# SPDX-License-Identifier: GPL-2.0-or-later # # Source the ESP common configuration file. source [find target/esp_common.cfg] # Target specific global variables set _CHIPNAME "riscv" set _CPUTAPID 0x00010c25 set _ESP_ARCH "riscv" set _ONLYCPU 1 set _ESP_SMP_TARGET 0 set _ESP_SMP_BREAK 0 set _ESP_EFUSE_MAC_ADDR_REG 0x600B0844 # Target specific functions should be implemented for each riscv chips. proc riscv_wdt_disable { } { # Halt event can occur during config phase (before "init" is done). # Ignore it since mww commands don't work at that time. if { [string compare [command mode] config] == 0 } { return } # Timer Group 0 & 1 WDTs mww 0x60009064 0x50D83AA1 mww 0x60009048 0 mww 0x6000A064 0x50D83AA1 mww 0x6000A048 0 # WDT_RTC #mww 0x600b1c18 0x50D83AA1 #mww 0x600B1C00 0 # WDT_SWD #mww 0x600b1c20 0x8F1D312A #mww 0x600b1c1c 0x84B00000 } proc riscv_soc_reset { } { global _RISCV_DMCONTROL _RISCV_SB_CS _RISCV_SB_ADDR0 _RISCV_SB_DATA0 riscv dmi_write $_RISCV_DMCONTROL 0x80000001 riscv dmi_write $_RISCV_SB_CS 0x48000 riscv dmi_write $_RISCV_SB_ADDR0 0x600b1034 riscv dmi_write $_RISCV_SB_DATA0 0x80000000 # clear dmactive to clear sbbusy otherwise debug module gets stuck riscv dmi_write $_RISCV_DMCONTROL 0 riscv dmi_write $_RISCV_SB_CS 0x48000 riscv dmi_write $_RISCV_SB_ADDR0 0x600b1038 riscv dmi_write $_RISCV_SB_DATA0 0x10000000 # clear dmactive to clear sbbusy otherwise debug module gets stuck riscv dmi_write $_RISCV_DMCONTROL 0 riscv dmi_write $_RISCV_DMCONTROL 0x40000001 # Here debugger reads dmstatus as 0xc03a2 # Wait for the reset to happen sleep 10 poll # Here debugger reads dmstatus as 0x3a2 # Disable the watchdogs again riscv_wdt_disable # Here debugger reads anyhalted and allhalted bits as set (0x3a2) # We will clean allhalted state by resuming the core. riscv dmi_write $_RISCV_DMCONTROL 0x40000001 # Put the hart back into reset state. Note that we need to keep haltreq set. riscv dmi_write $_RISCV_DMCONTROL 0x80000003 } proc riscv_memprot_is_enabled { } { global _RISCV_ABS_CMD _RISCV_ABS_DATA0 # If IRAM/DRAM split is enabled, PMPADDR 5-6 will cover valid IRAM region and PMPADDR 7 will cover valid DRAM region # Only TOR mode is used for IRAM and DRAM protections. # Read pmpcfg1 and extract into 8-bit variables. riscv dmi_write $_RISCV_ABS_CMD 0x2203a1 set pmpcfg1 [riscv dmi_read $_RISCV_ABS_DATA0] set pmp5cfg [expr {($pmpcfg1 >> (8 * 1)) & 0xFF}] set pmp6cfg [expr {($pmpcfg1 >> (8 * 2)) & 0xFF}] set pmp7cfg [expr {($pmpcfg1 >> (8 * 3)) & 0xFF}] # Read PMPADDR 5-7 riscv dmi_write $_RISCV_ABS_CMD 0x2203b5 set pmpaddr5 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] riscv dmi_write $_RISCV_ABS_CMD 0x2203b6 set pmpaddr6 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] riscv dmi_write $_RISCV_ABS_CMD 0x2203b7 set pmpaddr7 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] set IRAM_LOW 0x40800000 set IRAM_HIGH 0x40850000 set DRAM_LOW 0x40800000 set DRAM_HIGH 0x40850000 set PMP_RWX 0x07 set PMP_RW 0x03 # The lock bit remains unset during the execution of the 2nd stage bootloader. # Thus, we do not perform a lock bit check for IRAM and DRAM regions. # Check OpenOCD can write and execute from IRAM. if {$pmpaddr5 >= $IRAM_LOW && $pmpaddr6 <= $IRAM_HIGH} { if {($pmp5cfg & $PMP_RWX) != 0 || ($pmp6cfg & $PMP_RWX) != $PMP_RWX} { return 1 } } # Check OpenOCD can read/write entire DRAM region. # If IRAM/DRAM split is disabled, pmpaddr7 will be zero, checking only IRAM region is enough. if {$pmpaddr7 != 0 && $pmpaddr7 >= $DRAM_LOW && $pmpaddr7 <= $DRAM_HIGH} { if {($pmp7cfg & $PMP_RW) != $PMP_RW} { return 1 } } return 0 } create_esp_target $_ESP_ARCH