aboutsummaryrefslogtreecommitdiff
path: root/src/flash/nor/stm32h7x.c
blob: 01e6f06dce2f6f39b180bfbf676ea0d99a6bf2da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
/***************************************************************************
 *   Copyright (C) 2017 by STMicroelectronics                              *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
 ***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>


/* Erase time can be as high as 1000ms, 10x this and it's toast... */
#define FLASH_ERASE_TIMEOUT 10000
#define FLASH_WRITE_TIMEOUT 5

/* RM 433 */
/* Same Flash registers for both banks, */
/* access depends on Flash Base address */
#define FLASH_ACR       0x00
#define FLASH_KEYR      0x04
#define FLASH_OPTKEYR   0x08
#define FLASH_CR        0x0C
#define FLASH_SR        0x10
#define FLASH_CCR       0x14
#define FLASH_OPTCR     0x18
#define FLASH_OPTCUR    0x1C
#define FLASH_OPTPRG    0x20
#define FLASH_OPTCCR    0x24
#define FLASH_WPSNCUR   0x38
#define FLASH_WPSNPRG   0x3C


/* FLASH_CR register bits */
#define FLASH_LOCK     (1 << 0)
#define FLASH_PG       (1 << 1)
#define FLASH_SER      (1 << 2)
#define FLASH_BER_CMD  (1 << 3)
#define FLASH_PSIZE_8  (0 << 4)
#define FLASH_PSIZE_16 (1 << 4)
#define FLASH_PSIZE_32 (2 << 4)
#define FLASH_PSIZE_64 (3 << 4)
#define FLASH_FW       (1 << 6)
#define FLASH_START    (1 << 7)

#define FLASH_SNB(a)   ((a) << 8)

/* FLASH_SR register bits */
#define FLASH_BSY      (1 << 0)  /* Operation in progress */
#define FLASH_WRPERR   (1 << 17) /* Write protection error */
#define FLASH_PGSERR   (1 << 18) /* Programming sequence error */
#define FLASH_STRBERR  (1 << 19) /* Strobe error */
#define FLASH_INCERR   (1 << 21) /* Increment error */
#define FLASH_OPERR    (1 << 22) /* Operation error */
#define FLASH_RDPERR   (1 << 23) /* Read Protection error */
#define FLASH_RDSERR   (1 << 24) /* Secure Protection error */
#define FLASH_SNECCERR (1 << 25) /* Single ECC error */
#define FLASH_DBECCERR (1 << 26) /* Double ECC error */

#define FLASH_ERROR (FLASH_WRPERR | FLASH_PGSERR | FLASH_STRBERR | FLASH_INCERR | FLASH_OPERR | \
					 FLASH_RDPERR | FLASH_RDSERR | FLASH_SNECCERR | FLASH_DBECCERR)

/* FLASH_OPTCR register bits */
#define OPT_LOCK       (1 << 0)
#define OPT_START      (1 << 1)

/* FLASH_OPTCUR bit definitions (reading) */
#define IWDG1_HW       (1 << 4)

/* register unlock keys */
#define KEY1           0x45670123
#define KEY2           0xCDEF89AB

/* option register unlock key */
#define OPTKEY1        0x08192A3B
#define OPTKEY2        0x4C5D6E7F

#define DBGMCU_IDCODE_REGISTER  0x5C001000
#define FLASH_BANK0_ADDRESS     0x08000000
#define FLASH_BANK1_ADDRESS     0x08100000
#define FLASH_REG_BASE_B0       0x52002000
#define FLASH_REG_BASE_B1       0x52002100
#define FLASH_SIZE_ADDRESS      0x1FF1E880
#define FLASH_BLOCK_SIZE        32

struct stm32h7x_rev {
	uint16_t rev;
	const char *str;
};

struct stm32x_options {
	uint8_t RDP;
	uint32_t protection;  /* bank1 WRP */
	uint32_t protection2; /* bank2 WRP */
	uint8_t user_options;
	uint8_t user2_options;
	uint8_t user3_options;
	uint8_t independent_watchdog_selection;
};

struct stm32h7x_part_info {
	uint16_t id;
	const char *device_str;
	const struct stm32h7x_rev *revs;
	size_t num_revs;
	unsigned int page_size;
	unsigned int pages_per_sector;
	uint16_t max_flash_size_kb;
	uint8_t has_dual_bank;
	uint16_t first_bank_size_kb; /* Used when has_dual_bank is true */
	uint32_t flash_base;         /* Flash controller registers location */
	uint32_t fsize_base;         /* Location of FSIZE register */
};

struct stm32h7x_flash_bank {
	int probed;
	uint32_t idcode;
	uint32_t user_bank_size;
	uint32_t flash_base;    /* Address of flash reg controller */
	struct stm32x_options option_bytes;
	const struct stm32h7x_part_info *part_info;
};

static const struct stm32h7x_rev stm32_450_revs[] = {
	{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" },
};

static const struct stm32h7x_part_info stm32h7x_parts[] = {
	{
	.id					= 0x450,
	.revs				= stm32_450_revs,
	.num_revs			= ARRAY_SIZE(stm32_450_revs),
	.device_str			= "STM32H7xx 2M",
	.page_size			= 128,  /* 128 KB */
	.max_flash_size_kb	= 2048,
	.first_bank_size_kb	= 1024,
	.has_dual_bank		= 1,
	.flash_base			= FLASH_REG_BASE_B0,
	.fsize_base			= FLASH_SIZE_ADDRESS,
	},
};

static int stm32x_unlock_reg(struct flash_bank *bank);
static int stm32x_lock_reg(struct flash_bank *bank);
static int stm32x_probe(struct flash_bank *bank);

/* flash bank stm32x <base> <size> 0 0 <target#> */

FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
	struct stm32h7x_flash_bank *stm32x_info;

	if (CMD_ARGC < 6)
		return ERROR_COMMAND_SYNTAX_ERROR;

	stm32x_info = malloc(sizeof(struct stm32h7x_flash_bank));
	bank->driver_priv = stm32x_info;

	stm32x_info->probed = 0;
	stm32x_info->user_bank_size = bank->size;

	return ERROR_OK;
}

static inline uint32_t stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
{
	struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
	return reg + stm32x_info->flash_base;
}

static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
	struct target *target = bank->target;
	return target_read_u32(target, stm32x_get_flash_reg(bank, FLASH_SR), status);
}

static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
{
	struct target *target = bank->target;
	struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
	uint32_t status;
	int retval;

	/* wait for busy to clear */
	for (;;) {
		retval = stm32x_get_flash_status(bank, &status);
		if (retval != ERROR_OK) {
			LOG_INFO("wait_status_busy, target_read_u32 : error : remote address 0x%x", stm32x_info->flash_base);
			return retval;
		}

		if ((status & FLASH_BSY) == 0)
			break;

		if (timeout-- <= 0) {
			LOG_INFO("wait_status_busy, time out expired, status: 0x%" PRIx32 "", status);
			return ERROR_FAIL;
		}
		alive_sleep(1);
	}

	if (status & FLASH_WRPERR) {
		LOG_INFO("wait_status_busy, WRPERR : error : remote address 0x%x", stm32x_info->flash_base);
		retval = ERROR_FAIL;
	}

	/* Clear error + EOP flags but report errors */
	if (status & FLASH_ERROR) {
		/* If this operation fails, we ignore it and report the original retval */
		target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CCR), status);
	}
	return retval;
}

static int stm32x_unlock_reg(struct flash_bank *bank)
{
	uint32_t ctrl;
	struct target *target = bank->target;

	/* first check if not already unlocked
	 * otherwise writing on FLASH_KEYR will fail
	 */
	int retval = target_read_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if ((ctrl & FLASH_LOCK) == 0)
		return ERROR_OK;

	/* unlock flash registers for bank */
	retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_KEYR), KEY1);
	if (retval != ERROR_OK)
		return retval;

	retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_KEYR), KEY2);
	if (retval != ERROR_OK)
		return retval;

	retval = target_read_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if (ctrl & FLASH_LOCK) {
		LOG_ERROR("flash not unlocked STM32_FLASH_CRx: %" PRIx32, ctrl);
		return ERROR_TARGET_FAILURE;
	}
	return ERROR_OK;
}

static int stm32x_unlock_option_reg(struct flash_bank *bank)
{
	uint32_t ctrl;
	struct target *target = bank->target;

	int retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCR, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if ((ctrl & OPT_LOCK) == 0)
		return ERROR_OK;

	/* unlock option registers */
	retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTKEYR, OPTKEY1);
	if (retval != ERROR_OK)
		return retval;

	retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTKEYR, OPTKEY2);
	if (retval != ERROR_OK)
		return retval;

	retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCR, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if (ctrl & OPT_LOCK) {
		LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: %" PRIx32, ctrl);
		return ERROR_TARGET_FAILURE;
	}

	return ERROR_OK;
}

static int stm32x_lock_reg(struct flash_bank *bank)
{
	struct target *target = bank->target;

	/* Lock bank reg */
	int retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_LOCK);
	if (retval != ERROR_OK)
		return retval;

	return ERROR_OK;
}

static int stm32x_read_options(struct flash_bank *bank)
{
	uint32_t optiondata;
	struct stm32h7x_flash_bank *stm32x_info = NULL;
	struct target *target = bank->target;

	stm32x_info = bank->driver_priv;

	/* read current option bytes */
	int retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCUR, &optiondata);
	if (retval != ERROR_OK)
		return retval;

	/* decode option data */
	stm32x_info->option_bytes.user_options = optiondata & 0xfc;
	stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
	stm32x_info->option_bytes.user2_options = (optiondata >> 16) & 0xff;
	stm32x_info->option_bytes.user3_options = (optiondata >> 24) & 0x83;

	if (optiondata & IWDG1_HW)
		stm32x_info->option_bytes.independent_watchdog_selection = 1;
	else
		stm32x_info->option_bytes.independent_watchdog_selection = 0;

	if (stm32x_info->option_bytes.RDP != 0xAA)
		LOG_INFO("Device Security Bit Set");

	/* read current WPSN option bytes */
	retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_WPSNCUR, &optiondata);
	if (retval != ERROR_OK)
		return retval;
	stm32x_info->option_bytes.protection = optiondata & 0xff;

	/* read current WPSN2 option bytes */
	retval = target_read_u32(target, FLASH_REG_BASE_B1 + FLASH_WPSNCUR, &optiondata);
	if (retval != ERROR_OK)
		return retval;
	stm32x_info->option_bytes.protection2 = optiondata & 0xff;

	return ERROR_OK;
}

static int stm32x_write_options(struct flash_bank *bank)
{
	struct stm32h7x_flash_bank *stm32x_info = NULL;
	struct target *target = bank->target;
	uint32_t optiondata;

	stm32x_info = bank->driver_priv;

	int retval = stm32x_unlock_option_reg(bank);
	if (retval != ERROR_OK)
		return retval;

	/* rebuild option data */
	optiondata = stm32x_info->option_bytes.user_options;
	optiondata |= (stm32x_info->option_bytes.RDP << 8);
	optiondata |= (stm32x_info->option_bytes.user2_options & 0xff) << 16;
	optiondata |= (stm32x_info->option_bytes.user3_options & 0x83) << 24;

	if (stm32x_info->option_bytes.independent_watchdog_selection)
		optiondata |= IWDG1_HW;
	else
		optiondata &= ~IWDG1_HW;

	/* program options */
	retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTPRG, optiondata);
		if (retval != ERROR_OK)
			return retval;

	optiondata = stm32x_info->option_bytes.protection & 0xff;
	/* Program protection WPSNPRG */
	retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_WPSNPRG, optiondata);
		if (retval != ERROR_OK)
			return retval;

	optiondata = stm32x_info->option_bytes.protection2 & 0xff;
	/* Program protection WPSNPRG2 */
	retval = target_write_u32(target, FLASH_REG_BASE_B1 + FLASH_WPSNPRG, optiondata);
		if (retval != ERROR_OK)
			return retval;

	optiondata = 0x40000000;
	/* Remove OPT error flag before programming */
	retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCCR, optiondata);
		if (retval != ERROR_OK)
			return retval;

	/* start programming cycle */
	retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCR, OPT_START);
	if (retval != ERROR_OK)
		return retval;

	/* wait for completion */
	int timeout = FLASH_ERASE_TIMEOUT;
	for (;;) {
		uint32_t status;
		retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_SR, &status);
		if (retval != ERROR_OK) {
			LOG_INFO("stm32x_write_options: wait_status_busy : error");
			return retval;
		}
		if ((status & FLASH_BSY) == 0)
			break;

		if (timeout-- <= 0) {
			LOG_INFO("wait_status_busy, time out expired, status: 0x%" PRIx32 "", status);
			return ERROR_FAIL;
		}
		alive_sleep(1);
	}

	/* relock option registers */
	retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCR, OPT_LOCK);
	if (retval != ERROR_OK)
		return retval;

	return ERROR_OK;
}

static int stm32x_protect_check(struct flash_bank *bank)
{
	struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;

	/* read 'write protection' settings */
	int retval = stm32x_read_options(bank);
	if (retval != ERROR_OK) {
		LOG_DEBUG("unable to read option bytes");
		return retval;
	}

	for (int i = 0; i < bank->num_sectors; i++) {
		if (stm32x_info->flash_base == FLASH_REG_BASE_B0) {
			if (stm32x_info->option_bytes.protection & (1 << i))
				bank->sectors[i].is_protected = 0;
			else
				bank->sectors[i].is_protected = 1;
		} else {
			if (stm32x_info->option_bytes.protection2 & (1 << i))
				bank->sectors[i].is_protected = 0;
			else
				bank->sectors[i].is_protected = 1;
		}
	}
	return ERROR_OK;
}

static int stm32x_erase(struct flash_bank *bank, int first, int last)
{
	struct target *target = bank->target;
	int retval;

	assert(first < bank->num_sectors);
	assert(last < bank->num_sectors);

	if (bank->target->state != TARGET_HALTED)
		return ERROR_TARGET_NOT_HALTED;

	retval = stm32x_unlock_reg(bank);
	if (retval != ERROR_OK)
		return retval;

	/*
	Sector Erase
	To erase a sector, follow the procedure below:
	1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
	  FLASH_SR register
	2. Set the SER bit and select the sector
	  you wish to erase (SNB) in the FLASH_CR register
	3. Set the STRT bit in the FLASH_CR register
	4. Wait for the BSY bit to be cleared
	 */
	for (int i = first; i <= last; i++) {
		LOG_DEBUG("erase sector %d", i);
		retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR),
				FLASH_SER | FLASH_SNB(i) | FLASH_PSIZE_64);
		if (retval != ERROR_OK) {
			LOG_ERROR("Error erase sector %d", i);
			return retval;
		}
		retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR),
				FLASH_SER | FLASH_SNB(i) | FLASH_PSIZE_64 | FLASH_START);
		if (retval != ERROR_OK) {
			LOG_ERROR("Error erase sector %d", i);
			return retval;
		}
		retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);

		if (retval != ERROR_OK) {
			LOG_ERROR("erase time-out error sector %d", i);
			return retval;
		}
		bank->sectors[i].is_erased = 1;
	}

	retval = stm32x_lock_reg(bank);
	if (retval != ERROR_OK) {
		LOG_ERROR("error during the lock of flash");
		return retval;
	}

	return ERROR_OK;
}

static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
{
	struct target *target = bank->target;
	struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}
	/* read protection settings */
	int retval = stm32x_read_options(bank);
	if (retval != ERROR_OK) {
		LOG_DEBUG("unable to read option bytes");
		return retval;
	}

	for (int i = first; i <= last; i++) {
		if (stm32x_info->flash_base == FLASH_REG_BASE_B0) {
			if (set)
				stm32x_info->option_bytes.protection &= ~(1 << i);
			else
				stm32x_info->option_bytes.protection |= (1 << i);
		} else {
			if (set)
				stm32x_info->option_bytes.protection2 &= ~(1 << i);
			else
				stm32x_info->option_bytes.protection2 |= (1 << i);
		}
	}

	LOG_INFO("stm32x_protect, option_bytes written WRP1 0x%x , WRP2 0x%x",
	  (stm32x_info->option_bytes.protection & 0xff), (stm32x_info->option_bytes.protection2 & 0xff));

	retval = stm32x_write_options(bank);
	if (retval != ERROR_OK)
		return retval;

	return ERROR_OK;
}

static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
		uint32_t offset, uint32_t count)
{
	struct target *target = bank->target;
	/*
	 * If the size of the data part of the buffer is not a multiple of FLASH_BLOCK_SIZE, we get
	 * "corrupted fifo read" pointer in target_run_flash_async_algorithm()
	 */
	uint32_t data_size = 512 * FLASH_BLOCK_SIZE;	/* 16384 */
	uint32_t buffer_size = 8 + data_size;
	struct working_area *write_algorithm;
	struct working_area *source;
	uint32_t address = bank->base + offset;
	struct reg_param reg_params[5];
	struct armv7m_algorithm armv7m_info;
	struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
	int retval = ERROR_OK;

	/* see contrib/loaders/flash/smt32h7x.S for src */
	static const uint8_t stm32x_flash_write_code[] = {
								/* <code>: */
		0x45, 0x68,				/*		ldr		r5, [r0, #4] */
								/* <wait_fifo>: */
		0x06, 0x68,				/*		ldr		r6, [r0, #0] */
		0x26, 0xb3,				/*		cbz		r6, <exit> */
		0x76, 0x1b,				/*		subs	r6, r6, r5 */
		0x42, 0xbf,				/*		ittt	mi */
		0x76, 0x18,				/*		addmi	r6, r6, r1 */
		0x36, 0x1a,				/*		submi	r6, r6, r0 */
		0x08, 0x3e,				/*		submi	r6, #8 */
		0x20, 0x2e,				/*		cmp		r6, #32 */
		0xf6, 0xd3,				/*		bcc.n	<wait_fifo> */
		0x4f, 0xf0, 0x32, 0x06,	/*		mov.w	r6, #STM32_PROG */
		0xe6, 0x60,				/*		str		r6, [r4, #STM32_FLASH_CR_OFFSET] */
		0x4f, 0xf0, 0x08, 0x07,	/*		mov.w	r7, #8 */
								/* <write_flash>: */
		0x55, 0xf8, 0x04, 0x6b,	/*		ldr.w	r6, [r5], #4 */
		0x42, 0xf8, 0x04, 0x6b,	/*		str.w	r6, [r2], #4 */
		0xbf, 0xf3, 0x4f, 0x8f,	/*		dsb		sy */
		0x8d, 0x42,				/*		cmp		r5, r1 */
		0x28, 0xbf,				/*		it		cs */
		0x00, 0xf1, 0x08, 0x05,	/*		addcs.w	r5, r0, #8 */
		0x01, 0x3f,				/*		subs	r7, #1 */
		0xf3, 0xd1,				/*		bne.n	<write_flash> */
								/* <busy>: */
		0x26, 0x69,				/*		ldr		r6, [r4, #STM32_FLASH_SR_OFFSET] */
		0x16, 0xf0, 0x01, 0x0f,	/*		tst.w	r6, #STM32_SR_BUSY_MASK */
		0xfb, 0xd1,				/*		bne.n	<busy> */
		0x05, 0x4f,				/*		ldr		r7, [pc, #20] ; (<stm32_sr_error_mask>) */
		0x3e, 0x42,				/*		tst		r6, r7 */
		0x03, 0xd1,				/*		bne.n	<error> */
		0x45, 0x60,				/*		str		r5, [r0, #4] */
		0x01, 0x3b,				/*		subs	r3, #1 */
		0xdb, 0xd1,				/*		bne.n	<wait_fifo> */
		0x01, 0xe0,				/*		b.n		<exit> */
								/* <error>: */
		0x00, 0x27,				/*		movs	r7, #0 */
		0x47, 0x60,				/*		str		r7, [r0, #4] */
								/* <exit>: */
		0x30, 0x46,				/*		mov		r0, r6 */
		0x00, 0xbe,				/*		bkpt	0x0000 */
								/* <stm32_sr_error_mask>: */
		0x00, 0x00, 0xee, 0x03	/*		.word	0x03ee0000 ; (STM32_SR_ERROR_MASK) */
	};

	if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
			&write_algorithm) != ERROR_OK) {
		LOG_WARNING("no working area available, can't do block memory writes");
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	retval = target_write_buffer(target, write_algorithm->address,
			sizeof(stm32x_flash_write_code),
			stm32x_flash_write_code);
	if (retval != ERROR_OK)
		return retval;

	/* memory buffer */
	while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
		data_size /= 2;
		buffer_size = 8 + data_size;
		if (data_size <= 256) {
			/* we already allocated the writing code, but failed to get a
			 * buffer, free the algorithm */
			target_free_working_area(target, write_algorithm);

			LOG_WARNING("no large enough working area available, can't do block memory writes");
			return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
		}
	}

	LOG_DEBUG("target_alloc_working_area_try : buffer_size -> 0x%x", buffer_size);

	armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
	armv7m_info.core_mode = ARM_MODE_THREAD;

	init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);		/* buffer start, status (out) */
	init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);		/* buffer end */
	init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);		/* target address */
	init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);		/* count (word-256 bits) */
	init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);		/* flash reg base */

	buf_set_u32(reg_params[0].value, 0, 32, source->address);
	buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
	buf_set_u32(reg_params[2].value, 0, 32, address);
	buf_set_u32(reg_params[3].value, 0, 32, count);
	buf_set_u32(reg_params[4].value, 0, 32, stm32x_info->flash_base);

	retval = target_run_flash_async_algorithm(target,
						  buffer,
						  count,
						  FLASH_BLOCK_SIZE,
						  0, NULL,
						  5, reg_params,
						  source->address, source->size,
						  write_algorithm->address, 0,
						  &armv7m_info);

	if (retval == ERROR_FLASH_OPERATION_FAILED) {
		LOG_INFO("error executing stm32h7x flash write algorithm");

		uint32_t flash_sr = buf_get_u32(reg_params[0].value, 0, 32);

		if (flash_sr & FLASH_WRPERR)
			LOG_ERROR("flash memory write protected");

		if ((flash_sr & FLASH_ERROR) != 0) {
			LOG_ERROR("flash write failed, FLASH_SR = %08" PRIx32, flash_sr);
			/* Clear error + EOP flags but report errors */
			target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CCR), flash_sr);
			retval = ERROR_FAIL;
		}
	}

	target_free_working_area(target, source);
	target_free_working_area(target, write_algorithm);

	destroy_reg_param(&reg_params[0]);
	destroy_reg_param(&reg_params[1]);
	destroy_reg_param(&reg_params[2]);
	destroy_reg_param(&reg_params[3]);
	destroy_reg_param(&reg_params[4]);
	return retval;
}

static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
		uint32_t offset, uint32_t count)
{
	struct target *target = bank->target;
	uint32_t address = bank->base + offset;
	int retval, retval2;

	if (bank->target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if (offset % FLASH_BLOCK_SIZE) {
		LOG_WARNING("offset 0x%" PRIx32 " breaks required 32-byte alignment", offset);
		return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
	}

	retval = stm32x_unlock_reg(bank);
	if (retval != ERROR_OK)
		return retval;

	uint32_t blocks_remaining = count / FLASH_BLOCK_SIZE;
	uint32_t bytes_remaining = count % FLASH_BLOCK_SIZE;

	/* multiple words (32-bytes) to be programmed in block */
	if (blocks_remaining) {
		retval = stm32x_write_block(bank, buffer, offset, blocks_remaining);
		if (retval != ERROR_OK) {
			if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
				/* if block write failed (no sufficient working area),
				 * we use normal (slow) dword accesses */
				LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
			}
		} else {
			buffer += blocks_remaining * FLASH_BLOCK_SIZE;
			address += blocks_remaining * FLASH_BLOCK_SIZE;
			blocks_remaining = 0;
		}
		if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
			goto flash_lock;
	}

	/*
	Standard programming
	The Flash memory programming sequence is as follows:
	1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
	   FLASH_SR register.
	2. Set the PG bit in the FLASH_CR register
	3. 8 x Word access (or Force Write FW)
	4. Wait for the BSY bit to be cleared
	*/
	while (blocks_remaining > 0) {
		retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_PG | FLASH_PSIZE_64);
		if (retval != ERROR_OK)
			goto flash_lock;

		retval = target_write_buffer(target, address, FLASH_BLOCK_SIZE, buffer);
		if (retval != ERROR_OK)
			goto flash_lock;

		retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
		if (retval != ERROR_OK)
			goto flash_lock;

		buffer += FLASH_BLOCK_SIZE;
		address += FLASH_BLOCK_SIZE;
		blocks_remaining--;
	}

	if (bytes_remaining) {
		retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_PG | FLASH_PSIZE_64);
		if (retval != ERROR_OK)
			goto flash_lock;

		retval = target_write_buffer(target, address, bytes_remaining, buffer);
		if (retval != ERROR_OK)
			goto flash_lock;

		/* Force Write buffer of FLASH_BLOCK_SIZE = 32 bytes */
		retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_PG | FLASH_PSIZE_64 | FLASH_FW);
		if (retval != ERROR_OK)
			goto flash_lock;

		retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
		if (retval != ERROR_OK)
			goto flash_lock;
	}

flash_lock:
	retval2 = stm32x_lock_reg(bank);
	if (retval2 != ERROR_OK)
		LOG_ERROR("error during the lock of flash");

	if (retval == ERROR_OK)
		retval = retval2;

	return retval;
}

static void setup_sector(struct flash_bank *bank, int start, int num, int size)
{
	for (int i = start; i < (start + num) ; i++) {
		assert(i < bank->num_sectors);
		bank->sectors[i].offset = bank->size;
		bank->sectors[i].size = size;
		bank->size += bank->sectors[i].size;
	}
}

static int stm32x_read_id_code(struct flash_bank *bank, uint32_t *id)
{
	/* read stm32 device id register */
	int retval = target_read_u32(bank->target, DBGMCU_IDCODE_REGISTER, id);
	if (retval != ERROR_OK)
		return retval;
	return ERROR_OK;
}

static int stm32x_probe(struct flash_bank *bank)
{
	struct target *target = bank->target;
	struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
	int i;
	uint16_t flash_size_in_kb;
	uint32_t device_id;
	uint32_t base_address = FLASH_BANK0_ADDRESS;
	uint32_t second_bank_base;

	stm32x_info->probed = 0;
	stm32x_info->part_info = NULL;

	int retval = stm32x_read_id_code(bank, &stm32x_info->idcode);
	if (retval != ERROR_OK)
		return retval;

	LOG_DEBUG("device id = 0x%08" PRIx32 "", stm32x_info->idcode);

	device_id = stm32x_info->idcode & 0xfff;

	for (unsigned int n = 0; n < ARRAY_SIZE(stm32h7x_parts); n++) {
		if (device_id == stm32h7x_parts[n].id)
			stm32x_info->part_info = &stm32h7x_parts[n];
	}
	if (!stm32x_info->part_info) {
		LOG_WARNING("Cannot identify target as a STM32H7xx family.");
		return ERROR_FAIL;
	} else {
		LOG_INFO("Device: %s", stm32x_info->part_info->device_str);
	}

	/* update the address of controller from data base */
	stm32x_info->flash_base = stm32x_info->part_info->flash_base;

	/* get flash size from target */
	retval = target_read_u16(target, stm32x_info->part_info->fsize_base, &flash_size_in_kb);
	if (retval != ERROR_OK) {
		/* read error when device has invalid value, set max flash size */
		flash_size_in_kb = stm32x_info->part_info->max_flash_size_kb;
	} else
		LOG_INFO("flash size probed value %d", flash_size_in_kb);

	/* Lower flash size devices are single bank */
	if (stm32x_info->part_info->has_dual_bank && (flash_size_in_kb > stm32x_info->part_info->first_bank_size_kb)) {
		/* Use the configured base address to determine if this is the first or second flash bank.
		 * Verify that the base address is reasonably correct and determine the flash bank size
		 */
		second_bank_base = base_address + stm32x_info->part_info->first_bank_size_kb * 1024;
		if (bank->base == second_bank_base) {
			/* This is the second bank  */
			base_address = second_bank_base;
			flash_size_in_kb = flash_size_in_kb - stm32x_info->part_info->first_bank_size_kb;
			/* bank1 also uses a register offset */
			stm32x_info->flash_base = FLASH_REG_BASE_B1;
		} else if (bank->base == base_address) {
			/* This is the first bank */
			flash_size_in_kb = stm32x_info->part_info->first_bank_size_kb;
		} else {
			LOG_WARNING("STM32H flash bank base address config is incorrect."
				    " 0x%" PRIx32 " but should rather be 0x%" PRIx32 " or 0x%" PRIx32,
					bank->base, base_address, second_bank_base);
			return ERROR_FAIL;
		}
		LOG_INFO("STM32H flash has dual banks. Bank (%d) size is %dkb, base address is 0x%" PRIx32,
				bank->bank_number, flash_size_in_kb, base_address);
	} else {
		LOG_INFO("STM32H flash size is %dkb, base address is 0x%" PRIx32, flash_size_in_kb, base_address);
	}

	/* if the user sets the size manually then ignore the probed value
	 * this allows us to work around devices that have an invalid flash size register value */
	if (stm32x_info->user_bank_size) {
		LOG_INFO("ignoring flash probed value, using configured bank size");
		flash_size_in_kb = stm32x_info->user_bank_size / 1024;
	} else if (flash_size_in_kb == 0xffff) {
		/* die flash size */
		flash_size_in_kb = stm32x_info->part_info->max_flash_size_kb;
	}

	/* did we assign flash size? */
	assert(flash_size_in_kb != 0xffff);

	/* calculate numbers of pages */
	int num_pages = flash_size_in_kb / stm32x_info->part_info->page_size;

	/* check that calculation result makes sense */
	assert(num_pages > 0);

	if (bank->sectors) {
		free(bank->sectors);
		bank->sectors = NULL;
	}

	bank->base = base_address;
	bank->num_sectors = num_pages;
	bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
	if (bank->sectors == NULL) {
		LOG_ERROR("failed to allocate bank sectors");
		return ERROR_FAIL;
	}
	bank->size = 0;

	/* fixed memory */
	setup_sector(bank, 0, num_pages, stm32x_info->part_info->page_size * 1024);

	for (i = 0; i < num_pages; i++) {
		bank->sectors[i].is_erased = -1;
		bank->sectors[i].is_protected = 0;
	}

	stm32x_info->probed = 1;
	return ERROR_OK;
}

static int stm32x_auto_probe(struct flash_bank *bank)
{
	struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;

	if (stm32x_info->probed)
		return ERROR_OK;

	return stm32x_probe(bank);
}

/* This method must return a string displaying information about the bank */
static int stm32x_get_info(struct flash_bank *bank, char *buf, int buf_size)
{
	struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
	const struct stm32h7x_part_info *info = stm32x_info->part_info;

	if (!stm32x_info->probed) {
		int retval = stm32x_probe(bank);
		if (retval != ERROR_OK) {
			snprintf(buf, buf_size, "Unable to find bank information.");
			return retval;
		}
	}

	if (info) {
		const char *rev_str = NULL;
		uint16_t rev_id = stm32x_info->idcode >> 16;

		for (unsigned int i = 0; i < info->num_revs; i++)
			if (rev_id == info->revs[i].rev)
				rev_str = info->revs[i].str;

		if (rev_str != NULL) {
			snprintf(buf, buf_size, "%s - Rev: %s",
				stm32x_info->part_info->device_str, rev_str);
		} else {
			snprintf(buf, buf_size,
				 "%s - Rev: unknown (0x%04x)",
				stm32x_info->part_info->device_str, rev_id);
		}
	} else {
	  snprintf(buf, buf_size, "Cannot identify target as a STM32H7x");
	  return ERROR_FAIL;
	}
	return ERROR_OK;
}

COMMAND_HANDLER(stm32x_handle_lock_command)
{
	struct target *target = NULL;
	struct stm32h7x_flash_bank *stm32x_info = NULL;

	if (CMD_ARGC < 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;

	stm32x_info = bank->driver_priv;
	target = bank->target;

	/* if we have a dual flash bank device then
	 * we need to perform option byte lock on bank0 only */
	if (stm32x_info->flash_base != FLASH_REG_BASE_B0) {
		LOG_ERROR("Option Byte Lock Operation must use bank0");
		return ERROR_FLASH_OPERATION_FAILED;
	}

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if (stm32x_read_options(bank) != ERROR_OK) {
		command_print(CMD_CTX, "%s failed to read options",
			      bank->driver->name);
		return ERROR_OK;
	}
	/* set readout protection */
	stm32x_info->option_bytes.RDP = 0;

	if (stm32x_write_options(bank) != ERROR_OK) {
		command_print(CMD_CTX, "%s failed to lock device",
			      bank->driver->name);
		return ERROR_OK;
	}
	command_print(CMD_CTX, "%s locked", bank->driver->name);

	return ERROR_OK;
}

COMMAND_HANDLER(stm32x_handle_unlock_command)
{
	struct target *target = NULL;
	struct stm32h7x_flash_bank *stm32x_info = NULL;

	if (CMD_ARGC < 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;

	stm32x_info = bank->driver_priv;
	target = bank->target;

	/* if we have a dual flash bank device then
	 * we need to perform option byte unlock on bank0 only */
	if (stm32x_info->flash_base != FLASH_REG_BASE_B0) {
		LOG_ERROR("Option Byte Unlock Operation must use bank0");
		return ERROR_FLASH_OPERATION_FAILED;
	}

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if (stm32x_read_options(bank) != ERROR_OK) {
		command_print(CMD_CTX, "%s failed to read options", bank->driver->name);
		return ERROR_OK;
	}

	/* clear readout protection option byte
	 * this will also force a device unlock if set */
	stm32x_info->option_bytes.RDP = 0xAA;

	if (stm32x_write_options(bank) != ERROR_OK) {
		command_print(CMD_CTX, "%s failed to unlock device", bank->driver->name);
		return ERROR_OK;
	}
	command_print(CMD_CTX, "%s unlocked.\n", bank->driver->name);

	return ERROR_OK;
}

static int stm32x_mass_erase(struct flash_bank *bank)
{
	int retval;
	struct target *target = bank->target;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	retval = stm32x_unlock_reg(bank);
	if (retval != ERROR_OK)
		return retval;

	/* mass erase flash memory bank */
	retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_BER_CMD | FLASH_PSIZE_64);
	if (retval != ERROR_OK)
		return retval;

	retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR),
							  FLASH_BER_CMD | FLASH_PSIZE_64 | FLASH_START);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32x_wait_status_busy(bank, 30000);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32x_lock_reg(bank);
	if (retval != ERROR_OK) {
		LOG_ERROR("error during the lock of flash");
		return retval;
	}
	return ERROR_OK;
}

COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
	int i;

	if (CMD_ARGC < 1) {
		command_print(CMD_CTX, "stm32h7x mass_erase <bank>");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;

	retval = stm32x_mass_erase(bank);
	if (retval == ERROR_OK) {
		/* set all sectors as erased */
		for (i = 0; i < bank->num_sectors; i++)
			bank->sectors[i].is_erased = 1;

		command_print(CMD_CTX, "stm32h7x mass erase complete");
	} else {
		command_print(CMD_CTX, "stm32h7x mass erase failed");
	}

	return retval;
}

static const struct command_registration stm32x_exec_command_handlers[] = {
	{
		.name = "lock",
		.handler = stm32x_handle_lock_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Lock entire flash device.",
	},
	{
		.name = "unlock",
		.handler = stm32x_handle_unlock_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Unlock entire protected flash device.",
	},
	{
		.name = "mass_erase",
		.handler = stm32x_handle_mass_erase_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Erase entire flash device.",
	},
	COMMAND_REGISTRATION_DONE
};

static const struct command_registration stm32x_command_handlers[] = {
	{
		.name = "stm32h7x",
		.mode = COMMAND_ANY,
		.help = "stm32h7x flash command group",
		.usage = "",
		.chain = stm32x_exec_command_handlers,
	},
	COMMAND_REGISTRATION_DONE
};

struct flash_driver stm32h7x_flash = {
	.name = "stm32h7x",
	.commands = stm32x_command_handlers,
	.flash_bank_command = stm32x_flash_bank_command,
	.erase = stm32x_erase,
	.protect = stm32x_protect,
	.write = stm32x_write,
	.read = default_flash_read,
	.probe = stm32x_probe,
	.auto_probe = stm32x_auto_probe,
	.erase_check = default_flash_blank_check,
	.protect_check = stm32x_protect_check,
	.info = stm32x_get_info,
};