr, objPtr->refCount, objPtr->typePtr ? objPtr->typePtr->name : ""); } /* Free the internal representation */ Jim_FreeIntRep(interp, objPtr); /* Free the string representation */ if (objPtr->bytes != NULL) { if (objPtr->bytes != JimEmptyStringRep) Jim_Free(objPtr->bytes); } /* Unlink the object from the live objects list */ if (objPtr->prevObjPtr) objPtr->prevObjPtr->nextObjPtr = objPtr->nextObjPtr; if (objPtr->nextObjPtr) objPtr->nextObjPtr->prevObjPtr = objPtr->prevObjPtr; if (interp->liveList == objPtr) interp->liveList = objPtr->nextObjPtr; /* Link the object into the free objects list */ objPtr->prevObjPtr = NULL; objPtr->nextObjPtr = interp->freeList; if (interp->freeList) interp->freeList->prevObjPtr = objPtr; interp->freeList = objPtr; objPtr->refCount = -1; } /* Invalidate the string representation of an object. */ void Jim_InvalidateStringRep(Jim_Obj *objPtr) { if (objPtr->bytes != NULL) { if (objPtr->bytes != JimEmptyStringRep) Jim_Free(objPtr->bytes); } objPtr->bytes = NULL; } #define Jim_SetStringRep(o, b, l) \ do { (o)->bytes = b; (o)->length = l; } while (0) /* Set the initial string representation for an object. * Does not try to free an old one. */ void Jim_InitStringRep(Jim_Obj *objPtr, const char *bytes, int length) { if (length == 0) { objPtr->bytes = JimEmptyStringRep; objPtr->length = 0; } else { objPtr->bytes = Jim_Alloc(length+1); objPtr->length = length; memcpy(objPtr->bytes, bytes, length); objPtr->bytes[length] = '\0'; } } /* Duplicate an object. The returned object has refcount = 0. */ Jim_Obj *Jim_DuplicateObj(Jim_Interp *interp, Jim_Obj *objPtr) { Jim_Obj *dupPtr; dupPtr = Jim_NewObj(interp); if (objPtr->bytes == NULL) { /* Object does not have a valid string representation. */ dupPtr->bytes = NULL; } else { Jim_InitStringRep(dupPtr, objPtr->bytes, objPtr->length); } if (objPtr->typePtr != NULL) { if (objPtr->typePtr->dupIntRepProc == NULL) { dupPtr->internalRep = objPtr->internalRep; } else { objPtr->typePtr->dupIntRepProc(interp, objPtr, dupPtr); } dupPtr->typePtr = objPtr->typePtr; } else { dupPtr->typePtr = NULL; } return dupPtr; } /* Return the string representation for objPtr. If the object * string representation is invalid, calls the method to create * a new one starting from the internal representation of the object. */ const char *Jim_GetString(Jim_Obj *objPtr, int *lenPtr) { if (objPtr->bytes == NULL) { /* Invalid string repr. Generate it. */ if (objPtr->typePtr->updateStringProc == NULL) { Jim_Panic(NULL,"UpdateStringProc called against '%s' type.", objPtr->typePtr->name); } objPtr->typePtr->updateStringProc(objPtr); } if (lenPtr) *lenPtr = objPtr->length; return objPtr->bytes; } /* Just returns the length of the object's string rep */ int Jim_Length(Jim_Obj *objPtr) { int len; Jim_GetString(objPtr, &len); return len; } static void FreeDictSubstInternalRep(Jim_Interp *interp, Jim_Obj *objPtr); static void DupDictSubstInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr); static const Jim_ObjType dictSubstObjType = { "dict-substitution", FreeDictSubstInternalRep, DupDictSubstInternalRep, NULL, JIM_TYPE_NONE, }; static void FreeInterpolatedInternalRep(Jim_Interp *interp, Jim_Obj *objPtr) { Jim_DecrRefCount(interp, (Jim_Obj *)objPtr->internalRep.twoPtrValue.ptr2); } static const Jim_ObjType interpolatedObjType = { "interpolated", FreeInterpolatedInternalRep, NULL, NULL, JIM_TYPE_NONE, }; /* ----------------------------------------------------------------------------- * String Object * ---------------------------------------------------------------------------*/ static void DupStringInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr); static int SetStringFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr); static const Jim_ObjType stringObjType = { "string", NULL, DupStringInternalRep, NULL, JIM_TYPE_REFERENCES, }; void DupStringInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr) { JIM_NOTUSED(interp); /* This is a bit subtle: the only caller of this function * should be Jim_DuplicateObj(), that will copy the * string representaion. After the copy, the duplicated * object will not have more room in teh buffer than * srcPtr->length bytes. So we just set it to length. */ dupPtr->internalRep.strValue.maxLength = srcPtr->length; } int SetStringFromAny(Jim_Interp *interp, Jim_Obj *objPtr) { /* Get a fresh string representation. */ (void) Jim_GetString(objPtr, NULL); /* Free any other internal representation. */ Jim_FreeIntRep(interp, objPtr); /* Set it as string, i.e. just set the maxLength field. */ objPtr->typePtr = &stringObjType; objPtr->internalRep.strValue.maxLength = objPtr->length; return JIM_OK; } Jim_Obj *Jim_NewStringObj(Jim_Interp *interp, const char *s, int len) { Jim_Obj *objPtr = Jim_NewObj(interp); if (len == -1) len = strlen(s); /* Alloc/Set the string rep. */ if (len == 0) { objPtr->bytes = JimEmptyStringRep; objPtr->length = 0; } else { objPtr->bytes = Jim_Alloc(len+1); objPtr->length = len; memcpy(objPtr->bytes, s, len); objPtr->bytes[len] = '\0'; } /* No typePtr field for the vanilla string object. */ objPtr->typePtr = NULL; return objPtr; } /* This version does not try to duplicate the 's' pointer, but * use it directly. */ Jim_Obj *Jim_NewStringObjNoAlloc(Jim_Interp *interp, char *s, int len) { Jim_Obj *objPtr = Jim_NewObj(interp); if (len == -1) len = strlen(s); Jim_SetStringRep(objPtr, s, len); objPtr->typePtr = NULL; return objPtr; } /* Low-level string append. Use it only against objects * of type "string". */ void StringAppendString(Jim_Obj *objPtr, const char *str, int len) { int needlen; if (len == -1) len = strlen(str); needlen = objPtr->length + len; if (objPtr->internalRep.strValue.maxLength < needlen || objPtr->internalRep.strValue.maxLength == 0) { if (objPtr->bytes == JimEmptyStringRep) { objPtr->bytes = Jim_Alloc((needlen*2)+1); } else { objPtr->bytes = Jim_Realloc(objPtr->bytes, (needlen*2)+1); } objPtr->internalRep.strValue.maxLength = needlen*2; } memcpy(objPtr->bytes + objPtr->length, str, len); objPtr->bytes[objPtr->length+len] = '\0'; objPtr->length += len; } /* Higher level API to append strings to objects. */ void Jim_AppendString(Jim_Interp *interp, Jim_Obj *objPtr, const char *str, int len) { if (Jim_IsShared(objPtr)) Jim_Panic(interp,"Jim_AppendString called with shared object"); if (objPtr->typePtr != &stringObjType) SetStringFromAny(interp, objPtr); StringAppendString(objPtr, str, len); } void Jim_AppendObj(Jim_Interp *interp, Jim_Obj *objPtr, Jim_Obj *appendObjPtr) { int len; const char *str; str = Jim_GetString(appendObjPtr, &len); Jim_AppendString(interp, objPtr, str, len); } void Jim_AppendStrings(Jim_Interp *interp, Jim_Obj *objPtr, ...) { va_list ap; if (objPtr->typePtr != &stringObjType) SetStringFromAny(interp, objPtr); va_start(ap, objPtr); while (1) { char *s = va_arg(ap, char*); if (s == NULL) break; Jim_AppendString(interp, objPtr, s, -1); } va_end(ap); } int Jim_StringEqObj(Jim_Obj *aObjPtr, Jim_Obj *bObjPtr, int nocase) { const char *aStr, *bStr; int aLen, bLen, i; if (aObjPtr == bObjPtr) return 1; aStr = Jim_GetString(aObjPtr, &aLen); bStr = Jim_GetString(bObjPtr, &bLen); if (aLen != bLen) return 0; if (nocase == 0) return memcmp(aStr, bStr, aLen) == 0; for (i = 0; i < aLen; i++) { if (tolower((int)aStr[i]) != tolower((int)bStr[i])) return 0; } return 1; } int Jim_StringMatchObj(Jim_Obj *patternObjPtr, Jim_Obj *objPtr, int nocase) { const char *pattern, *string; int patternLen, stringLen; pattern = Jim_GetString(patternObjPtr, &patternLen); string = Jim_GetString(objPtr, &stringLen); return JimStringMatch(pattern, patternLen, string, stringLen, nocase); } int Jim_StringCompareObj(Jim_Obj *firstObjPtr, Jim_Obj *secondObjPtr, int nocase) { const char *s1, *s2; int l1, l2; s1 = Jim_GetString(firstObjPtr, &l1); s2 = Jim_GetString(secondObjPtr, &l2); return JimStringCompare(s1, l1, s2, l2, nocase); } /* Convert a range, as returned by Jim_GetRange(), into * an absolute index into an object of the specified length. * This function may return negative values, or values * bigger or equal to the length of the list if the index * is out of range. */ static int JimRelToAbsIndex(int len, int index) { if (index < 0) return len + index; return index; } /* Convert a pair of index as normalize by JimRelToAbsIndex(), * into a range stored in *firstPtr, *lastPtr, *rangeLenPtr, suitable * for implementation of commands like [string range] and [lrange]. * * The resulting range is guaranteed to address valid elements of * the structure. */ static void JimRelToAbsRange(int len, int first, int last, int *firstPtr, int *lastPtr, int *rangeLenPtr) { int rangeLen; if (first > last) { rangeLen = 0; } else { rangeLen = last-first+1; if (rangeLen) { if (first < 0) { rangeLen += first; first = 0; } if (last >= len) { rangeLen -= (last-(len-1)); last = len-1; } } } if (rangeLen < 0) rangeLen = 0; *firstPtr = first; *lastPtr = last; *rangeLenPtr = rangeLen; } Jim_Obj *Jim_StringRangeObj(Jim_Interp *interp, Jim_Obj *strObjPtr, Jim_Obj *firstObjPtr, Jim_Obj *lastObjPtr) { int first, last; const char *str; int len, rangeLen; if (Jim_GetIndex(interp, firstObjPtr, &first) != JIM_OK || Jim_GetIndex(interp, lastObjPtr, &last) != JIM_OK) return NULL; str = Jim_GetString(strObjPtr, &len); first = JimRelToAbsIndex(len, first); last = JimRelToAbsIndex(len, last); JimRelToAbsRange(len, first, last, &first, &last, &rangeLen); return Jim_NewStringObj(interp, str+first, rangeLen); } static Jim_Obj *JimStringToLower(Jim_Interp *interp, Jim_Obj *strObjPtr) { char *buf; int i; if (strObjPtr->typePtr != &stringObjType) { SetStringFromAny(interp, strObjPtr); } buf = Jim_Alloc(strObjPtr->length+1); memcpy(buf, strObjPtr->bytes, strObjPtr->length+1); for (i = 0; i < strObjPtr->length; i++) buf[i] = tolower(buf[i]); return Jim_NewStringObjNoAlloc(interp, buf, strObjPtr->length); } static Jim_Obj *JimStringToUpper(Jim_Interp *interp, Jim_Obj *strObjPtr) { char *buf; int i; if (strObjPtr->typePtr != &stringObjType) { SetStringFromAny(interp, strObjPtr); } buf = Jim_Alloc(strObjPtr->length+1); memcpy(buf, strObjPtr->bytes, strObjPtr->length+1); for (i = 0; i < strObjPtr->length; i++) buf[i] = toupper(buf[i]); return Jim_NewStringObjNoAlloc(interp, buf, strObjPtr->length); } static const char *trim_left(const char *str, const char *trimchars) { return str + strspn(str, trimchars); } static void trim_right(char *str, const char *trimchars) { char *p = str + strlen(str) - 1; char *end = str - 1; int c; while (p != end) { c = *p; if (strchr(trimchars, c) == 0) { break; } p--; } p[1] = 0; } static const char default_trim_chars[] = " \t\n\r"; static Jim_Obj *JimStringTrim(Jim_Interp *interp, Jim_Obj *strObjPtr, Jim_Obj *trimcharsObjPtr) { char *buf; const char *trimchars = default_trim_chars; if (strObjPtr->typePtr != &stringObjType) { SetStringFromAny(interp, strObjPtr); } if (trimcharsObjPtr) { trimchars = Jim_GetString(trimcharsObjPtr, NULL); } buf = Jim_Alloc(strObjPtr->length+1); strcpy(buf, trim_left(strObjPtr->bytes, trimchars)); trim_right(buf, trimchars); return Jim_NewStringObjNoAlloc(interp, buf, -1); } static Jim_Obj *JimStringTrimLeft(Jim_Interp *interp, Jim_Obj *strObjPtr, Jim_Obj *trimcharsObjPtr) { const char *str = Jim_GetString(strObjPtr, NULL); const char *trimchars = default_trim_chars; if (trimcharsObjPtr) { trimchars = Jim_GetString(trimcharsObjPtr, NULL); } return Jim_NewStringObj(interp, trim_left(str, trimchars), -1); } static Jim_Obj *JimStringTrimRight(Jim_Interp *interp, Jim_Obj *strObjPtr, Jim_Obj *trimcharsObjPtr) { char *buf; const char *trimchars = default_trim_chars; if (trimcharsObjPtr) { trimchars = Jim_GetString(trimcharsObjPtr, NULL); } if (strObjPtr->typePtr != &stringObjType) { SetStringFromAny(interp, strObjPtr); } buf = Jim_StrDup(strObjPtr->bytes); trim_right(buf, trimchars); return Jim_NewStringObjNoAlloc(interp, buf, -1); } /* This is the core of the [format] command. * TODO: Lots of things work - via a hack * However, no format item can be >= JIM_MAX_FMT */ #define JIM_MAX_FMT 2048 static Jim_Obj *Jim_FormatString_Inner(Jim_Interp *interp, Jim_Obj *fmtObjPtr, int objc, Jim_Obj *const *objv, char *sprintf_buf) { const char *fmt; int fmtLen; Jim_Obj *resObjPtr; fmt = Jim_GetString(fmtObjPtr, &fmtLen); resObjPtr = Jim_NewStringObj(interp, "", 0); while (fmtLen) { const char *p = fmt; char spec[2], c; jim_wide wideValue; double doubleValue; /* we cheat and use Sprintf()! */ char fmt_str[100]; char *cp; int width; int ljust; int zpad; int spad; int altfm; int forceplus; int prec; int inprec; int haveprec; int accum; int buflen = 0; while (*fmt != '%' && fmtLen) { fmt++; fmtLen--; } Jim_AppendString(interp, resObjPtr, p, fmt-p); if (fmtLen == 0) break; fmt++; fmtLen--; /* skip '%' */ zpad = 0; spad = 0; width = -1; ljust = 0; altfm = 0; forceplus = 0; inprec = 0; haveprec = 0; prec = -1; /* not found yet */ next_fmt: if (fmtLen <= 0) { break; } switch (*fmt) { /* terminals */ case 'b': /* binary - not all printfs() do this */ case 's': /* string */ case 'i': /* integer */ case 'd': /* decimal */ case 'x': /* hex */ case 'X': /* CAP hex */ case 'c': /* char */ case 'o': /* octal */ case 'u': /* unsigned */ case 'f': /* float */ break; /* non-terminals */ case '+': forceplus = 1; fmt++; fmtLen--; goto next_fmt; break; case ' ': /* sign space */ spad = 1; fmt++; fmtLen--; goto next_fmt; break; case '-': ljust = 1; fmt++; fmtLen--; goto next_fmt; break; case '#': altfm = 1; fmt++; fmtLen--; goto next_fmt; case '.': inprec = 1; fmt++; fmtLen--; goto next_fmt; break; case '0': if (!inprec) { /* zero pad */ zpad = 1; fmt++; fmtLen--; goto next_fmt; break; } /* fall through */ case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': accum = 0; while (isdigit(*fmt) && (fmtLen > 0)) { accum = (accum * 10) + (*fmt - '0'); fmt++; fmtLen--; } if (inprec) { haveprec = 1; prec = accum; } else { width = accum; } goto next_fmt; case '*': /* suck up the next item as an integer */ fmt++; fmtLen--; objc--; if (objc <= 0) { goto not_enough_args; } if (Jim_GetWide(interp,objv[0],&wideValue )== JIM_ERR) { Jim_FreeNewObj(interp, resObjPtr ); return NULL; } if (inprec) { haveprec = 1; prec = wideValue; if (prec < 0) { /* man 3 printf says */ /* if prec is negative, it is zero */ prec = 0; } } else { width = wideValue; if (width < 0) { ljust = 1; width = -width; } } objv++; goto next_fmt; break; } if (*fmt != '%') { if (objc == 0) { not_enough_args: Jim_FreeNewObj(interp, resObjPtr); Jim_SetResultString(interp, "not enough arguments for all format specifiers", -1); return NULL; } else { objc--; } } /* * Create the formatter * cause we cheat and use sprintf() */ cp = fmt_str; *cp++ = '%'; if (altfm) { *cp++ = '#'; } if (forceplus) { *cp++ = '+'; } else if (spad) { /* PLUS overrides */ *cp++ = ' '; } if (ljust) { *cp++ = '-'; } if (zpad ) { *cp++ = '0'; } if (width > 0) { sprintf( cp, "%d", width ); /* skip ahead */ cp = strchr(cp,0); } /* did we find a period? */ if (inprec) { /* then add it */ *cp++ = '.'; /* did something occur after the period? */ if (haveprec) { sprintf( cp, "%d", prec ); } cp = strchr(cp,0); } *cp = 0; /* here we do the work */ /* actually - we make sprintf() do it for us */ switch(*fmt) { case 's': *cp++ = 's'; *cp = 0; /* BUG: we do not handled embeded NULLs */ buflen = snprintf( sprintf_buf, JIM_MAX_FMT, fmt_str, Jim_GetString( objv[0], NULL )); break; case 'c': *cp++ = 'c'; *cp = 0; if (Jim_GetWide(interp, objv[0], &wideValue) == JIM_ERR) { Jim_FreeNewObj(interp, resObjPtr); return NULL; } c = (char) wideValue; buflen = snprintf( sprintf_buf, JIM_MAX_FMT, fmt_str, c ); break; case 'f': case 'F': case 'g': case 'G': case 'e': case 'E': *cp++ = *fmt; *cp = 0; if (Jim_GetDouble( interp, objv[0], &doubleValue ) == JIM_ERR) { Jim_FreeNewObj( interp, resObjPtr ); return NULL; } buflen = snprintf( sprintf_buf, JIM_MAX_FMT, fmt_str, doubleValue ); break; case 'b': case 'd': case 'o': case 'i': case 'u': case 'x': case 'X': /* jim widevaluse are 64bit */ if (sizeof(jim_wide) == sizeof(long long)) { *cp++ = 'l'; *cp++ = 'l'; } else { *cp++ = 'l'; } *cp++ = *fmt; *cp = 0; if (Jim_GetWide(interp, objv[0], &wideValue) == JIM_ERR) { Jim_FreeNewObj(interp, resObjPtr); return NULL; } buflen = snprintf(sprintf_buf, JIM_MAX_FMT, fmt_str, wideValue ); break; case '%': sprintf_buf[0] = '%'; sprintf_buf[1] = 0; objv--; /* undo the objv++ below */ break; default: spec[0] = *fmt; spec[1] = '\0'; Jim_SetResultFormatted(interp, "bad field specifier \"%s\"", spec); return NULL; } /* force terminate */ #if 0 printf("FMT was: %s\n", fmt_str ); printf("RES was: |%s|\n", sprintf_buf ); #endif Jim_AppendString( interp, resObjPtr, sprintf_buf, buflen <= JIM_MAX_FMT ? buflen : JIM_MAX_FMT); /* next obj */ objv++; fmt++; fmtLen--; } return resObjPtr; } Jim_Obj *Jim_FormatString(Jim_Interp *interp, Jim_Obj *fmtObjPtr, int objc, Jim_Obj *const *objv) { char *sprintf_buf=malloc(JIM_MAX_FMT); Jim_Obj *t=Jim_FormatString_Inner(interp, fmtObjPtr, objc, objv, sprintf_buf); free(sprintf_buf); return t; } /* ----------------------------------------------------------------------------- * Compared String Object * ---------------------------------------------------------------------------*/ /* This is strange object that allows to compare a C literal string * with a Jim object in very short time if the same comparison is done * multiple times. For example every time the [if] command is executed, * Jim has to check if a given argument is "else". This comparions if * the code has no errors are true most of the times, so we can cache * inside the object the pointer of the string of the last matching * comparison. Because most C compilers perform literal sharing, * so that: char *x = "foo", char *y = "foo", will lead to x == y, * this works pretty well even if comparisons are at different places * inside the C code. */ static const Jim_ObjType comparedStringObjType = { "compared-string", NULL, NULL, NULL, JIM_TYPE_REFERENCES, }; /* The only way this object is exposed to the API is via the following * function. Returns true if the string and the object string repr. * are the same, otherwise zero is returned. * * Note: this isn't binary safe, but it hardly needs to be.*/ int Jim_CompareStringImmediate(Jim_Interp *interp, Jim_Obj *objPtr, const char *str) { if (objPtr->typePtr == &comparedStringObjType && objPtr->internalRep.ptr == str) return 1; else { const char *objStr = Jim_GetString(objPtr, NULL); if (strcmp(str, objStr) != 0) return 0; if (objPtr->typePtr != &comparedStringObjType) { Jim_FreeIntRep(interp, objPtr); objPtr->typePtr = &comparedStringObjType; } objPtr->internalRep.ptr = (char*)str; /*ATTENTION: const cast */ return 1; } } int qsortCompareStringPointers(const void *a, const void *b) { char * const *sa = (char * const *)a; char * const *sb = (char * const *)b; return strcmp(*sa, *sb); } /* ----------------------------------------------------------------------------- * Source Object * * This object is just a string from the language point of view, but * in the internal representation it contains the filename and line number * where this given token was read. This information is used by * Jim_EvalObj() if the object passed happens to be of type "source". * * This allows to propagate the information about line numbers and file * names and give error messages with absolute line numbers. * * Note that this object uses shared strings for filenames, and the * pointer to the filename together with the line number is taken into * the space for the "inline" internal representation of the Jim_Object, * so there is almost memory zero-overhead. * * Also the object will be converted to something else if the given * token it represents in the source file is not something to be * evaluated (not a script), and will be specialized in some other way, * so the time overhead is also null. * ---------------------------------------------------------------------------*/ static void FreeSourceInternalRep(Jim_Interp *interp, Jim_Obj *objPtr); static void DupSourceInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr); static const Jim_ObjType sourceObjType = { "source", FreeSourceInternalRep, DupSourceInternalRep, NULL, JIM_TYPE_REFERENCES, }; void FreeSourceInternalRep(Jim_Interp *interp, Jim_Obj *objPtr) { Jim_ReleaseSharedString(interp, objPtr->internalRep.sourceValue.fileName); } void DupSourceInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr) { dupPtr->internalRep.sourceValue.fileName = Jim_GetSharedString(interp, srcPtr->internalRep.sourceValue.fileName); dupPtr->internalRep.sourceValue.lineNumber = dupPtr->internalRep.sourceValue.lineNumber; dupPtr->typePtr = &sourceObjType; } static void JimSetSourceInfo(Jim_Interp *interp, Jim_Obj *objPtr, const char *fileName, int lineNumber) { if (Jim_IsShared(objPtr)) Jim_Panic(interp,"JimSetSourceInfo called with shared object"); if (objPtr->typePtr != NULL) Jim_Panic(interp,"JimSetSourceInfo called with typePtr != NULL"); objPtr->internalRep.sourceValue.fileName = Jim_GetSharedString(interp, fileName); objPtr->internalRep.sourceValue.lineNumber = lineNumber; objPtr->typePtr = &sourceObjType; } /* ----------------------------------------------------------------------------- * Script Object * ---------------------------------------------------------------------------*/ #define JIM_CMDSTRUCT_EXPAND -1 static void FreeScriptInternalRep(Jim_Interp *interp, Jim_Obj *objPtr); static void DupScriptInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr); static int SetScriptFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr); static const Jim_ObjType scriptObjType = { "script", FreeScriptInternalRep, DupScriptInternalRep, NULL, JIM_TYPE_REFERENCES, }; /* The ScriptToken structure represents every token into a scriptObj. * Every token contains an associated Jim_Obj that can be specialized * by commands operating on it. */ typedef struct ScriptToken { int type; Jim_Obj *objPtr; int linenr; } ScriptToken; /* This is the script object internal representation. An array of * ScriptToken structures, with an associated command structure array. * The command structure is a pre-computed representation of the * command length and arguments structure as a simple liner array * of integers. * * For example the script: * * puts hello * set $i $x$y [foo]BAR * * will produce a ScriptObj with the following Tokens: * * ESC puts * SEP * ESC hello * EOL * ESC set * EOL * VAR i * SEP * VAR x * VAR y * SEP * CMD foo * ESC BAR * EOL * * This is a description of the tokens, separators, and of lines. * The command structure instead represents the number of arguments * of every command, followed by the tokens of which every argument * is composed. So for the example script, the cmdstruct array will * contain: * * 2 1 1 4 1 1 2 2 * * Because "puts hello" has two args (2), composed of single tokens (1 1) * While "set $i $x$y [foo]BAR" has four (4) args, the first two * composed of single tokens (1 1) and the last two of double tokens * (2 2). * * The precomputation of the command structure makes Jim_Eval() faster, * and simpler because there aren't dynamic lengths / allocations. * * -- {expand}/{*} handling -- * * Expand is handled in a special way. When a command * contains at least an argument with the {expand} or {*} prefix, * the command structure presents a -1 before the integer * describing the number of arguments. This is used in order * to send the command exection to a different path in case * of {expand} and guarantee a fast path for the more common * case. Also, the integers describing the number of tokens * are expressed with negative sign, to allow for fast check * of what's an {expand}-prefixed argument and what not. * * For example the command: * * list {expand}{1 2} * * Will produce the following cmdstruct array: * * -1 2 1 -2 * * -- the substFlags field of the structure -- * * The scriptObj structure is used to represent both "script" objects * and "subst" objects. In the second case, the cmdStruct related * fields are not used at all, but there is an additional field used * that is 'substFlags': this represents the flags used to turn * the string into the internal representation used to perform the * substitution. If this flags are not what the application requires * the scriptObj is created again. For example the script: * * subst -nocommands $string * subst -novariables $string * * Will recreate the internal representation of the $string object * two times. */ typedef struct ScriptObj { int len; /* Length as number of tokens. */ ScriptToken *token; /* Tokens array. */ int *cmdStruct; /* commands structure */ int csLen; /* length of the cmdStruct array. */ int substFlags; /* flags used for the compilation of "subst" objects */ int inUse; /* Used to share a ScriptObj. Currently only used by Jim_EvalObj() as protection against shimmering of the currently evaluated object. */ char *fileName; } ScriptObj; void FreeScriptInternalRep(Jim_Interp *interp, Jim_Obj *objPtr) { int i; struct ScriptObj *script = (void*) objPtr->internalRep.ptr; script->inUse--; if (script->inUse != 0) return; for (i = 0; i < script->len; i++) { if (script->token[i].objPtr != NULL) { Jim_DecrRefCount(interp, script->token[i].objPtr); } } Jim_Free(script->token); Jim_Free(script->cmdStruct); Jim_Free(script->fileName); Jim_Free(script); } void DupScriptInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr) { JIM_NOTUSED(interp); JIM_NOTUSED(srcPtr); /* Just returns an simple string. */ dupPtr->typePtr = NULL; } /* A simple parser token. * All the simple tokens for the script point into the same script string rep. */ typedef struct { const char *token; /* Pointer to the start of the token */ int len; /* Length of this token */ int type; /* Token type */ int line; /* Line number */ } ParseToken; /* A list of parsed tokens representing a script. * Tokens are added to this list as the script is parsed. * It grows as needed. */ typedef struct { /* Start with a statically allocated list of tokens which will be expanded with realloc if needed */ ParseToken *list; /* Array of tokens */ int size; /* Current size of the list */ int count; /* Number of entries used */ ParseToken static_list[20]; /* Small initial token space to avoid allocation */ } ParseTokenList; static void ScriptTokenListInit(ParseTokenList *tokenlist) { tokenlist->list = tokenlist->static_list; tokenlist->size = sizeof(tokenlist->static_list) / sizeof(ParseToken); tokenlist->count = 0; } static void ScriptTokenListFree(ParseTokenList *tokenlist) { if (tokenlist->list != tokenlist->static_list) { Jim_Free(tokenlist->list); } } /** * Adds the new token to the tokenlist. * The token has the given length, type and line number. * The token list is resized as necessary. */ static void ScriptAddToken(ParseTokenList *tokenlist, const char *token, int len, int type, int line) { ParseToken *t; if (tokenlist->count == tokenlist->size) { /* Resize the list */ tokenlist->size *= 2; if (tokenlist->list != tokenlist->static_list) { tokenlist->list = Jim_Realloc(tokenlist->list, tokenlist->size * sizeof(*tokenlist->list)); } else { /* The list needs to become allocated */ tokenlist->list = Jim_Alloc(tokenlist->size * sizeof(*tokenlist->list)); memcpy(tokenlist->list, tokenlist->static_list, tokenlist->count * sizeof(*tokenlist->list)); } } t = &tokenlist->list[tokenlist->count++]; t->token = token; t->len = len; t->type = type; t->line = line; } /** * Takes a tokenlist and creates the allocated list of script tokens * in script->token, of length script->len. * * Unnecessary tokens are discarded, and some tokens may be consolidated into * a single token. * * Also counts the required cmdStruct length in script->csLen. */ static void ScriptObjAddTokens(Jim_Interp *interp, struct ScriptObj *script, ParseTokenList *tokenlist) { int i; struct ScriptToken *token; int prevtype = JIM_TT_EOL; /* Be pessimistic. This will definitely be big enough since at least the EOF token * will be discarded */ token = script->token = Jim_Alloc(sizeof(ScriptToken)*tokenlist->count); script->csLen = 0; for (i = 0; i < tokenlist->count; i++) { const ParseToken *t = &tokenlist->list[i]; if (t->type == JIM_TT_EOF) { break; } switch (t->type) { case JIM_TT_EOL: /* Combine multiple EOLs to one */ if (prevtype == JIM_TT_EOL) { continue; } token->objPtr = interp->emptyObj; script->csLen += 2; break; case JIM_TT_SEP: /* Skip SEP before or after EOL */ if (prevtype == JIM_TT_EOL || t[1].type == JIM_TT_EOL) { continue; } token->objPtr = interp->emptyObj; script->csLen++; break; default: { char *str; int len = t->len; if (t->type == JIM_TT_ESC) { /* Convert the escape chars. */ str = Jim_Alloc(len+1); len = JimEscape(str, t->token, len); } else { /* No escape conversion needed, so just copy it. */ str = Jim_StrDupLen(t->token, len); } /* Every object is initially a string, but the * internal type may be specialized during execution of the * script. */ token->objPtr = Jim_NewStringObjNoAlloc(interp, str, len); if (script->fileName) { JimSetSourceInfo(interp, token->objPtr, script->fileName, t->line); } break; } } token->type = t->type; token->linenr = t->line; Jim_IncrRefCount(token->objPtr); token++; prevtype = t->type; } script->len = token - script->token; } #ifdef JIM_OPTIMIZATION /** * An optimised version of ScriptObjAddTokens() for subst objects. */ static void SubstObjAddTokens(Jim_Interp *interp, struct ScriptObj *script, ParseTokenList *tokenlist) { int i; struct ScriptToken *token; token = script->token = Jim_Alloc(sizeof(ScriptToken)*tokenlist->count); for (i = 0; i < tokenlist->count; i++) { ParseToken *t = &tokenlist->list[i]; int len; char *str; /* Create a token for 't' */ token->type = t->type; token->linenr = t->line; len = t->len; if (t->type != JIM_TT_ESC) { /* No escape conversion needed, so just copy it. */ str = Jim_StrDupLen(t->token, len); } else { /* Else convert the escape chars. */ str = Jim_Alloc(len+1); len = JimEscape(str, t->token, len); } /* Every object is initially a string, but the * internal type may be specialized during execution of the * script. */ token->objPtr = Jim_NewStringObjNoAlloc(interp, str, len); /* To add source info to SEP and EOL tokens is useless because * they will never by called as arguments of Jim_EvalObj(). */ Jim_IncrRefCount(token->objPtr); token++; } script->len = i; } #endif /* This method takes the string representation of an object * as a Tcl script, and generates the pre-parsed internal representation * of the script. */ int SetScriptFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr) { int scriptTextLen; const char *scriptText = Jim_GetString(objPtr, &scriptTextLen); struct JimParserCtx parser; struct ScriptObj *script = Jim_Alloc(sizeof(*script)); ScriptToken *token; int *cs; int i; int initialLineNumber; ParseTokenList tokenlist; int line_expand; int arg_expand; int *csp; int args; int tokens; /* Try to get information about filename / line number */ if (objPtr->typePtr == &sourceObjType) { script->fileName = Jim_StrDup(objPtr->internalRep.sourceValue.fileName); initialLineNumber = objPtr->internalRep.sourceValue.lineNumber; } else { script->fileName = NULL; initialLineNumber = 1; } /* Initially parse the script into tokens (in tokenlist) */ ScriptTokenListInit(&tokenlist); JimParserInit(&parser, scriptText, scriptTextLen, initialLineNumber); while(!JimParserEof(&parser)) { JimParseScript(&parser); ScriptAddToken(&tokenlist, parser.tstart, parser.tend - parser.tstart + 1, parser.tt, parser.tline); //printf("ScriptAddToken type=%s/line=%d/'%.*s'\n", tt_name(parser.tt), parser.tline, (int)(parser.tend - parser.tstart + 1), parser.tstart); } /* Add a final EOF token */ ScriptAddToken(&tokenlist, scriptText + scriptTextLen, 0, JIM_TT_EOF, 0); /* Create the "real" script tokens from the initial token list */ script->substFlags = 0; script->inUse = 1; ScriptObjAddTokens(interp, script, &tokenlist); /* No longer need the token list */ ScriptTokenListFree(&tokenlist); if (!script->fileName) { script->fileName = Jim_StrDup(""); } #if 0 printf("==== Script ====\n"); for (i = 0; i < script->len; i++) { printf("[%2d] %s (%d)'%s'\n", i, tt_name(script->token[i].type), script->token[i].objPtr->length, script->token[i].objPtr->bytes); } #endif /* Compute the command structure array * (see the ScriptObj struct definition for more info). * Note that the required size has already been calculated in script->csLen. */ cs = script->cmdStruct = Jim_Alloc(sizeof(int)*(script->csLen)); token = script->token; line_expand = 0; /* expand is used on this line */ arg_expand = 0; /* expand is used on this argument */ csp = cs++; /* points to argument count */ args = 1; /* Number of args on this line */ tokens = 0; /* Number of tokens in current argument. */ for (i = 0; i < script->len; i++) { ScriptToken *t = &token[i]; if (tokens == 0 && t[0].type == JIM_TT_STR && t[1].type != JIM_TT_SEP && t[1].type != JIM_TT_EOL && (!strcmp(t->objPtr->bytes, "expand") || !strcmp(t->objPtr->bytes, "*"))) { arg_expand = line_expand = 1; } if (t->type == JIM_TT_SEP || t->type == JIM_TT_EOL) { /* Now add info about the number of tokens. -ve is list expansion is involved */ *cs++ = arg_expand ? -tokens : tokens; arg_expand = 0; tokens = 0; if (t->type == JIM_TT_EOL) { /* End of line. Back patch the arg count */ /* Negative value if there is list expansion involved. */ if (line_expand) { line_expand = 0; *csp = -args; } else { *csp = args; } /* And reset */ csp = cs++; args = 0; } args++; } else { tokens++; } } #if 0 for (i = 0; i < script->csLen; i++) { printf("cs[%d]=%d\n", i, script->cmdStruct[i]); } #endif /* Free the old internal rep and set the new one. */ Jim_FreeIntRep(interp, objPtr); Jim_SetIntRepPtr(objPtr, script); objPtr->typePtr = &scriptObjType; return JIM_OK; } ScriptObj *Jim_GetScript(Jim_Interp *interp, Jim_Obj *objPtr) { struct ScriptObj *script = Jim_GetIntRepPtr(objPtr); if (objPtr->typePtr != &scriptObjType || script->substFlags) { SetScriptFromAny(interp, objPtr); } return (ScriptObj*) Jim_GetIntRepPtr(objPtr); } /* ----------------------------------------------------------------------------- * Commands * ---------------------------------------------------------------------------*/ /* Commands HashTable Type. * * Keys are dynamic allocated strings, Values are Jim_Cmd structures. */ static void Jim_CommandsHT_ValDestructor(void *interp, void *val) { Jim_Cmd *cmdPtr = (void*) val; if (cmdPtr->cmdProc == NULL) { Jim_DecrRefCount(interp, cmdPtr->argListObjPtr); Jim_DecrRefCount(interp, cmdPtr->bodyObjPtr); if (cmdPtr->staticVars) { Jim_FreeHashTable(cmdPtr->staticVars); Jim_Free(cmdPtr->staticVars); } } else if (cmdPtr->delProc != NULL) { /* If it was a C coded command, call the delProc if any */ cmdPtr->delProc(interp, cmdPtr->privData); } Jim_Free(val); } static const Jim_HashTableType JimCommandsHashTableType = { JimStringCopyHTHashFunction, /* hash function */ JimStringCopyHTKeyDup, /* key dup */ NULL, /* val dup */ JimStringCopyHTKeyCompare, /* key compare */ JimStringCopyHTKeyDestructor, /* key destructor */ Jim_CommandsHT_ValDestructor /* val destructor */ }; /* ------------------------- Commands related functions --------------------- */ int Jim_CreateCommand(Jim_Interp *interp, const char *cmdName, Jim_CmdProc cmdProc, void *privData, Jim_DelCmdProc delProc) { Jim_HashEntry *he; Jim_Cmd *cmdPtr; he = Jim_FindHashEntry(&interp->commands, cmdName); if (he == NULL) { /* New command to create */ cmdPtr = Jim_Alloc(sizeof(*cmdPtr)); Jim_AddHashEntry(&interp->commands, cmdName, cmdPtr); } else { Jim_InterpIncrProcEpoch(interp); /* Free the arglist/body objects if it was a Tcl procedure */ cmdPtr = he->val; if (cmdPtr->cmdProc == NULL) { Jim_DecrRefCount(interp, cmdPtr->argListObjPtr); Jim_DecrRefCount(interp, cmdPtr->bodyObjPtr); if (cmdPtr->staticVars) { Jim_FreeHashTable(cmdPtr->staticVars); Jim_Free(cmdPtr->staticVars); } cmdPtr->staticVars = NULL; } else if (cmdPtr->delProc != NULL) { /* If it was a C coded command, call the delProc if any */ cmdPtr->delProc(interp, cmdPtr->privData); } } /* Store the new details for this proc */ cmdPtr->delProc = delProc; cmdPtr->cmdProc = cmdProc; cmdPtr->privData = privData; /* There is no need to increment the 'proc epoch' because * creation of a new procedure can never affect existing * cached commands. We don't do negative caching. */ return JIM_OK; } int Jim_CreateProcedure(Jim_Interp *interp, const char *cmdName, Jim_Obj *argListObjPtr, Jim_Obj *staticsListObjPtr, Jim_Obj *bodyObjPtr, int leftArity, int optionalArgs, int args, int rightArity) { Jim_Cmd *cmdPtr; cmdPtr = Jim_Alloc(sizeof(*cmdPtr)); cmdPtr->cmdProc = NULL; /* Not a C coded command */ cmdPtr->argListObjPtr = argListObjPtr; cmdPtr->bodyObjPtr = bodyObjPtr; Jim_IncrRefCount(argListObjPtr); Jim_IncrRefCount(bodyObjPtr); cmdPtr->leftArity = leftArity; cmdPtr->optionalArgs = optionalArgs; cmdPtr->args = args; cmdPtr->rightArity = rightArity; cmdPtr->staticVars = NULL; /* Create the statics hash table. */ if (staticsListObjPtr) { int len, i; len = Jim_ListLength(interp, staticsListObjPtr); if (len != 0) { cmdPtr->staticVars = Jim_Alloc(sizeof(Jim_HashTable)); Jim_InitHashTable(cmdPtr->staticVars, &JimVariablesHashTableType, interp); for (i = 0; i < len; i++) { Jim_Obj *objPtr = 0, *initObjPtr = 0, *nameObjPtr = 0; Jim_Var *varPtr; int subLen; Jim_ListIndex(interp, staticsListObjPtr, i, &objPtr, JIM_NONE); /* Check if it's composed of two elements. */ subLen = Jim_ListLength(interp, objPtr); if (subLen == 1 || subLen == 2) { /* Try to get the variable value from the current * environment. */ Jim_ListIndex(interp, objPtr, 0, &nameObjPtr, JIM_NONE); if (subLen == 1) { initObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_NONE); if (initObjPtr == NULL) { Jim_SetResultFormatted(interp, "variable for initialization of static \"%#s\" not found in the local context", nameObjPtr); goto err; } } else { Jim_ListIndex(interp, objPtr, 1, &initObjPtr, JIM_NONE); } varPtr = Jim_Alloc(sizeof(*varPtr)); varPtr->objPtr = initObjPtr; Jim_IncrRefCount(initObjPtr); varPtr->linkFramePtr = NULL; if (Jim_AddHashEntry(cmdPtr->staticVars, Jim_GetString(nameObjPtr, NULL), varPtr) != JIM_OK) { Jim_SetResultFormatted(interp, "static variable name \"%#s\" duplicated in statics list", nameObjPtr); Jim_DecrRefCount(interp, initObjPtr); Jim_Free(varPtr); goto err; } } else { Jim_SetResultFormatted(interp, "too many fields in static specifier \"%#s\"", objPtr); goto err; } } } } /* Add the new command */ /* it may already exist, so we try to delete the old one */ if (Jim_DeleteHashEntry(&interp->commands, cmdName) != JIM_ERR) { /* There was an old procedure with the same name, this requires * a 'proc epoch' update. */ Jim_InterpIncrProcEpoch(interp); } /* If a procedure with the same name didn't existed there is no need * to increment the 'proc epoch' because creation of a new procedure * can never affect existing cached commands. We don't do * negative caching. */ Jim_AddHashEntry(&interp->commands, cmdName, cmdPtr); return JIM_OK; err: Jim_FreeHashTable(cmdPtr->staticVars); Jim_Free(cmdPtr->staticVars); Jim_DecrRefCount(interp, argListObjPtr); Jim_DecrRefCount(interp, bodyObjPtr); Jim_Free(cmdPtr); return JIM_ERR; } int Jim_DeleteCommand(Jim_Interp *interp, const char *cmdName) { if (Jim_DeleteHashEntry(&interp->commands, cmdName) == JIM_ERR) return JIM_ERR; Jim_InterpIncrProcEpoch(interp); return JIM_OK; } int Jim_RenameCommand(Jim_Interp *interp, const char *oldName, const char *newName) { Jim_Cmd *cmdPtr; Jim_HashEntry *he; Jim_Cmd *copyCmdPtr; if (newName[0] == '\0') /* Delete! */ return Jim_DeleteCommand(interp, oldName); /* Rename */ he = Jim_FindHashEntry(&interp->commands, oldName); if (he == NULL) return JIM_ERR; /* Invalid command name */ cmdPtr = he->val; copyCmdPtr = Jim_Alloc(sizeof(Jim_Cmd)); *copyCmdPtr = *cmdPtr; /* In order to avoid that a procedure will get arglist/body/statics * freed by the hash table methods, fake a C-coded command * setting cmdPtr->cmdProc as not NULL */ cmdPtr->cmdProc = (void*)1; /* Also make sure delProc is NULL. */ cmdPtr->delProc = NULL; /* Destroy the old command, and make sure the new is freed * as well. */ Jim_DeleteHashEntry(&interp->commands, oldName); Jim_DeleteHashEntry(&interp->commands, newName); /* Now the new command. We are sure it can't fail because * the target name was already freed. */ Jim_AddHashEntry(&interp->commands, newName, copyCmdPtr); /* Increment the epoch */ Jim_InterpIncrProcEpoch(interp); return JIM_OK; } /* ----------------------------------------------------------------------------- * Command object * ---------------------------------------------------------------------------*/ static int SetCommandFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr); static const Jim_ObjType commandObjType = { "command", NULL, NULL, NULL, JIM_TYPE_REFERENCES, }; int SetCommandFromAny(Jim_Interp *interp, Jim_Obj *objPtr) { Jim_HashEntry *he; const char *cmdName; /* Get the string representation */ cmdName = Jim_GetString(objPtr, NULL); /* Lookup this name into the commands hash table */ he = Jim_FindHashEntry(&interp->commands, cmdName); if (he == NULL) return JIM_ERR; /* Free the old internal repr and set the new one. */ Jim_FreeIntRep(interp, objPtr); objPtr->typePtr = &commandObjType; objPtr->internalRep.cmdValue.procEpoch = interp->procEpoch; objPtr->internalRep.cmdValue.cmdPtr = (void*)he->val; return JIM_OK; } /* This function returns the command structure for the command name * stored in objPtr. It tries to specialize the objPtr to contain * a cached info instead to perform the lookup into the hash table * every time. The information cached may not be uptodate, in such * a case the lookup is performed and the cache updated. */ Jim_Cmd *Jim_GetCommand(Jim_Interp *interp, Jim_Obj *objPtr, int flags) { if ((objPtr->typePtr != &commandObjType || objPtr->internalRep.cmdValue.procEpoch != interp->procEpoch) && SetCommandFromAny(interp, objPtr) == JIM_ERR) { if (flags & JIM_ERRMSG) { Jim_SetResultFormatted(interp, "invalid command name \"%#s\"", objPtr); } return NULL; } return objPtr->internalRep.cmdValue.cmdPtr; } /* ----------------------------------------------------------------------------- * Variables * ---------------------------------------------------------------------------*/ /* Variables HashTable Type. * * Keys are dynamic allocated strings, Values are Jim_Var structures. */ static void JimVariablesHTValDestructor(void *interp, void *val) { Jim_Var *varPtr = (void*) val; Jim_DecrRefCount(interp, varPtr->objPtr); Jim_Free(val); } static const Jim_HashTableType JimVariablesHashTableType = { JimStringCopyHTHashFunction, /* hash function */ JimStringCopyHTKeyDup, /* key dup */ NULL, /* val dup */ JimStringCopyHTKeyCompare, /* key compare */ JimStringCopyHTKeyDestructor, /* key destructor */ JimVariablesHTValDestructor /* val destructor */ }; /* ----------------------------------------------------------------------------- * Variable object * ---------------------------------------------------------------------------*/ #define JIM_DICT_SUGAR 100 /* Only returned by SetVariableFromAny() */ static int SetVariableFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr); static const Jim_ObjType variableObjType = { "variable", NULL, NULL, NULL, JIM_TYPE_REFERENCES, }; /* Return true if the string "str" looks like syntax sugar for [dict]. I.e. * is in the form "varname(key)". */ static int Jim_NameIsDictSugar(const char *str, int len) { if (len && str[len-1] == ')' && strchr(str, '(') != NULL) return 1; return 0; } /* This method should be called only by the variable API. * It returns JIM_OK on success (variable already exists), * JIM_ERR if it does not exists, JIM_DICT_SUGAR if it's not * a variable name, but syntax glue for [dict] i.e. the last * character is ')' */ int SetVariableFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr) { Jim_HashEntry *he; const char *varName; int len; Jim_CallFrame *framePtr = interp->framePtr; /* Check if the object is already an uptodate variable */ if (objPtr->typePtr == &variableObjType && objPtr->internalRep.varValue.callFrameId == framePtr->id) { return JIM_OK; /* nothing to do */ } if (objPtr->typePtr == &dictSubstObjType) { return JIM_DICT_SUGAR; } /* Get the string representation */ varName = Jim_GetString(objPtr, &len); /* Make sure it's not syntax glue to get/set dict. */ if (Jim_NameIsDictSugar(varName, len)) { return JIM_DICT_SUGAR; } if (varName[0] == ':' && varName[1] == ':') { framePtr = interp->topFramePtr; he = Jim_FindHashEntry(&framePtr->vars, varName + 2); if (he == NULL) { return JIM_ERR; } } else { /* Lookup this name into the variables hash table */ he = Jim_FindHashEntry(&framePtr->vars, varName); if (he == NULL) { /* Try with static vars. */ if (framePtr->staticVars == NULL) return JIM_ERR; if (!(he = Jim_FindHashEntry(framePtr->staticVars, varName))) return JIM_ERR; } } /* Free the old internal repr and set the new one. */ Jim_FreeIntRep(interp, objPtr); objPtr->typePtr = &variableObjType; objPtr->internalRep.varValue.callFrameId = framePtr->id; objPtr->internalRep.varValue.varPtr = (void*)he->val; return JIM_OK; } /* -------------------- Variables related functions ------------------------- */ static int JimDictSugarSet(Jim_Interp *interp, Jim_Obj *ObjPtr, Jim_Obj *valObjPtr); static Jim_Obj *JimDictSugarGet(Jim_Interp *interp, Jim_Obj *ObjPtr); /* For now that's dummy. Variables lookup should be optimized * in many ways, with caching of lookups, and possibly with * a table of pre-allocated vars in every CallFrame for local vars. * All the caching should also have an 'epoch' mechanism similar * to the one used by Tcl for procedures lookup caching. */ int Jim_SetVariable(Jim_Interp *interp, Jim_Obj *nameObjPtr, Jim_Obj *valObjPtr) { const char *name; Jim_Var *var; int err; if ((err = SetVariableFromAny(interp, nameObjPtr)) != JIM_OK) { Jim_CallFrame *framePtr = interp->framePtr; /* Check for [dict] syntax sugar. */ if (err == JIM_DICT_SUGAR) return JimDictSugarSet(interp, nameObjPtr, valObjPtr); /* New variable to create */ name = Jim_GetString(nameObjPtr, NULL); var = Jim_Alloc(sizeof(*var)); var->objPtr = valObjPtr; Jim_IncrRefCount(valObjPtr); var->linkFramePtr = NULL; /* Insert the new variable */ if (name[0] == ':' && name[1] == ':') { /* Into to the top evel frame */ framePtr = interp->topFramePtr; Jim_AddHashEntry(&framePtr->vars, name + 2, var); } else { Jim_AddHashEntry(&framePtr->vars, name, var); } /* Make the object int rep a variable */ Jim_FreeIntRep(interp, nameObjPtr); nameObjPtr->typePtr = &variableObjType; nameObjPtr->internalRep.varValue.callFrameId = framePtr->id; nameObjPtr->internalRep.varValue.varPtr = var; } else { var = nameObjPtr->internalRep.varValue.varPtr; if (var->linkFramePtr == NULL) { Jim_IncrRefCount(valObjPtr); Jim_DecrRefCount(interp, var->objPtr); var->objPtr = valObjPtr; } else { /* Else handle the link */ Jim_CallFrame *savedCallFrame; savedCallFrame = interp->framePtr; interp->framePtr = var->linkFramePtr; err = Jim_SetVariable(interp, var->objPtr, valObjPtr); interp->framePtr = savedCallFrame; if (err != JIM_OK) return err; } } return JIM_OK; } int Jim_SetVariableStr(Jim_Interp *interp, const char *name, Jim_Obj *objPtr) { Jim_Obj *nameObjPtr; int result; nameObjPtr = Jim_NewStringObj(interp, name, -1); Jim_IncrRefCount(nameObjPtr); result = Jim_SetVariable(interp, nameObjPtr, objPtr); Jim_DecrRefCount(interp, nameObjPtr); return result; } int Jim_SetGlobalVariableStr(Jim_Interp *interp, const char *name, Jim_Obj *objPtr) { Jim_CallFrame *savedFramePtr; int result; savedFramePtr = interp->framePtr; interp->framePtr = interp->topFramePtr; result = Jim_SetVariableStr(interp, name, objPtr); interp->framePtr = savedFramePtr; return result; } int Jim_SetVariableStrWithStr(Jim_Interp *interp, const char *name, const char *val) { Jim_Obj *nameObjPtr, *valObjPtr; int result; nameObjPtr = Jim_NewStringObj(interp, name, -1); valObjPtr = Jim_NewStringObj(interp, val, -1); Jim_IncrRefCount(nameObjPtr); Jim_IncrRefCount(valObjPtr); result = Jim_SetVariable(interp, nameObjPtr, valObjPtr); Jim_DecrRefCount(interp, nameObjPtr); Jim_DecrRefCount(interp, valObjPtr); return result; } int Jim_SetVariableLink(Jim_Interp *interp, Jim_Obj *nameObjPtr, Jim_Obj *targetNameObjPtr, Jim_CallFrame *targetCallFrame) { const char *varName; int len; varName = Jim_GetString(nameObjPtr, &len); if (Jim_FindHashEntry(&interp->framePtr->vars, varName)) { Jim_SetResultFormatted(interp, "variable \"%#s\" already exists", nameObjPtr); return JIM_ERR; } /* Check for cycles. */ if (interp->framePtr == targetCallFrame) { Jim_Obj *objPtr = targetNameObjPtr; Jim_Var *varPtr; /* Cycles are only possible with 'uplevel 0' */ while(1) { if (Jim_StringEqObj(objPtr, nameObjPtr, 0)) { Jim_SetResultString(interp, "can't upvar from variable to itself", -1); return JIM_ERR; } if (SetVariableFromAny(interp, objPtr) != JIM_OK) break; varPtr = objPtr->internalRep.varValue.varPtr; if (varPtr->linkFramePtr != targetCallFrame) break; objPtr = varPtr->objPtr; } } if (Jim_NameIsDictSugar(varName, len)) { Jim_SetResultString(interp, "Dict key syntax invalid as link source", -1); return JIM_ERR; } /* Perform the binding */ Jim_SetVariable(interp, nameObjPtr, targetNameObjPtr); /* We are now sure 'nameObjPtr' type is variableObjType */ nameObjPtr->internalRep.varValue.varPtr->linkFramePtr = targetCallFrame; return JIM_OK; } /* Return the Jim_Obj pointer associated with a variable name, * or NULL if the variable was not found in the current context. * The same optimization discussed in the comment to the * 'SetVariable' function should apply here. */ Jim_Obj *Jim_GetVariable(Jim_Interp *interp, Jim_Obj *nameObjPtr, int flags) { switch (SetVariableFromAny(interp, nameObjPtr)) { case JIM_OK: { Jim_Var *varPtr = nameObjPtr->internalRep.varValue.varPtr; if (varPtr->linkFramePtr == NULL) { return varPtr->objPtr; } else { Jim_Obj *objPtr; /* The variable is a link? Resolve it. */ Jim_CallFrame *savedCallFrame = interp->framePtr; interp->framePtr = varPtr->linkFramePtr; objPtr = Jim_GetVariable(interp, varPtr->objPtr, flags); interp->framePtr = savedCallFrame; return objPtr; } } case JIM_DICT_SUGAR: /* [dict] syntax sugar. */ return JimDictSugarGet(interp, nameObjPtr); default: if (flags & JIM_ERRMSG) { Jim_SetResultFormatted(interp, "can't read \"%#s\": no such variable", nameObjPtr); } return NULL; } } Jim_Obj *Jim_GetGlobalVariable(Jim_Interp *interp, Jim_Obj *nameObjPtr, int flags) { Jim_CallFrame *savedFramePtr; Jim_Obj *objPtr; savedFramePtr = interp->framePtr; interp->framePtr = interp->topFramePtr; objPtr = Jim_GetVariable(interp, nameObjPtr, flags); interp->framePtr = savedFramePtr; return objPtr; } Jim_Obj *Jim_GetVariableStr(Jim_Interp *interp, const char *name, int flags) { Jim_Obj *nameObjPtr, *varObjPtr; nameObjPtr = Jim_NewStringObj(interp, name, -1); Jim_IncrRefCount(nameObjPtr); varObjPtr = Jim_GetVariable(interp, nameObjPtr, flags); Jim_DecrRefCount(interp, nameObjPtr); return varObjPtr; } Jim_Obj *Jim_GetGlobalVariableStr(Jim_Interp *interp, const char *name, int flags) { Jim_CallFrame *savedFramePtr; Jim_Obj *objPtr; savedFramePtr = interp->framePtr; interp->framePtr = interp->topFramePtr; objPtr = Jim_GetVariableStr(interp, name, flags); interp->framePtr = savedFramePtr; return objPtr; } /* Unset a variable. * Note: On success unset invalidates all the variable objects created * in the current call frame incrementing. */ int Jim_UnsetVariable(Jim_Interp *interp, Jim_Obj *nameObjPtr, int flags) { const char *name; Jim_Var *varPtr; int retval; retval = SetVariableFromAny(interp, nameObjPtr); if (retval == JIM_DICT_SUGAR) { /* [dict] syntax sugar. */ return JimDictSugarSet(interp, nameObjPtr, NULL); } else if (retval == JIM_OK) { varPtr = nameObjPtr->internalRep.varValue.varPtr; /* If it's a link call UnsetVariable recursively */ if (varPtr->linkFramePtr) { Jim_CallFrame *savedCallFrame; savedCallFrame = interp->framePtr; interp->framePtr = varPtr->linkFramePtr; retval = Jim_UnsetVariable(interp, varPtr->objPtr, JIM_NONE); interp->framePtr = savedCallFrame; } else { Jim_CallFrame *framePtr = interp->framePtr; name = Jim_GetString(nameObjPtr, NULL); if (name[0] == ':' && name[1] == ':') { framePtr = interp->topFramePtr; name += 2; } retval = Jim_DeleteHashEntry(&framePtr->vars, name); if (retval == JIM_OK) { /* Change the callframe id, invalidating var lookup caching */ JimChangeCallFrameId(interp, framePtr); } } } if (retval != JIM_OK && (flags & JIM_ERRMSG)) { Jim_SetResultFormatted(interp, "can't unset \"%#s\": no such variable", nameObjPtr); } return retval; } /* ---------- Dict syntax sugar (similar to array Tcl syntax) -------------- */ /* Given a variable name for [dict] operation syntax sugar, * this function returns two objects, the first with the name * of the variable to set, and the second with the rispective key. * For example "foo(bar)" will return objects with string repr. of * "foo" and "bar". * * The returned objects have refcount = 1. The function can't fail. */ static void JimDictSugarParseVarKey(Jim_Interp *interp, Jim_Obj *objPtr, Jim_Obj **varPtrPtr, Jim_Obj **keyPtrPtr) { const char *str, *p; char *t; int len, keyLen, nameLen; Jim_Obj *varObjPtr, *keyObjPtr; str = Jim_GetString(objPtr, &len); p = strchr(str, '('); if (p == NULL) { Jim_Panic(interp, "JimDictSugarParseVarKey() called for non-dict-sugar (%s)", str); } p++; keyLen = len-((p-str)+1); nameLen = (p-str)-1; /* Create the objects with the variable name and key. */ t = Jim_Alloc(nameLen+1); memcpy(t, str, nameLen); t[nameLen] = '\0'; varObjPtr = Jim_NewStringObjNoAlloc(interp, t, nameLen); t = Jim_Alloc(keyLen+1); memcpy(t, p, keyLen); t[keyLen] = '\0'; keyObjPtr = Jim_NewStringObjNoAlloc(interp, t, keyLen); Jim_IncrRefCount(varObjPtr); Jim_IncrRefCount(keyObjPtr); *varPtrPtr = varObjPtr; *keyPtrPtr = keyObjPtr; } /* Helper of Jim_SetVariable() to deal with dict-syntax variable names. * Also used by Jim_UnsetVariable() with valObjPtr = NULL. */ static int JimDictSugarSet(Jim_Interp *interp, Jim_Obj *objPtr, Jim_Obj *valObjPtr) { int err; SetDictSubstFromAny(interp, objPtr); err = Jim_SetDictKeysVector(interp, objPtr->internalRep.dictSubstValue.varNameObjPtr, &objPtr->internalRep.dictSubstValue.indexObjPtr, 1, valObjPtr); if (err == JIM_OK) { /* Don't keep an extra ref to the result */ Jim_SetEmptyResult(interp); } else { if (!valObjPtr) { /* Better error message for unset a(2) where a exists but a(2) doesn't */ if (Jim_GetVariable(interp, objPtr->internalRep.dictSubstValue.varNameObjPtr, JIM_NONE)) { Jim_SetResultFormatted(interp, "can't unset \"%#s\": no such element in array", objPtr); return err; } } /* Make the error more informative and Tcl-compatible */ Jim_SetResultFormatted(interp, "can't %s \"%#s\": variable isn't array", (valObjPtr ? "set" : "unset"), objPtr); } return err; } static Jim_Obj *JimDictExpandArrayVariable(Jim_Interp *interp, Jim_Obj *varObjPtr, Jim_Obj *keyObjPtr) { Jim_Obj *dictObjPtr; Jim_Obj *resObjPtr = NULL; int ret; dictObjPtr = Jim_GetVariable(interp, varObjPtr, JIM_ERRMSG); if (!dictObjPtr) { return NULL; } ret = Jim_DictKey(interp, dictObjPtr, keyObjPtr, &resObjPtr, JIM_NONE); if (ret != JIM_OK) { resObjPtr = NULL; if (ret < 0) { Jim_SetResultFormatted(interp, "can't read \"%#s(%#s)\": variable isn't array", varObjPtr, keyObjPtr); } else { Jim_SetResultFormatted(interp, "can't read \"%#s(%#s)\": no such element in array", varObjPtr, keyObjPtr); } } return resObjPtr; } /* Helper of Jim_GetVariable() to deal with dict-syntax variable names */ static Jim_Obj *JimDictSugarGet(Jim_Interp *interp, Jim_Obj *objPtr) { Jim_Obj *varObjPtr, *keyObjPtr, *resObjPtr; JimDictSugarParseVarKey(interp, objPtr, &varObjPtr, &keyObjPtr); resObjPtr = JimDictExpandArrayVariable(interp, varObjPtr, keyObjPtr); Jim_DecrRefCount(interp, varObjPtr); Jim_DecrRefCount(interp, keyObjPtr); return resObjPtr; } /* --------- $var(INDEX) substitution, using a specialized object ----------- */ void FreeDictSubstInternalRep(Jim_Interp *interp, Jim_Obj *objPtr) { Jim_DecrRefCount(interp, objPtr->internalRep.dictSubstValue.varNameObjPtr); Jim_DecrRefCount(interp, objPtr->internalRep.dictSubstValue.indexObjPtr); } void DupDictSubstInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr) { JIM_NOTUSED(interp); dupPtr->internalRep.dictSubstValue.varNameObjPtr = srcPtr->internalRep.dictSubstValue.varNameObjPtr; dupPtr->internalRep.dictSubstValue.indexObjPtr = srcPtr->internalRep.dictSubstValue.indexObjPtr; dupPtr->typePtr = &dictSubstObjType; } /* Note: The object *must* be in dict-sugar format */ static void SetDictSubstFromAny(Jim_Interp *interp, Jim_Obj *objPtr) { if (objPtr->typePtr != &dictSubstObjType) { Jim_Obj *varObjPtr, *keyObjPtr; if (objPtr->typePtr == &interpolatedObjType) { /* An interpolated object in dict-sugar form */ const ScriptToken *token = objPtr->internalRep.twoPtrValue.ptr1; //printf("Fast interpolation of dict sugar: %s\n", objPtr->bytes); varObjPtr = token[0].objPtr; keyObjPtr = objPtr->internalRep.twoPtrValue.ptr2; Jim_IncrRefCount(varObjPtr); Jim_IncrRefCount(keyObjPtr); } else { JimDictSugarParseVarKey(interp, objPtr, &varObjPtr, &keyObjPtr); } Jim_FreeIntRep(interp, objPtr); objPtr->typePtr = &dictSubstObjType; objPtr->internalRep.dictSubstValue.varNameObjPtr = varObjPtr; objPtr->internalRep.dictSubstValue.indexObjPtr = keyObjPtr; } } /* This function is used to expand [dict get] sugar in the form * of $var(INDEX). The function is mainly used by Jim_EvalObj() * to deal with tokens of type JIM_TT_DICTSUGAR. objPtr points to an * object that is *guaranteed* to be in the form VARNAME(INDEX). * The 'index' part is [subst]ituted, and is used to lookup a key inside * the [dict]ionary contained in variable VARNAME. */ static Jim_Obj *Jim_ExpandDictSugar(Jim_Interp *interp, Jim_Obj *objPtr) { Jim_Obj *resObjPtr = NULL; Jim_Obj *substKeyObjPtr = NULL; SetDictSubstFromAny(interp, objPtr); if (Jim_SubstObj(interp, objPtr->internalRep.dictSubstValue.indexObjPtr, &substKeyObjPtr, JIM_NONE) != JIM_OK) { return NULL; } Jim_IncrRefCount(substKeyObjPtr); resObjPtr = JimDictExpandArrayVariable(interp, objPtr->internalRep.dictSubstValue.varNameObjPtr, substKeyObjPtr); Jim_DecrRefCount(interp, substKeyObjPtr); return resObjPtr; } /* ----------------------------------------------------------------------------- * CallFrame * ---------------------------------------------------------------------------*/ static Jim_CallFrame *JimCreateCallFrame(Jim_Interp *interp) { Jim_CallFrame *cf; if (interp->freeFramesList) { cf = interp->freeFramesList; interp->freeFramesList = cf->nextFramePtr; } else { cf = Jim_Alloc(sizeof(*cf)); cf->vars.table = NULL; } cf->id = interp->callFrameEpoch++; cf->parentCallFrame = NULL; cf->argv = NULL; cf->argc = 0; cf->procArgsObjPtr = NULL; cf->procBodyObjPtr = NULL; cf->nextFramePtr = NULL; cf->staticVars = NULL; if (cf->vars.table == NULL) Jim_InitHashTable(&cf->vars, &JimVariablesHashTableType, interp); return cf; } /* Used to invalidate every caching related to callframe stability. */ static void JimChangeCallFrameId(Jim_Interp *interp, Jim_CallFrame *cf) { cf->id = interp->callFrameEpoch++; } #define JIM_FCF_NONE 0 /* no flags */ #define JIM_FCF_NOHT 1 /* don't free the hash table */ static void JimFreeCallFrame(Jim_Interp *interp, Jim_CallFrame *cf, int flags) { if (cf->procArgsObjPtr) Jim_DecrRefCount(interp, cf->procArgsObjPtr); if (cf->procBodyObjPtr) Jim_DecrRefCount(interp, cf->procBodyObjPtr); if (!(flags & JIM_FCF_NOHT)) Jim_FreeHashTable(&cf->vars); else { int i; Jim_HashEntry **table = cf->vars.table, *he; for (i = 0; i < JIM_HT_INITIAL_SIZE; i++) { he = table[i]; while (he != NULL) { Jim_HashEntry *nextEntry = he->next; Jim_Var *varPtr = (void*) he->val; Jim_DecrRefCount(interp, varPtr->objPtr); Jim_Free(he->val); Jim_Free((void*)he->key); /* ATTENTION: const cast */ Jim_Free(he); table[i] = NULL; he = nextEntry; } } cf->vars.used = 0; } cf->nextFramePtr = interp->freeFramesList; interp->freeFramesList = cf; } /* ----------------------------------------------------------------------------- * References * ---------------------------------------------------------------------------*/ #ifdef JIM_REFERENCES /* References HashTable Type. * * Keys are jim_wide integers, dynamically allocated for now but in the * future it's worth to cache this 8 bytes objects. Values are poitners * to Jim_References. */ static void JimReferencesHTValDestructor(void *interp, void *val) { Jim_Reference *refPtr = (void*) val; Jim_DecrRefCount(interp, refPtr->objPtr); if (refPtr->finalizerCmdNamePtr != NULL) { Jim_DecrRefCount(interp, refPtr->finalizerCmdNamePtr); } Jim_Free(val); } unsigned int JimReferencesHTHashFunction(const void *key) { /* Only the least significant bits are used. */ const jim_wide *widePtr = key; unsigned int intValue = (unsigned int) *widePtr; return Jim_IntHashFunction(intValue); } const void *JimReferencesHTKeyDup(void *privdata, const void *key) { void *copy = Jim_Alloc(sizeof(jim_wide)); JIM_NOTUSED(privdata); memcpy(copy, key, sizeof(jim_wide)); return copy; } int JimReferencesHTKeyCompare(void *privdata, const void *key1, const void *key2) { JIM_NOTUSED(privdata); return memcmp(key1, key2, sizeof(jim_wide)) == 0; } void JimReferencesHTKeyDestructor(void *privdata, const void *key) { JIM_NOTUSED(privdata); Jim_Free((void*)key); } static const Jim_HashTableType JimReferencesHashTableType = { JimReferencesHTHashFunction, /* hash function */ JimReferencesHTKeyDup, /* key dup */ NULL, /* val dup */ JimReferencesHTKeyCompare, /* key compare */ JimReferencesHTKeyDestructor, /* key destructor */ JimReferencesHTValDestructor /* val destructor */ }; /* ----------------------------------------------------------------------------- * Reference object type and References API * ---------------------------------------------------------------------------*/ /* The string representation of references has two features in order * to make the GC faster. The first is that every reference starts * with a non common character '<', in order to make the string matching * faster. The second is that the reference string rep is 42 characters * in length, this allows to avoid to check every object with a string * repr < 42, and usually there aren't many of these objects. */ #define JIM_REFERENCE_SPACE (35+JIM_REFERENCE_TAGLEN) static int JimFormatReference(char *buf, Jim_Reference *refPtr, jim_wide id) { const char *fmt = ".%020" JIM_WIDE_MODIFIER ">"; sprintf(buf, fmt, refPtr->tag, id); return JIM_REFERENCE_SPACE; } static void UpdateStringOfReference(struct Jim_Obj *objPtr); static const Jim_ObjType referenceObjType = { "reference", NULL, NULL, UpdateStringOfReference, JIM_TYPE_REFERENCES, }; void UpdateStringOfReference(struct Jim_Obj *objPtr) { int len; char buf[JIM_REFERENCE_SPACE+1]; Jim_Reference *refPtr; refPtr = objPtr->internalRep.refValue.refPtr; len = JimFormatReference(buf, refPtr, objPtr->internalRep.refValue.id); objPtr->bytes = Jim_Alloc(len+1); memcpy(objPtr->bytes, buf, len+1); objPtr->length = len; } /* returns true if 'c' is a valid reference tag character. * i.e. inside the range [_a-zA-Z0-9] */ static int isrefchar(int c) { return (c == '_' || isalnum(c)); } int SetReferenceFromAny(Jim_Interp *interp, Jim_Obj *objPtr) { jim_wide wideValue; int i, len; const char *str, *start, *end; char refId[21]; Jim_Reference *refPtr; Jim_HashEntry *he; /* Get the string representation */ str = Jim_GetString(objPtr, &len); /* Check if it looks like a reference */ if (len < JIM_REFERENCE_SPACE) goto badformat; /* Trim spaces */ start = str; end = str+len-1; while (*start == ' ') start++; while (*end == ' ' && end > start) end--; if (end-start+1 != JIM_REFERENCE_SPACE) goto badformat; /* .%020> */ if (memcmp(start, "references, &wideValue); if (he == NULL) { Jim_SetResultFormatted(interp, "invalid reference id \"%#s\"", objPtr); return JIM_ERR; } refPtr = he->val; /* Free the old internal repr and set the new one. */ Jim_FreeIntRep(interp, objPtr); objPtr->typePtr = &referenceObjType; objPtr->internalRep.refValue.id = wideValue; objPtr->internalRep.refValue.refPtr = refPtr; return JIM_OK; badformat: Jim_SetResultFormatted(interp, "expected reference but got \"%#s\"", objPtr); return JIM_ERR; } /* Returns a new reference pointing to objPtr, having cmdNamePtr * as finalizer command (or NULL if there is no finalizer). * The returned reference object has refcount = 0. */ Jim_Obj *Jim_NewReference(Jim_Interp *interp, Jim_Obj *objPtr, Jim_Obj *tagPtr, Jim_Obj *cmdNamePtr) { struct Jim_Reference *refPtr; jim_wide wideValue = interp->referenceNextId; Jim_Obj *refObjPtr; const char *tag; int tagLen, i; /* Perform the Garbage Collection if needed. */ Jim_CollectIfNeeded(interp); refPtr = Jim_Alloc(sizeof(*refPtr)); refPtr->objPtr = objPtr; Jim_IncrRefCount(objPtr); refPtr->finalizerCmdNamePtr = cmdNamePtr; if (cmdNamePtr) Jim_IncrRefCount(cmdNamePtr); Jim_AddHashEntry(&interp->references, &wideValue, refPtr); refObjPtr = Jim_NewObj(interp); refObjPtr->typePtr = &referenceObjType; refObjPtr->bytes = NULL; refObjPtr->internalRep.refValue.id = interp->referenceNextId; refObjPtr->internalRep.refValue.refPtr = refPtr; interp->referenceNextId++; /* Set the tag. Trimmered at JIM_REFERENCE_TAGLEN. Everything * that does not pass the 'isrefchar' test is replaced with '_' */ tag = Jim_GetString(tagPtr, &tagLen); if (tagLen > JIM_REFERENCE_TAGLEN) tagLen = JIM_REFERENCE_TAGLEN; for (i = 0; i < JIM_REFERENCE_TAGLEN; i++) { if (i < tagLen) refPtr->tag[i] = tag[i]; else refPtr->tag[i] = '_'; } refPtr->tag[JIM_REFERENCE_TAGLEN] = '\0'; return refObjPtr; } Jim_Reference *Jim_GetReference(Jim_Interp *interp, Jim_Obj *objPtr) { if (objPtr->typePtr != &referenceObjType && SetReferenceFromAny(interp, objPtr) == JIM_ERR) return NULL; return objPtr->internalRep.refValue.refPtr; } int Jim_SetFinalizer(Jim_Interp *interp, Jim_Obj *objPtr, Jim_Obj *cmdNamePtr) { Jim_Reference *refPtr; if ((refPtr = Jim_GetReference(interp, objPtr)) == NULL) return JIM_ERR; Jim_IncrRefCount(cmdNamePtr); if (refPtr->finalizerCmdNamePtr) Jim_DecrRefCount(interp, refPtr->finalizerCmdNamePtr); refPtr->finalizerCmdNamePtr = cmdNamePtr; return JIM_OK; } int Jim_GetFinalizer(Jim_Interp *interp, Jim_Obj *objPtr, Jim_Obj **cmdNamePtrPtr) { Jim_Reference *refPtr; if ((refPtr = Jim_GetReference(interp, objPtr)) == NULL) return JIM_ERR; *cmdNamePtrPtr = refPtr->finalizerCmdNamePtr; return JIM_OK; } /* ----------------------------------------------------------------------------- * References Garbage Collection * ---------------------------------------------------------------------------*/ /* This the hash table type for the "MARK" phase of the GC */ static const Jim_HashTableType JimRefMarkHashTableType = { JimReferencesHTHashFunction, /* hash function */ JimReferencesHTKeyDup, /* key dup */ NULL, /* val dup */ JimReferencesHTKeyCompare, /* key compare */ JimReferencesHTKeyDestructor, /* key destructor */ NULL /* val destructor */ }; /* #define JIM_DEBUG_GC 1 */ /* Performs the garbage collection. */ int Jim_Collect(Jim_Interp *interp) { Jim_HashTable marks; Jim_HashTableIterator *htiter; Jim_HashEntry *he; Jim_Obj *objPtr; int collected = 0; /* Avoid recursive calls */ if (interp->lastCollectId == -1) { /* Jim_Collect() already running. Return just now. */ return 0; } interp->lastCollectId = -1; /* Mark all the references found into the 'mark' hash table. * The references are searched in every live object that * is of a type that can contain references. */ Jim_InitHashTable(&marks, &JimRefMarkHashTableType, NULL); objPtr = interp->liveList; while(objPtr) { if (objPtr->typePtr == NULL || objPtr->typePtr->flags & JIM_TYPE_REFERENCES) { const char *str, *p; int len; /* If the object is of type reference, to get the * Id is simple... */ if (objPtr->typePtr == &referenceObjType) { Jim_AddHashEntry(&marks, &objPtr->internalRep.refValue.id, NULL); #ifdef JIM_DEBUG_GC printf( "MARK (reference): %d refcount: %d" JIM_NL, (int) objPtr->internalRep.refValue.id, objPtr->refCount); #endif objPtr = objPtr->nextObjPtr; continue; } /* Get the string repr of the object we want * to scan for references. */ p = str = Jim_GetString(objPtr, &len); /* Skip objects too little to contain references. */ if (len < JIM_REFERENCE_SPACE) { objPtr = objPtr->nextObjPtr; continue; } /* Extract references from the object string repr. */ while(1) { int i; jim_wide id; char buf[21]; if ((p = strstr(p, "nextObjPtr; } /* Run the references hash table to destroy every reference that * is not referenced outside (not present in the mark HT). */ htiter = Jim_GetHashTableIterator(&interp->references); while ((he = Jim_NextHashEntry(htiter)) != NULL) { const jim_wide *refId; Jim_Reference *refPtr; refId = he->key; /* Check if in the mark phase we encountered * this reference. */ if (Jim_FindHashEntry(&marks, refId) == NULL) { #ifdef JIM_DEBUG_GC printf("COLLECTING %d" JIM_NL, (int)*refId); #endif collected++; /* Drop the reference, but call the * finalizer first if registered. */ refPtr = he->val; if (refPtr->finalizerCmdNamePtr) { char *refstr = Jim_Alloc(JIM_REFERENCE_SPACE+1); Jim_Obj *objv[3], *oldResult; JimFormatReference(refstr, refPtr, *refId); objv[0] = refPtr->finalizerCmdNamePtr; objv[1] = Jim_NewStringObjNoAlloc(interp, refstr, 32); objv[2] = refPtr->objPtr; Jim_IncrRefCount(objv[0]); Jim_IncrRefCount(objv[1]); Jim_IncrRefCount(objv[2]); /* Drop the reference itself */ Jim_DeleteHashEntry(&interp->references, refId); /* Call the finalizer. Errors ignored. */ oldResult = interp->result; Jim_IncrRefCount(oldResult); Jim_EvalObjVector(interp, 3, objv); Jim_SetResult(interp, oldResult); Jim_DecrRefCount(interp, oldResult); Jim_DecrRefCount(interp, objv[0]); Jim_DecrRefCount(interp, objv[1]); Jim_DecrRefCount(interp, objv[2]); } else { Jim_DeleteHashEntry(&interp->references, refId); } } } Jim_FreeHashTableIterator(htiter); Jim_FreeHashTable(&marks); interp->lastCollectId = interp->referenceNextId; interp->lastCollectTime = time(NULL); return collected; } #define JIM_COLLECT_ID_PERIOD 5000 #define JIM_COLLECT_TIME_PERIOD 300 void Jim_CollectIfNeeded(Jim_Interp *interp) { jim_wide elapsedId; int elapsedTime; elapsedId = interp->referenceNextId - interp->lastCollectId; elapsedTime = time(NULL) - interp->lastCollectTime; if (elapsedId > JIM_COLLECT_ID_PERIOD || elapsedTime > JIM_COLLECT_TIME_PERIOD) { Jim_Collect(interp); } } #endif /* ----------------------------------------------------------------------------- * Interpreter related functions * ---------------------------------------------------------------------------*/ Jim_Interp *Jim_CreateInterp(void) { Jim_Interp *i = Jim_Alloc(sizeof(*i)); i->errorLine = 0; i->errorFileName = Jim_StrDup(""); i->addStackTrace = 0; i->numLevels = 0; i->maxNestingDepth = JIM_MAX_NESTING_DEPTH; i->returnCode = JIM_OK; i->exitCode = 0; i->procEpoch = 0; i->callFrameEpoch = 0; i->liveList = i->freeList = NULL; i->referenceNextId = 0; i->lastCollectId = 0; i->lastCollectTime = time(NULL); i->freeFramesList = NULL; i->prngState = NULL; i->evalRetcodeLevel = -1; i->id = 0; i->signal = 0; i->signal_level = 0; i->signal_to_name = NULL; /* Note that we can create objects only after the * interpreter liveList and freeList pointers are * initialized to NULL. */ Jim_InitHashTable(&i->commands, &JimCommandsHashTableType, i); #ifdef JIM_REFERENCES Jim_InitHashTable(&i->references, &JimReferencesHashTableType, i); #endif Jim_InitHashTable(&i->sharedStrings, &JimSharedStringsHashTableType, NULL); Jim_InitHashTable(&i->assocData, &JimAssocDataHashTableType, i); Jim_InitHashTable(&i->packages, &JimStringKeyValCopyHashTableType, NULL); i->framePtr = i->topFramePtr = JimCreateCallFrame(i); i->emptyObj = Jim_NewEmptyStringObj(i); i->trueObj = Jim_NewIntObj(i, 1); i->falseObj = Jim_NewIntObj(i, 0); i->result = i->emptyObj; i->stackTrace = Jim_NewListObj(i, NULL, 0); i->unknown = Jim_NewStringObj(i, "unknown", -1); i->unknown_called = 0; i->errorProc = i->emptyObj; i->currentScriptObj = Jim_NewEmptyStringObj(i); Jim_IncrRefCount(i->emptyObj); Jim_IncrRefCount(i->result); Jim_IncrRefCount(i->stackTrace); Jim_IncrRefCount(i->unknown); Jim_IncrRefCount(i->currentScriptObj); Jim_IncrRefCount(i->errorProc); Jim_IncrRefCount(i->trueObj); Jim_IncrRefCount(i->falseObj); /* Initialize key variables every interpreter should contain */ Jim_SetVariableStrWithStr(i, JIM_LIBPATH, ". /lib/jim"); Jim_SetVariableStrWithStr(i, JIM_INTERACTIVE, "0"); return i; } void Jim_FreeInterp(Jim_Interp *i) { Jim_CallFrame *cf = i->framePtr, *prevcf, *nextcf; Jim_Obj *objPtr, *nextObjPtr; Jim_DecrRefCount(i, i->emptyObj); Jim_DecrRefCount(i, i->trueObj); Jim_DecrRefCount(i, i->falseObj); Jim_DecrRefCount(i, i->result); Jim_DecrRefCount(i, i->stackTrace); Jim_DecrRefCount(i, i->errorProc); Jim_DecrRefCount(i, i->unknown); Jim_Free((void*)i->errorFileName); Jim_DecrRefCount(i, i->currentScriptObj); Jim_FreeHashTable(&i->commands); Jim_FreeHashTable(&i->references); Jim_FreeHashTable(&i->assocData); Jim_FreeHashTable(&i->packages); Jim_Free(i->prngState); /* Free the call frames list */ while(cf) { prevcf = cf->parentCallFrame; JimFreeCallFrame(i, cf, JIM_FCF_NONE); cf = prevcf; } /* Check that the live object list is empty, otherwise * there is a memory leak. */ if (i->liveList != NULL) { Jim_Obj *objPtr = i->liveList; printf(JIM_NL "-------------------------------------" JIM_NL); printf("Objects still in the free list:" JIM_NL); while(objPtr) { const char *type = objPtr->typePtr ? objPtr->typePtr->name : "string"; printf("%p (%d) %-10s: '%.20s'" JIM_NL, objPtr, objPtr->refCount, type, objPtr->bytes ? objPtr->bytes : "(null)"); if (objPtr->typePtr == &sourceObjType) { printf( "FILE %s LINE %d" JIM_NL, objPtr->internalRep.sourceValue.fileName, objPtr->internalRep.sourceValue.lineNumber); } objPtr = objPtr->nextObjPtr; } printf( "-------------------------------------" JIM_NL JIM_NL); Jim_Panic(i,"Live list non empty freeing the interpreter! Leak?"); } /* Free all the freed objects. */ objPtr = i->freeList; while (objPtr) { nextObjPtr = objPtr->nextObjPtr; Jim_Free(objPtr); objPtr = nextObjPtr; } /* Free cached CallFrame structures */ cf = i->freeFramesList; while(cf) { nextcf = cf->nextFramePtr; if (cf->vars.table != NULL) Jim_Free(cf->vars.table); Jim_Free(cf); cf = nextcf; } /* Free the sharedString hash table. Make sure to free it * after every other Jim_Object was freed. */ Jim_FreeHashTable(&i->sharedStrings); /* Free the interpreter structure. */ Jim_Free(i); } /* Store the call frame relative to the level represented by * levelObjPtr into *framePtrPtr. If levelObjPtr == NULL, the * level is assumed to be '1'. * * If a newLevelptr int pointer is specified, the function stores * the absolute level integer value of the new target callframe into * *newLevelPtr. (this is used to adjust interp->numLevels * in the implementation of [uplevel], so that [info level] will * return a correct information). * * This function accepts the 'level' argument in the form * of the commands [uplevel] and [upvar]. * * For a function accepting a relative integer as level suitable * for implementation of [info level ?level?] check the * GetCallFrameByInteger() function. */ int Jim_GetCallFrameByLevel(Jim_Interp *interp, Jim_Obj *levelObjPtr, Jim_CallFrame **framePtrPtr, int *newLevelPtr) { long level; const char *str; Jim_CallFrame *framePtr; if (newLevelPtr) *newLevelPtr = interp->numLevels; if (levelObjPtr) { str = Jim_GetString(levelObjPtr, NULL); if (str[0] == '#') { char *endptr; /* speedup for the toplevel (level #0) */ if (str[1] == '0' && str[2] == '\0') { if (newLevelPtr) *newLevelPtr = 0; *framePtrPtr = interp->topFramePtr; return JIM_OK; } level = strtol(str+1, &endptr, 0); if (str[1] == '\0' || endptr[0] != '\0' || level < 0) goto badlevel; /* An 'absolute' level is converted into the * 'number of levels to go back' format. */ level = interp->numLevels - level; if (level < 0) goto badlevel; } else { if (Jim_GetLong(interp, levelObjPtr, &level) != JIM_OK || level < 0) goto badlevel; } } else { str = "1"; /* Needed to format the error message. */ level = 1; } /* Lookup */ framePtr = interp->framePtr; if (newLevelPtr) *newLevelPtr = (*newLevelPtr)-level; while (level--) { framePtr = framePtr->parentCallFrame; if (framePtr == NULL) goto badlevel; } *framePtrPtr = framePtr; return JIM_OK; badlevel: Jim_SetResultFormatted(interp, "bad level \"%s\"", str); return JIM_ERR; } /* Similar to Jim_GetCallFrameByLevel() but the level is specified * as a relative integer like in the [info level ?level?] command. */ static int JimGetCallFrameByInteger(Jim_Interp *interp, Jim_Obj *levelObjPtr, Jim_CallFrame **framePtrPtr) { jim_wide level; jim_wide relLevel; /* level relative to the current one. */ Jim_CallFrame *framePtr; if (Jim_GetWide(interp, levelObjPtr, &level) != JIM_OK) goto badlevel; if (level > 0) { /* An 'absolute' level is converted into the * 'number of levels to go back' format. */ relLevel = interp->numLevels - level; } else { relLevel = -level; } /* Lookup */ framePtr = interp->framePtr; while (relLevel--) { framePtr = framePtr->parentCallFrame; if (framePtr == NULL) goto badlevel; } *framePtrPtr = framePtr; return JIM_OK; badlevel: Jim_SetResultFormatted(interp, "bad level \"%#s\"", levelObjPtr); return JIM_ERR; } static void JimSetErrorFileName(Jim_Interp *interp, const char *filename) { Jim_Free((void*)interp->errorFileName); interp->errorFileName = Jim_StrDup(filename); } static void JimSetErrorLineNumber(Jim_Interp *interp, int linenr) { interp->errorLine = linenr; } static void JimResetStackTrace(Jim_Interp *interp) { Jim_DecrRefCount(interp, interp->stackTrace); interp->stackTrace = Jim_NewListObj(interp, NULL, 0); Jim_IncrRefCount(interp->stackTrace); } static void JimAppendStackTrace(Jim_Interp *interp, const char *procname, const char *filename, int linenr) { /*printf("AppendStackTrace: %s:%d (%s)\n", filename, linenr, procname);*/ /* XXX Omit "unknown" for now since it can be confusing (but it may help too!) */ if (strcmp(procname, "unknown") == 0) { procname = ""; } if (!*procname && !*filename) { /* No useful info here */ return; } if (Jim_IsShared(interp->stackTrace)) { interp->stackTrace = Jim_DuplicateObj(interp, interp->stackTrace); Jim_IncrRefCount(interp->stackTrace); } /* If we have no procname but the previous element did, merge with that frame */ if (!*procname && *filename) { /* Just a filename. Check the previous entry */ int len = Jim_ListLength(interp, interp->stackTrace); if (len >= 3) { Jim_Obj *procnameObj; Jim_Obj *filenameObj; if (Jim_ListIndex(interp, interp->stackTrace, len - 3, &procnameObj, JIM_NONE) == JIM_OK && Jim_ListIndex(interp, interp->stackTrace, len - 2, &filenameObj, JIM_NONE) == JIM_OK) { const char *prev_procname = Jim_GetString(procnameObj, NULL); const char *prev_filename = Jim_GetString(filenameObj, NULL); if (*prev_procname && !*prev_filename) { ListSetIndex(interp, interp->stackTrace, len - 2, Jim_NewStringObj(interp, filename, -1), 0); ListSetIndex(interp, interp->stackTrace, len - 1, Jim_NewIntObj(interp, linenr), 0); return; } } } } Jim_ListAppendElement(interp, interp->stackTrace, Jim_NewStringObj(interp, procname, -1)); Jim_ListAppendElement(interp, interp->stackTrace, Jim_NewStringObj(interp, filename, -1)); Jim_ListAppendElement(interp, interp->stackTrace, Jim_NewIntObj(interp, linenr)); } int Jim_SetAssocData(Jim_Interp *interp, const char *key, Jim_InterpDeleteProc *delProc, void *data) { AssocDataValue *assocEntryPtr = (AssocDataValue *)Jim_Alloc(sizeof(AssocDataValue)); assocEntryPtr->delProc = delProc; assocEntryPtr->data = data; return Jim_AddHashEntry(&interp->assocData, key, assocEntryPtr); } void *Jim_GetAssocData(Jim_Interp *interp, const char *key) { Jim_HashEntry *entryPtr = Jim_FindHashEntry(&interp->assocData, key); if (entryPtr != NULL) { AssocDataValue *assocEntryPtr = (AssocDataValue *)entryPtr->val; return assocEntryPtr->data; } return NULL; } int Jim_DeleteAssocData(Jim_Interp *interp, const char *key) { return Jim_DeleteHashEntry(&interp->assocData, key); } int Jim_GetExitCode(Jim_Interp *interp) { return interp->exitCode; } /* ----------------------------------------------------------------------------- * Shared strings. * Every interpreter has an hash table where to put shared dynamically * allocate strings that are likely to be used a lot of times. * For example, in the 'source' object type, there is a pointer to * the filename associated with that object. Every script has a lot * of this objects with the identical file name, so it is wise to share * this info. * * The API is trivial: Jim_GetSharedString(interp, "foobar") * returns the pointer to the shared string. Every time a reference * to the string is no longer used, the user should call * Jim_ReleaseSharedString(interp, stringPointer). Once no one is using * a given string, it is removed from the hash table. * ---------------------------------------------------------------------------*/ const char *Jim_GetSharedString(Jim_Interp *interp, const char *str) { Jim_HashEntry *he = Jim_FindHashEntry(&interp->sharedStrings, str); if (he == NULL) { char *strCopy = Jim_StrDup(str); Jim_AddHashEntry(&interp->sharedStrings, strCopy, (void*)1); return strCopy; } else { long refCount = (long) he->val; refCount++; he->val = (void*) refCount; return he->key; } } void Jim_ReleaseSharedString(Jim_Interp *interp, const char *str) { long refCount; Jim_HashEntry *he = Jim_FindHashEntry(&interp->sharedStrings, str); if (he == NULL) { Jim_Panic(interp,"Jim_ReleaseSharedString called with " "unknown shared string '%s'", str); } else { refCount = (long) he->val; refCount--; if (refCount == 0) { Jim_DeleteHashEntry(&interp->sharedStrings, str); } else { he->val = (void*) refCount; } } } /* ----------------------------------------------------------------------------- * Integer object * ---------------------------------------------------------------------------*/ #define JIM_INTEGER_SPACE 24 static void UpdateStringOfInt(struct Jim_Obj *objPtr); static int SetIntFromAny(Jim_Interp *interp, Jim_Obj *objPtr, int flags); static const Jim_ObjType intObjType = { "int", NULL, NULL, UpdateStringOfInt, JIM_TYPE_NONE, }; /* A coerced double is closer to an int than a double. * It is an int value temporarily masquerading as a double value. * i.e. it has the same string value as an int and Jim_GetWide() * succeeds, but also Jim_GetDouble() returns the value directly. */ static const Jim_ObjType coercedDoubleObjType = { "coerced-double", NULL, NULL, UpdateStringOfInt, JIM_TYPE_NONE, }; void UpdateStringOfInt(struct Jim_Obj *objPtr) { int len; char buf[JIM_INTEGER_SPACE+1]; len = Jim_WideToString(buf, objPtr->internalRep.wideValue); objPtr->bytes = Jim_Alloc(len+1); memcpy(objPtr->bytes, buf, len+1); objPtr->length = len; } int SetIntFromAny(Jim_Interp *interp, Jim_Obj *objPtr, int flags) { jim_wide wideValue; if (objPtr->typePtr == &coercedDoubleObjType) { /* Simple switcheroo */ objPtr->typePtr = &intObjType; return JIM_OK; } /* Get the string representation */ const char *str = Jim_GetString(objPtr, NULL); /* Try to convert into a jim_wide */ if (Jim_StringToWide(str, &wideValue, 0) != JIM_OK) { if (flags & JIM_ERRMSG) { Jim_SetResultFormatted(interp, "expected integer but got \"%#s\"", objPtr); } return JIM_ERR; } if ((wideValue == JIM_WIDE_MIN || wideValue == JIM_WIDE_MAX) && errno == ERANGE) { Jim_SetResultString(interp, "Integer value too big to be represented", -1); return JIM_ERR; } /* Free the old internal repr and set the new one. */ Jim_FreeIntRep(interp, objPtr); objPtr->typePtr = &intObjType; objPtr->internalRep.wideValue = wideValue; return JIM_OK; } static int Jim_IsWide(Jim_Obj *objPtr) { return objPtr->typePtr == &intObjType; } int Jim_GetWide(Jim_Interp *interp, Jim_Obj *objPtr, jim_wide *widePtr) { if (objPtr->typePtr != &intObjType && SetIntFromAny(interp, objPtr, JIM_ERRMSG) == JIM_ERR) return JIM_ERR; *widePtr = objPtr->internalRep.wideValue; return JIM_OK; } /* Get a wide but does not set an error if the format is bad. */ static int JimGetWideNoErr(Jim_Interp *interp, Jim_Obj *objPtr, jim_wide *widePtr) { if (objPtr->typePtr != &intObjType && SetIntFromAny(interp, objPtr, JIM_NONE) == JIM_ERR) return JIM_ERR; *widePtr = objPtr->internalRep.wideValue; return JIM_OK; } int Jim_GetLong(Jim_Interp *interp, Jim_Obj *objPtr, long *longPtr) { jim_wide wideValue; int retval; retval = Jim_GetWide(interp, objPtr, &wideValue); if (retval == JIM_OK) { *longPtr = (long) wideValue; return JIM_OK; } return JIM_ERR; } void Jim_SetWide(Jim_Interp *interp, Jim_Obj *objPtr, jim_wide wideValue) { if (Jim_IsShared(objPtr)) Jim_Panic(interp,"Jim_SetWide called with shared object"); if (objPtr->typePtr != &intObjType) { Jim_FreeIntRep(interp, objPtr); objPtr->typePtr = &intObjType; } Jim_InvalidateStringRep(objPtr); objPtr->internalRep.wideValue = wideValue; } Jim_Obj *Jim_NewIntObj(Jim_Interp *interp, jim_wide wideValue) { Jim_Obj *objPtr; objPtr = Jim_NewObj(interp); objPtr->typePtr = &intObjType; objPtr->bytes = NULL; objPtr->internalRep.wideValue = wideValue; return objPtr; } /* ----------------------------------------------------------------------------- * Double object * ---------------------------------------------------------------------------*/ #define JIM_DOUBLE_SPACE 30 static void UpdateStringOfDouble(struct Jim_Obj *objPtr); static int SetDoubleFromAny(Jim_Interp *interp, Jim_Obj *objPtr); static const Jim_ObjType doubleObjType = { "double", NULL, NULL, UpdateStringOfDouble, JIM_TYPE_NONE, }; void UpdateStringOfDouble(struct Jim_Obj *objPtr) { int len; char buf[JIM_DOUBLE_SPACE+1]; len = Jim_DoubleToString(buf, objPtr->internalRep.doubleValue); objPtr->bytes = Jim_Alloc(len+1); memcpy(objPtr->bytes, buf, len+1); objPtr->length = len; } int SetDoubleFromAny(Jim_Interp *interp, Jim_Obj *objPtr) { double doubleValue; jim_wide wideValue; const char *str; /* Preserve the string representation. * Needed so we can convert back to int without loss */ str = Jim_GetString(objPtr, NULL); /* Assume a 53 bit mantissa */ #define MIN_INT_IN_DOUBLE -(1LL << 53) #define MAX_INT_IN_DOUBLE -(MIN_INT_IN_DOUBLE + 1) if (objPtr->typePtr == &intObjType && objPtr->internalRep.wideValue >= MIN_INT_IN_DOUBLE && objPtr->internalRep.wideValue <= MAX_INT_IN_DOUBLE ) { /* Direct conversion to coerced double */ objPtr->typePtr = &coercedDoubleObjType; return JIM_OK; } else if (Jim_StringToWide(str, &wideValue, 10) == JIM_OK) { /* Managed to convert to an int, so we can use this as a cooerced double */ Jim_FreeIntRep(interp, objPtr); objPtr->typePtr = &coercedDoubleObjType; objPtr->internalRep.wideValue = wideValue; return JIM_OK; } else { /* Try to convert into a double */ if (Jim_StringToDouble(str, &doubleValue) != JIM_OK) { Jim_SetResultFormatted(interp, "expected number but got \"%#s\"", objPtr); return JIM_ERR; } /* Free the old internal repr and set the new one. */ Jim_FreeIntRep(interp, objPtr); } objPtr->typePtr = &doubleObjType; objPtr->internalRep.doubleValue = doubleValue; return JIM_OK; } int Jim_GetDouble(Jim_Interp *interp, Jim_Obj *objPtr, double *doublePtr) { if (objPtr->typePtr == &coercedDoubleObjType) { *doublePtr = objPtr->internalRep.wideValue; return JIM_OK; } if (objPtr->typePtr != &doubleObjType && SetDoubleFromAny(interp, objPtr) == JIM_ERR) return JIM_ERR; if (objPtr->typePtr == &coercedDoubleObjType) { *doublePtr = objPtr->internalRep.wideValue; } else { *doublePtr = objPtr->internalRep.doubleValue; } return JIM_OK; } Jim_Obj *Jim_NewDoubleObj(Jim_Interp *interp, double doubleValue) { Jim_Obj *objPtr; objPtr = Jim_NewObj(interp); objPtr->typePtr = &doubleObjType; objPtr->bytes = NULL; objPtr->internalRep.doubleValue = doubleValue; return objPtr; } /* ----------------------------------------------------------------------------- * List object * ---------------------------------------------------------------------------*/ static void ListAppendElement(Jim_Obj *listPtr, Jim_Obj *objPtr); static void FreeListInternalRep(Jim_Interp *interp, Jim_Obj *objPtr); static void DupListInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr); static void UpdateStringOfList(struct Jim_Obj *objPtr); static int SetListFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr); /* Note that while the elements of the list may contain references, * the list object itself can't. This basically means that the * list object string representation as a whole can't contain references * that are not presents in the single elements. */ static const Jim_ObjType listObjType = { "list", FreeListInternalRep, DupListInternalRep, UpdateStringOfList, JIM_TYPE_NONE, }; void FreeListInternalRep(Jim_Interp *interp, Jim_Obj *objPtr) { int i; for (i = 0; i < objPtr->internalRep.listValue.len; i++) { Jim_DecrRefCount(interp, objPtr->internalRep.listValue.ele[i]); } Jim_Free(objPtr->internalRep.listValue.ele); } void DupListInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr) { int i; JIM_NOTUSED(interp); dupPtr->internalRep.listValue.len = srcPtr->internalRep.listValue.len; dupPtr->internalRep.listValue.maxLen = srcPtr->internalRep.listValue.maxLen; dupPtr->internalRep.listValue.ele = Jim_Alloc(sizeof(Jim_Obj*)*srcPtr->internalRep.listValue.maxLen); memcpy(dupPtr->internalRep.listValue.ele, srcPtr->internalRep.listValue.ele, sizeof(Jim_Obj*)*srcPtr->internalRep.listValue.len); for (i = 0; i < dupPtr->internalRep.listValue.len; i++) { Jim_IncrRefCount(dupPtr->internalRep.listValue.ele[i]); } dupPtr->typePtr = &listObjType; } /* The following function checks if a given string can be encoded * into a list element without any kind of quoting, surrounded by braces, * or using escapes to quote. */ #define JIM_ELESTR_SIMPLE 0 #define JIM_ELESTR_BRACE 1 #define JIM_ELESTR_QUOTE 2 static int ListElementQuotingType(const char *s, int len) { int i, level, trySimple = 1; /* Try with the SIMPLE case */ if (len == 0) return JIM_ELESTR_BRACE; if (s[0] == '#') return JIM_ELESTR_BRACE; if (s[0] == '"' || s[0] == '{') { trySimple = 0; goto testbrace; } for (i = 0; i < len; i++) { switch(s[i]) { case ' ': case '$': case '"': case '[': case ']': case ';': case '\\': case '\r': case '\n': case '\t': case '\f': case '\v': trySimple = 0; case '{': case '}': goto testbrace; } } return JIM_ELESTR_SIMPLE; testbrace: /* Test if it's possible to do with braces */ if (s[len-1] == '\\' || s[len-1] == ']') return JIM_ELESTR_QUOTE; level = 0; for (i = 0; i < len; i++) { switch(s[i]) { case '{': level++; break; case '}': level--; if (level < 0) return JIM_ELESTR_QUOTE; break; case '\\': if (s[i+1] == '\n') return JIM_ELESTR_QUOTE; else if (s[i+1] != '\0') i++; break; } } if (level == 0) { if (!trySimple) return JIM_ELESTR_BRACE; for (i = 0; i < len; i++) { switch(s[i]) { case ' ': case '$': case '"': case '[': case ']': case ';': case '\\': case '\r': case '\n': case '\t': case '\f': case '\v': return JIM_ELESTR_BRACE; break; } } return JIM_ELESTR_SIMPLE; } return JIM_ELESTR_QUOTE; } /* Returns the malloc-ed representation of a string * using backslash to quote special chars. */ char *BackslashQuoteString(const char *s, int len, int *qlenPtr) { char *q = Jim_Alloc(len*2+1), *p; p = q; while(*s) { switch (*s) { case ' ': case '$': case '"': case '[': case ']': case '{': case '}': case ';': case '\\': *p++ = '\\'; *p++ = *s++; break; case '\n': *p++ = '\\'; *p++ = 'n'; s++; break; case '\r': *p++ = '\\'; *p++ = 'r'; s++; break; case '\t': *p++ = '\\'; *p++ = 't'; s++; break; case '\f': *p++ = '\\'; *p++ = 'f'; s++; break; case '\v': *p++ = '\\'; *p++ = 'v'; s++; break; default: *p++ = *s++; break; } } *p = '\0'; *qlenPtr = p-q; return q; } void UpdateStringOfList(struct Jim_Obj *objPtr) { int i, bufLen, realLength; const char *strRep; char *p; int *quotingType; Jim_Obj **ele = objPtr->internalRep.listValue.ele; /* (Over) Estimate the space needed. */ quotingType = Jim_Alloc(sizeof(int)*objPtr->internalRep.listValue.len+1); bufLen = 0; for (i = 0; i < objPtr->internalRep.listValue.len; i++) { int len; strRep = Jim_GetString(ele[i], &len); quotingType[i] = ListElementQuotingType(strRep, len); switch (quotingType[i]) { case JIM_ELESTR_SIMPLE: bufLen += len; break; case JIM_ELESTR_BRACE: bufLen += len+2; break; case JIM_ELESTR_QUOTE: bufLen += len*2; break; } bufLen++; /* elements separator. */ } bufLen++; /* Generate the string rep. */ p = objPtr->bytes = Jim_Alloc(bufLen+1); realLength = 0; for (i = 0; i < objPtr->internalRep.listValue.len; i++) { int len, qlen; const char *strRep = Jim_GetString(ele[i], &len); char *q; switch(quotingType[i]) { case JIM_ELESTR_SIMPLE: memcpy(p, strRep, len); p += len; realLength += len; break; case JIM_ELESTR_BRACE: *p++ = '{'; memcpy(p, strRep, len); p += len; *p++ = '}'; realLength += len+2; break; case JIM_ELESTR_QUOTE: q = BackslashQuoteString(strRep, len, &qlen); memcpy(p, q, qlen); Jim_Free(q); p += qlen; realLength += qlen; break; } /* Add a separating space */ if (i+1 != objPtr->internalRep.listValue.len) { *p++ = ' '; realLength ++; } } *p = '\0'; /* nul term. */ objPtr->length = realLength; Jim_Free(quotingType); } int SetListFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr) { struct JimParserCtx parser; const char *str; int strLen; /* Get the string representation */ str = Jim_GetString(objPtr, &strLen); /* Free the old internal repr just now and initialize the * new one just now. The string->list conversion can't fail. */ Jim_FreeIntRep(interp, objPtr); objPtr->typePtr = &listObjType; objPtr->internalRep.listValue.len = 0; objPtr->internalRep.listValue.maxLen = 0; objPtr->internalRep.listValue.ele = NULL; /* Convert into a list */ JimParserInit(&parser, str, strLen, 1); while(!JimParserEof(&parser)) { char *token; int tokenLen, type; Jim_Obj *elementPtr; JimParseList(&parser); if (JimParserTtype(&parser) != JIM_TT_STR && JimParserTtype(&parser) != JIM_TT_ESC) continue; token = JimParserGetToken(&parser, &tokenLen, &type, NULL); elementPtr = Jim_NewStringObjNoAlloc(interp, token, tokenLen); ListAppendElement(objPtr, elementPtr); } return JIM_OK; } Jim_Obj *Jim_NewListObj(Jim_Interp *interp, Jim_Obj *const *elements, int len) { Jim_Obj *objPtr; int i; objPtr = Jim_NewObj(interp); objPtr->typePtr = &listObjType; objPtr->bytes = NULL; objPtr->internalRep.listValue.ele = NULL; objPtr->internalRep.listValue.len = 0; objPtr->internalRep.listValue.maxLen = 0; for (i = 0; i < len; i++) { ListAppendElement(objPtr, elements[i]); } return objPtr; } /* Return a vector of Jim_Obj with the elements of a Jim list, and the * length of the vector. Note that the user of this function should make * sure that the list object can't shimmer while the vector returned * is in use, this vector is the one stored inside the internal representation * of the list object. This function is not exported, extensions should * always access to the List object elements using Jim_ListIndex(). */ static void JimListGetElements(Jim_Interp *interp, Jim_Obj *listObj, int *listLen, Jim_Obj ***listVec) { *listLen = Jim_ListLength(interp, listObj); *listVec = listObj->internalRep.listValue.ele; } /* ListSortElements type values */ enum {JIM_LSORT_ASCII, JIM_LSORT_NOCASE, JIM_LSORT_INTEGER, JIM_LSORT_COMMAND}; /* Why doesn't qsort allow a user arg!!! */ static Jim_Obj *sort_command = 0; static int sort_result = JIM_OK; static Jim_Interp *sort_interp = 0; static int sort_order; /* Sort the internal rep of a list. */ static int ListSortString(Jim_Obj **lhsObj, Jim_Obj **rhsObj) { return Jim_StringCompareObj(*lhsObj, *rhsObj, 0) * sort_order; } static int ListSortStringNoCase(Jim_Obj **lhsObj, Jim_Obj **rhsObj) { return Jim_StringCompareObj(*lhsObj, *rhsObj, 1) * sort_order; } static int ListSortInteger(Jim_Obj **lhsObj, Jim_Obj **rhsObj) { jim_wide lhs = 0, rhs = 0; /* REVISIT: If these are not valid integers, bogus results ...*/ Jim_GetWide(sort_interp, *lhsObj, &lhs); Jim_GetWide(sort_interp, *rhsObj, &rhs); return (int)(lhs - rhs) * sort_order; } static int ListSortCommand(Jim_Obj **lhsObj, Jim_Obj **rhsObj) { Jim_Obj *compare_script; long ret = 0; /* We have already had an error, so just compare pointers */ if (sort_result != JIM_OK) { return (long)lhsObj - (long)rhsObj; } /* This must be a valid list */ compare_script = Jim_DuplicateObj(sort_interp, sort_command); Jim_ListAppendElement(sort_interp, compare_script, *lhsObj); Jim_ListAppendElement(sort_interp, compare_script, *rhsObj); sort_result = Jim_EvalObj(sort_interp, compare_script); if (sort_result != JIM_OK) { /* We have an error, so just compare pointers */ return (long)lhsObj - (long)rhsObj; } Jim_GetLong(sort_interp, Jim_GetResult(sort_interp), &ret); return sort_order * ret; } /* Sort a list *in place*. MUST be called with non-shared objects. */ static int ListSortElements(Jim_Interp *interp, Jim_Obj *listObjPtr, int type, int order, Jim_Obj *command) { typedef int (qsort_comparator)(const void *, const void *); int (*fn)(Jim_Obj**, Jim_Obj**); Jim_Obj **vector; int len; if (Jim_IsShared(listObjPtr)) Jim_Panic(interp,"Jim_ListSortElements called with shared object"); if (!Jim_IsList(listObjPtr)) SetListFromAny(interp, listObjPtr); sort_order = order; sort_command = command; sort_interp = interp; sort_result = JIM_OK; vector = listObjPtr->internalRep.listValue.ele; len = listObjPtr->internalRep.listValue.len; switch (type) { case JIM_LSORT_ASCII: fn = ListSortString; break; case JIM_LSORT_NOCASE: fn = ListSortStringNoCase; break; case JIM_LSORT_INTEGER: fn = ListSortInteger; break; case JIM_LSORT_COMMAND: fn = ListSortCommand; break; default: fn = NULL; /* avoid warning */ Jim_Panic(interp,"ListSort called with invalid sort type"); } qsort(vector, len, sizeof(Jim_Obj *), (qsort_comparator *)fn); Jim_InvalidateStringRep(listObjPtr); return sort_result; } /* This is the low-level function to append an element to a list. * The higher-level Jim_ListAppendElement() performs shared object * check and invalidate the string repr. This version is used * in the internals of the List Object and is not exported. * * NOTE: this function can be called only against objects * with internal type of List. */ void ListAppendElement(Jim_Obj *listPtr, Jim_Obj *objPtr) { int requiredLen = listPtr->internalRep.listValue.len + 1; if (requiredLen > listPtr->internalRep.listValue.maxLen) { int maxLen = requiredLen * 2; listPtr->internalRep.listValue.ele = Jim_Realloc(listPtr->internalRep.listValue.ele, sizeof(Jim_Obj*)*maxLen); listPtr->internalRep.listValue.maxLen = maxLen; } listPtr->internalRep.listValue.ele[listPtr->internalRep.listValue.len] = objPtr; listPtr->internalRep.listValue.len ++; Jim_IncrRefCount(objPtr); } /* This is the low-level function to insert elements into a list. * The higher-level Jim_ListInsertElements() performs shared object * check and invalidate the string repr. This version is used * in the internals of the List Object and is not exported. * * NOTE: this function can be called only against objects * with internal type of List. */ void ListInsertElements(Jim_Obj *listPtr, int index, int elemc, Jim_Obj *const *elemVec) { int currentLen = listPtr->internalRep.listValue.len; int requiredLen = currentLen + elemc; int i; Jim_Obj **point; if (requiredLen > listPtr->internalRep.listValue.maxLen) { int maxLen = requiredLen * 2; listPtr->internalRep.listValue.ele = Jim_Realloc(listPtr->internalRep.listValue.ele, sizeof(Jim_Obj*)*maxLen); listPtr->internalRep.listValue.maxLen = maxLen; } point = listPtr->internalRep.listValue.ele + index; memmove(point+elemc, point, (currentLen-index) * sizeof(Jim_Obj*)); for (i=0; i < elemc; ++i) { point[i] = elemVec[i]; Jim_IncrRefCount(point[i]); } listPtr->internalRep.listValue.len += elemc; } /* Appends every element of appendListPtr into listPtr. * Both have to be of the list type. */ void ListAppendList(Jim_Obj *listPtr, Jim_Obj *appendListPtr) { int i, oldLen = listPtr->internalRep.listValue.len; int appendLen = appendListPtr->internalRep.listValue.len; int requiredLen = oldLen + appendLen; if (requiredLen > listPtr->internalRep.listValue.maxLen) { int maxLen = requiredLen * 2; listPtr->internalRep.listValue.ele = Jim_Realloc(listPtr->internalRep.listValue.ele, sizeof(Jim_Obj*)*maxLen); listPtr->internalRep.listValue.maxLen = maxLen; } for (i = 0; i < appendLen; i++) { Jim_Obj *objPtr = appendListPtr->internalRep.listValue.ele[i]; listPtr->internalRep.listValue.ele[oldLen+i] = objPtr; Jim_IncrRefCount(objPtr); } listPtr->internalRep.listValue.len += appendLen; } void Jim_ListAppendElement(Jim_Interp *interp, Jim_Obj *listPtr, Jim_Obj *objPtr) { if (Jim_IsShared(listPtr)) Jim_Panic(interp,"Jim_ListAppendElement called with shared object"); if (!Jim_IsList(listPtr)) SetListFromAny(interp, listPtr); Jim_InvalidateStringRep(listPtr); ListAppendElement(listPtr, objPtr); } void Jim_ListAppendList(Jim_Interp *interp, Jim_Obj *listPtr, Jim_Obj *appendListPtr) { if (Jim_IsShared(listPtr)) Jim_Panic(interp,"Jim_ListAppendList called with shared object"); if (!Jim_IsList(listPtr)) SetListFromAny(interp, listPtr); Jim_InvalidateStringRep(listPtr); ListAppendList(listPtr, appendListPtr); } int Jim_ListLength(Jim_Interp *interp, Jim_Obj *objPtr) { if (!Jim_IsList(objPtr)) SetListFromAny(interp, objPtr); return objPtr->internalRep.listValue.len; } void Jim_ListInsertElements(Jim_Interp *interp, Jim_Obj *listPtr, int index, int objc, Jim_Obj *const *objVec) { if (Jim_IsShared(listPtr)) Jim_Panic(interp,"Jim_ListInsertElement called with shared object"); if (!Jim_IsList(listPtr)) SetListFromAny(interp, listPtr); if (index >= 0 && index > listPtr->internalRep.listValue.len) index = listPtr->internalRep.listValue.len; else if (index < 0 ) index = 0; Jim_InvalidateStringRep(listPtr); ListInsertElements(listPtr, index, objc, objVec); } int Jim_ListIndex(Jim_Interp *interp, Jim_Obj *listPtr, int index, Jim_Obj **objPtrPtr, int flags) { if (!Jim_IsList(listPtr)) SetListFromAny(interp, listPtr); if ((index >= 0 && index >= listPtr->internalRep.listValue.len) || (index < 0 && (-index-1) >= listPtr->internalRep.listValue.len)) { if (flags & JIM_ERRMSG) { Jim_SetResultString(interp, "list index out of range", -1); } *objPtrPtr = NULL; return JIM_ERR; } if (index < 0) index = listPtr->internalRep.listValue.len+index; *objPtrPtr = listPtr->internalRep.listValue.ele[index]; return JIM_OK; } static int ListSetIndex(Jim_Interp *interp, Jim_Obj *listPtr, int index, Jim_Obj *newObjPtr, int flags) { if (!Jim_IsList(listPtr)) SetListFromAny(interp, listPtr); if ((index >= 0 && index >= listPtr->internalRep.listValue.len) || (index < 0 && (-index-1) >= listPtr->internalRep.listValue.len)) { if (flags & JIM_ERRMSG) { Jim_SetResultString(interp, "list index out of range", -1); } return JIM_ERR; } if (index < 0) index = listPtr->internalRep.listValue.len+index; Jim_DecrRefCount(interp, listPtr->internalRep.listValue.ele[index]); listPtr->internalRep.listValue.ele[index] = newObjPtr; Jim_IncrRefCount(newObjPtr); return JIM_OK; } /* Modify the list stored into the variable named 'varNamePtr' * setting the element specified by the 'indexc' indexes objects in 'indexv', * with the new element 'newObjptr'. */ int Jim_SetListIndex(Jim_Interp *interp, Jim_Obj *varNamePtr, Jim_Obj *const *indexv, int indexc, Jim_Obj *newObjPtr) { Jim_Obj *varObjPtr, *objPtr, *listObjPtr; int shared, i, index; varObjPtr = objPtr = Jim_GetVariable(interp, varNamePtr, JIM_ERRMSG); if (objPtr == NULL) return JIM_ERR; if ((shared = Jim_IsShared(objPtr))) varObjPtr = objPtr = Jim_DuplicateObj(interp, objPtr); for (i = 0; i < indexc-1; i++) { listObjPtr = objPtr; if (Jim_GetIndex(interp, indexv[i], &index) != JIM_OK) goto err; if (Jim_ListIndex(interp, listObjPtr, index, &objPtr, JIM_ERRMSG) != JIM_OK) { goto err; } if (Jim_IsShared(objPtr)) { objPtr = Jim_DuplicateObj(interp, objPtr); ListSetIndex(interp, listObjPtr, index, objPtr, JIM_NONE); } Jim_InvalidateStringRep(listObjPtr); } if (Jim_GetIndex(interp, indexv[indexc-1], &index) != JIM_OK) goto err; if (ListSetIndex(interp, objPtr, index, newObjPtr, JIM_ERRMSG) == JIM_ERR) goto err; Jim_InvalidateStringRep(objPtr); Jim_InvalidateStringRep(varObjPtr); if (Jim_SetVariable(interp, varNamePtr, varObjPtr) != JIM_OK) goto err; Jim_SetResult(interp, varObjPtr); return JIM_OK; err: if (shared) { Jim_FreeNewObj(interp, varObjPtr); } return JIM_ERR; } Jim_Obj *Jim_ConcatObj(Jim_Interp *interp, int objc, Jim_Obj *const *objv) { int i; /* If all the objects in objv are lists without string rep. * it's possible to return a list as result, that's the * concatenation of all the lists. */ for (i = 0; i < objc; i++) { if (!Jim_IsList(objv[i])) //if (objv[i]->typePtr != &listObjType || objv[i]->bytes) break; } if (i == objc) { Jim_Obj *objPtr = Jim_NewListObj(interp, NULL, 0); for (i = 0; i < objc; i++) Jim_ListAppendList(interp, objPtr, objv[i]); return objPtr; } else { /* Else... we have to glue strings together */ int len = 0, objLen; char *bytes, *p; /* Compute the length */ for (i = 0; i < objc; i++) { Jim_GetString(objv[i], &objLen); len += objLen; } if (objc) len += objc-1; /* Create the string rep, and a stinrg object holding it. */ p = bytes = Jim_Alloc(len+1); for (i = 0; i < objc; i++) { const char *s = Jim_GetString(objv[i], &objLen); while (objLen && (*s == ' ' || *s == '\t' || *s == '\n')) { s++; objLen--; len--; } while (objLen && (s[objLen-1] == ' ' || s[objLen-1] == '\n' || s[objLen-1] == '\t')) { objLen--; len--; } memcpy(p, s, objLen); p += objLen; if (objLen && i+1 != objc) { *p++ = ' '; } else if (i+1 != objc) { /* Drop the space calcuated for this * element that is instead null. */ len--; } } *p = '\0'; return Jim_NewStringObjNoAlloc(interp, bytes, len); } } /* Returns a list composed of the elements in the specified range. * first and start are directly accepted as Jim_Objects and * processed for the end?-index? case. */ Jim_Obj *Jim_ListRange(Jim_Interp *interp, Jim_Obj *listObjPtr, Jim_Obj *firstObjPtr, Jim_Obj *lastObjPtr) { int first, last; int len, rangeLen; if (Jim_GetIndex(interp, firstObjPtr, &first) != JIM_OK || Jim_GetIndex(interp, lastObjPtr, &last) != JIM_OK) return NULL; len = Jim_ListLength(interp, listObjPtr); /* will convert into list */ first = JimRelToAbsIndex(len, first); last = JimRelToAbsIndex(len, last); JimRelToAbsRange(len, first, last, &first, &last, &rangeLen); return Jim_NewListObj(interp, listObjPtr->internalRep.listValue.ele+first, rangeLen); } /* ----------------------------------------------------------------------------- * Dict object * ---------------------------------------------------------------------------*/ static void FreeDictInternalRep(Jim_Interp *interp, Jim_Obj *objPtr); static void DupDictInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr); static void UpdateStringOfDict(struct Jim_Obj *objPtr); static int SetDictFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr); /* Dict HashTable Type. * * Keys and Values are Jim objects. */ unsigned int JimObjectHTHashFunction(const void *key) { const char *str; Jim_Obj *objPtr = (Jim_Obj*) key; int len, h; str = Jim_GetString(objPtr, &len); h = Jim_GenHashFunction((unsigned char*)str, len); return h; } int JimObjectHTKeyCompare(void *privdata, const void *key1, const void *key2) { JIM_NOTUSED(privdata); return Jim_StringEqObj((Jim_Obj*)key1, (Jim_Obj*)key2, 0); } static void JimObjectHTKeyValDestructor(void *interp, void *val) { Jim_Obj *objPtr = val; Jim_DecrRefCount(interp, objPtr); } static const Jim_HashTableType JimDictHashTableType = { JimObjectHTHashFunction, /* hash function */ NULL, /* key dup */ NULL, /* val dup */ JimObjectHTKeyCompare, /* key compare */ (void(*)(void*, const void*)) /* ATTENTION: const cast */ JimObjectHTKeyValDestructor, /* key destructor */ JimObjectHTKeyValDestructor /* val destructor */ }; /* Note that while the elements of the dict may contain references, * the list object itself can't. This basically means that the * dict object string representation as a whole can't contain references * that are not presents in the single elements. */ static const Jim_ObjType dictObjType = { "dict", FreeDictInternalRep, DupDictInternalRep, UpdateStringOfDict, JIM_TYPE_NONE, }; void FreeDictInternalRep(Jim_Interp *interp, Jim_Obj *objPtr) { JIM_NOTUSED(interp); Jim_FreeHashTable(objPtr->internalRep.ptr); Jim_Free(objPtr->internalRep.ptr); } void DupDictInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr) { Jim_HashTable *ht, *dupHt; Jim_HashTableIterator *htiter; Jim_HashEntry *he; /* Create a new hash table */ ht = srcPtr->internalRep.ptr; dupHt = Jim_Alloc(sizeof(*dupHt)); Jim_InitHashTable(dupHt, &JimDictHashTableType, interp); if (ht->size != 0) Jim_ExpandHashTable(dupHt, ht->size); /* Copy every element from the source to the dup hash table */ htiter = Jim_GetHashTableIterator(ht); while ((he = Jim_NextHashEntry(htiter)) != NULL) { const Jim_Obj *keyObjPtr = he->key; Jim_Obj *valObjPtr = he->val; Jim_IncrRefCount((Jim_Obj*)keyObjPtr); /* ATTENTION: const cast */ Jim_IncrRefCount(valObjPtr); Jim_AddHashEntry(dupHt, keyObjPtr, valObjPtr); } Jim_FreeHashTableIterator(htiter); dupPtr->internalRep.ptr = dupHt; dupPtr->typePtr = &dictObjType; } void UpdateStringOfDict(struct Jim_Obj *objPtr) { int i, bufLen, realLength; const char *strRep; char *p; int *quotingType, objc; Jim_HashTable *ht; Jim_HashTableIterator *htiter; Jim_HashEntry *he; Jim_Obj **objv; /* Trun the hash table into a flat vector of Jim_Objects. */ ht = objPtr->internalRep.ptr; objc = ht->used*2; objv = Jim_Alloc(objc*sizeof(Jim_Obj*)); htiter = Jim_GetHashTableIterator(ht); i = 0; while ((he = Jim_NextHashEntry(htiter)) != NULL) { objv[i++] = (Jim_Obj*)he->key; /* ATTENTION: const cast */ objv[i++] = he->val; } Jim_FreeHashTableIterator(htiter); /* (Over) Estimate the space needed. */ quotingType = Jim_Alloc(sizeof(int)*objc); bufLen = 0; for (i = 0; i < objc; i++) { int len; strRep = Jim_GetString(objv[i], &len); quotingType[i] = ListElementQuotingType(strRep, len); switch (quotingType[i]) { case JIM_ELESTR_SIMPLE: bufLen += len; break; case JIM_ELESTR_BRACE: bufLen += len+2; break; case JIM_ELESTR_QUOTE: bufLen += len*2; break; } bufLen++; /* elements separator. */ } bufLen++; /* Generate the string rep. */ p = objPtr->bytes = Jim_Alloc(bufLen+1); realLength = 0; for (i = 0; i < objc; i++) { int len, qlen; const char *strRep = Jim_GetString(objv[i], &len); char *q; switch(quotingType[i]) { case JIM_ELESTR_SIMPLE: memcpy(p, strRep, len); p += len; realLength += len; break; case JIM_ELESTR_BRACE: *p++ = '{'; memcpy(p, strRep, len); p += len; *p++ = '}'; realLength += len+2; break; case JIM_ELESTR_QUOTE: q = BackslashQuoteString(strRep, len, &qlen); memcpy(p, q, qlen); Jim_Free(q); p += qlen; realLength += qlen; break; } /* Add a separating space */ if (i+1 != objc) { *p++ = ' '; realLength ++; } } *p = '\0'; /* nul term. */ objPtr->length = realLength; Jim_Free(quotingType); Jim_Free(objv); } #ifdef JIM_OPTIMIZATION static int SetDictFromList(Jim_Interp *interp, struct Jim_Obj *objPtr) { Jim_HashTable *ht; int i; int listlen; listlen = Jim_ListLength(interp, objPtr); if (listlen % 2) { return JIM_ERR; } /* Now we can't fail */ ht = Jim_Alloc(sizeof(*ht)); Jim_InitHashTable(ht, &JimDictHashTableType, interp); for (i = 0; i < listlen; i += 2) { Jim_Obj *keyObjPtr; Jim_Obj *valObjPtr; Jim_ListIndex(interp, objPtr, i, &keyObjPtr, JIM_NONE); Jim_ListIndex(interp, objPtr, i + 1, &valObjPtr, JIM_NONE); Jim_IncrRefCount(keyObjPtr); Jim_IncrRefCount(valObjPtr); if (Jim_AddHashEntry(ht, keyObjPtr, valObjPtr) != JIM_OK) { Jim_HashEntry *he; he = Jim_FindHashEntry(ht, keyObjPtr); Jim_DecrRefCount(interp, keyObjPtr); /* ATTENTION: const cast */ Jim_DecrRefCount(interp, (Jim_Obj*)he->val); he->val = valObjPtr; } } Jim_FreeIntRep(interp, objPtr); objPtr->typePtr = &dictObjType; objPtr->internalRep.ptr = ht; return JIM_OK; } #endif static int SetDictFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr) { struct JimParserCtx parser; Jim_HashTable *ht; Jim_Obj *objv[2]; const char *str; int i, strLen; #ifdef JIM_OPTIMIZATION /* If the object is of type "list" we can use * a specialized version */ if (Jim_IsList(objPtr)) { if (SetDictFromList(interp, objPtr) != JIM_OK) { goto badlist; } return JIM_OK; } #endif /* Get the string representation */ str = Jim_GetString(objPtr, &strLen); /* Free the old internal repr just now and initialize the * new one just now. The string->list conversion can't fail. */ Jim_FreeIntRep(interp, objPtr); ht = Jim_Alloc(sizeof(*ht)); Jim_InitHashTable(ht, &JimDictHashTableType, interp); objPtr->typePtr = &dictObjType; objPtr->internalRep.ptr = ht; /* Convert into a dict */ JimParserInit(&parser, str, strLen, 1); i = 0; while(!JimParserEof(&parser)) { char *token; int tokenLen, type; JimParseList(&parser); if (JimParserTtype(&parser) != JIM_TT_STR && JimParserTtype(&parser) != JIM_TT_ESC) continue; token = JimParserGetToken(&parser, &tokenLen, &type, NULL); objv[i++] = Jim_NewStringObjNoAlloc(interp, token, tokenLen); if (i == 2) { i = 0; Jim_IncrRefCount(objv[0]); Jim_IncrRefCount(objv[1]); if (Jim_AddHashEntry(ht, objv[0], objv[1]) != JIM_OK) { Jim_HashEntry *he; he = Jim_FindHashEntry(ht, objv[0]); Jim_DecrRefCount(interp, objv[0]); /* ATTENTION: const cast */ Jim_DecrRefCount(interp, (Jim_Obj*)he->val); he->val = objv[1]; } } } if (i) { Jim_FreeNewObj(interp, objv[0]); objPtr->typePtr = NULL; Jim_FreeHashTable(ht); Jim_Free(ht); #ifdef JIM_OPTIMIZATION badlist: #endif Jim_SetResultString(interp, "invalid dictionary value: must be a list with an even number of elements", -1); return JIM_ERR; } return JIM_OK; } /* Dict object API */ /* Add an element to a dict. objPtr must be of the "dict" type. * The higer-level exported function is Jim_DictAddElement(). * If an element with the specified key already exists, the value * associated is replaced with the new one. * * if valueObjPtr == NULL, the key is instead removed if it exists. */ static int DictAddElement(Jim_Interp *interp, Jim_Obj *objPtr, Jim_Obj *keyObjPtr, Jim_Obj *valueObjPtr) { Jim_HashTable *ht = objPtr->internalRep.ptr; if (valueObjPtr == NULL) { /* unset */ return Jim_DeleteHashEntry(ht, keyObjPtr); } Jim_IncrRefCount(keyObjPtr); Jim_IncrRefCount(valueObjPtr); if (Jim_AddHashEntry(ht, keyObjPtr, valueObjPtr) != JIM_OK) { Jim_HashEntry *he = Jim_FindHashEntry(ht, keyObjPtr); Jim_DecrRefCount(interp, keyObjPtr); /* ATTENTION: const cast */ Jim_DecrRefCount(interp, (Jim_Obj*)he->val); he->val = valueObjPtr; } return JIM_OK; } /* Add an element, higher-level interface for DictAddElement(). * If valueObjPtr == NULL, the key is removed if it exists. */ int Jim_DictAddElement(Jim_Interp *interp, Jim_Obj *objPtr, Jim_Obj *keyObjPtr, Jim_Obj *valueObjPtr) { int retcode; if (Jim_IsShared(objPtr)) Jim_Panic(interp,"Jim_DictAddElement called with shared object"); if (objPtr->typePtr != &dictObjType) { if (SetDictFromAny(interp, objPtr) != JIM_OK) return JIM_ERR; } retcode = DictAddElement(interp, objPtr, keyObjPtr, valueObjPtr); Jim_InvalidateStringRep(objPtr); return retcode; } Jim_Obj *Jim_NewDictObj(Jim_Interp *interp, Jim_Obj *const *elements, int len) { Jim_Obj *objPtr; int i; if (len % 2) Jim_Panic(interp,"Jim_NewDicObj() 'len' argument must be even"); objPtr = Jim_NewObj(interp); objPtr->typePtr = &dictObjType; objPtr->bytes = NULL; objPtr->internalRep.ptr = Jim_Alloc(sizeof(Jim_HashTable)); Jim_InitHashTable(objPtr->internalRep.ptr, &JimDictHashTableType, interp); for (i = 0; i < len; i += 2) DictAddElement(interp, objPtr, elements[i], elements[i+1]); return objPtr; } /* Return the value associated to the specified dict key * Note: Returns JIM_OK if OK, JIM_ERR if entry not found or -1 if can't create dict value */ int Jim_DictKey(Jim_Interp *interp, Jim_Obj *dictPtr, Jim_Obj *keyPtr, Jim_Obj **objPtrPtr, int flags) { Jim_HashEntry *he; Jim_HashTable *ht; if (dictPtr->typePtr != &dictObjType) { if (SetDictFromAny(interp, dictPtr) != JIM_OK) return -1; } ht = dictPtr->internalRep.ptr; if ((he = Jim_FindHashEntry(ht, keyPtr)) == NULL) { if (flags & JIM_ERRMSG) { Jim_SetResultFormatted(interp, "key \"%#s\" not found in dictionary", keyPtr); } return JIM_ERR; } *objPtrPtr = he->val; return JIM_OK; } /* Return an allocated array of key/value pairs for the dictionary. Stores the length in *len */ int Jim_DictPairs(Jim_Interp *interp, Jim_Obj *dictPtr, Jim_Obj ***objPtrPtr, int *len) { Jim_HashTable *ht; Jim_HashTableIterator *htiter; Jim_HashEntry *he; Jim_Obj **objv; int i; if (dictPtr->typePtr != &dictObjType) { if (SetDictFromAny(interp, dictPtr) != JIM_OK) return JIM_ERR; } ht = dictPtr->internalRep.ptr; /* Turn the hash table into a flat vector of Jim_Objects. */ objv = Jim_Alloc((ht->used * 2) * sizeof(Jim_Obj*)); htiter = Jim_GetHashTableIterator(ht); i = 0; while ((he = Jim_NextHashEntry(htiter)) != NULL) { objv[i++] = (Jim_Obj*)he->key; /* ATTENTION: const cast */ objv[i++] = he->val; } *len = i; Jim_FreeHashTableIterator(htiter); *objPtrPtr = objv; return JIM_OK; } /* Return the value associated to the specified dict keys */ int Jim_DictKeysVector(Jim_Interp *interp, Jim_Obj *dictPtr, Jim_Obj *const *keyv, int keyc, Jim_Obj **objPtrPtr, int flags) { int i; if (keyc == 0) { *objPtrPtr = dictPtr; return JIM_OK; } for (i = 0; i < keyc; i++) { Jim_Obj *objPtr; if (Jim_DictKey(interp, dictPtr, keyv[i], &objPtr, flags) != JIM_OK) return JIM_ERR; dictPtr = objPtr; } *objPtrPtr = dictPtr; return JIM_OK; } /* Modify the dict stored into the variable named 'varNamePtr' * setting the element specified by the 'keyc' keys objects in 'keyv', * with the new value of the element 'newObjPtr'. * * If newObjPtr == NULL the operation is to remove the given key * from the dictionary. */ int Jim_SetDictKeysVector(Jim_Interp *interp, Jim_Obj *varNamePtr, Jim_Obj *const *keyv, int keyc, Jim_Obj *newObjPtr) { Jim_Obj *varObjPtr, *objPtr, *dictObjPtr; int shared, i; varObjPtr = objPtr = Jim_GetVariable(interp, varNamePtr, newObjPtr == NULL ? JIM_ERRMSG : JIM_NONE); if (objPtr == NULL) { if (newObjPtr == NULL) /* Cannot remove a key from non existing var */ return JIM_ERR; varObjPtr = objPtr = Jim_NewDictObj(interp, NULL, 0); if (Jim_SetVariable(interp, varNamePtr, objPtr) != JIM_OK) { Jim_FreeNewObj(interp, varObjPtr); return JIM_ERR; } } if ((shared = Jim_IsShared(objPtr))) varObjPtr = objPtr = Jim_DuplicateObj(interp, objPtr); for (i = 0; i < keyc-1; i++) { dictObjPtr = objPtr; /* Check if it's a valid dictionary */ if (dictObjPtr->typePtr != &dictObjType) { if (SetDictFromAny(interp, dictObjPtr) != JIM_OK) goto err; } /* Check if the given key exists. */ Jim_InvalidateStringRep(dictObjPtr); if (Jim_DictKey(interp, dictObjPtr, keyv[i], &objPtr, newObjPtr ? JIM_NONE : JIM_ERRMSG) == JIM_OK) { /* This key exists at the current level. * Make sure it's not shared!. */ if (Jim_IsShared(objPtr)) { objPtr = Jim_DuplicateObj(interp, objPtr); DictAddElement(interp, dictObjPtr, keyv[i], objPtr); } } else { /* Key not found. If it's an [unset] operation * this is an error. Only the last key may not * exist. */ if (newObjPtr == NULL) goto err; /* Otherwise set an empty dictionary * as key's value. */ objPtr = Jim_NewDictObj(interp, NULL, 0); DictAddElement(interp, dictObjPtr, keyv[i], objPtr); } } if (Jim_DictAddElement(interp, objPtr, keyv[keyc-1], newObjPtr) != JIM_OK) { goto err; } Jim_InvalidateStringRep(objPtr); Jim_InvalidateStringRep(varObjPtr); if (Jim_SetVariable(interp, varNamePtr, varObjPtr) != JIM_OK) goto err; Jim_SetResult(interp, varObjPtr); return JIM_OK; err: if (shared) { Jim_FreeNewObj(interp, varObjPtr); } return JIM_ERR; } /* ----------------------------------------------------------------------------- * Index object * ---------------------------------------------------------------------------*/ static void UpdateStringOfIndex(struct Jim_Obj *objPtr); static int SetIndexFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr); static const Jim_ObjType indexObjType = { "index", NULL, NULL, UpdateStringOfIndex, JIM_TYPE_NONE, }; void UpdateStringOfIndex(struct Jim_Obj *objPtr) { int len; char buf[JIM_INTEGER_SPACE+1]; if (objPtr->internalRep.indexValue >= 0) len = sprintf(buf, "%d", objPtr->internalRep.indexValue); else if (objPtr->internalRep.indexValue == -1) len = sprintf(buf, "end"); else { len = sprintf(buf, "end%d", objPtr->internalRep.indexValue+1); } objPtr->bytes = Jim_Alloc(len+1); memcpy(objPtr->bytes, buf, len+1); objPtr->length = len; } int SetIndexFromAny(Jim_Interp *interp, Jim_Obj *objPtr) { int index, end = 0; const char *str; char *endptr; /* Get the string representation */ str = Jim_GetString(objPtr, NULL); /* Try to convert into an index */ if (strncmp(str, "end", 3) == 0) { end = 1; str += 3; index = 0; } else { index = strtol(str, &endptr, 10); if (endptr == str) { goto badindex; } str = endptr; } /* Now str may include or + or - */ if (*str == '+' || *str == '-') { int sign = (*str == '+' ? 1 : -1); index += sign * strtol(++str, &endptr, 10); if (str == endptr || *endptr) { goto badindex; } str = endptr; } /* The only thing left should be spaces */ while (isspace(*str)) { str++; } if (*str) { goto badindex; } if (end) { if (index > 0) { index = INT_MAX; } else { /* end-1 is repesented as -2 */ index--; } } else if (index < 0) { index = -INT_MAX; } /* Free the old internal repr and set the new one. */ Jim_FreeIntRep(interp, objPtr); objPtr->typePtr = &indexObjType; objPtr->internalRep.indexValue = index; return JIM_OK; badindex: Jim_SetResultFormatted(interp, "bad index \"%#s\": must be integer?[+-]integer? or end?[+-]integer?", objPtr); return JIM_ERR; } int Jim_GetIndex(Jim_Interp *interp, Jim_Obj *objPtr, int *indexPtr) { /* Avoid shimmering if the object is an integer. */ if (objPtr->typePtr == &intObjType) { jim_wide val = objPtr->internalRep.wideValue; if (!(val < LONG_MIN) && !(val > LONG_MAX)) { *indexPtr = (val < 0) ? -INT_MAX : (long)val;; return JIM_OK; } } if (objPtr->typePtr != &indexObjType && SetIndexFromAny(interp, objPtr) == JIM_ERR) return JIM_ERR; *indexPtr = objPtr->internalRep.indexValue; return JIM_OK; } /* ----------------------------------------------------------------------------- * Return Code Object. * ---------------------------------------------------------------------------*/ /* NOTE: These must be kept in the same order as JIM_OK, JIM_ERR, ... */ static const char *jimReturnCodes[] = { [JIM_OK] = "ok", [JIM_ERR] = "error", [JIM_RETURN] = "return", [JIM_BREAK] = "break", [JIM_CONTINUE] = "continue", [JIM_SIGNAL] = "signal", [JIM_EXIT] = "exit", [JIM_EVAL] = "eval", NULL }; #define jimReturnCodesSize (sizeof(jimReturnCodes)/sizeof(*jimReturnCodes)) static int SetReturnCodeFromAny(Jim_Interp *interp, Jim_Obj *objPtr); static const Jim_ObjType returnCodeObjType = { "return-code", NULL, NULL, NULL, JIM_TYPE_NONE, }; /* Converts a (standard) return code to a string. Returns "?" for * non-standard return codes. */ const char *Jim_ReturnCode(int code) { if (code < 0 || code >= jimReturnCodesSize) { return "?"; } else { return jimReturnCodes[code]; } } int SetReturnCodeFromAny(Jim_Interp *interp, Jim_Obj *objPtr) { int returnCode; jim_wide wideValue; /* Try to convert into an integer */ if (JimGetWideNoErr(interp, objPtr, &wideValue) != JIM_ERR) returnCode = (int) wideValue; else if (Jim_GetEnum(interp, objPtr, jimReturnCodes, &returnCode, NULL, JIM_NONE) != JIM_OK) { Jim_SetResultFormatted(interp, "expected return code but got \"%#s\"", objPtr); return JIM_ERR; } /* Free the old internal repr and set the new one. */ Jim_FreeIntRep(interp, objPtr); objPtr->typePtr = &returnCodeObjType; objPtr->internalRep.returnCode = returnCode; return JIM_OK; } int Jim_GetReturnCode(Jim_Interp *interp, Jim_Obj *objPtr, int *intPtr) { if (objPtr->typePtr != &returnCodeObjType && SetReturnCodeFromAny(interp, objPtr) == JIM_ERR) return JIM_ERR; *intPtr = objPtr->internalRep.returnCode; return JIM_OK; } /* ----------------------------------------------------------------------------- * Expression Parsing * ---------------------------------------------------------------------------*/ static int JimParseExprOperator(struct JimParserCtx *pc); static int JimParseExprNumber(struct JimParserCtx *pc); static int JimParseExprIrrational(struct JimParserCtx *pc); /* Exrp's Stack machine operators opcodes. */ /* Binary operators (numbers) */ enum { /* Continues on from the JIM_TT_ space */ /* Operations */ JIM_EXPROP_MUL = JIM_TT_EXPR_OP, /* 15 */ JIM_EXPROP_DIV, JIM_EXPROP_MOD, JIM_EXPROP_SUB, JIM_EXPROP_ADD, JIM_EXPROP_LSHIFT, JIM_EXPROP_RSHIFT, JIM_EXPROP_ROTL, JIM_EXPROP_ROTR, JIM_EXPROP_LT, JIM_EXPROP_GT, JIM_EXPROP_LTE, JIM_EXPROP_GTE, JIM_EXPROP_NUMEQ, JIM_EXPROP_NUMNE, JIM_EXPROP_BITAND, /* 30 */ JIM_EXPROP_BITXOR, JIM_EXPROP_BITOR, /* Note must keep these together */ JIM_EXPROP_LOGICAND, /* 33 */ JIM_EXPROP_LOGICAND_LEFT, JIM_EXPROP_LOGICAND_RIGHT, /* and these */ JIM_EXPROP_LOGICOR, /* 36 */ JIM_EXPROP_LOGICOR_LEFT, JIM_EXPROP_LOGICOR_RIGHT, /* and these */ /* Ternary operators */ JIM_EXPROP_TERNARY, /* 39 */ JIM_EXPROP_TERNARY_LEFT, JIM_EXPROP_TERNARY_RIGHT, /* and these */ JIM_EXPROP_COLON, /* 42 */ JIM_EXPROP_COLON_LEFT, JIM_EXPROP_COLON_RIGHT, JIM_EXPROP_POW, /* 45 */ /* Binary operators (strings) */ JIM_EXPROP_STREQ, JIM_EXPROP_STRNE, JIM_EXPROP_STRIN, JIM_EXPROP_STRNI, /* Unary operators (numbers) */ JIM_EXPROP_NOT, JIM_EXPROP_BITNOT, JIM_EXPROP_UNARYMINUS, JIM_EXPROP_UNARYPLUS, /* Functions */ JIM_EXPROP_FUNC_FIRST, JIM_EXPROP_FUNC_INT = JIM_EXPROP_FUNC_FIRST, JIM_EXPROP_FUNC_ABS, JIM_EXPROP_FUNC_DOUBLE, JIM_EXPROP_FUNC_ROUND, #ifdef JIM_MATH_FUNCTIONS /* math functions from libm */ JIM_EXPROP_FUNC_SIN, JIM_EXPROP_FUNC_COS, JIM_EXPROP_FUNC_TAN, JIM_EXPROP_FUNC_ASIN, JIM_EXPROP_FUNC_ACOS, JIM_EXPROP_FUNC_ATAN, JIM_EXPROP_FUNC_SINH, JIM_EXPROP_FUNC_COSH, JIM_EXPROP_FUNC_TANH, JIM_EXPROP_FUNC_CEIL, JIM_EXPROP_FUNC_FLOOR, JIM_EXPROP_FUNC_EXP, JIM_EXPROP_FUNC_LOG, JIM_EXPROP_FUNC_LOG10, JIM_EXPROP_FUNC_SQRT, #endif }; struct JimExprState { Jim_Obj **stack; int stacklen; int opcode; int skip; }; /* Operators table */ typedef struct Jim_ExprOperator { const char *name; int precedence; int arity; int (*funcop)(Jim_Interp *interp, struct JimExprState *e); int lazy; } Jim_ExprOperator; static void ExprPush(struct JimExprState *e, Jim_Obj *obj) { Jim_IncrRefCount(obj); e->stack[e->stacklen++] = obj; } static Jim_Obj *ExprPop(struct JimExprState *e) { return e->stack[--e->stacklen]; } static int JimExprOpNumUnary(Jim_Interp *interp, struct JimExprState *e) { int intresult = 0; int rc = JIM_OK; Jim_Obj *A = ExprPop(e); double dA, dC = 0; jim_wide wA, wC = 0; if ((A->typePtr != &doubleObjType || A->bytes) && JimGetWideNoErr(interp, A, &wA) == JIM_OK) { intresult = 1; switch (e->opcode) { case JIM_EXPROP_FUNC_INT: wC = wA; break; case JIM_EXPROP_FUNC_ROUND: wC = wA; break; case JIM_EXPROP_FUNC_DOUBLE: dC = wA; intresult = 0; break; case JIM_EXPROP_FUNC_ABS: wC = wA >= 0 ? wA : -wA; break; case JIM_EXPROP_UNARYMINUS: wC = -wA; break; case JIM_EXPROP_UNARYPLUS: wC = wA; break; case JIM_EXPROP_NOT: wC = !wA; break; default: abort(); } } else if ((rc = Jim_GetDouble(interp, A, &dA)) == JIM_OK) { switch (e->opcode) { case JIM_EXPROP_FUNC_INT: wC = dA; intresult = 1; break; case JIM_EXPROP_FUNC_ROUND: wC = dA < 0 ? (dA - 0.5) : (dA + 0.5); intresult = 1; break; case JIM_EXPROP_FUNC_DOUBLE: dC = dA; break; case JIM_EXPROP_FUNC_ABS: dC = dA >= 0 ? dA : -dA; break; case JIM_EXPROP_UNARYMINUS: dC = -dA; break; case JIM_EXPROP_UNARYPLUS: dC = dA; break; case JIM_EXPROP_NOT: wC = !dA; intresult = 1; break; default: abort(); } } if (rc == JIM_OK) { if (intresult) { ExprPush(e, Jim_NewIntObj(interp, wC)); } else { ExprPush(e, Jim_NewDoubleObj(interp, dC)); } } Jim_DecrRefCount(interp, A); return rc; } static int JimExprOpIntUnary(Jim_Interp *interp, struct JimExprState *e) { Jim_Obj *A = ExprPop(e); jim_wide wA; int rc = JIM_ERR; if (Jim_GetWide(interp, A, &wA) == JIM_OK) { jim_wide wC; switch (e->opcode) { case JIM_EXPROP_BITNOT: wC = ~wA; break; default: abort(); } ExprPush(e, Jim_NewIntObj(interp, wC)); rc = JIM_OK; } Jim_DecrRefCount(interp, A); return rc; } #ifdef JIM_MATH_FUNCTIONS static int JimExprOpDoubleUnary(Jim_Interp *interp, struct JimExprState *e) { int rc; Jim_Obj *A = ExprPop(e); double dA, dC; rc = Jim_GetDouble(interp, A, &dA); if (rc == JIM_OK) { switch (e->opcode) { case JIM_EXPROP_FUNC_SIN: dC = sin(dA); break; case JIM_EXPROP_FUNC_COS: dC = cos(dA); break; case JIM_EXPROP_FUNC_TAN: dC = tan(dA); break; case JIM_EXPROP_FUNC_ASIN: dC=asin(dA); break; case JIM_EXPROP_FUNC_ACOS: dC=acos(dA); break; case JIM_EXPROP_FUNC_ATAN: dC=atan(dA); break; case JIM_EXPROP_FUNC_SINH: dC=sinh(dA); break; case JIM_EXPROP_FUNC_COSH: dC=cosh(dA); break; case JIM_EXPROP_FUNC_TANH: dC=tanh(dA); break; case JIM_EXPROP_FUNC_CEIL: dC=ceil(dA); break; case JIM_EXPROP_FUNC_FLOOR: dC=floor(dA); break; case JIM_EXPROP_FUNC_EXP: dC=exp(dA); break; case JIM_EXPROP_FUNC_LOG: dC=log(dA); break; case JIM_EXPROP_FUNC_LOG10: dC=log10(dA); break; case JIM_EXPROP_FUNC_SQRT: dC=sqrt(dA); break; default: abort(); } ExprPush(e, Jim_NewDoubleObj(interp, dC)); } Jim_DecrRefCount(interp, A); return rc; } #endif /* A binary operation on two ints */ static int JimExprOpIntBin(Jim_Interp *interp, struct JimExprState *e) { Jim_Obj *B = ExprPop(e); Jim_Obj *A = ExprPop(e); jim_wide wA, wB; int rc = JIM_ERR; if (Jim_GetWide(interp, A, &wA) == JIM_OK && Jim_GetWide(interp, B, &wB) == JIM_OK) { jim_wide wC; rc = JIM_OK; switch (e->opcode) { case JIM_EXPROP_LSHIFT: wC = wA<>wB; break; case JIM_EXPROP_BITAND: wC = wA&wB; break; case JIM_EXPROP_BITXOR: wC = wA^wB; break; case JIM_EXPROP_BITOR: wC = wA|wB; break; case JIM_EXPROP_POW: wC = JimPowWide(wA,wB); break; case JIM_EXPROP_MOD: if (wB == 0) { wC = 0; Jim_SetResultString(interp, "Division by zero", -1); rc = JIM_ERR; } else { /* * From Tcl 8.x * * This code is tricky: C doesn't guarantee much * about the quotient or remainder, but Tcl does. * The remainder always has the same sign as the * divisor and a smaller absolute value. */ int negative = 0; if (wB < 0) { wB = -wB; wA = -wA; negative = 1; } wC = wA % wB; if (wC < 0) { wC += wB; } if (negative) { wC = -wC; } } break; case JIM_EXPROP_ROTL: { /* uint32_t would be better. But not everyone has inttypes.h?*/ unsigned long uA = (unsigned long)wA; const unsigned int S = sizeof(unsigned long) * 8; wC = (unsigned long)((uA<>(S-wB))); break; } case JIM_EXPROP_ROTR: { unsigned long uA = (unsigned long)wA; const unsigned int S = sizeof(unsigned long) * 8; wC = (unsigned long)((uA>>wB)|(uA<<(S-wB))); break; } default: abort(); } ExprPush(e, Jim_NewIntObj(interp, wC)); } Jim_DecrRefCount(interp, A); Jim_DecrRefCount(interp, B); return rc; } /* A binary operation on two ints or two doubles (or two strings for some ops) */ static int JimExprOpBin(Jim_Interp *interp, struct JimExprState *e) { int intresult = 0; int rc = JIM_OK; double dA, dB, dC = 0; jim_wide wA, wB, wC = 0; Jim_Obj *B = ExprPop(e); Jim_Obj *A = ExprPop(e); if ((A->typePtr != &doubleObjType || A->bytes) && (B->typePtr != &doubleObjType || B->bytes) && JimGetWideNoErr(interp, A, &wA) == JIM_OK && JimGetWideNoErr(interp, B, &wB) == JIM_OK) { /* Both are ints */ intresult = 1; switch (e->opcode) { case JIM_EXPROP_POW: wC = JimPowWide(wA,wB); break; case JIM_EXPROP_ADD: wC = wA+wB; break; case JIM_EXPROP_SUB: wC = wA-wB; break; case JIM_EXPROP_MUL: wC = wA*wB; break; case JIM_EXPROP_DIV: if (wB == 0) { Jim_SetResultString(interp, "Division by zero", -1); rc = JIM_ERR; } else { /* * From Tcl 8.x * * This code is tricky: C doesn't guarantee much * about the quotient or remainder, but Tcl does. * The remainder always has the same sign as the * divisor and a smaller absolute value. */ if (wB < 0) { wB = -wB; wA = -wA; } wC = wA / wB; if (wA % wB < 0) { wC--; } } break; case JIM_EXPROP_LT: wC = wAwB; break; case JIM_EXPROP_LTE: wC = wA<=wB; break; case JIM_EXPROP_GTE: wC = wA>=wB; break; case JIM_EXPROP_NUMEQ: wC = wA==wB; break; case JIM_EXPROP_NUMNE: wC = wA!=wB; break; default: abort(); } } else if (Jim_GetDouble(interp, A, &dA) == JIM_OK && Jim_GetDouble(interp, B, &dB) == JIM_OK) { switch (e->opcode) { case JIM_EXPROP_POW: #ifdef JIM_MATH_FUNCTIONS dC = pow(dA,dB); #else rc = JIM_ERR; #endif break; case JIM_EXPROP_ADD: dC = dA+dB; break; case JIM_EXPROP_SUB: dC = dA-dB; break; case JIM_EXPROP_MUL: dC = dA*dB; break; case JIM_EXPROP_DIV: if (dB == 0) { #ifdef INFINITY dC = dA < 0 ? -INFINITY : INFINITY; #else dC = (dA < 0 ? -1.0 : 1.0) * strtod("Inf", NULL); #endif } else { dC = dA/dB; } break; case JIM_EXPROP_LT: wC = dAdB; intresult = 1; break; case JIM_EXPROP_LTE: wC = dA<=dB; intresult = 1; break; case JIM_EXPROP_GTE: wC = dA>=dB; intresult = 1; break; case JIM_EXPROP_NUMEQ: wC = dA==dB; intresult = 1; break; case JIM_EXPROP_NUMNE: wC = dA!=dB; intresult = 1; break; default: abort(); } } else { /* Handle the string case */ int Alen, Blen; const char *sA = Jim_GetString(A, &Alen); const char *sB = Jim_GetString(B, &Blen); intresult = 1; switch(e->opcode) { case JIM_EXPROP_LT: wC = JimStringCompare(sA, Alen, sB, Blen, 0) < 0; break; case JIM_EXPROP_GT: wC = JimStringCompare(sA, Alen, sB, Blen, 0) > 0; break; case JIM_EXPROP_LTE: wC = JimStringCompare(sA, Alen, sB, Blen, 0) <= 0; break; case JIM_EXPROP_GTE: wC = JimStringCompare(sA, Alen, sB, Blen, 0) >= 0; break; case JIM_EXPROP_NUMEQ: wC = (Alen == Blen && memcmp(sA, sB, Alen) == 0); break; case JIM_EXPROP_NUMNE: wC = (Alen != Blen || memcmp(sA, sB, Alen) != 0); break; default: rc = JIM_ERR; break; } } if (rc == JIM_OK) { if (intresult) { ExprPush(e, Jim_NewIntObj(interp, wC)); } else { ExprPush(e, Jim_NewDoubleObj(interp, dC)); } } Jim_DecrRefCount(interp, A); Jim_DecrRefCount(interp, B); return rc; } static int JimSearchList(Jim_Interp *interp, Jim_Obj *listObjPtr, Jim_Obj *valObj) { int listlen; int i; listlen = Jim_ListLength(interp, listObjPtr); for (i = 0; i < listlen; i++) { Jim_Obj *objPtr; Jim_ListIndex(interp, listObjPtr, i, &objPtr, JIM_NONE); if (Jim_StringEqObj(objPtr, valObj, 0)) { return 1; } } return 0; } static int JimExprOpStrBin(Jim_Interp *interp, struct JimExprState *e) { Jim_Obj *B = ExprPop(e); Jim_Obj *A = ExprPop(e); int Alen, Blen; jim_wide wC; /* XXX: Not needed for IN, NI */ const char *sA = Jim_GetString(A, &Alen); const char *sB = Jim_GetString(B, &Blen); switch(e->opcode) { case JIM_EXPROP_STREQ: wC = (Alen == Blen && memcmp(sA, sB, Alen) == 0); break; case JIM_EXPROP_STRNE: wC = (Alen != Blen || memcmp(sA, sB, Alen) != 0); break; case JIM_EXPROP_STRIN: wC = JimSearchList(interp, B, A); break; case JIM_EXPROP_STRNI: wC = !JimSearchList(interp, B, A); break; default: abort(); } ExprPush(e, Jim_NewIntObj(interp, wC)); Jim_DecrRefCount(interp, A); Jim_DecrRefCount(interp, B); return JIM_OK; } static int ExprBool(Jim_Interp *interp, Jim_Obj *obj) { long l; double d; if (Jim_GetLong(interp, obj, &l) == JIM_OK) { return l != 0; } if (Jim_GetDouble(interp, obj, &d) == JIM_OK) { return d != 0; } return -1; } static int JimExprOpAndLeft(Jim_Interp *interp, struct JimExprState *e) { Jim_Obj *skip = ExprPop(e); Jim_Obj *A = ExprPop(e); int rc = JIM_OK; switch (ExprBool(interp, A)) { case 0: /* false, so skip RHS opcodes with a 0 result */ e->skip = skip->internalRep.wideValue; ExprPush(e, Jim_NewIntObj(interp, 0)); break; case 1: /* true so continue */ break; case -1: /* Invalid */ rc = JIM_ERR; } Jim_DecrRefCount(interp, A); Jim_DecrRefCount(interp, skip); return rc; } static int JimExprOpOrLeft(Jim_Interp *interp, struct JimExprState *e) { Jim_Obj *skip = ExprPop(e); Jim_Obj *A = ExprPop(e); int rc = JIM_OK; switch (ExprBool(interp, A)) { case 0: /* false, so do nothing */ break; case 1: /* true so skip RHS opcodes with a 1 result */ e->skip = skip->internalRep.wideValue; ExprPush(e, Jim_NewIntObj(interp, 1)); break; case -1: /* Invalid */ rc = JIM_ERR; break; } Jim_DecrRefCount(interp, A); Jim_DecrRefCount(interp, skip); return rc; } static int JimExprOpAndOrRight(Jim_Interp *interp, struct JimExprState *e) { Jim_Obj *A = ExprPop(e); int rc = JIM_OK; switch (ExprBool(interp, A)) { case 0: ExprPush(e, Jim_NewIntObj(interp, 0)); break; case 1: ExprPush(e, Jim_NewIntObj(interp, 1)); break; case -1: /* Invalid */ rc = JIM_ERR; break; } Jim_DecrRefCount(interp, A); return rc; } static int JimExprOpColon(Jim_Interp *interp, struct JimExprState *e) { int rc = JIM_OK; #if 0 Jim_Obj *C = ExprPop(e); Jim_Obj *B = ExprPop(e); Jim_Obj *A = ExprPop(e); switch (ExprBool(interp, A)) { case 0: ExprPush(e, C); break; case 1: ExprPush(e, B); break; case -1: /* Invalid */ rc = JIM_ERR; break; } Jim_DecrRefCount(interp, A); Jim_DecrRefCount(interp, B); Jim_DecrRefCount(interp, C); #endif return rc; } static int JimExprOpTernaryLeft(Jim_Interp *interp, struct JimExprState *e) { Jim_Obj *skip = ExprPop(e); Jim_Obj *A = ExprPop(e); int rc = JIM_OK; /* Repush A */ ExprPush(e, A); switch (ExprBool(interp, A)) { case 0: /* false, skip RHS opcodes */ e->skip = skip->internalRep.wideValue; /* Push a dummy value */ ExprPush(e, Jim_NewIntObj(interp, 0)); break; case 1: /* true so do nothing */ break; case -1: /* Invalid */ rc = JIM_ERR; break; } Jim_DecrRefCount(interp, A); Jim_DecrRefCount(interp, skip); return rc; } static int JimExprOpColonLeft(Jim_Interp *interp, struct JimExprState *e) { Jim_Obj *skip = ExprPop(e); Jim_Obj *B = ExprPop(e); Jim_Obj *A = ExprPop(e); /* No need to check for A as non-boolean */ if (ExprBool(interp, A)) { /* true, so skip RHS opcodes */ e->skip = skip->internalRep.wideValue; /* Repush B as the answer */ ExprPush(e, B); } Jim_DecrRefCount(interp, skip); Jim_DecrRefCount(interp, A); Jim_DecrRefCount(interp, B); return JIM_OK; } static int JimExprOpNull(Jim_Interp *interp, struct JimExprState *e) { return JIM_OK; } enum { LAZY_OP = 1, LAZY_LEFT, LAZY_RIGHT }; /* name - precedence - arity - opcode */ static const struct Jim_ExprOperator Jim_ExprOperators[] = { [JIM_EXPROP_FUNC_INT] = {"int", 400, 1, JimExprOpNumUnary }, [JIM_EXPROP_FUNC_DOUBLE] = {"double", 400, 1, JimExprOpNumUnary }, [JIM_EXPROP_FUNC_ABS] = {"abs", 400, 1, JimExprOpNumUnary }, [JIM_EXPROP_FUNC_ROUND] = {"round", 400, 1, JimExprOpNumUnary }, #ifdef JIM_MATH_FUNCTIONS [JIM_EXPROP_FUNC_SIN] = {"sin", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_COS] = {"cos", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_TAN] = {"tan", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_ASIN] = {"asin", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_ACOS] = {"acos", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_ATAN] = {"atan", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_SINH] = {"sinh", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_COSH] = {"cosh", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_TANH] = {"tanh", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_CEIL] = {"ceil", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_FLOOR] = {"floor", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_EXP] = {"exp", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_LOG] = {"log", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_LOG10] = {"log10", 400, 1, JimExprOpDoubleUnary }, [JIM_EXPROP_FUNC_SQRT] = {"sqrt", 400, 1, JimExprOpDoubleUnary }, #endif [JIM_EXPROP_NOT] = {"!", 300, 1, JimExprOpNumUnary }, [JIM_EXPROP_BITNOT] = {"~", 300, 1, JimExprOpIntUnary }, [JIM_EXPROP_UNARYMINUS] = {NULL, 300, 1, JimExprOpNumUnary }, [JIM_EXPROP_UNARYPLUS] = {NULL, 300, 1, JimExprOpNumUnary }, [JIM_EXPROP_POW] = {"**", 250, 2, JimExprOpBin }, [JIM_EXPROP_MUL] = {"*", 200, 2, JimExprOpBin }, [JIM_EXPROP_DIV] = {"/", 200, 2, JimExprOpBin }, [JIM_EXPROP_MOD] = {"%", 200, 2, JimExprOpIntBin }, [JIM_EXPROP_SUB] = {"-", 100, 2, JimExprOpBin }, [JIM_EXPROP_ADD] = {"+", 100, 2, JimExprOpBin }, [JIM_EXPROP_ROTL] = {"<<<", 90, 2, JimExprOpIntBin }, [JIM_EXPROP_ROTR] = {">>>", 90, 2, JimExprOpIntBin }, [JIM_EXPROP_LSHIFT] = {"<<", 90, 2, JimExprOpIntBin }, [JIM_EXPROP_RSHIFT] = {">>", 90, 2, JimExprOpIntBin }, [JIM_EXPROP_LT] = {"<", 80, 2, JimExprOpBin }, [JIM_EXPROP_GT] = {">", 80, 2, JimExprOpBin }, [JIM_EXPROP_LTE] = {"<=", 80, 2, JimExprOpBin }, [JIM_EXPROP_GTE] = {">=", 80, 2, JimExprOpBin }, [JIM_EXPROP_NUMEQ] = {"==", 70, 2, JimExprOpBin }, [JIM_EXPROP_NUMNE] = {"!=", 70, 2, JimExprOpBin }, [JIM_EXPROP_STREQ] = {"eq", 60, 2, JimExprOpStrBin }, [JIM_EXPROP_STRNE] = {"ne", 60, 2, JimExprOpStrBin }, [JIM_EXPROP_STRIN] = {"in", 55, 2, JimExprOpStrBin }, [JIM_EXPROP_STRNI] = {"ni", 55, 2, JimExprOpStrBin }, [JIM_EXPROP_BITAND] = {"&", 50, 2, JimExprOpIntBin }, [JIM_EXPROP_BITXOR] = {"^", 49, 2, JimExprOpIntBin }, [JIM_EXPROP_BITOR] = {"|", 48, 2, JimExprOpIntBin }, [JIM_EXPROP_LOGICAND] = {"&&", 10, 2, NULL, LAZY_OP }, [JIM_EXPROP_LOGICOR] = {"||", 9, 2, NULL, LAZY_OP }, [JIM_EXPROP_TERNARY] = {"?", 5, 2, JimExprOpNull, LAZY_OP }, [JIM_EXPROP_COLON] = {":", 5, 2, JimExprOpColon, LAZY_OP }, /* private operators */ [JIM_EXPROP_TERNARY_LEFT] = {NULL, 5, 2, JimExprOpTernaryLeft, LAZY_LEFT }, [JIM_EXPROP_TERNARY_RIGHT] = {NULL, 5, 2, JimExprOpNull, LAZY_RIGHT }, [JIM_EXPROP_COLON_LEFT] = {NULL, 5, 2, JimExprOpColonLeft, LAZY_LEFT }, [JIM_EXPROP_COLON_RIGHT] = {NULL, 5, 2, JimExprOpNull, LAZY_RIGHT }, [JIM_EXPROP_LOGICAND_LEFT] = {NULL, 10, 2, JimExprOpAndLeft, LAZY_LEFT }, [JIM_EXPROP_LOGICAND_RIGHT] = {NULL, 10, 2, JimExprOpAndOrRight, LAZY_RIGHT }, [JIM_EXPROP_LOGICOR_LEFT] = {NULL, 9, 2, JimExprOpOrLeft, LAZY_LEFT }, [JIM_EXPROP_LOGICOR_RIGHT] = {NULL, 9, 2, JimExprOpAndOrRight, LAZY_RIGHT }, }; #define JIM_EXPR_OPERATORS_NUM \ (sizeof(Jim_ExprOperators)/sizeof(struct Jim_ExprOperator)) int JimParseExpression(struct JimParserCtx *pc) { /* Discard spaces and quoted newline */ while (isspace(*pc->p) || (*(pc->p) == '\\' && *(pc->p+1) == '\n')) { pc->p++; pc->len--; } if (pc->len == 0) { pc->tstart = pc->tend = pc->p; pc->tline = pc->linenr; pc->tt = JIM_TT_EOL; pc->eof = 1; return JIM_OK; } switch(*(pc->p)) { case '(': pc->tstart = pc->tend = pc->p; pc->tline = pc->linenr; pc->tt = JIM_TT_SUBEXPR_START; pc->p++; pc->len--; break; case ')': pc->tstart = pc->tend = pc->p; pc->tline = pc->linenr; pc->tt = JIM_TT_SUBEXPR_END; pc->p++; pc->len--; break; case '[': return JimParseCmd(pc); break; case '$': if (JimParseVar(pc) == JIM_ERR) return JimParseExprOperator(pc); else return JIM_OK; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '.': return JimParseExprNumber(pc); break; case '"': case '{': /* Here it's possible to reuse the List String parsing. */ pc->tt = JIM_TT_NONE; /* Make sure it's sensed as a new word. */ return JimParseListStr(pc); break; case 'N': case 'I': case 'n': case 'i': if (JimParseExprIrrational(pc) == JIM_ERR) return JimParseExprOperator(pc); break; default: return JimParseExprOperator(pc); break; } return JIM_OK; } int JimParseExprNumber(struct JimParserCtx *pc) { int allowdot = 1; int allowhex = 0; /* Assume an integer for now */ pc->tt = JIM_TT_EXPR_INT; pc->tstart = pc->p; pc->tline = pc->linenr; while ( isdigit(*pc->p) || (allowhex && isxdigit(*pc->p) ) || (allowdot && *pc->p == '.') || (pc->p-pc->tstart == 1 && *pc->tstart == '0' && (*pc->p == 'x' || *pc->p == 'X')) ) { if ((*pc->p == 'x') || (*pc->p == 'X')) { allowhex = 1; allowdot = 0; } if (*pc->p == '.') { allowdot = 0; pc->tt = JIM_TT_EXPR_DOUBLE; } pc->p++; pc->len--; if (!allowhex && (*pc->p == 'e' || *pc->p == 'E') && (pc->p[1] == '-' || pc->p[1] == '+' || isdigit(pc->p[1]))) { pc->p += 2; pc->len -= 2; pc->tt = JIM_TT_EXPR_DOUBLE; } } pc->tend = pc->p-1; return JIM_OK; } int JimParseExprIrrational(struct JimParserCtx *pc) { const char *Tokens[] = {"NaN", "nan", "NAN", "Inf", "inf", "INF", NULL}; const char **token; for (token = Tokens; *token != NULL; token++) { int len = strlen(*token); if (strncmp(*token, pc->p, len) == 0) { pc->tstart = pc->p; pc->tend = pc->p + len - 1; pc->p += len; pc->len -= len; pc->tline = pc->linenr; pc->tt = JIM_TT_EXPR_DOUBLE; return JIM_OK; } } return JIM_ERR; } int JimParseExprOperator(struct JimParserCtx *pc) { int i; int bestIdx = -1, bestLen = 0; /* Try to get the longest match. */ for (i = JIM_TT_EXPR_OP; i < (signed)JIM_EXPR_OPERATORS_NUM; i++) { const char *opname; int oplen; opname = Jim_ExprOperators[i].name; if (opname == NULL) { continue; } oplen = strlen(opname); if (strncmp(opname, pc->p, oplen) == 0 && oplen > bestLen) { bestIdx = i; bestLen = oplen; } } if (bestIdx == -1) { return JIM_ERR; } /* Validate paretheses around function arguments */ if (bestIdx >= JIM_EXPROP_FUNC_FIRST) { const char *p = pc->p + bestLen; int len = pc->len - bestLen; while (len && isspace(*p)) { len--; p++; } if (*p != '(') { return JIM_ERR; } } pc->tstart = pc->p; pc->tend = pc->p + bestLen - 1; pc->p += bestLen; pc->len -= bestLen; pc->tline = pc->linenr; pc->tt = bestIdx; return JIM_OK; } static const struct Jim_ExprOperator *JimExprOperatorInfoByOpcode(int opcode) { return &Jim_ExprOperators[opcode]; } /* debugging */ const char *tt_name(int type) { static const char *tt_names[] = { "NIL", "STR", "ESC", "VAR", "ARY", "CMD", "SEP", "EOL", "EOF", "???", "(((", ")))", "INT", "DBL", "???" }; if (type < JIM_TT_EXPR_OP) { return tt_names[type]; } else { const struct Jim_ExprOperator *op = JimExprOperatorInfoByOpcode(type); static char buf[20]; if (op && op->name) { return op->name; } sprintf(buf, "(%d)", type); return buf; } } /* ----------------------------------------------------------------------------- * Expression Object * ---------------------------------------------------------------------------*/ static void FreeExprInternalRep(Jim_Interp *interp, Jim_Obj *objPtr); static void DupExprInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr); static int SetExprFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr); static Jim_ObjType exprObjType = { "expression", FreeExprInternalRep, DupExprInternalRep, NULL, JIM_TYPE_REFERENCES, }; /* Expr bytecode structure */ typedef struct ExprByteCode { int len; /* Length as number of tokens. */ ScriptToken *token; /* Tokens array. */ int inUse; /* Used for sharing. */ } ExprByteCode; static void ExprFreeByteCode(Jim_Interp *interp, ExprByteCode *expr) { int i; for (i = 0; i < expr->len; i++) { Jim_DecrRefCount(interp, expr->token[i].objPtr); } Jim_Free(expr->token); Jim_Free(expr); } static void FreeExprInternalRep(Jim_Interp *interp, Jim_Obj *objPtr) { ExprByteCode *expr = (void*) objPtr->internalRep.ptr; if (expr) { if (--expr->inUse != 0) { return; } ExprFreeByteCode(interp, expr); } } static void DupExprInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr) { JIM_NOTUSED(interp); JIM_NOTUSED(srcPtr); /* Just returns an simple string. */ dupPtr->typePtr = NULL; } /* Check if an expr program looks correct. */ static int ExprCheckCorrectness(ExprByteCode *expr) { int i; int stacklen = 0; int ternary = 0; /* Try to check if there are stack underflows, * and make sure at the end of the program there is * a single result on the stack. */ for (i = 0; i < expr->len; i++) { ScriptToken *t = &expr->token[i]; const struct Jim_ExprOperator *op = JimExprOperatorInfoByOpcode(t->type); if (op) { stacklen -= op->arity; if (stacklen < 0) { break; } if (t->type == JIM_EXPROP_TERNARY || t->type == JIM_EXPROP_TERNARY_LEFT) { ternary++; } else if (t->type == JIM_EXPROP_COLON || t->type == JIM_EXPROP_COLON_LEFT) { ternary--; } } /* All operations and operands add one to the stack */ stacklen++; } if (stacklen != 1 || ternary != 0) { return JIM_ERR; } return JIM_OK; } /* This procedure converts every occurrence of || and && opereators * in lazy unary versions. * * a b || is converted into: * * a |L b |R * * a b && is converted into: * * a &L b &R * * "|L" checks if 'a' is true: * 1) if it is true pushes 1 and skips instructions to reach * the opcode just after |R. * 2) if it is false does nothing. * "|R" checks if 'b' is true: * 1) if it is true pushes 1, otherwise pushes 0. * * "&L" checks if 'a' is true: * 1) if it is true does nothing. * 2) If it is false pushes 0 and skips instructions to reach * the opcode just after &R * "&R" checks if 'a' is true: * if it is true pushes 1, otherwise pushes 0. */ static void ExprAddLazyOperator(Jim_Interp *interp, ExprByteCode *expr, ParseToken *t) { int i; int leftindex, arity, offset; /* Search for the end of the first operator */ leftindex = expr->len-1; arity = 1; while (arity) { ScriptToken *tt = &expr->token[leftindex]; //printf("[%2d] %s '%s'\n", i, tt_name(t->type), Jim_GetString(t->objPtr, NULL)); if (tt->type >= JIM_TT_EXPR_OP) { arity += JimExprOperatorInfoByOpcode(tt->type)->arity; } arity--; leftindex--; } leftindex++; /* Move them up */ memmove(&expr->token[leftindex+2], &expr->token[leftindex], sizeof(*expr->token)*(expr->len-leftindex)); expr->len += 2; offset = (expr->len-leftindex)-1; /* Now we rely on the fact the the left and right version have opcodes * 1 and 2 after the main opcode respectively */ expr->token[leftindex+1].type = t->type + 1; expr->token[leftindex+1].objPtr = interp->emptyObj; expr->token[leftindex].type = JIM_TT_EXPR_INT; expr->token[leftindex].objPtr = Jim_NewIntObj(interp, offset); /* Now add the 'R' operator */ expr->token[expr->len].objPtr = interp->emptyObj; expr->token[expr->len].type = t->type + 2; expr->len++; /* Do we need to adjust the skip count for any &L, |L, ?L or :L in the left operand? */ for (i = leftindex - 1; i > 0; i--) { if (JimExprOperatorInfoByOpcode(expr->token[i].type)->lazy == LAZY_LEFT) { if (expr->token[i - 1].objPtr->internalRep.wideValue + i - 1 >= leftindex) { expr->token[i - 1].objPtr->internalRep.wideValue += 2; } } } } static void ExprAddOperator(Jim_Interp *interp, ExprByteCode *expr, ParseToken *t) { struct ScriptToken *token = &expr->token[expr->len]; if (JimExprOperatorInfoByOpcode(t->type)->lazy == LAZY_OP) { ExprAddLazyOperator(interp, expr, t); } else { token->objPtr = interp->emptyObj; token->type = t->type; expr->len++; } } static ExprByteCode *ExprCreateByteCode(Jim_Interp *interp, const ParseTokenList *tokenlist) { Jim_Stack stack; ExprByteCode *expr; int ok = 1; int i; int prevtt = JIM_TT_NONE; /* -1 for EOL */ int count = tokenlist->count - 1; expr = Jim_Alloc(sizeof(*expr)); expr->inUse = 1; expr->len = 0; Jim_InitStack(&stack); /* Need extra bytecodes for lazy operators */ for (i = 0; i < tokenlist->count; i++) { ParseToken *t = &tokenlist->list[i]; if (JimExprOperatorInfoByOpcode(t->type)->lazy == LAZY_OP) { count += 2; } } expr->token = Jim_Alloc(sizeof(ScriptToken)*count); for (i = 0; i < tokenlist->count && ok; i++) { ParseToken *t = &tokenlist->list[i]; /* Next token will be stored here */ struct ScriptToken *token = &expr->token[expr->len]; if (t->type == JIM_TT_EOL) { break; } switch(t->type) { case JIM_TT_STR: case JIM_TT_ESC: case JIM_TT_VAR: case JIM_TT_DICTSUGAR: case JIM_TT_CMD: token->objPtr = Jim_NewStringObj(interp, t->token, t->len); token->type = t->type; expr->len++; break; case JIM_TT_EXPR_INT: token->objPtr = Jim_NewIntObj(interp, strtoull(t->token, NULL, 0)); token->type = t->type; expr->len++; break; case JIM_TT_EXPR_DOUBLE: token->objPtr = Jim_NewDoubleObj(interp, strtod(t->token, NULL)); token->type = t->type; expr->len++; break; case JIM_TT_SUBEXPR_START: Jim_StackPush(&stack, t); prevtt = JIM_TT_NONE; continue; case JIM_TT_SUBEXPR_END: ok = 0; while (Jim_StackLen(&stack)) { ParseToken *tt = Jim_StackPop(&stack); if (tt->type == JIM_TT_SUBEXPR_START) { ok = 1; break; } ExprAddOperator(interp, expr, tt); } if (!ok) { Jim_SetResultString(interp, "Unexpected close parenthesis", -1); goto err; } break; default: { /* Must be an operator */ const struct Jim_ExprOperator *op; ParseToken *tt; /* Convert -/+ to unary minus or unary plus if necessary */ if (prevtt == JIM_TT_NONE || prevtt >= JIM_TT_EXPR_OP) { if (t->type == JIM_EXPROP_SUB) { t->type = JIM_EXPROP_UNARYMINUS; } else if (t->type == JIM_EXPROP_ADD) { t->type = JIM_EXPROP_UNARYPLUS; } } op = JimExprOperatorInfoByOpcode(t->type); /* Now handle precedence */ while ((tt = Jim_StackPeek(&stack)) != NULL) { const struct Jim_ExprOperator *tt_op = JimExprOperatorInfoByOpcode(tt->type); /* XXX: Should handle right-to-left associativity of ?: operator */ if (op->arity != 1 && tt_op->precedence >= op->precedence) { ExprAddOperator(interp, expr, tt); Jim_StackPop(&stack); } else { break; } } Jim_StackPush(&stack, t); break; } } prevtt = t->type; } /* Reduce any remaining subexpr */ while (Jim_StackLen(&stack)) { ParseToken *tt = Jim_StackPop(&stack); if (tt->type == JIM_TT_SUBEXPR_START) { ok = 0; Jim_SetResultString(interp, "Missing close parenthesis", -1); goto err; } ExprAddOperator(interp, expr, tt); } err: /* Free the stack used for the compilation. */ Jim_FreeStack(&stack); for (i = 0; i < expr->len; i++) { Jim_IncrRefCount(expr->token[i].objPtr); } if (!ok) { ExprFreeByteCode(interp, expr); return NULL; } return expr; } /* This method takes the string representation of an expression * and generates a program for the Expr's stack-based VM. */ int SetExprFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr) { int exprTextLen; const char *exprText; struct JimParserCtx parser; struct ExprByteCode *expr; ParseTokenList tokenlist; int rc = JIM_ERR; exprText = Jim_GetString(objPtr, &exprTextLen); //printf("EXPR: %s\n", exprText); /* Initially tokenise the expression into tokenlist */ ScriptTokenListInit(&tokenlist); JimParserInit(&parser, exprText, exprTextLen, 0); while (!JimParserEof(&parser)) { if (JimParseExpression(&parser) != JIM_OK) { ScriptTokenListFree(&tokenlist); invalidexpr: Jim_SetResultFormatted(interp, "syntax error in expression: \"%#s\"", objPtr); expr = NULL; goto err; } ScriptAddToken(&tokenlist, parser.tstart, parser.tend - parser.tstart + 1, parser.tt, parser.tline); } /* Now create the expression bytecode from the tokenlist */ expr = ExprCreateByteCode(interp, &tokenlist); /* No longer need the token list */ ScriptTokenListFree(&tokenlist); if (!expr) { goto err; } #if 0 int i; printf("==== Expr ====\n"); for (i = 0; i < expr->len; i++) { ScriptToken *t = &expr->token[i]; printf("[%2d] %s '%s'\n", i, tt_name(t->type), Jim_GetString(t->objPtr, NULL)); } #endif /* Check program correctness. */ if (ExprCheckCorrectness(expr) != JIM_OK) { ExprFreeByteCode(interp, expr); goto invalidexpr; } rc = JIM_OK; #if 0 printf("==== Expr ====\n"); for (i = 0; i < expr->len; i++) { ScriptToken *t = &expr->token[i]; printf("[%2d] %s '%s'\n", i, tt_name(t->type), Jim_GetString(t->objPtr, NULL)); } #endif err: /* Free the old internal rep and set the new one. */ Jim_FreeIntRep(interp, objPtr); Jim_SetIntRepPtr(objPtr, expr); objPtr->typePtr = &exprObjType; return rc; } static ExprByteCode *Jim_GetExpression(Jim_Interp *interp, Jim_Obj *objPtr) { if (objPtr->typePtr != &exprObjType) { if (SetExprFromAny(interp, objPtr) != JIM_OK) { return NULL; } } return (ExprByteCode*) Jim_GetIntRepPtr(objPtr); } /* ----------------------------------------------------------------------------- * Expressions evaluation. * Jim uses a specialized stack-based virtual machine for expressions, * that takes advantage of the fact that expr's operators * can't be redefined. * * Jim_EvalExpression() uses the bytecode compiled by * SetExprFromAny() method of the "expression" object. * * On success a Tcl Object containing the result of the evaluation * is stored into expResultPtrPtr (having refcount of 1), and JIM_OK is * returned. * On error the function returns a retcode != to JIM_OK and set a suitable * error on the interp. * ---------------------------------------------------------------------------*/ #define JIM_EE_STATICSTACK_LEN 10 int Jim_EvalExpression(Jim_Interp *interp, Jim_Obj *exprObjPtr, Jim_Obj **exprResultPtrPtr) { ExprByteCode *expr; Jim_Obj *staticStack[JIM_EE_STATICSTACK_LEN]; int i; int retcode = JIM_OK; struct JimExprState e; //Jim_IncrRefCount(exprObjPtr); expr = Jim_GetExpression(interp, exprObjPtr); if (!expr) { //Jim_DecrRefCount(interp, exprObjPtr); return JIM_ERR; /* error in expression. */ } //printf("Expr: %s\n", Jim_GetString(exprObjPtr, NULL)); #ifdef JIM_OPTIMIZATION /* Check for one of the following common expressions used by while/for * * CONST * $a * !$a * $a < CONST, $a < $b * $a <= CONST, $a <= $b * $a > CONST, $a > $b * $a >= CONST, $a >= $b * $a != CONST, $a != $b * $a == CONST, $a == $b */ { Jim_Obj *objPtr; /* STEP 1 -- Check if there are the conditions to run the specialized * version of while */ switch(expr->len) { case 1: if (expr->token[0].type == JIM_TT_EXPR_INT) { *exprResultPtrPtr = expr->token[0].objPtr; Jim_IncrRefCount(*exprResultPtrPtr); return JIM_OK; } if (expr->token[0].type == JIM_TT_VAR) { objPtr = Jim_GetVariable(interp, expr->token[0].objPtr, JIM_ERRMSG); if (objPtr) { *exprResultPtrPtr = objPtr; Jim_IncrRefCount(*exprResultPtrPtr); return JIM_OK; } } break; case 2: if (expr->token[1].type == JIM_EXPROP_NOT && expr->token[0].type == JIM_TT_VAR) { jim_wide wideValue; objPtr = Jim_GetVariable(interp, expr->token[0].objPtr, JIM_NONE); if (objPtr && Jim_IsWide(objPtr) && Jim_GetWide(interp, objPtr, &wideValue) == JIM_OK) { *exprResultPtrPtr = wideValue ? interp->falseObj : interp->trueObj; Jim_IncrRefCount(*exprResultPtrPtr); return JIM_OK; } } break; case 3: if (expr->token[0].type == JIM_TT_VAR && (expr->token[1].type == JIM_TT_EXPR_INT || expr->token[1].type == JIM_TT_VAR)) { switch(expr->token[2].type) { case JIM_EXPROP_LT: case JIM_EXPROP_LTE: case JIM_EXPROP_GT: case JIM_EXPROP_GTE: case JIM_EXPROP_NUMEQ: case JIM_EXPROP_NUMNE: { /* optimise ok */ jim_wide wideValueA; jim_wide wideValueB; objPtr = Jim_GetVariable(interp, expr->token[0].objPtr, JIM_NONE); if (objPtr && Jim_IsWide(objPtr) && Jim_GetWide(interp, objPtr, &wideValueA) == JIM_OK) { if (expr->token[1].type == JIM_TT_VAR) { objPtr = Jim_GetVariable(interp, expr->token[1].objPtr, JIM_NONE); } else { objPtr = expr->token[1].objPtr; } if (objPtr && Jim_IsWide(objPtr) && Jim_GetWide(interp, objPtr, &wideValueB) == JIM_OK) { int cmpRes; switch (expr->token[2].type) { case JIM_EXPROP_LT: cmpRes = wideValueA < wideValueB; break; case JIM_EXPROP_LTE: cmpRes = wideValueA <= wideValueB; break; case JIM_EXPROP_GT: cmpRes = wideValueA > wideValueB; break; case JIM_EXPROP_GTE: cmpRes = wideValueA >= wideValueB; break; case JIM_EXPROP_NUMEQ: cmpRes = wideValueA == wideValueB; break; case JIM_EXPROP_NUMNE: cmpRes = wideValueA != wideValueB; break; default: /*notreached */ cmpRes = 0; } *exprResultPtrPtr = cmpRes ? interp->trueObj : interp->falseObj; Jim_IncrRefCount(*exprResultPtrPtr); return JIM_OK; } } } } } break; } } #endif /* In order to avoid that the internal repr gets freed due to * shimmering of the exprObjPtr's object, we make the internal rep * shared. */ expr->inUse++; /* The stack-based expr VM itself */ /* Stack allocation. Expr programs have the feature that * a program of length N can't require a stack longer than * N. */ if (expr->len > JIM_EE_STATICSTACK_LEN) e.stack = Jim_Alloc(sizeof(Jim_Obj*)*expr->len); else e.stack = staticStack; e.stacklen = 0; /* Execute every instruction */ for (i = 0; i < expr->len && retcode == JIM_OK; i++) { Jim_Obj *objPtr; switch (expr->token[i].type) { case JIM_TT_EXPR_INT: case JIM_TT_EXPR_DOUBLE: case JIM_TT_STR: ExprPush(&e, expr->token[i].objPtr); break; case JIM_TT_VAR: objPtr = Jim_GetVariable(interp, expr->token[i].objPtr, JIM_ERRMSG); if (objPtr) { ExprPush(&e, objPtr); } else { retcode = JIM_ERR; } break; case JIM_TT_DICTSUGAR: objPtr = Jim_ExpandDictSugar(interp, expr->token[i].objPtr); if (objPtr) { ExprPush(&e, objPtr); } else { retcode = JIM_ERR; } break; case JIM_TT_ESC: retcode = Jim_SubstObj(interp, expr->token[i].objPtr, &objPtr, JIM_NONE); if (retcode == JIM_OK) { ExprPush(&e, objPtr); } break; case JIM_TT_CMD: retcode = Jim_EvalObj(interp, expr->token[i].objPtr); if (retcode == JIM_OK) { ExprPush(&e, Jim_GetResult(interp)); } break; default: { /* Find and execute the operation */ e.skip = 0; e.opcode = expr->token[i].type; retcode = JimExprOperatorInfoByOpcode(e.opcode)->funcop(interp, &e); /* Skip some opcodes if necessary */ i += e.skip; continue; } } } expr->inUse--; //Jim_DecrRefCount(interp, exprObjPtr); if (retcode == JIM_OK) { *exprResultPtrPtr = ExprPop(&e); } else { for (i = 0; i < e.stacklen; i++) { Jim_DecrRefCount(interp, e.stack[i]); } } if (e.stack != staticStack) { Jim_Free(e.stack); } return retcode; } int Jim_GetBoolFromExpr(Jim_Interp *interp, Jim_Obj *exprObjPtr, int *boolPtr) { int retcode; jim_wide wideValue; double doubleValue; Jim_Obj *exprResultPtr; retcode = Jim_EvalExpression(interp, exprObjPtr, &exprResultPtr); if (retcode != JIM_OK) return retcode; if (JimGetWideNoErr(interp, exprResultPtr, &wideValue) != JIM_OK) { if (Jim_GetDouble(interp, exprResultPtr, &doubleValue) != JIM_OK) { Jim_DecrRefCount(interp, exprResultPtr); return JIM_ERR; } else { Jim_DecrRefCount(interp, exprResultPtr); *boolPtr = doubleValue != 0; return JIM_OK; } } *boolPtr = wideValue != 0; Jim_DecrRefCount(interp, exprResultPtr); return JIM_OK; } /* ----------------------------------------------------------------------------- * ScanFormat String Object * ---------------------------------------------------------------------------*/ /* This Jim_Obj will held a parsed representation of a format string passed to * the Jim_ScanString command. For error diagnostics, the scanformat string has * to be parsed in its entirely first and then, if correct, can be used for * scanning. To avoid endless re-parsing, the parsed representation will be * stored in an internal representation and re-used for performance reason. */ /* A ScanFmtPartDescr will held the information of /one/ part of the whole * scanformat string. This part will later be used to extract information * out from the string to be parsed by Jim_ScanString */ typedef struct ScanFmtPartDescr { char type; /* Type of conversion (e.g. c, d, f) */ char modifier; /* Modify type (e.g. l - long, h - short */ size_t width; /* Maximal width of input to be converted */ int pos; /* -1 - no assign, 0 - natural pos, >0 - XPG3 pos */ char *arg; /* Specification of a CHARSET conversion */ char *prefix; /* Prefix to be scanned literally before conversion */ } ScanFmtPartDescr; /* The ScanFmtStringObj will hold the internal representation of a scanformat * string parsed and separated in part descriptions. Furthermore it contains * the original string representation of the scanformat string to allow for * fast update of the Jim_Obj's string representation part. * * As an add-on the internal object representation adds some scratch pad area * for usage by Jim_ScanString to avoid endless allocating and freeing of * memory for purpose of string scanning. * * The error member points to a static allocated string in case of a mal- * formed scanformat string or it contains '0' (NULL) in case of a valid * parse representation. * * The whole memory of the internal representation is allocated as a single * area of memory that will be internally separated. So freeing and duplicating * of such an object is cheap */ typedef struct ScanFmtStringObj { jim_wide size; /* Size of internal repr in bytes */ char *stringRep; /* Original string representation */ size_t count; /* Number of ScanFmtPartDescr contained */ size_t convCount; /* Number of conversions that will assign */ size_t maxPos; /* Max position index if XPG3 is used */ const char *error; /* Ptr to error text (NULL if no error */ char *scratch; /* Some scratch pad used by Jim_ScanString */ ScanFmtPartDescr descr[1]; /* The vector of partial descriptions */ } ScanFmtStringObj; static void FreeScanFmtInternalRep(Jim_Interp *interp, Jim_Obj *objPtr); static void DupScanFmtInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr); static void UpdateStringOfScanFmt(Jim_Obj *objPtr); static const Jim_ObjType scanFmtStringObjType = { "scanformatstring", FreeScanFmtInternalRep, DupScanFmtInternalRep, UpdateStringOfScanFmt, JIM_TYPE_NONE, }; void FreeScanFmtInternalRep(Jim_Interp *interp, Jim_Obj *objPtr) { JIM_NOTUSED(interp); Jim_Free((char*)objPtr->internalRep.ptr); objPtr->internalRep.ptr = 0; } void DupScanFmtInternalRep(Jim_Interp *interp, Jim_Obj *srcPtr, Jim_Obj *dupPtr) { size_t size = (size_t)((ScanFmtStringObj*)srcPtr->internalRep.ptr)->size; ScanFmtStringObj *newVec = (ScanFmtStringObj*)Jim_Alloc(size); JIM_NOTUSED(interp); memcpy(newVec, srcPtr->internalRep.ptr, size); dupPtr->internalRep.ptr = newVec; dupPtr->typePtr = &scanFmtStringObjType; } void UpdateStringOfScanFmt(Jim_Obj *objPtr) { char *bytes = ((ScanFmtStringObj*)objPtr->internalRep.ptr)->stringRep; objPtr->bytes = Jim_StrDup(bytes); objPtr->length = strlen(bytes); } /* SetScanFmtFromAny will parse a given string and create the internal * representation of the format specification. In case of an error * the error data member of the internal representation will be set * to an descriptive error text and the function will be left with * JIM_ERR to indicate unsucessful parsing (aka. malformed scanformat * specification */ static int SetScanFmtFromAny(Jim_Interp *interp, Jim_Obj *objPtr) { ScanFmtStringObj *fmtObj; char *buffer; int maxCount, i, approxSize, lastPos = -1; const char *fmt = objPtr->bytes; int maxFmtLen = objPtr->length; const char *fmtEnd = fmt + maxFmtLen; int curr; Jim_FreeIntRep(interp, objPtr); /* Count how many conversions could take place maximally */ for (i=0, maxCount=0; i < maxFmtLen; ++i) if (fmt[i] == '%') ++maxCount; /* Calculate an approximation of the memory necessary */ approxSize = sizeof(ScanFmtStringObj) /* Size of the container */ + (maxCount + 1) * sizeof(ScanFmtPartDescr) /* Size of all partials */ + maxFmtLen * sizeof(char) + 3 + 1 /* Scratch + "%n" + '\0' */ + maxFmtLen * sizeof(char) + 1 /* Original stringrep */ + maxFmtLen * sizeof(char) /* Arg for CHARSETs */ + (maxCount +1) * sizeof(char) /* '\0' for every partial */ + 1; /* safety byte */ fmtObj = (ScanFmtStringObj*)Jim_Alloc(approxSize); memset(fmtObj, 0, approxSize); fmtObj->size = approxSize; fmtObj->maxPos = 0; fmtObj->scratch = (char*)&fmtObj->descr[maxCount+1]; fmtObj->stringRep = fmtObj->scratch + maxFmtLen + 3 + 1; memcpy(fmtObj->stringRep, fmt, maxFmtLen); buffer = fmtObj->stringRep + maxFmtLen + 1; objPtr->internalRep.ptr = fmtObj; objPtr->typePtr = &scanFmtStringObjType; for (i=0, curr=0; fmt < fmtEnd; ++fmt) { int width=0, skip; ScanFmtPartDescr *descr = &fmtObj->descr[curr]; fmtObj->count++; descr->width = 0; /* Assume width unspecified */ /* Overread and store any "literal" prefix */ if (*fmt != '%' || fmt[1] == '%') { descr->type = 0; descr->prefix = &buffer[i]; for (; fmt < fmtEnd; ++fmt) { if (*fmt == '%') { if (fmt[1] != '%') break; ++fmt; } buffer[i++] = *fmt; } buffer[i++] = 0; } /* Skip the conversion introducing '%' sign */ ++fmt; /* End reached due to non-conversion literal only? */ if (fmt >= fmtEnd) goto done; descr->pos = 0; /* Assume "natural" positioning */ if (*fmt == '*') { descr->pos = -1; /* Okay, conversion will not be assigned */ ++fmt; } else fmtObj->convCount++; /* Otherwise count as assign-conversion */ /* Check if next token is a number (could be width or pos */ if (sscanf(fmt, "%d%n", &width, &skip) == 1) { fmt += skip; /* Was the number a XPG3 position specifier? */ if (descr->pos != -1 && *fmt == '$') { int prev; ++fmt; descr->pos = width; width = 0; /* Look if "natural" postioning and XPG3 one was mixed */ if ((lastPos == 0 && descr->pos > 0) || (lastPos > 0 && descr->pos == 0)) { fmtObj->error = "cannot mix \"%\" and \"%n$\" conversion specifiers"; return JIM_ERR; } /* Look if this position was already used */ for (prev=0; prev < curr; ++prev) { if (fmtObj->descr[prev].pos == -1) continue; if (fmtObj->descr[prev].pos == descr->pos) { fmtObj->error = "variable is assigned by multiple \"%n$\" conversion specifiers"; return JIM_ERR; } } /* Try to find a width after the XPG3 specifier */ if (sscanf(fmt, "%d%n", &width, &skip) == 1) { descr->width = width; fmt += skip; } if (descr->pos > 0 && (size_t)descr->pos > fmtObj->maxPos) fmtObj->maxPos = descr->pos; } else { /* Number was not a XPG3, so it has to be a width */ descr->width = width; } } /* If positioning mode was undetermined yet, fix this */ if (lastPos == -1) lastPos = descr->pos; /* Handle CHARSET conversion type ... */ if (*fmt == '[') { int swapped = 1, beg = i, end, j; descr->type = '['; descr->arg = &buffer[i]; ++fmt; if (*fmt == '^') buffer[i++] = *fmt++; if (*fmt == ']') buffer[i++] = *fmt++; while (*fmt && *fmt != ']') buffer[i++] = *fmt++; if (*fmt != ']') { fmtObj->error = "unmatched [ in format string"; return JIM_ERR; } end = i; buffer[i++] = 0; /* In case a range fence was given "backwards", swap it */ while (swapped) { swapped = 0; for (j=beg+1; j < end-1; ++j) { if (buffer[j] == '-' && buffer[j-1] > buffer[j+1]) { char tmp = buffer[j-1]; buffer[j-1] = buffer[j+1]; buffer[j+1] = tmp; swapped = 1; } } } } else { /* Remember any valid modifier if given */ if (strchr("hlL", *fmt) != 0) descr->modifier = tolower((int)*fmt++); descr->type = *fmt; if (strchr("efgcsndoxui", *fmt) == 0) { fmtObj->error = "bad scan conversion character"; return JIM_ERR; } else if (*fmt == 'c' && descr->width != 0) { fmtObj->error = "field width may not be specified in %c " "conversion"; return JIM_ERR; } else if (*fmt == 'u' && descr->modifier == 'l') { fmtObj->error = "unsigned wide not supported"; return JIM_ERR; } } curr++; } done: return JIM_OK; } /* Some accessor macros to allow lowlevel access to fields of internal repr */ #define FormatGetCnvCount(_fo_) \ ((ScanFmtStringObj*)((_fo_)->internalRep.ptr))->convCount #define FormatGetMaxPos(_fo_) \ ((ScanFmtStringObj*)((_fo_)->internalRep.ptr))->maxPos #define FormatGetError(_fo_) \ ((ScanFmtStringObj*)((_fo_)->internalRep.ptr))->error /* Some Bit testing/setting/cleaning routines. For now only used in handling * charsets ([a-z123]) within scanning. Later on perhaps a base for a * bitvector implementation in Jim? */ static int JimTestBit(const char *bitvec, char ch) { div_t pos = div(ch-1, 8); return bitvec[pos.quot] & (1 << pos.rem); } static void JimSetBit(char *bitvec, char ch) { div_t pos = div(ch-1, 8); bitvec[pos.quot] |= (1 << pos.rem); } #if 0 /* currently not used */ static void JimClearBit(char *bitvec, char ch) { div_t pos = div(ch-1, 8); bitvec[pos.quot] &= ~(1 << pos.rem); } #endif /* JimScanAString is used to scan an unspecified string that ends with * next WS, or a string that is specified via a charset. The charset * is currently implemented in a way to only allow for usage with * ASCII. Whenever we will switch to UNICODE, another idea has to * be born :-/ * * FIXME: Works only with ASCII */ static Jim_Obj * JimScanAString(Jim_Interp *interp, const char *sdescr, const char *str) { size_t i; Jim_Obj *result; char charset[256/8+1]; /* A Charset may contain max 256 chars */ char *buffer = Jim_Alloc(strlen(str)+1), *anchor = buffer; /* First init charset to nothing or all, depending if a specified * or an unspecified string has to be parsed */ memset(charset, (sdescr ? 0 : 255), sizeof(charset)); if (sdescr) { /* There was a set description given, that means we are parsing * a specified string. So we have to build a corresponding * charset reflecting the description */ int notFlag = 0; /* Should the set be negated at the end? */ if (*sdescr == '^') { notFlag = 1; ++sdescr; } /* Here '-' is meant literally and not to define a range */ if (*sdescr == '-') { JimSetBit(charset, '-'); ++sdescr; } while (*sdescr) { if (sdescr[1] == '-' && sdescr[2] != 0) { /* Handle range definitions */ int i; for (i=sdescr[0]; i <= sdescr[2]; ++i) JimSetBit(charset, (char)i); sdescr += 3; } else { /* Handle verbatim character definitions */ JimSetBit(charset, *sdescr++); } } /* Negate the charset if there was a NOT given */ for (i=0; notFlag && i < sizeof(charset); ++i) charset[i] = ~charset[i]; } /* And after all the mess above, the real work begin ... */ while (str && *str) { if (!sdescr && isspace(*str)) break; /* EOS via WS if unspecified */ if (JimTestBit(charset, *str)) *buffer++ = *str++; else break; /* EOS via mismatch if specified scanning */ } *buffer = 0; /* Close the string properly ... */ result = Jim_NewStringObj(interp, anchor, -1); Jim_Free(anchor); /* ... and free it afer usage */ return result; } /* ScanOneEntry will scan one entry out of the string passed as argument. * It use the sscanf() function for this task. After extracting and * converting of the value, the count of scanned characters will be * returned of -1 in case of no conversion tool place and string was * already scanned thru */ static int ScanOneEntry(Jim_Interp *interp, const char *str, long pos, ScanFmtStringObj *fmtObj, long index, Jim_Obj **valObjPtr) { const char *tok; const ScanFmtPartDescr *descr = &fmtObj->descr[index]; size_t sLen = strlen(&str[pos]), scanned = 0; size_t anchor = pos; int i; /* First pessimistically assume, we will not scan anything :-) */ *valObjPtr = 0; if (descr->prefix) { /* There was a prefix given before the conversion, skip it and adjust * the string-to-be-parsed accordingly */ for (i=0; str[pos] && descr->prefix[i]; ++i) { /* If prefix require, skip WS */ if (isspace(descr->prefix[i])) while (str[pos] && isspace(str[pos])) ++pos; else if (descr->prefix[i] != str[pos]) break; /* Prefix do not match here, leave the loop */ else ++pos; /* Prefix matched so far, next round */ } if (str[pos] == 0) return -1; /* All of str consumed: EOF condition */ else if (descr->prefix[i] != 0) return 0; /* Not whole prefix consumed, no conversion possible */ } /* For all but following conversion, skip leading WS */ if (descr->type != 'c' && descr->type != '[' && descr->type != 'n') while (isspace(str[pos])) ++pos; /* Determine how much skipped/scanned so far */ scanned = pos - anchor; if (descr->type == 'n') { /* Return pseudo conversion means: how much scanned so far? */ *valObjPtr = Jim_NewIntObj(interp, anchor + scanned); } else if (str[pos] == 0) { /* Cannot scan anything, as str is totally consumed */ return -1; } else { /* Processing of conversions follows ... */ if (descr->width > 0) { /* Do not try to scan as fas as possible but only the given width. * To ensure this, we copy the part that should be scanned. */ size_t tLen = descr->width > sLen ? sLen : descr->width; tok = Jim_StrDupLen(&str[pos], tLen); } else { /* As no width was given, simply refer to the original string */ tok = &str[pos]; } switch (descr->type) { case 'c': *valObjPtr = Jim_NewIntObj(interp, *tok); scanned += 1; break; case 'd': case 'o': case 'x': case 'u': case 'i': { char *endp; /* Position where the number finished */ jim_wide w; int base = descr->type == 'o' ? 8 : descr->type == 'x' ? 16 : descr->type == 'i' ? 0 : 10; /* Try to scan a number with the given base */ w = strtoull(tok, &endp, base); if (endp == tok && base == 0) { /* If scanning failed, and base was undetermined, simply * put it to 10 and try once more. This should catch the * case where %i begin to parse a number prefix (e.g. * '0x' but no further digits follows. This will be * handled as a ZERO followed by a char 'x' by Tcl */ w = strtoull(tok, &endp, 10); } if (endp != tok) { /* There was some number sucessfully scanned! */ *valObjPtr = Jim_NewIntObj(interp, w); /* Adjust the number-of-chars scanned so far */ scanned += endp - tok; } else { /* Nothing was scanned. We have to determine if this * happened due to e.g. prefix mismatch or input str * exhausted */ scanned = *tok ? 0 : -1; } break; } case 's': case '[': { *valObjPtr = JimScanAString(interp, descr->arg, tok); scanned += Jim_Length(*valObjPtr); break; } case 'e': case 'f': case 'g': { char *endp; double value = strtod(tok, &endp); if (endp != tok) { /* There was some number sucessfully scanned! */ *valObjPtr = Jim_NewDoubleObj(interp, value); /* Adjust the number-of-chars scanned so far */ scanned += endp - tok; } else { /* Nothing was scanned. We have to determine if this * happened due to e.g. prefix mismatch or input str * exhausted */ scanned = *tok ? 0 : -1; } break; } } /* If a substring was allocated (due to pre-defined width) do not * forget to free it */ if (tok != &str[pos]) Jim_Free((char*)tok); } return scanned; } /* Jim_ScanString is the workhorse of string scanning. It will scan a given * string and returns all converted (and not ignored) values in a list back * to the caller. If an error occured, a NULL pointer will be returned */ Jim_Obj *Jim_ScanString(Jim_Interp *interp, Jim_Obj *strObjPtr, Jim_Obj *fmtObjPtr, int flags) { size_t i, pos; int scanned = 1; const char *str = Jim_GetString(strObjPtr, 0); Jim_Obj *resultList = 0; Jim_Obj **resultVec = 0; int resultc; Jim_Obj *emptyStr = 0; ScanFmtStringObj *fmtObj; /* This should never happen. The format object should already be of the correct type */ if (fmtObjPtr->typePtr != &scanFmtStringObjType) { Jim_Panic(interp, "Jim_ScanString() for non-scan format"); } fmtObj = (ScanFmtStringObj*)fmtObjPtr->internalRep.ptr; /* Check if format specification was valid */ if (fmtObj->error != 0) { if (flags & JIM_ERRMSG) Jim_SetResultString(interp, fmtObj->error, -1); return 0; } /* Allocate a new "shared" empty string for all unassigned conversions */ emptyStr = Jim_NewEmptyStringObj(interp); Jim_IncrRefCount(emptyStr); /* Create a list and fill it with empty strings up to max specified XPG3 */ resultList = Jim_NewListObj(interp, 0, 0); if (fmtObj->maxPos > 0) { for (i=0; i < fmtObj->maxPos; ++i) Jim_ListAppendElement(interp, resultList, emptyStr); JimListGetElements(interp, resultList, &resultc, &resultVec); } /* Now handle every partial format description */ for (i=0, pos=0; i < fmtObj->count; ++i) { ScanFmtPartDescr *descr = &(fmtObj->descr[i]); Jim_Obj *value = 0; /* Only last type may be "literal" w/o conversion - skip it! */ if (descr->type == 0) continue; /* As long as any conversion could be done, we will proceed */ if (scanned > 0) scanned = ScanOneEntry(interp, str, pos, fmtObj, i, &value); /* In case our first try results in EOF, we will leave */ if (scanned == -1 && i == 0) goto eof; /* Advance next pos-to-be-scanned for the amount scanned already */ pos += scanned; /* value == 0 means no conversion took place so take empty string */ if (value == 0) value = Jim_NewEmptyStringObj(interp); /* If value is a non-assignable one, skip it */ if (descr->pos == -1) { Jim_FreeNewObj(interp, value); } else if (descr->pos == 0) /* Otherwise append it to the result list if no XPG3 was given */ Jim_ListAppendElement(interp, resultList, value); else if (resultVec[descr->pos-1] == emptyStr) { /* But due to given XPG3, put the value into the corr. slot */ Jim_DecrRefCount(interp, resultVec[descr->pos-1]); Jim_IncrRefCount(value); resultVec[descr->pos-1] = value; } else { /* Otherwise, the slot was already used - free obj and ERROR */ Jim_FreeNewObj(interp, value); goto err; } } Jim_DecrRefCount(interp, emptyStr); return resultList; eof: Jim_DecrRefCount(interp, emptyStr); Jim_FreeNewObj(interp, resultList); return (Jim_Obj*)EOF; err: Jim_DecrRefCount(interp, emptyStr); Jim_FreeNewObj(interp, resultList); return 0; } /* ----------------------------------------------------------------------------- * Pseudo Random Number Generation * ---------------------------------------------------------------------------*/ static void JimPrngSeed(Jim_Interp *interp, const unsigned char *seed, int seedLen); /* Initialize the sbox with the numbers from 0 to 255 */ static void JimPrngInit(Jim_Interp *interp) { int i; unsigned int seed[256]; interp->prngState = Jim_Alloc(sizeof(Jim_PrngState)); for (i = 0; i < 256; i++) seed[i] = (rand() ^ time(NULL) ^ clock()); JimPrngSeed(interp, (unsigned char*) seed, sizeof(int)*256); } /* Generates N bytes of random data */ static void JimRandomBytes(Jim_Interp *interp, void *dest, unsigned int len) { Jim_PrngState *prng; unsigned char *destByte = (unsigned char*) dest; unsigned int si, sj, x; /* initialization, only needed the first time */ if (interp->prngState == NULL) JimPrngInit(interp); prng = interp->prngState; /* generates 'len' bytes of pseudo-random numbers */ for (x = 0; x < len; x++) { prng->i = (prng->i+1) & 0xff; si = prng->sbox[prng->i]; prng->j = (prng->j + si) & 0xff; sj = prng->sbox[prng->j]; prng->sbox[prng->i] = sj; prng->sbox[prng->j] = si; *destByte++ = prng->sbox[(si+sj)&0xff]; } } /* Re-seed the generator with user-provided bytes */ static void JimPrngSeed(Jim_Interp *interp, const unsigned char *seed, int seedLen) { int i; unsigned char buf[256]; Jim_PrngState *prng; /* initialization, only needed the first time */ if (interp->prngState == NULL) JimPrngInit(interp); prng = interp->prngState; /* Set the sbox[i] with i */ for (i = 0; i < 256; i++) prng->sbox[i] = i; /* Now use the seed to perform a random permutation of the sbox */ for (i = 0; i < seedLen; i++) { unsigned char t; t = prng->sbox[i&0xFF]; prng->sbox[i&0xFF] = prng->sbox[seed[i]]; prng->sbox[seed[i]] = t; } prng->i = prng->j = 0; /* discard the first 256 bytes of stream. */ JimRandomBytes(interp, buf, 256); } /* ----------------------------------------------------------------------------- * Eval * ---------------------------------------------------------------------------*/ #define JIM_EVAL_SARGV_LEN 8 /* static arguments vector length */ #define JIM_EVAL_SINTV_LEN 8 /* static interpolation vector length */ static int JimCallProcedure(Jim_Interp *interp, Jim_Cmd *cmd, int argc, Jim_Obj *const *argv); /* Handle calls to the [unknown] command */ static int JimUnknown(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Obj **v, *sv[JIM_EVAL_SARGV_LEN]; int retCode; /* If JimUnknown() is recursively called too many times... * done here */ if (interp->unknown_called > 50) { return JIM_ERR; } /* If the [unknown] command does not exists returns * just now */ if (Jim_GetCommand(interp, interp->unknown, JIM_NONE) == NULL) return JIM_ERR; /* The object interp->unknown just contains * the "unknown" string, it is used in order to * avoid to lookup the unknown command every time * but instread to cache the result. */ if (argc+1 <= JIM_EVAL_SARGV_LEN) v = sv; else v = Jim_Alloc(sizeof(Jim_Obj*)*(argc+1)); /* Make a copy of the arguments vector, but shifted on * the right of one position. The command name of the * command will be instead the first argument of the * [unknonw] call. */ memcpy(v+1, argv, sizeof(Jim_Obj*)*argc); v[0] = interp->unknown; /* Call it */ interp->unknown_called++; retCode = Jim_EvalObjVector(interp, argc+1, v); interp->unknown_called--; /* Clean up */ if (v != sv) Jim_Free(v); return retCode; } /* Eval the object vector 'objv' composed of 'objc' elements. * Every element is used as single argument. * Jim_EvalObj() will call this function every time its object * argument is of "list" type, with no string representation. * * This is possible because the string representation of a * list object generated by the UpdateStringOfList is made * in a way that ensures that every list element is a different * command argument. */ int Jim_EvalObjVector(Jim_Interp *interp, int objc, Jim_Obj *const *objv) { int i, retcode; Jim_Cmd *cmdPtr; /* Incr refcount of arguments. */ for (i = 0; i < objc; i++) Jim_IncrRefCount(objv[i]); /* Command lookup */ cmdPtr = Jim_GetCommand(interp, objv[0], JIM_ERRMSG); if (cmdPtr == NULL) { retcode = JimUnknown(interp, objc, objv); } else { /* Call it -- Make sure result is an empty object. */ Jim_SetEmptyResult(interp); if (cmdPtr->cmdProc) { interp->cmdPrivData = cmdPtr->privData; retcode = cmdPtr->cmdProc(interp, objc, objv); } else { retcode = JimCallProcedure(interp, cmdPtr, objc, objv); } } /* Decr refcount of arguments and return the retcode */ for (i = 0; i < objc; i++) Jim_DecrRefCount(interp, objv[i]); return retcode; } /* Interpolate the given tokens into a unique Jim_Obj returned by reference * via *objPtrPtr. This function is only called by Jim_EvalObj(). * The returned object has refcount = 0. */ int Jim_InterpolateTokens(Jim_Interp *interp, ScriptToken *token, int tokens, Jim_Obj **objPtrPtr) { int totlen = 0, i, retcode; Jim_Obj **intv; Jim_Obj *sintv[JIM_EVAL_SINTV_LEN]; Jim_Obj *objPtr; char *s; if (tokens <= JIM_EVAL_SINTV_LEN) intv = sintv; else intv = Jim_Alloc(sizeof(Jim_Obj*)* tokens); /* Compute every token forming the argument * in the intv objects vector. */ for (i = 0; i < tokens; i++) { switch(token[i].type) { case JIM_TT_ESC: case JIM_TT_STR: intv[i] = token[i].objPtr; break; case JIM_TT_VAR: intv[i] = Jim_GetVariable(interp, token[i].objPtr, JIM_ERRMSG); if (!intv[i]) { retcode = JIM_ERR; goto err; } break; case JIM_TT_DICTSUGAR: intv[i] = Jim_ExpandDictSugar(interp, token[i].objPtr); if (!intv[i]) { retcode = JIM_ERR; goto err; } break; case JIM_TT_CMD: retcode = Jim_EvalObj(interp, token[i].objPtr); if (retcode != JIM_OK) goto err; intv[i] = Jim_GetResult(interp); break; default: Jim_Panic(interp, "default token type reached " "in Jim_InterpolateTokens()."); break; } Jim_IncrRefCount(intv[i]); /* Make sure there is a valid * string rep, and add the string * length to the total legnth. */ Jim_GetString(intv[i], NULL); totlen += intv[i]->length; } /* Concatenate every token in an unique * object. */ objPtr = Jim_NewStringObjNoAlloc(interp, NULL, 0); if (tokens == 4 && token[0].type == JIM_TT_ESC && token[1].type == JIM_TT_ESC && token[2].type == JIM_TT_VAR) { /* May be able to do fast interpolated object -> dictSubst */ objPtr->typePtr = &interpolatedObjType; objPtr->internalRep.twoPtrValue.ptr1 = token; objPtr->internalRep.twoPtrValue.ptr2 = intv[2]; Jim_IncrRefCount(intv[2]); } s = objPtr->bytes = Jim_Alloc(totlen+1); objPtr->length = totlen; for (i = 0; i < tokens; i++) { memcpy(s, intv[i]->bytes, intv[i]->length); s += intv[i]->length; Jim_DecrRefCount(interp, intv[i]); } objPtr->bytes[totlen] = '\0'; /* Free the intv vector if not static. */ if (tokens > JIM_EVAL_SINTV_LEN) Jim_Free(intv); *objPtrPtr = objPtr; return JIM_OK; err: i--; for (; i >= 0; i--) Jim_DecrRefCount(interp, intv[i]); if (tokens > JIM_EVAL_SINTV_LEN) Jim_Free(intv); return retcode; } /* Helper of Jim_EvalObj() to perform argument expansion. * Basically this function append an argument to 'argv' * (and increments argc by reference accordingly), performing * expansion of the list object if 'expand' is non-zero, or * just adding objPtr to argv if 'expand' is zero. */ void Jim_ExpandArgument(Jim_Interp *interp, Jim_Obj ***argv, int *argcPtr, int expand, Jim_Obj *objPtr) { if (!expand) { (*argv) = Jim_Realloc(*argv, sizeof(Jim_Obj*)*((*argcPtr)+1)); /* refcount of objPtr not incremented because * we are actually transfering a reference from * the old 'argv' to the expanded one. */ (*argv)[*argcPtr] = objPtr; (*argcPtr)++; } else { int len, i; len = Jim_ListLength(interp, objPtr); (*argv) = Jim_Realloc(*argv, sizeof(Jim_Obj*)*((*argcPtr)+len)); for (i = 0; i < len; i++) { (*argv)[*argcPtr] = objPtr->internalRep.listValue.ele[i]; Jim_IncrRefCount(objPtr->internalRep.listValue.ele[i]); (*argcPtr)++; } /* The original object reference is no longer needed, * after the expansion it is no longer present on * the argument vector, but the single elements are * in its place. */ Jim_DecrRefCount(interp, objPtr); } } static int JimAddErrorToStack(Jim_Interp *interp, int retcode, const char *filename, int line) { int rc = retcode; #if 0 /* XXX: Don't create a stack frame for 'return -code error' */ /* Pick up 'return -code error' too */ if (retcode == JIM_RETURN) { rc = interp->returnCode; } printf("JimAddErrorToStack: retcode=%s, %s:%d, ast=%d, errorFlag=%d\n", Jim_ReturnCode(retcode), filename, line, interp->addStackTrace, interp->errorFlag); #endif if (rc == JIM_ERR && !interp->errorFlag) { /* This is the first error, so save the file/line information and reset the stack */ interp->errorFlag = 1; JimSetErrorFileName(interp, filename); JimSetErrorLineNumber(interp, line); JimResetStackTrace(interp); /* Always add a level where the error first occurs */ interp->addStackTrace++; } /* Now if this is an "interesting" level, add it to the stack trace */ if (rc == JIM_ERR && interp->addStackTrace > 0) { /* Add the stack info for the current level */ JimAppendStackTrace(interp, Jim_GetString(interp->errorProc, NULL), filename, line); Jim_DecrRefCount(interp, interp->errorProc); interp->errorProc = interp->emptyObj; Jim_IncrRefCount(interp->errorProc); } interp->addStackTrace = 0; return JIM_OK; } int Jim_EvalObj(Jim_Interp *interp, Jim_Obj *scriptObjPtr) { int i, j = 0, len; ScriptObj *script; ScriptToken *token; ScriptToken *cmdtoken = NULL; int *cs; /* command structure array */ int retcode = JIM_OK; Jim_Obj *sargv[JIM_EVAL_SARGV_LEN], **argv = NULL, *tmpObjPtr; interp->errorFlag = 0; //printf("Eval: %s\n", Jim_GetString(scriptObjPtr, NULL)); /* If the object is of type "list" and there is no * string representation for this object, we can call * a specialized version of Jim_EvalObj() */ if (Jim_IsList(scriptObjPtr) && scriptObjPtr->internalRep.listValue.len) { Jim_IncrRefCount(scriptObjPtr); retcode = Jim_EvalObjVector(interp, scriptObjPtr->internalRep.listValue.len, scriptObjPtr->internalRep.listValue.ele); Jim_DecrRefCount(interp, scriptObjPtr); return retcode; } Jim_IncrRefCount(scriptObjPtr); /* Make sure it's shared. */ script = Jim_GetScript(interp, scriptObjPtr); /* Reset the interpreter result. This is useful to * return the emtpy result in the case of empty program. */ Jim_SetEmptyResult(interp); #ifdef JIM_OPTIMIZATION /* Check for one of the following common scripts used by for, while * * {} * incr a */ if (script->len == 0) { Jim_DecrRefCount(interp, scriptObjPtr); return JIM_OK; } if (script->len == 4 && script->token[0].type == JIM_TT_ESC && script->token[2].type == JIM_TT_ESC && script->token[2].objPtr->typePtr == &variableObjType) { if (Jim_CompareStringImmediate(interp, script->token[0].objPtr, "incr")) { Jim_Obj *objPtr = Jim_GetVariable(interp, script->token[2].objPtr, JIM_NONE); if (objPtr && !Jim_IsShared(objPtr) && objPtr->typePtr == &intObjType) { objPtr->internalRep.wideValue++; Jim_InvalidateStringRep(objPtr); Jim_DecrRefCount(interp, scriptObjPtr); Jim_SetResult(interp, objPtr); return JIM_OK; } } } #endif /* Now we have to make sure the internal repr will not be * freed on shimmering. * * Think for example to this: * * set x {llength $x; ... some more code ...}; eval $x * * In order to preserve the internal rep, we increment the * inUse field of the script internal rep structure. */ script->inUse++; token = script->token; len = script->len; cs = script->cmdStruct; i = 0; /* 'i' is the current token index. */ /* Execute every command sequentially, returns on * error (i.e. if a command does not return JIM_OK) */ while (i < len) { int expand = 0; int argc = *cs++; /* Get the number of arguments */ Jim_Cmd *cmd; /* Set the expand flag if needed. */ if (argc < 0) { expand++; argc = -argc; } /* Allocate the arguments vector */ if (argc <= JIM_EVAL_SARGV_LEN) argv = sargv; else argv = Jim_Alloc(sizeof(Jim_Obj*)*argc); /* This is the command token. Remember it in the case of error */ cmdtoken = &token[i]; /* Populate the arguments objects. */ for (j = 0; j < argc; j++) { int tokens = *cs++; /* tokens is negative if expansion is needed. * for this argument. */ if (tokens < 0) { tokens = (-tokens)-1; i++; } if (tokens == 1) { /* Fast path if the token does not * need interpolation */ switch(token[i].type) { case JIM_TT_ESC: case JIM_TT_STR: argv[j] = token[i].objPtr; break; case JIM_TT_VAR: tmpObjPtr = Jim_GetVariable(interp, token[i].objPtr, JIM_ERRMSG); if (!tmpObjPtr) { retcode = JIM_ERR; goto err; } argv[j] = tmpObjPtr; break; case JIM_TT_DICTSUGAR: tmpObjPtr = Jim_ExpandDictSugar(interp, token[i].objPtr); if (!tmpObjPtr) { retcode = JIM_ERR; goto err; } argv[j] = tmpObjPtr; break; case JIM_TT_CMD: retcode = Jim_EvalObj(interp, token[i].objPtr); if (retcode != JIM_OK) { goto err; } argv[j] = Jim_GetResult(interp); break; default: Jim_Panic(interp, "default token type reached " "in Jim_EvalObj()."); break; } Jim_IncrRefCount(argv[j]); i += 2; } else { /* For interpolation we call a helper * function to do the work for us. */ if ((retcode = Jim_InterpolateTokens(interp, token+i, tokens, &tmpObjPtr)) != JIM_OK) { goto err; } argv[j] = tmpObjPtr; Jim_IncrRefCount(argv[j]); i += tokens+1; } } /* Handle {expand} expansion */ if (expand) { int *ecs = cs - argc; int eargc = 0; Jim_Obj **eargv = NULL; for (j = 0; j < argc; j++) { Jim_ExpandArgument( interp, &eargv, &eargc, ecs[j] < 0, argv[j]); } if (argv != sargv) Jim_Free(argv); argc = eargc; argv = eargv; j = argc; if (argc == 0) { /* Nothing to do with zero args. */ Jim_Free(eargv); continue; } } /* Lookup the command to call */ cmd = Jim_GetCommand(interp, argv[0], JIM_ERRMSG); if (cmd != NULL) { /* Call it -- Make sure result is an empty object. */ Jim_SetEmptyResult(interp); if (cmd->cmdProc) { interp->cmdPrivData = cmd->privData; retcode = cmd->cmdProc(interp, argc, argv); } else { retcode = JimCallProcedure(interp, cmd, argc, argv); } } else { /* Call [unknown] */ retcode = JimUnknown(interp, argc, argv); } if (interp->signal_level && interp->signal) { /* Check for a signal after each command */ retcode = JIM_SIGNAL; } if (retcode != JIM_OK) { goto err; } /* Decrement the arguments count */ for (j = 0; j < argc; j++) { Jim_DecrRefCount(interp, argv[j]); } if (argv != sargv) { Jim_Free(argv); argv = NULL; } } /* Note that we don't have to decrement inUse, because the * following code transfers our use of the reference again to * the script object. */ j = 0; /* on normal termination, the argv array is already Jim_DecrRefCount-ed. */ err: JimAddErrorToStack(interp, retcode, script->fileName, cmdtoken ? cmdtoken->linenr : 0); Jim_FreeIntRep(interp, scriptObjPtr); scriptObjPtr->typePtr = &scriptObjType; Jim_SetIntRepPtr(scriptObjPtr, script); Jim_DecrRefCount(interp, scriptObjPtr); for (i = 0; i < j; i++) { Jim_DecrRefCount(interp, argv[i]); } if (argv != sargv) Jim_Free(argv); return retcode; } /* Call a procedure implemented in Tcl. * It's possible to speed-up a lot this function, currently * the callframes are not cached, but allocated and * destroied every time. What is expecially costly is * to create/destroy the local vars hash table every time. * * This can be fixed just implementing callframes caching * in JimCreateCallFrame() and JimFreeCallFrame(). */ int JimCallProcedure(Jim_Interp *interp, Jim_Cmd *cmd, int argc, Jim_Obj *const *argv) { int i, d, retcode; Jim_CallFrame *callFramePtr; Jim_Obj *argObjPtr; Jim_Obj *procname = argv[0]; /* Check arity */ if (argc - 1 < cmd->leftArity + cmd->rightArity || (!cmd->args && argc - 1 > cmd->leftArity + cmd->rightArity + cmd->optionalArgs)) { /* Create a nice error message, consistent with Tcl 8.5 */ Jim_Obj *argmsg = Jim_NewStringObj(interp, "", 0); int arglen = Jim_ListLength(interp, cmd->argListObjPtr); for (i = 0; i < arglen; i++) { Jim_Obj *argObjPtr; Jim_ListIndex(interp, cmd->argListObjPtr, i, &argObjPtr, JIM_NONE); Jim_AppendString(interp, argmsg, " ", 1); if (i < cmd->leftArity || i >= arglen - cmd->rightArity) { Jim_AppendObj(interp, argmsg, argObjPtr); } else if (i == arglen - cmd->rightArity - cmd->args) { Jim_AppendString(interp, argmsg, "?argument ...?", -1); } else { Jim_Obj *objPtr; Jim_AppendString(interp, argmsg, "?", 1); Jim_ListIndex(interp, argObjPtr, 0, &objPtr, JIM_NONE); Jim_AppendObj(interp, argmsg, objPtr); Jim_AppendString(interp, argmsg, "?", 1); } } Jim_SetResultFormatted(interp, "wrong # args: should be \"%#s%#s\"", procname, argmsg); Jim_FreeNewObj(interp, argmsg); return JIM_ERR; } /* Check if there are too nested calls */ if (interp->numLevels == interp->maxNestingDepth) { Jim_SetResultString(interp, "Too many nested calls. Infinite recursion?", -1); return JIM_ERR; } /* Create a new callframe */ callFramePtr = JimCreateCallFrame(interp); callFramePtr->parentCallFrame = interp->framePtr; callFramePtr->argv = argv; callFramePtr->argc = argc; callFramePtr->procArgsObjPtr = cmd->argListObjPtr; callFramePtr->procBodyObjPtr = cmd->bodyObjPtr; callFramePtr->staticVars = cmd->staticVars; Jim_IncrRefCount(cmd->argListObjPtr); Jim_IncrRefCount(cmd->bodyObjPtr); interp->framePtr = callFramePtr; interp->numLevels ++; /* Simplify arg counting */ argv++; argc--; /* Set arguments */ /* Assign in this order: * leftArity required args. * rightArity required args (but actually do it last for simplicity) * optionalArgs optional args * remaining args into 'args' if 'args' */ /* Note that 'd' steps along the arg list, whilst argc/argv follow the supplied args */ /* leftArity required args */ for (d = 0; d < cmd->leftArity; d++) { Jim_ListIndex(interp, cmd->argListObjPtr, d, &argObjPtr, JIM_NONE); Jim_SetVariable(interp, argObjPtr, *argv++); argc--; } /* Shorten our idea of the number of supplied args */ argc -= cmd->rightArity; /* optionalArgs optional args */ for (i = 0; i < cmd->optionalArgs; i++) { Jim_Obj *nameObjPtr; Jim_Obj *valueObjPtr; Jim_ListIndex(interp, cmd->argListObjPtr, d++, &argObjPtr, JIM_NONE); /* The name is the first element of the list */ Jim_ListIndex(interp, argObjPtr, 0, &nameObjPtr, JIM_NONE); if (argc) { valueObjPtr = *argv++; argc--; } else { /* No more values, so use default */ /* The value is the second element of the list */ Jim_ListIndex(interp, argObjPtr, 1, &valueObjPtr, JIM_NONE); } Jim_SetVariable(interp, nameObjPtr, valueObjPtr); } /* Any remaining args go to 'args' */ if (cmd->args) { Jim_Obj *listObjPtr = Jim_NewListObj(interp, argv, argc); /* Use the 'args' name from the procedure args */ Jim_ListIndex(interp, cmd->argListObjPtr, d, &argObjPtr, JIM_NONE); Jim_SetVariable(interp, argObjPtr, listObjPtr); argv += argc; d++; } /* rightArity required args */ for (i = 0; i < cmd->rightArity; i++) { Jim_ListIndex(interp, cmd->argListObjPtr, d++, &argObjPtr, JIM_NONE); Jim_SetVariable(interp, argObjPtr, *argv++); } /* Eval the body */ retcode = Jim_EvalObj(interp, cmd->bodyObjPtr); /* Destroy the callframe */ interp->numLevels --; interp->framePtr = interp->framePtr->parentCallFrame; if (callFramePtr->vars.size != JIM_HT_INITIAL_SIZE) { JimFreeCallFrame(interp, callFramePtr, JIM_FCF_NONE); } else { JimFreeCallFrame(interp, callFramePtr, JIM_FCF_NOHT); } /* Handle the JIM_EVAL return code */ if (retcode == JIM_EVAL && interp->evalRetcodeLevel != interp->numLevels) { int savedLevel = interp->evalRetcodeLevel; interp->evalRetcodeLevel = interp->numLevels; while (retcode == JIM_EVAL) { Jim_Obj *resultScriptObjPtr = Jim_GetResult(interp); Jim_IncrRefCount(resultScriptObjPtr); retcode = Jim_EvalObj(interp, resultScriptObjPtr); Jim_DecrRefCount(interp, resultScriptObjPtr); } interp->evalRetcodeLevel = savedLevel; } /* Handle the JIM_RETURN return code */ if (retcode == JIM_RETURN) { retcode = interp->returnCode; interp->returnCode = JIM_OK; } else if (retcode == JIM_ERR) { interp->addStackTrace++; Jim_DecrRefCount(interp, interp->errorProc); interp->errorProc = procname; Jim_IncrRefCount(interp->errorProc); } return retcode; } int Jim_Eval_Named(Jim_Interp *interp, const char *script, const char *filename, int lineno) { int retval; Jim_Obj *scriptObjPtr; scriptObjPtr = Jim_NewStringObj(interp, script, -1); Jim_IncrRefCount(scriptObjPtr); if (filename) { Jim_Obj *prevScriptObj; JimSetSourceInfo(interp, scriptObjPtr, filename, lineno); prevScriptObj = interp->currentScriptObj; interp->currentScriptObj = scriptObjPtr; retval = Jim_EvalObj(interp, scriptObjPtr); interp->currentScriptObj = prevScriptObj; } else { retval = Jim_EvalObj(interp, scriptObjPtr); } Jim_DecrRefCount(interp, scriptObjPtr); return retval; } int Jim_Eval(Jim_Interp *interp, const char *script) { return Jim_Eval_Named( interp, script, NULL, 0 ); } /* Execute script in the scope of the global level */ int Jim_EvalGlobal(Jim_Interp *interp, const char *script) { Jim_CallFrame *savedFramePtr; int retval; savedFramePtr = interp->framePtr; interp->framePtr = interp->topFramePtr; retval = Jim_Eval(interp, script); interp->framePtr = savedFramePtr; return retval; } int Jim_EvalObjBackground(Jim_Interp *interp, Jim_Obj *scriptObjPtr) { Jim_CallFrame *savedFramePtr; int retval; savedFramePtr = interp->framePtr; interp->framePtr = interp->topFramePtr; retval = Jim_EvalObj(interp, scriptObjPtr); interp->framePtr = savedFramePtr; /* Try to report the error (if any) via the bgerror proc */ if (retval != JIM_OK) { Jim_Obj *objv[2]; objv[0] = Jim_NewStringObj(interp, "bgerror", -1); objv[1] = Jim_GetResult(interp); Jim_IncrRefCount(objv[0]); Jim_IncrRefCount(objv[1]); if (Jim_EvalObjVector(interp, 2, objv) != JIM_OK) { /* Report the error to stderr. */ fprintf(stderr, "Background error:" JIM_NL); Jim_PrintErrorMessage(interp); } Jim_DecrRefCount(interp, objv[0]); Jim_DecrRefCount(interp, objv[1]); } return retval; } #include int Jim_EvalFile(Jim_Interp *interp, const char *filename) { FILE *fp; char *buf; Jim_Obj *scriptObjPtr; Jim_Obj *prevScriptObj; struct stat sb; int retcode; int readlen; if (stat(filename, &sb) != 0 || (fp = fopen(filename, "r")) == NULL) { Jim_SetResultFormatted(interp, "couldn't read file \"%s\": %s", filename, strerror(errno)); return JIM_ERR; } if (sb.st_size == 0) { fclose(fp); return JIM_OK; } buf = Jim_Alloc(sb.st_size + 1); readlen = fread(buf, sb.st_size, 1, fp); fclose(fp); if (readlen != 1) { Jim_Free(buf); return JIM_ERR; } buf[sb.st_size] = 0; scriptObjPtr = Jim_NewStringObjNoAlloc(interp, buf, sb.st_size); JimSetSourceInfo(interp, scriptObjPtr, filename, 1); Jim_IncrRefCount(scriptObjPtr); prevScriptObj = interp->currentScriptObj; interp->currentScriptObj = scriptObjPtr; retcode = Jim_EvalObj(interp, scriptObjPtr); /* Handle the JIM_RETURN return code */ if (retcode == JIM_RETURN) { retcode = interp->returnCode; interp->returnCode = JIM_OK; } if (retcode == JIM_ERR) { /* EvalFile changes context, so add a stack frame here */ interp->addStackTrace++; } interp->currentScriptObj = prevScriptObj; Jim_DecrRefCount(interp, scriptObjPtr); return retcode; } /* ----------------------------------------------------------------------------- * Subst * ---------------------------------------------------------------------------*/ static int JimParseSubstStr(struct JimParserCtx *pc) { pc->tstart = pc->p; pc->tline = pc->linenr; while (*pc->p && *pc->p != '$' && *pc->p != '[') { if (*pc->p == '\\' && pc->len > 1) { pc->p++; pc->len--; } pc->p++; pc->len--; } pc->tend = pc->p-1; pc->tt = JIM_TT_ESC; return JIM_OK; } static int JimParseSubst(struct JimParserCtx *pc, int flags) { int retval; if (pc->len == 0) { pc->tstart = pc->tend = pc->p; pc->tline = pc->linenr; pc->tt = JIM_TT_EOL; pc->eof = 1; return JIM_OK; } switch(*pc->p) { case '[': retval = JimParseCmd(pc); if (flags & JIM_SUBST_NOCMD) { pc->tstart--; pc->tend++; pc->tt = (flags & JIM_SUBST_NOESC) ? JIM_TT_STR : JIM_TT_ESC; } return retval; break; case '$': if (JimParseVar(pc) == JIM_ERR) { pc->tstart = pc->tend = pc->p++; pc->len--; pc->tline = pc->linenr; pc->tt = JIM_TT_STR; } else { if (flags & JIM_SUBST_NOVAR) { pc->tstart--; if (flags & JIM_SUBST_NOESC) pc->tt = JIM_TT_STR; else pc->tt = JIM_TT_ESC; if (*pc->tstart == '{') { pc->tstart--; if (*(pc->tend+1)) pc->tend++; } } } break; default: retval = JimParseSubstStr(pc); if (flags & JIM_SUBST_NOESC) pc->tt = JIM_TT_STR; return retval; break; } return JIM_OK; } /* The subst object type reuses most of the data structures and functions * of the script object. Script's data structures are a bit more complex * for what is needed for [subst]itution tasks, but the reuse helps to * deal with a single data structure at the cost of some more memory * usage for substitutions. */ static const Jim_ObjType substObjType = { "subst", FreeScriptInternalRep, DupScriptInternalRep, NULL, JIM_TYPE_REFERENCES, }; /* This method takes the string representation of an object * as a Tcl string where to perform [subst]itution, and generates * the pre-parsed internal representation. */ int SetSubstFromAny(Jim_Interp *interp, struct Jim_Obj *objPtr, int flags) { int scriptTextLen; const char *scriptText = Jim_GetString(objPtr, &scriptTextLen); struct JimParserCtx parser; struct ScriptObj *script = Jim_Alloc(sizeof(*script)); ParseTokenList tokenlist; /* Initially parse the subst into tokens (in tokenlist) */ ScriptTokenListInit(&tokenlist); JimParserInit(&parser, scriptText, scriptTextLen, 1); while (1) { JimParseSubst(&parser, flags); if (JimParserEof(&parser)) { /* Note that subst doesn't need the EOL token */ break; } ScriptAddToken(&tokenlist, parser.tstart, parser.tend - parser.tstart + 1, parser.tt, parser.tline); } /* Create the "real" subst/script tokens from the initial token list */ script->cmdStruct = NULL; script->csLen = 0; script->inUse = 1; script->substFlags = flags; script->fileName = NULL; #ifdef JIM_OPTIMIZATION SubstObjAddTokens(interp, script, &tokenlist); #else ScriptObjAddTokens(interp, script, &tokenlist); #endif /* No longer need the token list */ ScriptTokenListFree(&tokenlist); #if 0 int i; printf("==== Subst ====\n"); for (i = 0; i < script->len; i++) { printf("[%2d] %s (%d)'%s'\n", i, tt_name(script->token[i].type), script->token[i].objPtr->length, script->token[i].objPtr->bytes); } #endif /* Free the old internal rep and set the new one. */ Jim_FreeIntRep(interp, objPtr); Jim_SetIntRepPtr(objPtr, script); objPtr->typePtr = &scriptObjType; return JIM_OK; } ScriptObj *Jim_GetSubst(Jim_Interp *interp, Jim_Obj *objPtr, int flags) { struct ScriptObj *script = Jim_GetIntRepPtr(objPtr); if (objPtr->typePtr != &substObjType || script->substFlags != flags) SetSubstFromAny(interp, objPtr, flags); return (ScriptObj*) Jim_GetIntRepPtr(objPtr); } /* Performs commands,variables,blackslashes substitution, * storing the result object (with refcount 0) into * resObjPtrPtr. */ int Jim_SubstObj(Jim_Interp *interp, Jim_Obj *substObjPtr, Jim_Obj **resObjPtrPtr, int flags) { ScriptObj *script; ScriptToken *token; int i, len, retcode = JIM_OK; int rc; Jim_Obj *resObjPtr, *savedResultObjPtr; script = Jim_GetSubst(interp, substObjPtr, flags); #ifdef JIM_OPTIMIZATION /* Fast path for a very common case with array-alike syntax, * that's: $foo($bar) */ if (script->len == 1 && script->token[0].type == JIM_TT_VAR) { Jim_Obj *varObjPtr = script->token[0].objPtr; Jim_IncrRefCount(varObjPtr); resObjPtr = Jim_GetVariable(interp, varObjPtr, JIM_ERRMSG); if (resObjPtr == NULL) { Jim_DecrRefCount(interp, varObjPtr); return JIM_ERR; } Jim_DecrRefCount(interp, varObjPtr); *resObjPtrPtr = resObjPtr; return JIM_OK; } #endif Jim_IncrRefCount(substObjPtr); /* Make sure it's shared. */ /* In order to preserve the internal rep, we increment the * inUse field of the script internal rep structure. */ script->inUse++; token = script->token; len = script->len; /* Save the interp old result, to set it again before * to return. */ savedResultObjPtr = interp->result; Jim_IncrRefCount(savedResultObjPtr); /* Perform the substitution. Starts with an empty object * and adds every token (performing the appropriate * var/command/escape substitution). */ resObjPtr = Jim_NewStringObj(interp, "", 0); for (i = 0; i < len; i++) { Jim_Obj *objPtr; switch(token[i].type) { case JIM_TT_STR: case JIM_TT_ESC: Jim_AppendObj(interp, resObjPtr, token[i].objPtr); break; case JIM_TT_VAR: case JIM_TT_DICTSUGAR: if (token[i].type == JIM_TT_VAR) { objPtr = Jim_GetVariable(interp, token[i].objPtr, JIM_ERRMSG); } else { objPtr = Jim_ExpandDictSugar(interp, token[i].objPtr); } if (objPtr == NULL) goto err; Jim_IncrRefCount(objPtr); Jim_AppendObj(interp, resObjPtr, objPtr); Jim_DecrRefCount(interp, objPtr); break; case JIM_TT_CMD: rc = Jim_EvalObj(interp, token[i].objPtr); if (rc == JIM_BREAK) { /* Stop substituting */ goto ok; } else if (rc == JIM_CONTINUE) { /* just skip this one */ } else if (rc == JIM_OK || rc == JIM_RETURN) { Jim_AppendObj(interp, resObjPtr, interp->result); } else { goto err; } break; default: Jim_Panic(interp, "default token type (%d) reached " "in Jim_SubstObj().", token[i].type); break; } } ok: if (retcode == JIM_OK) Jim_SetResult(interp, savedResultObjPtr); Jim_DecrRefCount(interp, savedResultObjPtr); /* Note that we don't have to decrement inUse, because the * following code transfers our use of the reference again to * the script object. */ Jim_FreeIntRep(interp, substObjPtr); substObjPtr->typePtr = &scriptObjType; Jim_SetIntRepPtr(substObjPtr, script); Jim_DecrRefCount(interp, substObjPtr); *resObjPtrPtr = resObjPtr; return retcode; err: Jim_FreeNewObj(interp, resObjPtr); retcode = JIM_ERR; goto ok; } /* ----------------------------------------------------------------------------- * Core commands utility functions * ---------------------------------------------------------------------------*/ void Jim_WrongNumArgs(Jim_Interp *interp, int argc, Jim_Obj *const *argv, const char *msg) { int i; Jim_Obj *objPtr = Jim_NewEmptyStringObj(interp); Jim_AppendString(interp, objPtr, "wrong # args: should be \"", -1); for (i = 0; i < argc; i++) { Jim_AppendObj(interp, objPtr, argv[i]); if (!(i+1 == argc && msg[0] == '\0')) Jim_AppendString(interp, objPtr, " ", 1); } Jim_AppendString(interp, objPtr, msg, -1); Jim_AppendString(interp, objPtr, "\"", 1); Jim_SetResult(interp, objPtr); } static Jim_Obj *JimCommandsList(Jim_Interp *interp, Jim_Obj *patternObjPtr, int procs_only) { Jim_HashTableIterator *htiter; Jim_HashEntry *he; Jim_Obj *listObjPtr = Jim_NewListObj(interp, NULL, 0); const char *pattern; int patternLen = 0; pattern = patternObjPtr ? Jim_GetString(patternObjPtr, &patternLen) : NULL; htiter = Jim_GetHashTableIterator(&interp->commands); while ((he = Jim_NextHashEntry(htiter)) != NULL) { Jim_Cmd *cmdPtr = he->val; if (procs_only && cmdPtr->cmdProc != NULL) { continue; } if (pattern && !JimStringMatch(pattern, patternLen, he->key, strlen((const char*)he->key), 0)) continue; Jim_ListAppendElement(interp, listObjPtr, Jim_NewStringObj(interp, he->key, -1)); } Jim_FreeHashTableIterator(htiter); return listObjPtr; } /* Keep this in order */ #define JIM_VARLIST_GLOBALS 0 #define JIM_VARLIST_LOCALS 1 #define JIM_VARLIST_VARS 2 static Jim_Obj *JimVariablesList(Jim_Interp *interp, Jim_Obj *patternObjPtr, int mode) { Jim_HashTableIterator *htiter; Jim_HashEntry *he; Jim_Obj *listObjPtr = Jim_NewListObj(interp, NULL, 0); const char *pattern; int patternLen = 0; pattern = patternObjPtr ? Jim_GetString(patternObjPtr, &patternLen) : NULL; if (mode == JIM_VARLIST_GLOBALS) { htiter = Jim_GetHashTableIterator(&interp->topFramePtr->vars); } else { /* For [info locals], if we are at top level an emtpy list * is returned. I don't agree, but we aim at compatibility (SS) */ if (mode == JIM_VARLIST_LOCALS && interp->framePtr == interp->topFramePtr) return listObjPtr; htiter = Jim_GetHashTableIterator(&interp->framePtr->vars); } while ((he = Jim_NextHashEntry(htiter)) != NULL) { Jim_Var *varPtr = (Jim_Var*) he->val; if (mode == JIM_VARLIST_LOCALS) { if (varPtr->linkFramePtr != NULL) continue; } if (pattern && !JimStringMatch(pattern, patternLen, he->key, strlen((const char*)he->key), 0)) continue; Jim_ListAppendElement(interp, listObjPtr, Jim_NewStringObj(interp, he->key, -1)); } Jim_FreeHashTableIterator(htiter); return listObjPtr; } static int JimInfoLevel(Jim_Interp *interp, Jim_Obj *levelObjPtr, Jim_Obj **objPtrPtr) { Jim_CallFrame *targetCallFrame; if (JimGetCallFrameByInteger(interp, levelObjPtr, &targetCallFrame) != JIM_OK) return JIM_ERR; /* No proc call at toplevel callframe */ if (targetCallFrame == interp->topFramePtr) { Jim_SetResultFormatted(interp, "bad level \"%#s\"", levelObjPtr); return JIM_ERR; } *objPtrPtr = Jim_NewListObj(interp, targetCallFrame->argv, targetCallFrame->argc); return JIM_OK; } /* ----------------------------------------------------------------------------- * Core commands * ---------------------------------------------------------------------------*/ /* fake [puts] -- not the real puts, just for debugging. */ static int Jim_PutsCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { const char *str; int nonewline = 0; if (argc != 2 && argc != 3) { Jim_WrongNumArgs(interp, 1, argv, "-nonewline string"); return JIM_ERR; } if (argc == 3) { if (!Jim_CompareStringImmediate(interp, argv[1], "-nonewline")) { Jim_SetResultString(interp, "The second argument must " "be -nonewline", -1); return JIM_OK; } else { nonewline = 1; argv++; } } str = Jim_GetString(argv[1], 0); printf("%s%s", str, nonewline ? "" : "\n"); return JIM_OK; } /* Helper for [+] and [*] */ static int Jim_AddMulHelper(Jim_Interp *interp, int argc, Jim_Obj *const *argv, int op) { jim_wide wideValue, res; double doubleValue, doubleRes; int i; res = (op == JIM_EXPROP_ADD) ? 0 : 1; for (i = 1; i < argc; i++) { if (Jim_GetWide(interp, argv[i], &wideValue) != JIM_OK) goto trydouble; if (op == JIM_EXPROP_ADD) res += wideValue; else res *= wideValue; } Jim_SetResultInt(interp, res); return JIM_OK; trydouble: doubleRes = (double) res; for (;i < argc; i++) { if (Jim_GetDouble(interp, argv[i], &doubleValue) != JIM_OK) return JIM_ERR; if (op == JIM_EXPROP_ADD) doubleRes += doubleValue; else doubleRes *= doubleValue; } Jim_SetResult(interp, Jim_NewDoubleObj(interp, doubleRes)); return JIM_OK; } /* Helper for [-] and [/] */ static int Jim_SubDivHelper(Jim_Interp *interp, int argc, Jim_Obj *const *argv, int op) { jim_wide wideValue, res = 0; double doubleValue, doubleRes = 0; int i = 2; if (argc < 2) { Jim_WrongNumArgs(interp, 1, argv, "number ?number ... number?"); return JIM_ERR; } else if (argc == 2) { /* The arity = 2 case is different. For [- x] returns -x, * while [/ x] returns 1/x. */ if (Jim_GetWide(interp, argv[1], &wideValue) != JIM_OK) { if (Jim_GetDouble(interp, argv[1], &doubleValue) != JIM_OK) { return JIM_ERR; } else { if (op == JIM_EXPROP_SUB) doubleRes = -doubleValue; else doubleRes = 1.0/doubleValue; Jim_SetResult(interp, Jim_NewDoubleObj(interp, doubleRes)); return JIM_OK; } } if (op == JIM_EXPROP_SUB) { res = -wideValue; Jim_SetResultInt(interp, res); } else { doubleRes = 1.0/wideValue; Jim_SetResult(interp, Jim_NewDoubleObj(interp, doubleRes)); } return JIM_OK; } else { if (Jim_GetWide(interp, argv[1], &res) != JIM_OK) { if (Jim_GetDouble(interp, argv[1], &doubleRes) != JIM_OK) { return JIM_ERR; } else { goto trydouble; } } } for (i = 2; i < argc; i++) { if (Jim_GetWide(interp, argv[i], &wideValue) != JIM_OK) { doubleRes = (double) res; goto trydouble; } if (op == JIM_EXPROP_SUB) res -= wideValue; else res /= wideValue; } Jim_SetResultInt(interp, res); return JIM_OK; trydouble: for (;i < argc; i++) { if (Jim_GetDouble(interp, argv[i], &doubleValue) != JIM_OK) return JIM_ERR; if (op == JIM_EXPROP_SUB) doubleRes -= doubleValue; else doubleRes /= doubleValue; } Jim_SetResult(interp, Jim_NewDoubleObj(interp, doubleRes)); return JIM_OK; } /* [+] */ static int Jim_AddCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { return Jim_AddMulHelper(interp, argc, argv, JIM_EXPROP_ADD); } /* [*] */ static int Jim_MulCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { return Jim_AddMulHelper(interp, argc, argv, JIM_EXPROP_MUL); } /* [-] */ static int Jim_SubCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { return Jim_SubDivHelper(interp, argc, argv, JIM_EXPROP_SUB); } /* [/] */ static int Jim_DivCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { return Jim_SubDivHelper(interp, argc, argv, JIM_EXPROP_DIV); } /* [set] */ static int Jim_SetCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { if (argc != 2 && argc != 3) { Jim_WrongNumArgs(interp, 1, argv, "varName ?newValue?"); return JIM_ERR; } if (argc == 2) { Jim_Obj *objPtr; objPtr = Jim_GetVariable(interp, argv[1], JIM_ERRMSG); if (!objPtr) return JIM_ERR; Jim_SetResult(interp, objPtr); return JIM_OK; } /* argc == 3 case. */ if (Jim_SetVariable(interp, argv[1], argv[2]) != JIM_OK) return JIM_ERR; Jim_SetResult(interp, argv[2]); return JIM_OK; } /* [unset] * * unset ?-nocomplain? ?--? ?varName ...? */ static int Jim_UnsetCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int i = 1; int complain = 1; while (i < argc) { if (Jim_CompareStringImmediate(interp, argv[i], "--")) { i++; break; } if (Jim_CompareStringImmediate(interp, argv[i], "-nocomplain")) { complain = 0; i++; continue; } break; } while (i < argc) { if (Jim_UnsetVariable(interp, argv[i], complain ? JIM_ERRMSG : JIM_NONE) != JIM_OK && complain) { return JIM_ERR; } i++; } return JIM_OK; } /* [incr] */ static int Jim_IncrCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { jim_wide wideValue, increment = 1; Jim_Obj *intObjPtr; if (argc != 2 && argc != 3) { Jim_WrongNumArgs(interp, 1, argv, "varName ?increment?"); return JIM_ERR; } if (argc == 3) { if (Jim_GetWide(interp, argv[2], &increment) != JIM_OK) return JIM_ERR; } intObjPtr = Jim_GetVariable(interp, argv[1], JIM_NONE); if (!intObjPtr) { /* Set missing variable to 0 */ wideValue = 0; } else if (Jim_GetWide(interp, intObjPtr, &wideValue) != JIM_OK) { return JIM_ERR; } if (!intObjPtr || Jim_IsShared(intObjPtr)) { intObjPtr = Jim_NewIntObj(interp, wideValue+increment); if (Jim_SetVariable(interp, argv[1], intObjPtr) != JIM_OK) { Jim_FreeNewObj(interp, intObjPtr); return JIM_ERR; } } else { Jim_SetWide(interp, intObjPtr, wideValue+increment); /* The following step is required in order to invalidate the * string repr of "FOO" if the var name is on the form of "FOO(IDX)" */ if (argv[1]->typePtr != &variableObjType) { if (Jim_SetVariable(interp, argv[1], intObjPtr) != JIM_OK) { return JIM_ERR; } } } Jim_SetResult(interp, intObjPtr); return JIM_OK; } /* [while] */ static int Jim_WhileCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { if (argc != 3) { Jim_WrongNumArgs(interp, 1, argv, "condition body"); return JIM_ERR; } /* The general purpose implementation of while starts here */ while (1) { int boolean, retval; if ((retval = Jim_GetBoolFromExpr(interp, argv[1], &boolean)) != JIM_OK) return retval; if (!boolean) break; if ((retval = Jim_EvalObj(interp, argv[2])) != JIM_OK) { switch(retval) { case JIM_BREAK: goto out; break; case JIM_CONTINUE: continue; break; default: return retval; } } } out: Jim_SetEmptyResult(interp); return JIM_OK; } /* [for] */ static int Jim_ForCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int retval; int boolean = 1; Jim_Obj *varNamePtr = NULL; Jim_Obj *stopVarNamePtr = NULL; if (argc != 5) { Jim_WrongNumArgs(interp, 1, argv, "start test next body"); return JIM_ERR; } /* Do the initialisation */ if ((retval = Jim_EvalObj(interp, argv[1])) != JIM_OK) { return retval; } /* And do the first test now. Better for optimisation * if we can do next/test at the bottom of the loop */ retval = Jim_GetBoolFromExpr(interp, argv[2], &boolean); /* Ready to do the body as follows: * while (1) { * body // check retcode * next // check retcode * test // check retcode/test bool * } */ #ifdef JIM_OPTIMIZATION /* Check if the for is on the form: * for ... {$i < CONST} {incr i} * for ... {$i < $j} {incr i} */ if (retval == JIM_OK && boolean) { ScriptObj *incrScript; ExprByteCode *expr; jim_wide stop, currentVal; unsigned jim_wide procEpoch; Jim_Obj *objPtr; int cmpOffset; /* Do it only if there aren't shared arguments */ expr = Jim_GetExpression(interp, argv[2]); incrScript = Jim_GetScript(interp, argv[3]); /* Ensure proper lengths to start */ if (incrScript->len != 4 || !expr || expr->len != 3) { goto evalstart; } /* Ensure proper token types. */ if (incrScript->token[2].type != JIM_TT_ESC || expr->token[0].type != JIM_TT_VAR || (expr->token[1].type != JIM_TT_EXPR_INT && expr->token[1].type != JIM_TT_VAR)) { goto evalstart; } if (expr->token[2].type == JIM_EXPROP_LT) { cmpOffset = 0; } else if (expr->token[2].type == JIM_EXPROP_LTE) { cmpOffset = 1; } else { goto evalstart; } /* Update command must be incr */ if (!Jim_CompareStringImmediate(interp, incrScript->token[0].objPtr, "incr")) { goto evalstart; } /* incr, expression must be about the same variable */ if (!Jim_StringEqObj(incrScript->token[2].objPtr, expr->token[0].objPtr, 0)) { goto evalstart; } /* Get the stop condition (must be a variable or integer) */ if (expr->token[1].type == JIM_TT_EXPR_INT) { if (Jim_GetWide(interp, expr->token[1].objPtr, &stop) == JIM_ERR) { goto evalstart; } } else { stopVarNamePtr = expr->token[1].objPtr; Jim_IncrRefCount(stopVarNamePtr); /* Keep the compiler happy */ stop = 0; } /* Initialization */ procEpoch = interp->procEpoch; varNamePtr = expr->token[0].objPtr; Jim_IncrRefCount(varNamePtr); objPtr = Jim_GetVariable(interp, varNamePtr, JIM_NONE); if (objPtr == NULL || Jim_GetWide(interp, objPtr, ¤tVal) != JIM_OK) { goto testcond; } /* --- OPTIMIZED FOR --- */ while (retval == JIM_OK) { /* === Check condition === */ /* Note that currentVal is already set here */ /* Immediate or Variable? get the 'stop' value if the latter. */ if (stopVarNamePtr) { objPtr = Jim_GetVariable(interp, stopVarNamePtr, JIM_NONE); if (objPtr == NULL || Jim_GetWide(interp, objPtr, &stop) != JIM_OK) { goto testcond; } } if (currentVal >= stop + cmpOffset) { break; } /* Eval body */ retval = Jim_EvalObj(interp, argv[4]); if (retval == JIM_OK || retval == JIM_CONTINUE) { retval = JIM_OK; /* If there was a change in procedures/command continue * with the usual [for] command implementation */ if (procEpoch != interp->procEpoch) { goto evalnext; } objPtr = Jim_GetVariable(interp, varNamePtr, JIM_NONE); /* Increment */ if (!Jim_IsShared(objPtr) && objPtr->typePtr == &intObjType) { currentVal = ++objPtr->internalRep.wideValue; Jim_InvalidateStringRep(objPtr); } else { if (Jim_GetWide(interp, objPtr, ¤tVal) != JIM_OK || Jim_SetVariable(interp, varNamePtr, Jim_NewIntObj(interp, ++currentVal)) != JIM_OK) { goto evalnext; } } } } goto out; } evalstart: #endif while (boolean && (retval == JIM_OK || retval == JIM_CONTINUE)) { /* Body */ retval = Jim_EvalObj(interp, argv[4]); if (retval == JIM_OK || retval == JIM_CONTINUE) { /* increment */ evalnext: retval = Jim_EvalObj(interp, argv[3]); if (retval == JIM_OK || retval == JIM_CONTINUE) { /* test */ testcond: retval = Jim_GetBoolFromExpr(interp, argv[2], &boolean); } } } out: if (stopVarNamePtr) { Jim_DecrRefCount(interp, stopVarNamePtr); } if (varNamePtr) { Jim_DecrRefCount(interp, varNamePtr); } if (retval == JIM_CONTINUE || retval == JIM_BREAK || retval == JIM_OK) { Jim_SetEmptyResult(interp); return JIM_OK; } return retval; } /* foreach + lmap implementation. */ static int JimForeachMapHelper(Jim_Interp *interp, int argc, Jim_Obj *const *argv, int doMap) { int result = JIM_ERR, i, nbrOfLists, *listsIdx, *listsEnd; int nbrOfLoops = 0; Jim_Obj *emptyStr, *script, *mapRes = NULL; if (argc < 4 || argc % 2 != 0) { Jim_WrongNumArgs(interp, 1, argv, "varList list ?varList list ...? script"); return JIM_ERR; } if (doMap) { mapRes = Jim_NewListObj(interp, NULL, 0); Jim_IncrRefCount(mapRes); } emptyStr = Jim_NewEmptyStringObj(interp); Jim_IncrRefCount(emptyStr); script = argv[argc-1]; /* Last argument is a script */ nbrOfLists = (argc - 1 - 1) / 2; /* argc - 'foreach' - script */ listsIdx = (int*)Jim_Alloc(nbrOfLists * sizeof(int)); listsEnd = (int*)Jim_Alloc(nbrOfLists*2 * sizeof(int)); /* Initialize iterators and remember max nbr elements each list */ memset(listsIdx, 0, nbrOfLists * sizeof(int)); /* Remember lengths of all lists and calculate how much rounds to loop */ for (i=0; i < nbrOfLists*2; i += 2) { div_t cnt; int count; listsEnd[i] = Jim_ListLength(interp, argv[i+1]); listsEnd[i + 1] = Jim_ListLength(interp, argv[i+2]); if (listsEnd[i] == 0) { Jim_SetResultString(interp, "foreach varlist is empty", -1); goto err; } cnt = div(listsEnd[i+1], listsEnd[i]); count = cnt.quot + (cnt.rem ? 1 : 0); if (count > nbrOfLoops) nbrOfLoops = count; } for (; nbrOfLoops-- > 0; ) { for (i=0; i < nbrOfLists; ++i) { int varIdx = 0, var = i * 2; while (varIdx < listsEnd[var]) { Jim_Obj *varName, *ele; int lst = i * 2 + 1; if (Jim_ListIndex(interp, argv[var+1], varIdx, &varName, JIM_ERRMSG) != JIM_OK) goto err; if (listsIdx[i] < listsEnd[lst]) { if (Jim_ListIndex(interp, argv[lst+1], listsIdx[i], &ele, JIM_ERRMSG) != JIM_OK) goto err; /* Avoid shimmering */ Jim_IncrRefCount(ele); result = Jim_SetVariable(interp, varName, ele); Jim_DecrRefCount(interp, ele); if (result == JIM_OK) { ++listsIdx[i]; /* Remember next iterator of current list */ ++varIdx; /* Next variable */ continue; } } else if (Jim_SetVariable(interp, varName, emptyStr) == JIM_OK) { ++varIdx; /* Next variable */ continue; } goto err; } } switch (result = Jim_EvalObj(interp, script)) { case JIM_OK: if (doMap) Jim_ListAppendElement(interp, mapRes, interp->result); break; case JIM_CONTINUE: break; case JIM_BREAK: goto out; break; default: goto err; } } out: result = JIM_OK; if (doMap) Jim_SetResult(interp, mapRes); else Jim_SetEmptyResult(interp); err: if (doMap) Jim_DecrRefCount(interp, mapRes); Jim_DecrRefCount(interp, emptyStr); Jim_Free(listsIdx); Jim_Free(listsEnd); return result; } /* [foreach] */ static int Jim_ForeachCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { return JimForeachMapHelper(interp, argc, argv, 0); } /* [lmap] */ static int Jim_LmapCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { return JimForeachMapHelper(interp, argc, argv, 1); } /* [if] */ static int Jim_IfCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int boolean, retval, current = 1, falsebody = 0; if (argc >= 3) { while (1) { /* Far not enough arguments given! */ if (current >= argc) goto err; if ((retval = Jim_GetBoolFromExpr(interp, argv[current++], &boolean)) != JIM_OK) return retval; /* There lacks something, isn't it? */ if (current >= argc) goto err; if (Jim_CompareStringImmediate(interp, argv[current], "then")) current++; /* Tsk tsk, no then-clause? */ if (current >= argc) goto err; if (boolean) return Jim_EvalObj(interp, argv[current]); /* Ok: no else-clause follows */ if (++current >= argc) { Jim_SetResult(interp, Jim_NewEmptyStringObj(interp)); return JIM_OK; } falsebody = current++; if (Jim_CompareStringImmediate(interp, argv[falsebody], "else")) { /* IIICKS - else-clause isn't last cmd? */ if (current != argc-1) goto err; return Jim_EvalObj(interp, argv[current]); } else if (Jim_CompareStringImmediate(interp, argv[falsebody], "elseif")) /* Ok: elseif follows meaning all the stuff * again (how boring...) */ continue; /* OOPS - else-clause is not last cmd?*/ else if (falsebody != argc-1) goto err; return Jim_EvalObj(interp, argv[falsebody]); } return JIM_OK; } err: Jim_WrongNumArgs(interp, 1, argv, "condition ?then? trueBody ?elseif ...? ?else? falseBody"); return JIM_ERR; } /* Returns 1 if match, 0 if no match or - on error (e.g. -JIM_ERR, -JIM_BREAK)*/ int Jim_CommandMatchObj(Jim_Interp *interp, Jim_Obj *commandObj, Jim_Obj *patternObj, Jim_Obj *stringObj, int nocase) { Jim_Obj *parms[4]; int argc = 0; long eq; int rc; parms[argc++] = commandObj; if (nocase) { parms[argc++] = Jim_NewStringObj(interp, "-nocase", -1); } parms[argc++] = patternObj; parms[argc++] = stringObj; rc = Jim_EvalObjVector(interp, argc, parms); if (rc != JIM_OK || Jim_GetLong(interp, Jim_GetResult(interp), &eq) != JIM_OK) { eq = -rc; } return eq; } enum {SWITCH_EXACT, SWITCH_GLOB, SWITCH_RE, SWITCH_CMD }; /* [switch] */ static int Jim_SwitchCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int matchOpt = SWITCH_EXACT, opt=1, patCount, i; Jim_Obj *command = 0, *const *caseList = 0, *strObj; Jim_Obj *script = 0; if (argc < 3) { wrongnumargs: Jim_WrongNumArgs(interp, 1, argv, "?options? string " "pattern body ... ?default body? or " "{pattern body ?pattern body ...?}"); return JIM_ERR; } for (opt=1; opt < argc; ++opt) { const char *option = Jim_GetString(argv[opt], 0); if (*option != '-') break; else if (strncmp(option, "--", 2) == 0) { ++opt; break; } else if (strncmp(option, "-exact", 2) == 0) matchOpt = SWITCH_EXACT; else if (strncmp(option, "-glob", 2) == 0) matchOpt = SWITCH_GLOB; else if (strncmp(option, "-regexp", 2) == 0) matchOpt = SWITCH_RE; else if (strncmp(option, "-command", 2) == 0) { matchOpt = SWITCH_CMD; if ((argc - opt) < 2) goto wrongnumargs; command = argv[++opt]; } else { Jim_SetResultFormatted(interp, "bad option \"%#s\": must be -exact, -glob, -regexp, -command procname or --", argv[opt]); return JIM_ERR; } if ((argc - opt) < 2) goto wrongnumargs; } strObj = argv[opt++]; patCount = argc - opt; if (patCount == 1) { Jim_Obj **vector; JimListGetElements(interp, argv[opt], &patCount, &vector); caseList = vector; } else caseList = &argv[opt]; if (patCount == 0 || patCount % 2 != 0) goto wrongnumargs; for (i=0; script == 0 && i < patCount; i += 2) { Jim_Obj *patObj = caseList[i]; if (!Jim_CompareStringImmediate(interp, patObj, "default") || i < (patCount-2)) { switch (matchOpt) { case SWITCH_EXACT: if (Jim_StringEqObj(strObj, patObj, 0)) script = caseList[i+1]; break; case SWITCH_GLOB: if (Jim_StringMatchObj(patObj, strObj, 0)) script = caseList[i+1]; break; case SWITCH_RE: command = Jim_NewStringObj(interp, "regexp", -1); /* Fall thru intentionally */ case SWITCH_CMD: { int rc = Jim_CommandMatchObj(interp, command, patObj, strObj, 0); /* After the execution of a command we need to * make sure to reconvert the object into a list * again. Only for the single-list style [switch]. */ if (argc-opt == 1) { Jim_Obj **vector; JimListGetElements(interp, argv[opt], &patCount, &vector); caseList = vector; } /* command is here already decref'd */ if (rc < 0) { return -rc; } if (rc) script = caseList[i+1]; break; } } } else { script = caseList[i+1]; } } for(; i < patCount && Jim_CompareStringImmediate(interp, script, "-"); i += 2) script = caseList[i+1]; if (script && Jim_CompareStringImmediate(interp, script, "-")) { Jim_SetResultFormatted(interp, "no body specified for pattern \"%#s\"", caseList[i-2]); return JIM_ERR; } Jim_SetEmptyResult(interp); if (script) { return Jim_EvalObj(interp, script); } return JIM_OK; } /* [list] */ static int Jim_ListCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Obj *listObjPtr; listObjPtr = Jim_NewListObj(interp, argv+1, argc-1); Jim_SetResult(interp, listObjPtr); return JIM_OK; } /* [lindex] */ static int Jim_LindexCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Obj *objPtr, *listObjPtr; int i; int index; if (argc < 3) { Jim_WrongNumArgs(interp, 1, argv, "list index ?...?"); return JIM_ERR; } objPtr = argv[1]; Jim_IncrRefCount(objPtr); for (i = 2; i < argc; i++) { listObjPtr = objPtr; if (Jim_GetIndex(interp, argv[i], &index) != JIM_OK) { Jim_DecrRefCount(interp, listObjPtr); return JIM_ERR; } if (Jim_ListIndex(interp, listObjPtr, index, &objPtr, JIM_NONE) != JIM_OK) { /* Returns an empty object if the index * is out of range. */ Jim_DecrRefCount(interp, listObjPtr); Jim_SetEmptyResult(interp); return JIM_OK; } Jim_IncrRefCount(objPtr); Jim_DecrRefCount(interp, listObjPtr); } Jim_SetResult(interp, objPtr); Jim_DecrRefCount(interp, objPtr); return JIM_OK; } /* [llength] */ static int Jim_LlengthCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { if (argc != 2) { Jim_WrongNumArgs(interp, 1, argv, "list"); return JIM_ERR; } Jim_SetResultInt(interp, Jim_ListLength(interp, argv[1])); return JIM_OK; } /* [lsearch] */ static int Jim_LsearchCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { static const char *options[] = { "-bool", "-not", "-nocase", "-exact", "-glob", "-regexp", "-all", "-inline", "-command", NULL }; enum {OPT_BOOL, OPT_NOT, OPT_NOCASE, OPT_EXACT, OPT_GLOB, OPT_REGEXP, OPT_ALL, OPT_INLINE, OPT_COMMAND }; int i; int opt_bool = 0; int opt_not = 0; int opt_nocase = 0; int opt_all = 0; int opt_inline = 0; int opt_match = OPT_EXACT; int listlen; int rc = JIM_OK; Jim_Obj *listObjPtr = NULL; Jim_Obj *commandObj = NULL; if (argc < 3) { wrongargs: Jim_WrongNumArgs(interp, 1, argv, "?-exact|-glob|-regexp|-command 'command'? ?-bool|-inline? ?-not? ?-nocase? ?-all? list value"); return JIM_ERR; } for (i = 1; i < argc - 2; i++) { int option; if (Jim_GetEnum(interp, argv[i], options, &option, NULL, JIM_ERRMSG) != JIM_OK) { return JIM_ERR; } switch(option) { case OPT_BOOL: opt_bool = 1; opt_inline = 0; break; case OPT_NOT: opt_not = 1; break; case OPT_NOCASE: opt_nocase = 1; break; case OPT_INLINE: opt_inline = 1; opt_bool = 0; break; case OPT_ALL: opt_all = 1; break; case OPT_COMMAND: if (i >= argc - 2) { goto wrongargs; } commandObj = argv[++i]; /* fallthru */ case OPT_EXACT: case OPT_GLOB: case OPT_REGEXP: opt_match = option; break; } } argv += i; if (opt_all) { listObjPtr = Jim_NewListObj(interp, NULL, 0); } if (opt_match == OPT_REGEXP) { commandObj = Jim_NewStringObj(interp, "regexp", -1); } if (commandObj) { Jim_IncrRefCount(commandObj); } listlen = Jim_ListLength(interp, argv[0]); for (i = 0; i < listlen; i++) { Jim_Obj *objPtr; Jim_ListIndex(interp, argv[0], i, &objPtr, JIM_NONE); int eq = 0; switch (opt_match) { case OPT_EXACT: eq = Jim_StringEqObj(objPtr, argv[1], opt_nocase); break; case OPT_GLOB: eq = Jim_StringMatchObj(argv[1], objPtr, opt_nocase); break; case OPT_REGEXP: case OPT_COMMAND: eq = Jim_CommandMatchObj(interp, commandObj, argv[1], objPtr, opt_nocase); if (eq < 0) { if (listObjPtr) { Jim_FreeNewObj(interp, listObjPtr); } rc = JIM_ERR; goto done; } break; } /* If we have a non-match with opt_bool, opt_not, !opt_all, can't exit early */ if (!eq && opt_bool && opt_not && !opt_all) { continue; } if ((!opt_bool && eq == !opt_not) || (opt_bool && (eq || opt_all))) { /* Got a match (or non-match for opt_not), or (opt_bool && opt_all) */ Jim_Obj *resultObj; if (opt_bool) { resultObj = Jim_NewIntObj(interp, eq ^ opt_not); } else if (!opt_inline) { resultObj = Jim_NewIntObj(interp, i); } else { resultObj = objPtr; } if (opt_all) { Jim_ListAppendElement(interp, listObjPtr, resultObj); } else { Jim_SetResult(interp, resultObj); goto done; } } } if (opt_all) { Jim_SetResult(interp, listObjPtr); } else { /* No match */ if (opt_bool) { Jim_SetResultBool(interp, opt_not); } else if (!opt_inline) { Jim_SetResultInt(interp, -1); } } done: if (commandObj) { Jim_DecrRefCount(interp, commandObj); } return rc; } /* [lappend] */ static int Jim_LappendCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Obj *listObjPtr; int shared, i; if (argc < 2) { Jim_WrongNumArgs(interp, 1, argv, "varName ?value value ...?"); return JIM_ERR; } listObjPtr = Jim_GetVariable(interp, argv[1], JIM_NONE); if (!listObjPtr) { /* Create the list if it does not exists */ listObjPtr = Jim_NewListObj(interp, NULL, 0); if (Jim_SetVariable(interp, argv[1], listObjPtr) != JIM_OK) { Jim_FreeNewObj(interp, listObjPtr); return JIM_ERR; } } shared = Jim_IsShared(listObjPtr); if (shared) listObjPtr = Jim_DuplicateObj(interp, listObjPtr); for (i = 2; i < argc; i++) Jim_ListAppendElement(interp, listObjPtr, argv[i]); if (Jim_SetVariable(interp, argv[1], listObjPtr) != JIM_OK) { if (shared) Jim_FreeNewObj(interp, listObjPtr); return JIM_ERR; } Jim_SetResult(interp, listObjPtr); return JIM_OK; } /* [linsert] */ static int Jim_LinsertCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int index, len; Jim_Obj *listPtr; if (argc < 4) { Jim_WrongNumArgs(interp, 1, argv, "list index element " "?element ...?"); return JIM_ERR; } listPtr = argv[1]; if (Jim_IsShared(listPtr)) listPtr = Jim_DuplicateObj(interp, listPtr); if (Jim_GetIndex(interp, argv[2], &index) != JIM_OK) goto err; len = Jim_ListLength(interp, listPtr); if (index >= len) index = len; else if (index < 0) index = len + index + 1; Jim_ListInsertElements(interp, listPtr, index, argc-3, &argv[3]); Jim_SetResult(interp, listPtr); return JIM_OK; err: if (listPtr != argv[1]) { Jim_FreeNewObj(interp, listPtr); } return JIM_ERR; } /* [lreplace] */ static int Jim_LreplaceCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int first, last, len, rangeLen; Jim_Obj *listObj; Jim_Obj *newListObj; int i; int shared; if (argc < 4) { Jim_WrongNumArgs(interp, 1, argv, "list first last ?element element ...?"); return JIM_ERR; } if (Jim_GetIndex(interp, argv[2], &first) != JIM_OK || Jim_GetIndex(interp, argv[3], &last) != JIM_OK) { return JIM_ERR; } listObj = argv[1]; len = Jim_ListLength(interp, listObj); first = JimRelToAbsIndex(len, first); last = JimRelToAbsIndex(len, last); JimRelToAbsRange(len, first, last, &first, &last, &rangeLen); /* Now construct a new list which consists of: * */ /* Check to see if trying to replace past the end of the list */ if (first < len ) { /* OK. Not past the end */ } else if (len == 0) { /* Special for empty list, adjust first to 0 */ first = 0; } else { Jim_SetResultString(interp, "list doesn't contain element ", -1); Jim_AppendObj(interp, Jim_GetResult(interp), argv[2]); return JIM_ERR; } newListObj = Jim_NewListObj(interp, NULL, 0); shared = Jim_IsShared(listObj); if (shared) { listObj = Jim_DuplicateObj(interp, listObj); } /* Add the first set of elements */ for (i = 0; i < first; i++) { Jim_ListAppendElement(interp, newListObj, listObj->internalRep.listValue.ele[i]); } /* Add supplied elements */ for (i = 4; i < argc; i++) { Jim_ListAppendElement(interp, newListObj, argv[i]); } /* Add the remaining elements */ for (i = first + rangeLen; i < len; i++) { Jim_ListAppendElement(interp, newListObj, listObj->internalRep.listValue.ele[i]); } Jim_SetResult(interp, newListObj); if (shared) { Jim_FreeNewObj(interp, listObj); } return JIM_OK; } /* [lset] */ static int Jim_LsetCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { if (argc < 3) { Jim_WrongNumArgs(interp, 1, argv, "listVar ?index...? newVal"); return JIM_ERR; } else if (argc == 3) { if (Jim_SetVariable(interp, argv[1], argv[2]) != JIM_OK) return JIM_ERR; Jim_SetResult(interp, argv[2]); return JIM_OK; } if (Jim_SetListIndex(interp, argv[1], argv+2, argc-3, argv[argc-1]) == JIM_ERR) return JIM_ERR; return JIM_OK; } /* [lsort] */ static int Jim_LsortCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const argv[]) { const char *options[] = { "-ascii", "-nocase", "-increasing", "-decreasing", "-command", "-integer", NULL }; enum {OPT_ASCII, OPT_NOCASE, OPT_INCREASING, OPT_DECREASING, OPT_COMMAND, OPT_INTEGER}; Jim_Obj *resObj; int i, lsortType = JIM_LSORT_ASCII; /* default sort type */ int lsort_order = 1; Jim_Obj *lsort_command = NULL; int retCode; if (argc < 2) { wrongargs: Jim_WrongNumArgs(interp, 1, argv, "?options? list"); return JIM_ERR; } for (i = 1; i < (argc-1); i++) { int option; if (Jim_GetEnum(interp, argv[i], options, &option, NULL, JIM_ERRMSG) != JIM_OK) return JIM_ERR; switch(option) { case OPT_ASCII: lsortType = JIM_LSORT_ASCII; break; case OPT_NOCASE: lsortType = JIM_LSORT_NOCASE; break; case OPT_INTEGER: lsortType = JIM_LSORT_INTEGER; break; case OPT_INCREASING: lsort_order = 1; break; case OPT_DECREASING: lsort_order = -1; break; case OPT_COMMAND: if (i >= (argc - 2)) { goto wrongargs; } lsortType = JIM_LSORT_COMMAND; lsort_command = argv[i + 1]; i++; break; } } resObj = Jim_DuplicateObj(interp, argv[argc-1]); retCode = ListSortElements(interp, resObj, lsortType, lsort_order, lsort_command); if (retCode == JIM_OK) { Jim_SetResult(interp, resObj); } else { Jim_FreeNewObj(interp, resObj); } return retCode; } /* [append] */ static int Jim_AppendCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Obj *stringObjPtr; int shared, i; if (argc < 2) { Jim_WrongNumArgs(interp, 1, argv, "varName ?value value ...?"); return JIM_ERR; } if (argc == 2) { stringObjPtr = Jim_GetVariable(interp, argv[1], JIM_ERRMSG); if (!stringObjPtr) return JIM_ERR; } else { stringObjPtr = Jim_GetVariable(interp, argv[1], JIM_NONE); if (!stringObjPtr) { /* Create the string if it does not exists */ stringObjPtr = Jim_NewEmptyStringObj(interp); if (Jim_SetVariable(interp, argv[1], stringObjPtr) != JIM_OK) { Jim_FreeNewObj(interp, stringObjPtr); return JIM_ERR; } } } shared = Jim_IsShared(stringObjPtr); if (shared) stringObjPtr = Jim_DuplicateObj(interp, stringObjPtr); for (i = 2; i < argc; i++) Jim_AppendObj(interp, stringObjPtr, argv[i]); if (Jim_SetVariable(interp, argv[1], stringObjPtr) != JIM_OK) { if (shared) Jim_FreeNewObj(interp, stringObjPtr); return JIM_ERR; } Jim_SetResult(interp, stringObjPtr); return JIM_OK; } /* [debug] */ static int Jim_DebugCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { const char *options[] = { "refcount", "objcount", "objects", "invstr", "scriptlen", "exprlen", "exprbc", NULL }; enum { OPT_REFCOUNT, OPT_OBJCOUNT, OPT_OBJECTS, OPT_INVSTR, OPT_SCRIPTLEN, OPT_EXPRLEN, OPT_EXPRBC }; int option; if (argc < 2) { Jim_WrongNumArgs(interp, 1, argv, "subcommand ?...?"); return JIM_ERR; } if (Jim_GetEnum(interp, argv[1], options, &option, "subcommand", JIM_ERRMSG) != JIM_OK) return JIM_ERR; if (option == OPT_REFCOUNT) { if (argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "object"); return JIM_ERR; } Jim_SetResultInt(interp, argv[2]->refCount); return JIM_OK; } else if (option == OPT_OBJCOUNT) { int freeobj = 0, liveobj = 0; char buf[256]; Jim_Obj *objPtr; if (argc != 2) { Jim_WrongNumArgs(interp, 2, argv, ""); return JIM_ERR; } /* Count the number of free objects. */ objPtr = interp->freeList; while (objPtr) { freeobj++; objPtr = objPtr->nextObjPtr; } /* Count the number of live objects. */ objPtr = interp->liveList; while (objPtr) { liveobj++; objPtr = objPtr->nextObjPtr; } /* Set the result string and return. */ sprintf(buf, "free %d used %d", freeobj, liveobj); Jim_SetResultString(interp, buf, -1); return JIM_OK; } else if (option == OPT_OBJECTS) { Jim_Obj *objPtr, *listObjPtr, *subListObjPtr; /* Count the number of live objects. */ objPtr = interp->liveList; listObjPtr = Jim_NewListObj(interp, NULL, 0); while (objPtr) { char buf[128]; const char *type = objPtr->typePtr ? objPtr->typePtr->name : ""; subListObjPtr = Jim_NewListObj(interp, NULL, 0); sprintf(buf, "%p", objPtr); Jim_ListAppendElement(interp, subListObjPtr, Jim_NewStringObj(interp, buf, -1)); Jim_ListAppendElement(interp, subListObjPtr, Jim_NewStringObj(interp, type, -1)); Jim_ListAppendElement(interp, subListObjPtr, Jim_NewIntObj(interp, objPtr->refCount)); Jim_ListAppendElement(interp, subListObjPtr, objPtr); Jim_ListAppendElement(interp, listObjPtr, subListObjPtr); objPtr = objPtr->nextObjPtr; } Jim_SetResult(interp, listObjPtr); return JIM_OK; } else if (option == OPT_INVSTR) { Jim_Obj *objPtr; if (argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "object"); return JIM_ERR; } objPtr = argv[2]; if (objPtr->typePtr != NULL) Jim_InvalidateStringRep(objPtr); Jim_SetEmptyResult(interp); return JIM_OK; } else if (option == OPT_SCRIPTLEN) { ScriptObj *script; if (argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "script"); return JIM_ERR; } script = Jim_GetScript(interp, argv[2]); Jim_SetResultInt(interp, script->len); return JIM_OK; } else if (option == OPT_EXPRLEN) { ExprByteCode *expr; if (argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "expression"); return JIM_ERR; } expr = Jim_GetExpression(interp, argv[2]); if (expr == NULL) return JIM_ERR; Jim_SetResultInt(interp, expr->len); return JIM_OK; } else if (option == OPT_EXPRBC) { Jim_Obj *objPtr; ExprByteCode *expr; int i; if (argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "expression"); return JIM_ERR; } expr = Jim_GetExpression(interp, argv[2]); if (expr == NULL) return JIM_ERR; objPtr = Jim_NewListObj(interp, NULL, 0); for (i = 0; i < expr->len; i++) { const char *type; const Jim_ExprOperator *op; Jim_Obj *obj = expr->token[i].objPtr; switch (expr->token[i].type) { case JIM_TT_EXPR_INT: type = "int"; break; case JIM_TT_EXPR_DOUBLE: type = "double"; break; case JIM_TT_CMD: type = "command"; break; case JIM_TT_VAR: type = "variable"; break; case JIM_TT_DICTSUGAR: type = "dictsugar"; break; case JIM_TT_ESC: type = "subst"; break; case JIM_TT_STR: type = "string"; break; default: op = JimExprOperatorInfoByOpcode(expr->token[i].type); if (op == NULL) { type = "private"; } else { type = "operator"; } obj = Jim_NewStringObj(interp, op ? op->name : "", -1); break; } Jim_ListAppendElement(interp, objPtr, Jim_NewStringObj(interp, type, -1)); Jim_ListAppendElement(interp, objPtr, obj); } Jim_SetResult(interp, objPtr); return JIM_OK; } else { Jim_SetResultString(interp, "bad option. Valid options are refcount, " "objcount, objects, invstr", -1); return JIM_ERR; } return JIM_OK; /* unreached */ } /* [eval] */ static int Jim_EvalCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int rc; if (argc < 2) { Jim_WrongNumArgs(interp, 1, argv, "script ?...?"); return JIM_ERR; } if (argc == 2) { rc = Jim_EvalObj(interp, argv[1]); } else { rc = Jim_EvalObj(interp, Jim_ConcatObj(interp, argc-1, argv+1)); } if (rc == JIM_ERR) { /* eval is "interesting", so add a stack frame here */ interp->addStackTrace++; } return rc; } /* [uplevel] */ static int Jim_UplevelCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { if (argc >= 2) { int retcode, newLevel, oldLevel; Jim_CallFrame *savedCallFrame, *targetCallFrame; Jim_Obj *objPtr; const char *str; /* Save the old callframe pointer */ savedCallFrame = interp->framePtr; /* Lookup the target frame pointer */ str = Jim_GetString(argv[1], NULL); if ((str[0] >= '0' && str[0] <= '9') || str[0] == '#') { if (Jim_GetCallFrameByLevel(interp, argv[1], &targetCallFrame, &newLevel) != JIM_OK) return JIM_ERR; argc--; argv++; } else { if (Jim_GetCallFrameByLevel(interp, NULL, &targetCallFrame, &newLevel) != JIM_OK) return JIM_ERR; } if (argc < 2) { argv--; Jim_WrongNumArgs(interp, 1, argv, "?level? command ?arg ...?"); return JIM_ERR; } /* Eval the code in the target callframe. */ interp->framePtr = targetCallFrame; oldLevel = interp->numLevels; interp->numLevels = newLevel; if (argc == 2) { retcode = Jim_EvalObj(interp, argv[1]); } else { objPtr = Jim_ConcatObj(interp, argc-1, argv+1); Jim_IncrRefCount(objPtr); retcode = Jim_EvalObj(interp, objPtr); Jim_DecrRefCount(interp, objPtr); } interp->numLevels = oldLevel; interp->framePtr = savedCallFrame; return retcode; } else { Jim_WrongNumArgs(interp, 1, argv, "?level? command ?arg ...?"); return JIM_ERR; } } /* [expr] */ static int Jim_ExprCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Obj *exprResultPtr; int retcode; if (argc == 2) { retcode = Jim_EvalExpression(interp, argv[1], &exprResultPtr); } else if (argc > 2) { Jim_Obj *objPtr; objPtr = Jim_ConcatObj(interp, argc-1, argv+1); Jim_IncrRefCount(objPtr); retcode = Jim_EvalExpression(interp, objPtr, &exprResultPtr); Jim_DecrRefCount(interp, objPtr); } else { Jim_WrongNumArgs(interp, 1, argv, "expression ?...?"); return JIM_ERR; } if (retcode != JIM_OK) return retcode; Jim_SetResult(interp, exprResultPtr); Jim_DecrRefCount(interp, exprResultPtr); return JIM_OK; } /* [break] */ static int Jim_BreakCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { if (argc != 1) { Jim_WrongNumArgs(interp, 1, argv, ""); return JIM_ERR; } return JIM_BREAK; } /* [continue] */ static int Jim_ContinueCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { if (argc != 1) { Jim_WrongNumArgs(interp, 1, argv, ""); return JIM_ERR; } return JIM_CONTINUE; } /* [return] */ static int Jim_ReturnCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { if (argc == 1) { return JIM_RETURN; } else if (argc == 2) { Jim_SetResult(interp, argv[1]); interp->returnCode = JIM_OK; return JIM_RETURN; } else if ((argc == 3 || argc == 4) && Jim_CompareStringImmediate(interp, argv[1], "-code")) { int returnCode; if (Jim_GetReturnCode(interp, argv[2], &returnCode) == JIM_ERR) return JIM_ERR; interp->returnCode = returnCode; if (argc == 4) Jim_SetResult(interp, argv[3]); return JIM_RETURN; } else { Jim_WrongNumArgs(interp, 1, argv, "?-code code? ?result?"); return JIM_ERR; } return JIM_RETURN; /* unreached */ } /* [tailcall] */ static int Jim_TailcallCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Obj *objPtr; objPtr = Jim_NewListObj(interp, argv+1, argc-1); Jim_SetResult(interp, objPtr); return JIM_EVAL; } /* [proc] */ static int Jim_ProcCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int argListLen; int leftArity, rightArity; int i; int optionalArgs = 0; int args = 0; if (argc != 4 && argc != 5) { Jim_WrongNumArgs(interp, 1, argv, "name arglist ?statics? body"); return JIM_ERR; } argListLen = Jim_ListLength(interp, argv[2]); leftArity = 0; rightArity = 0; /* Examine the argument list for default parameters and 'args' */ for (i = 0; i < argListLen; i++) { Jim_Obj *argPtr; int len; Jim_ListIndex(interp, argv[2], i, &argPtr, JIM_NONE); if (Jim_CompareStringImmediate(interp, argPtr, "args")) { if (args) { Jim_SetResultString(interp, "procedure has 'args' specified more than once", -1); return JIM_ERR; } if (rightArity) { Jim_SetResultString(interp, "procedure has 'args' in invalid position", -1); return JIM_ERR; } args = 1; continue; } /* Does this parameter have a default? */ Jim_GetString(argPtr, NULL); len = Jim_ListLength(interp, argPtr); if (len == 0) { Jim_SetResultString(interp, "procedure has argument with no name", -1); return JIM_ERR; } if (len > 2) { Jim_SetResultString(interp, "procedure has argument with too many fields", -1); return JIM_ERR; } if (len == 1) { /* A required arg. Is it part of leftArity or rightArity? */ if (optionalArgs || args) { rightArity++; } else { leftArity++; } } else { /* Optional arg. Can't be after rightArity */ if (rightArity || args) { Jim_SetResultString(interp, "procedure has optional arg in invalid position", -1); return JIM_ERR; } optionalArgs++; } } if (argc == 4) { return Jim_CreateProcedure(interp, Jim_GetString(argv[1], NULL), argv[2], NULL, argv[3], leftArity, optionalArgs, args, rightArity); } else { return Jim_CreateProcedure(interp, Jim_GetString(argv[1], NULL), argv[2], argv[3], argv[4], leftArity, optionalArgs, args, rightArity); } } /* [concat] */ static int Jim_ConcatCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_SetResult(interp, Jim_ConcatObj(interp, argc-1, argv+1)); return JIM_OK; } /* [upvar] */ static int Jim_UpvarCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int i; Jim_CallFrame *targetCallFrame; /* Lookup the target frame pointer */ if (argc > 3 && (argc % 2 == 0)) { if (Jim_GetCallFrameByLevel(interp, argv[1], &targetCallFrame, NULL) != JIM_OK) { return JIM_ERR; } argc--; argv++; } else if (Jim_GetCallFrameByLevel(interp, NULL, &targetCallFrame, NULL) != JIM_OK) { return JIM_ERR; } /* Check for arity */ if (argc < 3) { Jim_WrongNumArgs(interp, 1, argv, "?level? otherVar localVar ?otherVar localVar ...?"); return JIM_ERR; } /* Now... for every other/local couple: */ for (i = 1; i < argc; i += 2) { if (Jim_SetVariableLink(interp, argv[i+1], argv[i], targetCallFrame) != JIM_OK) return JIM_ERR; } return JIM_OK; } /* [global] */ static int Jim_GlobalCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int i; if (argc < 2) { Jim_WrongNumArgs(interp, 1, argv, "varName ?varName ...?"); return JIM_ERR; } /* Link every var to the toplevel having the same name */ if (interp->numLevels == 0) return JIM_OK; /* global at toplevel... */ for (i = 1; i < argc; i++) { if (Jim_SetVariableLink(interp, argv[i], argv[i], interp->topFramePtr) != JIM_OK) return JIM_ERR; } return JIM_OK; } /* does the [string map] operation. On error NULL is returned, * otherwise a new string object with the result, having refcount = 0, * is returned. */ static Jim_Obj *JimStringMap(Jim_Interp *interp, Jim_Obj *mapListObjPtr, Jim_Obj *objPtr, int nocase) { int numMaps; const char **key, *str, *noMatchStart = NULL; Jim_Obj **value; int *keyLen, strLen, i; Jim_Obj *resultObjPtr; numMaps = Jim_ListLength(interp, mapListObjPtr); if (numMaps % 2) { Jim_SetResultString(interp, "list must contain an even number of elements", -1); return NULL; } /* Initialization */ numMaps /= 2; key = Jim_Alloc(sizeof(char*)*numMaps); keyLen = Jim_Alloc(sizeof(int)*numMaps); value = Jim_Alloc(sizeof(Jim_Obj*)*numMaps); resultObjPtr = Jim_NewStringObj(interp, "", 0); for (i = 0; i < numMaps; i++) { Jim_Obj *eleObjPtr = 0; Jim_ListIndex(interp, mapListObjPtr, i*2, &eleObjPtr, JIM_NONE); key[i] = Jim_GetString(eleObjPtr, &keyLen[i]); Jim_ListIndex(interp, mapListObjPtr, i*2+1, &eleObjPtr, JIM_NONE); value[i] = eleObjPtr; } str = Jim_GetString(objPtr, &strLen); /* Map it */ while(strLen) { for (i = 0; i < numMaps; i++) { if (strLen >= keyLen[i] && keyLen[i]) { if (!JimStringCompare(str, keyLen[i], key[i], keyLen[i], nocase)) { if (noMatchStart) { Jim_AppendString(interp, resultObjPtr, noMatchStart, str-noMatchStart); noMatchStart = NULL; } Jim_AppendObj(interp, resultObjPtr, value[i]); str += keyLen[i]; strLen -= keyLen[i]; break; } } } if (i == numMaps) { /* no match */ if (noMatchStart == NULL) noMatchStart = str; str ++; strLen --; } } if (noMatchStart) { Jim_AppendString(interp, resultObjPtr, noMatchStart, str-noMatchStart); } Jim_Free((void*)key); Jim_Free(keyLen); Jim_Free(value); return resultObjPtr; } /* [string] */ static int Jim_StringCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int len; int opt_case = 1; int option; static const char *options[] = { "length", "compare", "match", "equal", "range", "map", "repeat", "reverse", "index", "first", "last", "trim", "trimleft", "trimright", "tolower", "toupper", NULL }; enum { OPT_LENGTH, OPT_COMPARE, OPT_MATCH, OPT_EQUAL, OPT_RANGE, OPT_MAP, OPT_REPEAT, OPT_REVERSE, OPT_INDEX, OPT_FIRST, OPT_LAST, OPT_TRIM, OPT_TRIMLEFT, OPT_TRIMRIGHT, OPT_TOLOWER, OPT_TOUPPER }; static const char *nocase_options[] = { "-nocase", NULL }; if (argc < 2) { Jim_WrongNumArgs(interp, 1, argv, "option ?arguments ...?"); return JIM_ERR; } if (Jim_GetEnum(interp, argv[1], options, &option, NULL, JIM_ERRMSG | JIM_ENUM_ABBREV) != JIM_OK) return JIM_ERR; switch (option) { case OPT_LENGTH: if (argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "string"); return JIM_ERR; } Jim_GetString(argv[2], &len); Jim_SetResultInt(interp, len); return JIM_OK; case OPT_COMPARE: case OPT_EQUAL: if (argc != 4 && (argc != 5 || Jim_GetEnum(interp, argv[2], nocase_options, &opt_case, NULL, JIM_ENUM_ABBREV) != JIM_OK)) { Jim_WrongNumArgs(interp, 2, argv, "?-nocase? string1 string2"); return JIM_ERR; } if (opt_case == 0) { argv++; } if (option == OPT_COMPARE) { Jim_SetResultInt(interp, Jim_StringCompareObj(argv[2], argv[3], !opt_case)); } else { Jim_SetResultBool(interp, Jim_StringEqObj(argv[2], argv[3], !opt_case)); } return JIM_OK; case OPT_MATCH: if (argc != 4 && (argc != 5 || Jim_GetEnum(interp, argv[2], nocase_options, &opt_case, NULL, JIM_ENUM_ABBREV) != JIM_OK)) { Jim_WrongNumArgs(interp, 2, argv, "?-nocase? pattern string"); return JIM_ERR; } if (opt_case == 0) { argv++; } Jim_SetResultBool(interp, Jim_StringMatchObj(argv[2], argv[3], !opt_case)); return JIM_OK; case OPT_MAP: { Jim_Obj *objPtr; if (argc != 4 && (argc != 5 || Jim_GetEnum(interp, argv[2], nocase_options, &opt_case, NULL, JIM_ENUM_ABBREV) != JIM_OK)) { Jim_WrongNumArgs(interp, 2, argv, "?-nocase? mapList string"); return JIM_ERR; } if (opt_case == 0) { argv++; } objPtr = JimStringMap(interp, argv[2], argv[3], !opt_case); if (objPtr == NULL) { return JIM_ERR; } Jim_SetResult(interp, objPtr); return JIM_OK; } case OPT_RANGE: { Jim_Obj *objPtr; if (argc != 5) { Jim_WrongNumArgs(interp, 2, argv, "string first last"); return JIM_ERR; } objPtr = Jim_StringRangeObj(interp, argv[2], argv[3], argv[4]); if (objPtr == NULL) { return JIM_ERR; } Jim_SetResult(interp, objPtr); return JIM_OK; } case OPT_REPEAT: { Jim_Obj *objPtr; jim_wide count; if (argc != 4) { Jim_WrongNumArgs(interp, 2, argv, "string count"); return JIM_ERR; } if (Jim_GetWide(interp, argv[3], &count) != JIM_OK) { return JIM_ERR; } objPtr = Jim_NewStringObj(interp, "", 0); if (count > 0) { while (count--) { Jim_AppendObj(interp, objPtr, argv[2]); } } Jim_SetResult(interp, objPtr); return JIM_OK; } case OPT_REVERSE: { char *buf; const char *str; int i; if (argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "string"); return JIM_ERR; } str = Jim_GetString(argv[2], &len); buf = Jim_Alloc(len + 1); for (i = 0; i < len; i++) { buf[i] = str[len - i - 1]; } buf[i] = 0; Jim_SetResult(interp, Jim_NewStringObjNoAlloc(interp, buf, len)); return JIM_OK; } case OPT_INDEX: { int index, len; const char *str; if (argc != 4) { Jim_WrongNumArgs(interp, 2, argv, "string index"); return JIM_ERR; } if (Jim_GetIndex(interp, argv[3], &index) != JIM_OK) { return JIM_ERR; } str = Jim_GetString(argv[2], &len); if (index != INT_MIN && index != INT_MAX) { index = JimRelToAbsIndex(len, index); } if (index < 0 || index >= len) { Jim_SetResultString(interp, "", 0); } else { Jim_SetResultString(interp, str + index, 1); } return JIM_OK; } case OPT_FIRST: case OPT_LAST: { int index = 0, l1, l2; const char *s1, *s2; if (argc != 4 && argc != 5) { Jim_WrongNumArgs(interp, 2, argv, "subString string ?index?"); return JIM_ERR; } s1 = Jim_GetString(argv[2], &l1); s2 = Jim_GetString(argv[3], &l2); if (argc == 5) { if (Jim_GetIndex(interp, argv[4], &index) != JIM_OK) { return JIM_ERR; } index = JimRelToAbsIndex(l2, index); } else if (option == OPT_LAST) { index = l2; } if (option == OPT_FIRST) { Jim_SetResultInt(interp, JimStringFirst(s1, l1, s2, l2, index)); } else { Jim_SetResultInt(interp, JimStringLast(s1, l1, s2, index)); } return JIM_OK; } case OPT_TRIM: case OPT_TRIMLEFT: case OPT_TRIMRIGHT: { Jim_Obj *trimchars; if (argc != 3 && argc != 4) { Jim_WrongNumArgs(interp, 2, argv, "string ?trimchars?"); return JIM_ERR; } trimchars = (argc == 4 ? argv[3] : NULL); if (option == OPT_TRIM) { Jim_SetResult(interp, JimStringTrim(interp, argv[2], trimchars)); } else if (option == OPT_TRIMLEFT) { Jim_SetResult(interp, JimStringTrimLeft(interp, argv[2], trimchars)); } else if (option == OPT_TRIMRIGHT) { Jim_SetResult(interp, JimStringTrimRight(interp, argv[2], trimchars)); } return JIM_OK; } case OPT_TOLOWER: case OPT_TOUPPER: if (argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "string"); return JIM_ERR; } if (option == OPT_TOLOWER) { Jim_SetResult(interp, JimStringToLower(interp, argv[2])); } else { Jim_SetResult(interp, JimStringToUpper(interp, argv[2])); } return JIM_OK; } return JIM_OK; } /* [time] */ static int Jim_TimeCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { long i, count = 1; jim_wide start, elapsed; char buf [256]; const char *fmt = "%" JIM_WIDE_MODIFIER " microseconds per iteration"; if (argc < 2) { Jim_WrongNumArgs(interp, 1, argv, "script ?count?"); return JIM_ERR; } if (argc == 3) { if (Jim_GetLong(interp, argv[2], &count) != JIM_OK) return JIM_ERR; } if (count < 0) return JIM_OK; i = count; start = JimClock(); while (i-- > 0) { int retval; retval = Jim_EvalObj(interp, argv[1]); if (retval != JIM_OK) { return retval; } } elapsed = JimClock() - start; sprintf(buf, fmt, elapsed/count); Jim_SetResultString(interp, buf, -1); return JIM_OK; } /* [exit] */ static int Jim_ExitCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { long exitCode = 0; if (argc > 2) { Jim_WrongNumArgs(interp, 1, argv, "?exitCode?"); return JIM_ERR; } if (argc == 2) { if (Jim_GetLong(interp, argv[1], &exitCode) != JIM_OK) return JIM_ERR; } interp->exitCode = exitCode; return JIM_EXIT; } /* [catch] */ static int Jim_CatchCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int exitCode = 0; int i; int sig = 0; /* Which return codes are caught? These are the defaults */ jim_wide mask = (1 << JIM_OK | 1 << JIM_ERR | 1 << JIM_BREAK | 1 << JIM_CONTINUE | 1 << JIM_RETURN); for (i = 1; i < argc - 2; i++) { const char *arg = Jim_GetString(argv[i], NULL); jim_wide option; int add; /* It's a pity we can't use Jim_GetEnum here :-( */ if (strncmp(arg, "-no", 3) == 0) { arg += 3; add = 0; } else if (*arg == '-') { arg++; add = 1; } else { goto wrongargs; } if (Jim_StringToWide(arg, &option, 10) != JIM_OK) { option = -1; } if (option < 0) { option = Jim_FindByName(arg, jimReturnCodes, jimReturnCodesSize); } if (option < 0) { goto wrongargs; } if (add) { mask |= (1 << option); } else { mask &= ~(1 << option); } } argc -= i; if (argc != 1 && argc != 2) { wrongargs: Jim_WrongNumArgs(interp, 1, argv, "?-?no?code ...? script ?varName?"); return JIM_ERR; } argv += i; if (mask & (1 << JIM_SIGNAL)) { sig++; } interp->signal_level += sig; exitCode = Jim_EvalObj(interp, argv[0]); interp->signal_level -= sig; /* Catch or pass through? Only the first 64 codes can be passed through */ if (exitCode >= 0 && exitCode < sizeof(mask) && ((1 << exitCode) & mask) == 0) { /* Not caught, pass it up */ return exitCode; } if (sig && exitCode == JIM_SIGNAL && interp->signal_level == 0) { /* Yes, catch the signal at this level */ if (interp->signal_to_name) { Jim_SetResultString(interp, interp->signal_to_name(interp->signal), -1); } else { Jim_SetResultInt(interp, interp->signal); } interp->signal = 0; } if (argc == 2) { if (Jim_SetVariable(interp, argv[1], Jim_GetResult(interp)) != JIM_OK) return JIM_ERR; } Jim_SetResultInt(interp, exitCode); return JIM_OK; } #ifdef JIM_REFERENCES /* [ref] */ static int Jim_RefCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { if (argc != 3 && argc != 4) { Jim_WrongNumArgs(interp, 1, argv, "string tag ?finalizer?"); return JIM_ERR; } if (argc == 3) { Jim_SetResult(interp, Jim_NewReference(interp, argv[1], argv[2], NULL)); } else { Jim_SetResult(interp, Jim_NewReference(interp, argv[1], argv[2], argv[3])); } return JIM_OK; } /* [getref] */ static int Jim_GetrefCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Reference *refPtr; if (argc != 2) { Jim_WrongNumArgs(interp, 1, argv, "reference"); return JIM_ERR; } if ((refPtr = Jim_GetReference(interp, argv[1])) == NULL) return JIM_ERR; Jim_SetResult(interp, refPtr->objPtr); return JIM_OK; } /* [setref] */ static int Jim_SetrefCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Reference *refPtr; if (argc != 3) { Jim_WrongNumArgs(interp, 1, argv, "reference newValue"); return JIM_ERR; } if ((refPtr = Jim_GetReference(interp, argv[1])) == NULL) return JIM_ERR; Jim_IncrRefCount(argv[2]); Jim_DecrRefCount(interp, refPtr->objPtr); refPtr->objPtr = argv[2]; Jim_SetResult(interp, argv[2]); return JIM_OK; } /* [collect] */ static int Jim_CollectCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { if (argc != 1) { Jim_WrongNumArgs(interp, 1, argv, ""); return JIM_ERR; } Jim_SetResultInt(interp, Jim_Collect(interp)); return JIM_OK; } /* [finalize] reference ?newValue? */ static int Jim_FinalizeCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { if (argc != 2 && argc != 3) { Jim_WrongNumArgs(interp, 1, argv, "reference ?finalizerProc?"); return JIM_ERR; } if (argc == 2) { Jim_Obj *cmdNamePtr; if (Jim_GetFinalizer(interp, argv[1], &cmdNamePtr) != JIM_OK) return JIM_ERR; if (cmdNamePtr != NULL) /* otherwise the null string is returned. */ Jim_SetResult(interp, cmdNamePtr); } else { if (Jim_SetFinalizer(interp, argv[1], argv[2]) != JIM_OK) return JIM_ERR; Jim_SetResult(interp, argv[2]); } return JIM_OK; } /* TODO */ /* [info references] (list of all the references/finalizers) */ #endif /* [rename] */ static int Jim_RenameCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { const char *oldName, *newName; if (argc != 3) { Jim_WrongNumArgs(interp, 1, argv, "oldName newName"); return JIM_ERR; } oldName = Jim_GetString(argv[1], NULL); newName = Jim_GetString(argv[2], NULL); if (Jim_RenameCommand(interp, oldName, newName) != JIM_OK) { Jim_SetResultFormatted(interp, "can't rename \"%#s\": command doesn't exist", argv[1]); return JIM_ERR; } return JIM_OK; } /* [dict] */ static int Jim_DictCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Obj *objPtr; int option; const char *options[] = { "create", "get", "set", "unset", "exists", NULL }; enum { OPT_CREATE, OPT_GET, OPT_SET, OPT_UNSET, OPT_EXIST }; if (argc < 2) { Jim_WrongNumArgs(interp, 1, argv, "subcommand ?arguments ...?"); return JIM_ERR; } if (Jim_GetEnum(interp, argv[1], options, &option, "subcommand", JIM_ERRMSG) != JIM_OK) { return JIM_ERR; } switch (option) { case OPT_GET: if (Jim_DictKeysVector(interp, argv[2], argv+3, argc-3, &objPtr, JIM_ERRMSG) != JIM_OK) { return JIM_ERR; } Jim_SetResult(interp, objPtr); return JIM_OK; case OPT_SET: if (argc < 5) { Jim_WrongNumArgs(interp, 2, argv, "varName key ?key ...? value"); return JIM_ERR; } return Jim_SetDictKeysVector(interp, argv[2], argv+3, argc-4, argv[argc-1]); case OPT_EXIST: Jim_SetResultBool(interp, Jim_DictKeysVector(interp, argv[2], argv+3, argc-3, &objPtr, JIM_ERRMSG) == JIM_OK); return JIM_OK; case OPT_UNSET: if (argc < 4) { Jim_WrongNumArgs(interp, 2, argv, "varName key ?key ...?"); return JIM_ERR; } return Jim_SetDictKeysVector(interp, argv[2], argv+3, argc-3, NULL); case OPT_CREATE: if (argc % 2) { Jim_WrongNumArgs(interp, 2, argv, "?key value ...?"); return JIM_ERR; } objPtr = Jim_NewDictObj(interp, argv+2, argc-2); Jim_SetResult(interp, objPtr); return JIM_OK; default: abort(); } } /* [subst] */ static int Jim_SubstCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { const char *options[] = { "-nobackslashes", "-nocommands", "-novariables", NULL }; enum {OPT_NOBACKSLASHES, OPT_NOCOMMANDS, OPT_NOVARIABLES}; int i; int flags = JIM_SUBST_FLAG; Jim_Obj *objPtr; if (argc < 2) { Jim_WrongNumArgs(interp, 1, argv, "?options? string"); return JIM_ERR; } for (i = 1; i < (argc-1); i++) { int option; if (Jim_GetEnum(interp, argv[i], options, &option, NULL, JIM_ERRMSG | JIM_ENUM_ABBREV) != JIM_OK) { return JIM_ERR; } switch(option) { case OPT_NOBACKSLASHES: flags |= JIM_SUBST_NOESC; break; case OPT_NOCOMMANDS: flags |= JIM_SUBST_NOCMD; break; case OPT_NOVARIABLES: flags |= JIM_SUBST_NOVAR; break; } } if (Jim_SubstObj(interp, argv[argc-1], &objPtr, flags) != JIM_OK) { return JIM_ERR; } Jim_SetResult(interp, objPtr); return JIM_OK; } /* [info] */ static int Jim_InfoCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int cmd; Jim_Obj *objPtr; int mode = 0; static const char *commands[] = { "body", "commands", "procs", "exists", "globals", "level", "locals", "vars", "version", "patchlevel", "complete", "args", "hostname", "script", "source", "stacktrace", "nameofexecutable", "returncodes", NULL }; enum {INFO_BODY, INFO_COMMANDS, INFO_PROCS, INFO_EXISTS, INFO_GLOBALS, INFO_LEVEL, INFO_LOCALS, INFO_VARS, INFO_VERSION, INFO_PATCHLEVEL, INFO_COMPLETE, INFO_ARGS, INFO_HOSTNAME, INFO_SCRIPT, INFO_SOURCE, INFO_STACKTRACE, INFO_NAMEOFEXECUTABLE, INFO_RETURNCODES }; if (argc < 2) { Jim_WrongNumArgs(interp, 1, argv, "subcommand ?args ...?"); return JIM_ERR; } if (Jim_GetEnum(interp, argv[1], commands, &cmd, "subcommand", JIM_ERRMSG | JIM_ENUM_ABBREV) != JIM_OK) { return JIM_ERR; } /* Test for the the most common commands first, just in case it makes a difference */ switch (cmd) { case INFO_EXISTS: { if (argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "varName"); return JIM_ERR; } Jim_SetResultBool(interp, Jim_GetVariable(interp, argv[2], 0) != NULL); break; } case INFO_COMMANDS: case INFO_PROCS: if (argc != 2 && argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "?pattern?"); return JIM_ERR; } Jim_SetResult(interp, JimCommandsList(interp, (argc == 3) ? argv[2] : NULL, (cmd == INFO_PROCS))); break; case INFO_VARS: mode++; /* JIM_VARLIST_VARS */ case INFO_LOCALS: mode++; /* JIM_VARLIST_LOCALS */ case INFO_GLOBALS: /* mode 0 => JIM_VARLIST_GLOBALS */ if (argc != 2 && argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "?pattern?"); return JIM_ERR; } Jim_SetResult(interp,JimVariablesList(interp, argc == 3 ? argv[2] : NULL, mode)); break; case INFO_SCRIPT: if (argc != 2) { Jim_WrongNumArgs(interp, 2, argv, ""); return JIM_ERR; } Jim_SetResultString(interp, Jim_GetScript(interp, interp->currentScriptObj)->fileName, -1); break; case INFO_SOURCE: { const char *filename = ""; int line = 0; Jim_Obj *resObjPtr; if (argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "source"); return JIM_ERR; } if (argv[2]->typePtr == &sourceObjType) { filename = argv[2]->internalRep.sourceValue.fileName; line = argv[2]->internalRep.sourceValue.lineNumber; } else if (argv[2]->typePtr == &scriptObjType) { ScriptObj *script = Jim_GetScript(interp, argv[2]); filename = script->fileName; if (script->token) { line = script->token->linenr; } } resObjPtr = Jim_NewListObj(interp, NULL, 0); Jim_ListAppendElement(interp, resObjPtr, Jim_NewStringObj(interp, filename, -1)); Jim_ListAppendElement(interp, resObjPtr, Jim_NewIntObj(interp, line)); Jim_SetResult(interp, resObjPtr); break; } case INFO_STACKTRACE: Jim_SetResult(interp, interp->stackTrace); break; case INFO_LEVEL: switch (argc) { case 2: Jim_SetResultInt(interp, interp->numLevels); break; case 3: if (JimInfoLevel(interp, argv[2], &objPtr) != JIM_OK) { return JIM_ERR; } Jim_SetResult(interp, objPtr); break; default: Jim_WrongNumArgs(interp, 2, argv, "?levelNum?"); return JIM_ERR; } break; case INFO_BODY: case INFO_ARGS: { Jim_Cmd *cmdPtr; if (argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "procname"); return JIM_ERR; } if ((cmdPtr = Jim_GetCommand(interp, argv[2], JIM_ERRMSG)) == NULL) { return JIM_ERR; } if (cmdPtr->cmdProc != NULL) { Jim_SetResultFormatted(interp, "command \"%#s\" is not a procedure", argv[2]); return JIM_ERR; } Jim_SetResult(interp, cmd == INFO_BODY ? cmdPtr->bodyObjPtr : cmdPtr->argListObjPtr); break; } case INFO_VERSION: case INFO_PATCHLEVEL: { char buf[(JIM_INTEGER_SPACE * 2) + 1]; sprintf(buf, "%d.%d", JIM_VERSION / 100, JIM_VERSION % 100); Jim_SetResultString(interp, buf, -1); break; } case INFO_COMPLETE: if (argc != 3) { Jim_WrongNumArgs(interp, 2, argv, "script"); return JIM_ERR; } else { int len; const char *s = Jim_GetString(argv[2], &len); Jim_SetResultBool(interp, Jim_ScriptIsComplete(s, len, NULL)); } break; case INFO_HOSTNAME: /* Redirect to os.gethostname if it exists */ return Jim_Eval(interp, "os.gethostname"); case INFO_NAMEOFEXECUTABLE: /* Redirect to Tcl proc */ return Jim_Eval(interp, "{info nameofexecutable}"); case INFO_RETURNCODES: { int i; Jim_Obj *listObjPtr = Jim_NewListObj(interp, NULL, 0); for (i = 0; jimReturnCodes[i]; i++) { Jim_ListAppendElement(interp, listObjPtr, Jim_NewIntObj(interp, i)); Jim_ListAppendElement(interp, listObjPtr, Jim_NewStringObj(interp, jimReturnCodes[i], -1)); } Jim_SetResult(interp, listObjPtr); break; } } return JIM_OK; } /* [split] */ static int Jim_SplitCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { const char *str, *splitChars, *noMatchStart; int splitLen, strLen, i; Jim_Obj *resObjPtr; if (argc != 2 && argc != 3) { Jim_WrongNumArgs(interp, 1, argv, "string ?splitChars?"); return JIM_ERR; } /* Init */ if (argc == 2) { splitChars = " \n\t\r"; splitLen = 4; } else { splitChars = Jim_GetString(argv[2], &splitLen); } str = Jim_GetString(argv[1], &strLen); if (!strLen) return JIM_OK; noMatchStart = str; resObjPtr = Jim_NewListObj(interp, NULL, 0); /* Split */ if (splitLen) { while (strLen) { for (i = 0; i < splitLen; i++) { if (*str == splitChars[i]) { Jim_Obj *objPtr; objPtr = Jim_NewStringObj(interp, noMatchStart, (str-noMatchStart)); Jim_ListAppendElement(interp, resObjPtr, objPtr); noMatchStart = str+1; break; } } str ++; strLen --; } Jim_ListAppendElement(interp, resObjPtr, Jim_NewStringObj(interp, noMatchStart, (str-noMatchStart))); } else { /* This handles the special case of splitchars eq {}. This * is trivial but we want to perform object sharing as Tcl does. */ Jim_Obj *objCache[256]; const unsigned char *u = (unsigned char*) str; memset(objCache, 0, sizeof(objCache)); for (i = 0; i < strLen; i++) { int c = u[i]; if (objCache[c] == NULL) objCache[c] = Jim_NewStringObj(interp, (char*)u+i, 1); Jim_ListAppendElement(interp, resObjPtr, objCache[c]); } } Jim_SetResult(interp, resObjPtr); return JIM_OK; } /* [join] */ static int Jim_JoinCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { const char *joinStr; int joinStrLen, i, listLen; Jim_Obj *resObjPtr; if (argc != 2 && argc != 3) { Jim_WrongNumArgs(interp, 1, argv, "list ?joinString?"); return JIM_ERR; } /* Init */ if (argc == 2) { joinStr = " "; joinStrLen = 1; } else { joinStr = Jim_GetString(argv[2], &joinStrLen); } listLen = Jim_ListLength(interp, argv[1]); resObjPtr = Jim_NewStringObj(interp, NULL, 0); /* Split */ for (i = 0; i < listLen; i++) { Jim_Obj *objPtr = 0; Jim_ListIndex(interp, argv[1], i, &objPtr, JIM_NONE); Jim_AppendObj(interp, resObjPtr, objPtr); if (i+1 != listLen) { Jim_AppendString(interp, resObjPtr, joinStr, joinStrLen); } } Jim_SetResult(interp, resObjPtr); return JIM_OK; } /* [format] */ static int Jim_FormatCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Obj *objPtr; if (argc < 2) { Jim_WrongNumArgs(interp, 1, argv, "formatString ?arg arg ...?"); return JIM_ERR; } objPtr = Jim_FormatString(interp, argv[1], argc-2, argv+2); if (objPtr == NULL) return JIM_ERR; Jim_SetResult(interp, objPtr); return JIM_OK; } /* [scan] */ static int Jim_ScanCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Obj *listPtr, **outVec; int outc, i, count = 0; if (argc < 3) { Jim_WrongNumArgs(interp, 1, argv, "string format ?varName varName ...?"); return JIM_ERR; } if (argv[2]->typePtr != &scanFmtStringObjType) SetScanFmtFromAny(interp, argv[2]); if (FormatGetError(argv[2]) != 0) { Jim_SetResultString(interp, FormatGetError(argv[2]), -1); return JIM_ERR; } if (argc > 3) { int maxPos = FormatGetMaxPos(argv[2]); int count = FormatGetCnvCount(argv[2]); if (maxPos > argc-3) { Jim_SetResultString(interp, "\"%n$\" argument index out of range", -1); return JIM_ERR; } else if (count > argc-3) { Jim_SetResultString(interp, "different numbers of variable names and " "field specifiers", -1); return JIM_ERR; } else if (count < argc-3) { Jim_SetResultString(interp, "variable is not assigned by any " "conversion specifiers", -1); return JIM_ERR; } } listPtr = Jim_ScanString(interp, argv[1], argv[2], JIM_ERRMSG); if (listPtr == 0) return JIM_ERR; if (argc > 3) { int rc = JIM_OK; count = 0; if (listPtr != 0 && listPtr != (Jim_Obj*)EOF) { int len = Jim_ListLength(interp, listPtr); if (len != 0) { JimListGetElements(interp, listPtr, &outc, &outVec); for (i = 0; i < outc; ++i) { if (Jim_Length(outVec[i]) > 0) { ++count; if (Jim_SetVariable(interp, argv[3+i], outVec[i]) != JIM_OK) { rc = JIM_ERR; } } } } Jim_FreeNewObj(interp, listPtr); } else { count = -1; } if (rc == JIM_OK) { Jim_SetResultInt(interp, count); } return rc; } else { if (listPtr == (Jim_Obj*)EOF) { Jim_SetResult(interp, Jim_NewListObj(interp, 0, 0)); return JIM_OK; } Jim_SetResult(interp, listPtr); } return JIM_OK; } /* [error] */ static int Jim_ErrorCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { if (argc != 2 && argc != 3) { Jim_WrongNumArgs(interp, 1, argv, "message ?stacktrace?"); return JIM_ERR; } Jim_SetResult(interp, argv[1]); if (argc == 3) { /* Increment reference first in case these are the same object */ Jim_IncrRefCount(argv[2]); Jim_DecrRefCount(interp, interp->stackTrace); interp->stackTrace = argv[2]; interp->errorFlag = 1; return JIM_ERR; } interp->addStackTrace++; return JIM_ERR; } /* [lrange] */ static int Jim_LrangeCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Obj *objPtr; if (argc != 4) { Jim_WrongNumArgs(interp, 1, argv, "list first last"); return JIM_ERR; } if ((objPtr = Jim_ListRange(interp, argv[1], argv[2], argv[3])) == NULL) return JIM_ERR; Jim_SetResult(interp, objPtr); return JIM_OK; } /* [lrepeat] */ static int Jim_LrepeatCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Obj *objPtr; long count; if (argc < 3 || Jim_GetLong(interp, argv[1], &count) != JIM_OK || count <= 0) { Jim_WrongNumArgs(interp, 1, argv, "positiveCount value ?value ...?"); return JIM_ERR; } argc -= 2; argv += 2; objPtr = Jim_NewListObj(interp, argv, argc); while (--count) { int i; for (i = 0; i < argc; i++) { ListAppendElement(objPtr, argv[i]); } } Jim_SetResult(interp, objPtr); return JIM_OK; } /* [env] */ static int Jim_EnvCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { const char *key; const char *val; if (argc == 1) { extern char **environ; int i; Jim_Obj *listObjPtr = Jim_NewListObj(interp, NULL, 0); for (i = 0; environ[i]; i++) { const char *equals = strchr(environ[i], '='); if (equals) { Jim_ListAppendElement(interp, listObjPtr, Jim_NewStringObj(interp, environ[i], equals - environ[i])); Jim_ListAppendElement(interp, listObjPtr, Jim_NewStringObj(interp, equals + 1, -1)); } } Jim_SetResult(interp, listObjPtr); return JIM_OK; } if (argc < 2) { Jim_WrongNumArgs(interp, 1, argv, "varName ?default?"); return JIM_ERR; } key = Jim_GetString(argv[1], NULL); val = getenv(key); if (val == NULL) { if (argc < 3) { Jim_SetResultFormatted(interp, "environment variable \"%#s\" does not exist", argv[1]); return JIM_ERR; } val = Jim_GetString(argv[2], NULL); } Jim_SetResult(interp, Jim_NewStringObj(interp, val, -1)); return JIM_OK; } /* [source] */ static int Jim_SourceCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { int retval; if (argc != 2) { Jim_WrongNumArgs(interp, 1, argv, "fileName"); return JIM_ERR; } retval = Jim_EvalFile(interp, Jim_GetString(argv[1], NULL)); if (retval == JIM_RETURN) return JIM_OK; return retval; } /* [lreverse] */ static int Jim_LreverseCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { Jim_Obj *revObjPtr, **ele; int len; if (argc != 2) { Jim_WrongNumArgs(interp, 1, argv, "list"); return JIM_ERR; } JimListGetElements(interp, argv[1], &len, &ele); len--; revObjPtr = Jim_NewListObj(interp, NULL, 0); while (len >= 0) ListAppendElement(revObjPtr, ele[len--]); Jim_SetResult(interp, revObjPtr); return JIM_OK; } static int JimRangeLen(jim_wide start, jim_wide end, jim_wide step) { jim_wide len; if (step == 0) return -1; if (start == end) return 0; else if (step > 0 && start > end) return -1; else if (step < 0 && end > start) return -1; len = end-start; if (len < 0) len = -len; /* abs(len) */ if (step < 0) step = -step; /* abs(step) */ len = 1 + ((len-1)/step); /* We can truncate safely to INT_MAX, the range command * will always return an error for a such long range * because Tcl lists can't be so long. */ if (len > INT_MAX) len = INT_MAX; return (int)((len < 0) ? -1 : len); } /* [range] */ static int Jim_RangeCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { jim_wide start = 0, end, step = 1; int len, i; Jim_Obj *objPtr; if (argc < 2 || argc > 4) { Jim_WrongNumArgs(interp, 1, argv, "?start? end ?step?"); return JIM_ERR; } if (argc == 2) { if (Jim_GetWide(interp, argv[1], &end) != JIM_OK) return JIM_ERR; } else { if (Jim_GetWide(interp, argv[1], &start) != JIM_OK || Jim_GetWide(interp, argv[2], &end) != JIM_OK) return JIM_ERR; if (argc == 4 && Jim_GetWide(interp, argv[3], &step) != JIM_OK) return JIM_ERR; } if ((len = JimRangeLen(start, end, step)) == -1) { Jim_SetResultString(interp, "Invalid (infinite?) range specified", -1); return JIM_ERR; } objPtr = Jim_NewListObj(interp, NULL, 0); for (i = 0; i < len; i++) ListAppendElement(objPtr, Jim_NewIntObj(interp, start+i*step)); Jim_SetResult(interp, objPtr); return JIM_OK; } /* [rand] */ static int Jim_RandCoreCommand(Jim_Interp *interp, int argc, Jim_Obj *const *argv) { jim_wide min = 0, max = 0, len, maxMul; if (argc < 1 || argc > 3) { Jim_WrongNumArgs(interp, 1, argv, "?min? max"); return JIM_ERR; } if (argc == 1) { max = JIM_WIDE_MAX; } else if (argc == 2) { if (Jim_GetWide(interp, argv[1], &max) != JIM_OK) return JIM_ERR; } else if (argc == 3) { if (Jim_GetWide(interp, argv[1], &min) != JIM_OK || Jim_GetWide(interp, argv[2], &max) != JIM_OK) return JIM_ERR; } len = max-min; if (len < 0) { Jim_SetResultString(interp, "Invalid arguments (max < min)", -1); return JIM_ERR; } maxMul = JIM_WIDE_MAX - (len ? (JIM_WIDE_MAX%len) : 0); while (1) { jim_wide r; JimRandomBytes(interp, &r, sizeof(jim_wide)); if (r < 0 || r >= maxMul) continue; r = (len == 0) ? 0 : r%len; Jim_SetResultInt(interp, min+r); return JIM_OK; } } static const struct { const char *name; Jim_CmdProc cmdProc; } Jim_CoreCommandsTable[] = { {"set", Jim_SetCoreCommand}, {"unset", Jim_UnsetCoreCommand}, {"puts", Jim_PutsCoreCommand}, {"+", Jim_AddCoreCommand}, {"*", Jim_MulCoreCommand}, {"-", Jim_SubCoreCommand}, {"/", Jim_DivCoreCommand}, {"incr", Jim_IncrCoreCommand}, {"while", Jim_WhileCoreCommand}, {"for", Jim_ForCoreCommand}, {"foreach", Jim_ForeachCoreCommand}, {"lmap", Jim_LmapCoreCommand}, {"if", Jim_IfCoreCommand}, {"switch", Jim_SwitchCoreCommand}, {"list", Jim_ListCoreCommand}, {"lindex", Jim_LindexCoreCommand}, {"lset", Jim_LsetCoreCommand}, {"lsearch", Jim_LsearchCoreCommand}, {"llength", Jim_LlengthCoreCommand}, {"lappend", Jim_LappendCoreCommand}, {"linsert", Jim_LinsertCoreCommand}, {"lreplace", Jim_LreplaceCoreCommand}, {"lsort", Jim_LsortCoreCommand}, {"append", Jim_AppendCoreCommand}, {"debug", Jim_DebugCoreCommand}, {"eval", Jim_EvalCoreCommand}, {"uplevel", Jim_UplevelCoreCommand}, {"expr", Jim_ExprCoreCommand}, {"break", Jim_BreakCoreCommand}, {"continue", Jim_ContinueCoreCommand}, {"proc", Jim_ProcCoreCommand}, {"concat", Jim_ConcatCoreCommand}, {"return", Jim_ReturnCoreCommand}, {"upvar", Jim_UpvarCoreCommand}, {"global", Jim_GlobalCoreCommand}, {"string", Jim_StringCoreCommand}, {"time", Jim_TimeCoreCommand}, {"exit", Jim_ExitCoreCommand}, {"catch", Jim_CatchCoreCommand}, #ifdef JIM_REFERENCES {"ref", Jim_RefCoreCommand}, {"getref", Jim_GetrefCoreCommand}, {"setref", Jim_SetrefCoreCommand}, {"finalize", Jim_FinalizeCoreCommand}, {"collect", Jim_CollectCoreCommand}, #endif {"rename", Jim_RenameCoreCommand}, {"dict", Jim_DictCoreCommand}, {"subst", Jim_SubstCoreCommand}, {"info", Jim_InfoCoreCommand}, {"split", Jim_SplitCoreCommand}, {"join", Jim_JoinCoreCommand}, {"format", Jim_FormatCoreCommand}, {"scan", Jim_ScanCoreCommand}, {"error", Jim_ErrorCoreCommand}, {"lrange", Jim_LrangeCoreCommand}, {"lrepeat", Jim_LrepeatCoreCommand}, {"env", Jim_EnvCoreCommand}, {"source", Jim_SourceCoreCommand}, {"lreverse", Jim_LreverseCoreCommand}, {"range", Jim_RangeCoreCommand}, {"rand", Jim_RandCoreCommand}, {"tailcall", Jim_TailcallCoreCommand}, {NULL, NULL}, }; /* Some Jim core command is actually a procedure written in Jim itself. */ static void Jim_RegisterCoreProcedures(Jim_Interp *interp) { #ifdef JIM_REFERENCES Jim_Eval(interp, "proc lambda {arglist args} {\n" " set name [ref {} function lambdaFinalizer]\n" " uplevel 1 [list proc $name $arglist {expand}$args]\n" " return $name\n" "}\n" "proc lambdaFinalizer {name val} {\n" " rename $name {}\n" "}\n" ); #endif } void Jim_RegisterCoreCommands(Jim_Interp *interp) { int i = 0; while(Jim_CoreCommandsTable[i].name != NULL) { Jim_CreateCommand(interp, Jim_CoreCommandsTable[i].name, Jim_CoreCommandsTable[i].cmdProc, NULL, NULL); i++; } Jim_RegisterCoreProcedures(interp); } /* ----------------------------------------------------------------------------- * Interactive prompt * ---------------------------------------------------------------------------*/ void Jim_PrintErrorMessage(Jim_Interp *interp) { int len, i; if (*interp->errorFileName) { fprintf(stderr, "%s:%d: Runtime Error: ", interp->errorFileName, interp->errorLine); } fprintf(stderr, "%s" JIM_NL, Jim_GetString(interp->result, NULL)); len = Jim_ListLength(interp, interp->stackTrace); for (i = len-3; i >= 0; i-= 3) { Jim_Obj *objPtr = 0; const char *proc, *file, *line; Jim_ListIndex(interp, interp->stackTrace, i, &objPtr, JIM_NONE); proc = Jim_GetString(objPtr, NULL); Jim_ListIndex(interp, interp->stackTrace, i+1, &objPtr, JIM_NONE); file = Jim_GetString(objPtr, NULL); Jim_ListIndex(interp, interp->stackTrace, i+2, &objPtr, JIM_NONE); line = Jim_GetString(objPtr, NULL); if (*proc) { fprintf(stderr, "in procedure '%s' ", proc); if (*file) { fprintf(stderr, "called "); } } if (*file) { fprintf(stderr, "at file \"%s\", line %s", file, line); } if (*file || *proc) { fprintf(stderr, JIM_NL); } } } static void JimSetFailedEnumResult(Jim_Interp *interp, const char *arg, const char *badtype, const char *prefix, const char * const *tablePtr, const char *name) { int count; char **tablePtrSorted; int i; for (count = 0; tablePtr[count]; count++) { } if (name == NULL) { name = "option"; } Jim_SetResultFormatted(interp, "%s%s \"%s\": must be ", badtype, name, arg); tablePtrSorted = Jim_Alloc(sizeof(char*)*count); memcpy(tablePtrSorted, tablePtr, sizeof(char*)*count); qsort(tablePtrSorted, count, sizeof(char*), qsortCompareStringPointers); for (i = 0; i < count; i++) { if (i+1 == count && count > 1) { Jim_AppendString(interp, Jim_GetResult(interp), "or ", -1); } Jim_AppendStrings(interp, Jim_GetResult(interp), prefix, tablePtrSorted[i], NULL); if (i+1 != count) { Jim_AppendString(interp, Jim_GetResult(interp), ", ", -1); } } Jim_Free(tablePtrSorted); } int Jim_GetEnum(Jim_Interp *interp, Jim_Obj *objPtr, const char * const *tablePtr, int *indexPtr, const char *name, int flags) { const char *bad = "bad "; const char * const *entryPtr = NULL; int i; int match = -1; int arglen; const char *arg = Jim_GetString(objPtr, &arglen); *indexPtr = -1; for (entryPtr = tablePtr, i = 0; *entryPtr != NULL; entryPtr++, i++) { if (Jim_CompareStringImmediate(interp, objPtr, *entryPtr)) { /* Found an exact match */ *indexPtr = i; return JIM_OK; } if (flags & JIM_ENUM_ABBREV) { /* Accept an unambiguous abbreviation. * Note that '-' doesnt' consitute a valid abbreviation */ if (strncmp(arg, *entryPtr, arglen) == 0) { if (*arg == '-' && arglen == 1) { break; } if (match >= 0) { bad = "ambiguous "; goto ambiguous; } match = i; } } } /* If we had an unambiguous partial match */ if (match >= 0) { *indexPtr = match; return JIM_OK; } ambiguous: if (flags & JIM_ERRMSG) { JimSetFailedEnumResult(interp, arg, bad, "", tablePtr, name); } return JIM_ERR; } int Jim_FindByName(const char *name, const char *array[], size_t len) { int i; for (i = 0; i < len; i++) { if (array[i] && strcmp(array[i], name) == 0) { return i; } } return -1; } int Jim_IsDict(Jim_Obj *objPtr) { return objPtr->typePtr == &dictObjType; } int Jim_IsList(Jim_Obj *objPtr) { return objPtr->typePtr == &listObjType; } /** * Very simple printf-like formatting, designed for error messages. * * The format may contain up to 5 '%s' or '%#s', corresponding to variable arguments. * The resulting string is created and set as the result. * * Each '%s' should correspond to a regular string parameter. * Each '%#s' should correspond to a (Jim_Obj *) parameter. * Any other printf specifier is not allowed (but %% is allowed for the % character). * * e.g. Jim_SetResultFormatted(interp, "Bad option \"%#s\" in proc \"%#s\"", optionObjPtr, procNamePtr); * * Note: We take advantage of the fact that printf has the same behaviour for both %s and %#s */ void Jim_SetResultFormatted(Jim_Interp *interp, const char *format, ...) { /* Initial space needed */ int len = strlen(format); int extra = 0; int n = 0; const char *params[5]; char *buf; va_list args; int i; va_start(args, format); for (i = 0; i < len && n < 5; i++) { int l; if (strncmp(format + i, "%s", 2) == 0) { params[n] = va_arg(args, char*); l = strlen(params[n]); } else if (strncmp(format + i, "%#s", 3) == 0) { Jim_Obj *objPtr = va_arg(args, Jim_Obj*); params[n] = Jim_GetString(objPtr, &l); } else { if (format[i] == '%') { i++; } continue; } n++; extra += l; } len += extra; buf = Jim_Alloc(len + 1); len = snprintf(buf, len + 1, format, params[0], params[1], params[2], params[3], params[4]); Jim_SetResult(interp, Jim_NewStringObjNoAlloc(interp, buf, len)); } /* * Local Variables: *** * c-basic-offset: 4 *** * tab-width: 4 *** * End: *** */