/***************************************************************************
* Copyright (C) 2006, 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2009 Michael Schwingen *
* michael@schwingen.org *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "xscale.h"
#include "target_type.h"
#include "arm_jtag.h"
#include "arm_simulator.h"
#include "arm_disassembler.h"
#include
#include "register.h"
#include "image.h"
#include "arm_opcodes.h"
#include "armv4_5.h"
/*
* Important XScale documents available as of October 2009 include:
*
* Intel XScale® Core Developer’s Manual, January 2004
* Order Number: 273473-002
* This has a chapter detailing debug facilities, and punts some
* details to chip-specific microarchitecture documents.
*
* Hot-Debug for Intel XScale® Core Debug White Paper, May 2005
* Document Number: 273539-005
* Less detailed than the developer's manual, but summarizes those
* missing details (for most XScales) and gives LOTS of notes about
* debugger/handler interaction issues. Presents a simpler reset
* and load-handler sequence than the arch doc. (Note, OpenOCD
* doesn't currently support "Hot-Debug" as defined there.)
*
* Chip-specific microarchitecture documents may also be useful.
*/
/* forward declarations */
static int xscale_resume(struct target *, int current,
target_addr_t address, int handle_breakpoints, int debug_execution);
static int xscale_debug_entry(struct target *);
static int xscale_restore_banked(struct target *);
static int xscale_get_reg(struct reg *reg);
static int xscale_set_reg(struct reg *reg, uint8_t *buf);
static int xscale_set_breakpoint(struct target *, struct breakpoint *);
static int xscale_set_watchpoint(struct target *, struct watchpoint *);
static int xscale_unset_breakpoint(struct target *, struct breakpoint *);
static int xscale_read_trace(struct target *);
/* This XScale "debug handler" is loaded into the processor's
* mini-ICache, which is 2K of code writable only via JTAG.
*/
static const uint8_t xscale_debug_handler[] = {
#include "../../contrib/loaders/debug/xscale/debug_handler.inc"
};
static const char *const xscale_reg_list[] = {
"XSCALE_MAINID", /* 0 */
"XSCALE_CACHETYPE",
"XSCALE_CTRL",
"XSCALE_AUXCTRL",
"XSCALE_TTB",
"XSCALE_DAC",
"XSCALE_FSR",
"XSCALE_FAR",
"XSCALE_PID",
"XSCALE_CPACCESS",
"XSCALE_IBCR0", /* 10 */
"XSCALE_IBCR1",
"XSCALE_DBR0",
"XSCALE_DBR1",
"XSCALE_DBCON",
"XSCALE_TBREG",
"XSCALE_CHKPT0",
"XSCALE_CHKPT1",
"XSCALE_DCSR",
"XSCALE_TX",
"XSCALE_RX", /* 20 */
"XSCALE_TXRXCTRL",
};
static const struct xscale_reg xscale_reg_arch_info[] = {
{XSCALE_MAINID, NULL},
{XSCALE_CACHETYPE, NULL},
{XSCALE_CTRL, NULL},
{XSCALE_AUXCTRL, NULL},
{XSCALE_TTB, NULL},
{XSCALE_DAC, NULL},
{XSCALE_FSR, NULL},
{XSCALE_FAR, NULL},
{XSCALE_PID, NULL},
{XSCALE_CPACCESS, NULL},
{XSCALE_IBCR0, NULL},
{XSCALE_IBCR1, NULL},
{XSCALE_DBR0, NULL},
{XSCALE_DBR1, NULL},
{XSCALE_DBCON, NULL},
{XSCALE_TBREG, NULL},
{XSCALE_CHKPT0, NULL},
{XSCALE_CHKPT1, NULL},
{XSCALE_DCSR, NULL}, /* DCSR accessed via JTAG or SW */
{-1, NULL}, /* TX accessed via JTAG */
{-1, NULL}, /* RX accessed via JTAG */
{-1, NULL}, /* TXRXCTRL implicit access via JTAG */
};
/* convenience wrapper to access XScale specific registers */
static int xscale_set_reg_u32(struct reg *reg, uint32_t value)
{
uint8_t buf[4];
buf_set_u32(buf, 0, 32, value);
return xscale_set_reg(reg, buf);
}
static const char xscale_not[] = "target is not an XScale";
static int xscale_verify_pointer(struct command_context *cmd_ctx,
struct xscale_common *xscale)
{
if (xscale->common_magic != XSCALE_COMMON_MAGIC) {
command_print(cmd_ctx, xscale_not);
return ERROR_TARGET_INVALID;
}
return ERROR_OK;
}
static int xscale_jtag_set_instr(struct jtag_tap *tap, uint32_t new_instr, tap_state_t end_state)
{
assert(tap != NULL);
if (buf_get_u32(tap->cur_instr, 0, tap->ir_length) != new_instr) {
struct scan_field field;
uint8_t scratch[4];
memset(&field, 0, sizeof field);
field.num_bits = tap->ir_length;
field.out_value = scratch;
buf_set_u32(scratch, 0, field.num_bits, new_instr);
jtag_add_ir_scan(tap, &field, end_state);
}
return ERROR_OK;
}
static int xscale_read_dcsr(struct target *target)
{
struct xscale_common *xscale = target_to_xscale(target);
int retval;
struct scan_field fields[3];
uint8_t field0 = 0x0;
uint8_t field0_check_value = 0x2;
uint8_t field0_check_mask = 0x7;
uint8_t field2 = 0x0;
uint8_t field2_check_value = 0x0;
uint8_t field2_check_mask = 0x1;
xscale_jtag_set_instr(target->tap,
XSCALE_SELDCSR << xscale->xscale_variant,
TAP_DRPAUSE);
buf_set_u32(&field0, 1, 1, xscale->hold_rst);
buf_set_u32(&field0, 2, 1, xscale->external_debug_break);
memset(&fields, 0, sizeof fields);
fields[0].num_bits = 3;
fields[0].out_value = &field0;
uint8_t tmp;
fields[0].in_value = &tmp;
fields[1].num_bits = 32;
fields[1].in_value = xscale->reg_cache->reg_list[XSCALE_DCSR].value;
fields[2].num_bits = 1;
fields[2].out_value = &field2;
uint8_t tmp2;
fields[2].in_value = &tmp2;
jtag_add_dr_scan(target->tap, 3, fields, TAP_DRPAUSE);
jtag_check_value_mask(fields + 0, &field0_check_value, &field0_check_mask);
jtag_check_value_mask(fields + 2, &field2_check_value, &field2_check_mask);
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("JTAG error while reading DCSR");
return retval;
}
xscale->reg_cache->reg_list[XSCALE_DCSR].dirty = 0;
xscale->reg_cache->reg_list[XSCALE_DCSR].valid = 1;
/* write the register with the value we just read
* on this second pass, only the first bit of field0 is guaranteed to be 0)
*/
field0_check_mask = 0x1;
fields[1].out_value = xscale->reg_cache->reg_list[XSCALE_DCSR].value;
fields[1].in_value = NULL;
jtag_add_dr_scan(target->tap, 3, fields, TAP_DRPAUSE);
/* DANGER!!! this must be here. It will make sure that the arguments
* to jtag_set_check_value() does not go out of scope! */
return jtag_execute_queue();
}
static void xscale_getbuf(jtag_callback_data_t arg)
{
uint8_t *in = (uint8_t *)arg;
*((uint32_t *)arg) = buf_get_u32(in, 0, 32);
}
static int xscale_receive(struct target *target, uint32_t *buffer, int num_words)
{
if (num_words == 0)
return ERROR_COMMAND_SYNTAX_ERROR;
struct xscale_common *xscale = target_to_xscale(target);
int retval = ERROR_OK;
tap_state_t path[3];
struct scan_field fields[3];
uint8_t *field0 = malloc(num_words * 1);
uint8_t field0_check_value = 0x2;
uint8_t field0_check_mask = 0x6;
uint32_t *field1 = malloc(num_words * 4);
uint8_t field2_check_value = 0x0;
uint8_t field2_check_mask = 0x1;
int words_done = 0;
int words_scheduled = 0;
int i;
path[0] = TAP_DRSELECT;
path[1] = TAP_DRCAPTURE;
path[2] = TAP_DRSHIFT;
memset(&fields, 0, sizeof fields);
fields[0].num_bits = 3;
uint8_t tmp;
fields[0].in_value = &tmp;
fields[0].check_value = &field0_check_value;
fields[0].check_mask = &field0_check_mask;
fields[1].num_bits = 32;
fields[2].num_bits = 1;
uint8_t tmp2;
fields[2].in_value = &tmp2;
fields[2].check_value = &field2_check_value;
fields[2].check_mask = &field2_check_mask;
xscale_jtag_set_instr(target->tap,
XSCALE_DBGTX << xscale->xscale_variant,
TAP_IDLE);
jtag_add_runtest(1, TAP_IDLE); /* ensures that we're in the TAP_IDLE state as the above
*could be a no-op */
/* repeat until all words have been collected */
int attempts = 0;
while (words_done < num_words) {
/* schedule reads */
words_scheduled = 0;
for (i = words_done; i < num_words; i++) {
fields[0].in_value = &field0[i];
jtag_add_pathmove(3, path);
fields[1].in_value = (uint8_t *)(field1 + i);
jtag_add_dr_scan_check(target->tap, 3, fields, TAP_IDLE);
jtag_add_callback(xscale_getbuf, (jtag_callback_data_t)(field1 + i));
words_scheduled++;
}
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("JTAG error while receiving data from debug handler");
break;
}
/* examine results */
for (i = words_done; i < num_words; i++) {
if (!(field0[i] & 1)) {
/* move backwards if necessary */
int j;
for (j = i; j < num_words - 1; j++) {
field0[j] = field0[j + 1];
field1[j] = field1[j + 1];
}
words_scheduled--;
}
}
if (words_scheduled == 0) {
if (attempts++ == 1000) {
LOG_ERROR(
"Failed to receiving data from debug handler after 1000 attempts");
retval = ERROR_TARGET_TIMEOUT;
break;
}
}
words_done += words_scheduled;
}
for (i = 0; i < num_words; i++)
*(buffer++) = buf_get_u32((uint8_t *)&field1[i], 0, 32);
free(field1);
return retval;
}
static int xscale_read_tx(struct target *target, int consume)
{
struct xscale_common *xscale = target_to_xscale(target);
tap_state_t path[3];
tap_state_t noconsume_path[6];
int retval;
struct timeval timeout, now;
struct scan_field fields[3];
uint8_t field0_in = 0x0;
uint8_t field0_check_value = 0x2;
uint8_t field0_check_mask = 0x6;
uint8_t field2_check_value = 0x0;
uint8_t field2_check_mask = 0x1;
xscale_jtag_set_instr(target->tap,
XSCALE_DBGTX << xscale->xscale_variant,
TAP_IDLE);
path[0] = TAP_DRSELECT;
path[1] = TAP_DRCAPTURE;
path[2] = TAP_DRSHIFT;
noconsume_path[0] = TAP_DRSELECT;
noconsume_path[1] = TAP_DRCAPTURE;
noconsume_path[2] = TAP_DREXIT1;
noconsume_path[3] = TAP_DRPAUSE;
noconsume_path[4] = TAP_DREXIT2;
noconsume_path[5] = TAP_DRSHIFT;
memset(&fields, 0, sizeof fields);
fields[0].num_bits = 3;
fields[0].in_value = &field0_in;
fields[1].num_bits = 32;
fields[1].in_value = xscale->reg_cache->reg_list[XSCALE_TX].value;
fields[2].num_bits = 1;
uint8_t tmp;
fields[2].in_value = &tmp;
gettimeofday(&timeout, NULL);
timeval_add_time(&timeout, 1, 0);
for (;; ) {
/* if we want to consume the register content (i.e. clear TX_READY),
* we have to go straight from Capture-DR to Shift-DR
* otherwise, we go from Capture-DR to Exit1-DR to Pause-DR
*/
if (consume)
jtag_add_pathmove(3, path);
else
jtag_add_pathmove(ARRAY_SIZE(noconsume_path), noconsume_path);
jtag_add_dr_scan(target->tap, 3, fields, TAP_IDLE);
jtag_check_value_mask(fields + 0, &field0_check_value, &field0_check_mask);
jtag_check_value_mask(fields + 2, &field2_check_value, &field2_check_mask);
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("JTAG error while reading TX");
return ERROR_TARGET_TIMEOUT;
}
gettimeofday(&now, NULL);
if ((now.tv_sec > timeout.tv_sec) ||
((now.tv_sec == timeout.tv_sec) && (now.tv_usec > timeout.tv_usec))) {
LOG_ERROR("time out reading TX register");
return ERROR_TARGET_TIMEOUT;
}
if (!((!(field0_in & 1)) && consume))
goto done;
if (debug_level >= 3) {
LOG_DEBUG("waiting 100ms");
alive_sleep(100); /* avoid flooding the logs */
} else
keep_alive();
}
done:
if (!(field0_in & 1))
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
return ERROR_OK;
}
static int xscale_write_rx(struct target *target)
{
struct xscale_common *xscale = target_to_xscale(target);
int retval;
struct timeval timeout, now;
struct scan_field fields[3];
uint8_t field0_out = 0x0;
uint8_t field0_in = 0x0;
uint8_t field0_check_value = 0x2;
uint8_t field0_check_mask = 0x6;
uint8_t field2 = 0x0;
uint8_t field2_check_value = 0x0;
uint8_t field2_check_mask = 0x1;
xscale_jtag_set_instr(target->tap,
XSCALE_DBGRX << xscale->xscale_variant,
TAP_IDLE);
memset(&fields, 0, sizeof fields);
fields[0].num_bits = 3;
fields[0].out_value = &field0_out;
fields[0].in_value = &field0_in;
fields[1].num_bits = 32;
fields[1].out_value = xscale->reg_cache->reg_list[XSCALE_RX].value;
fields[2].num_bits = 1;
fields[2].out_value = &field2;
uint8_t tmp;
fields[2].in_value = &tmp;
gettimeofday(&timeout, NULL);
timeval_add_time(&timeout, 1, 0);
/* poll until rx_read is low */
LOG_DEBUG("polling RX");
for (;;) {
jtag_add_dr_scan(target->tap, 3, fields, TAP_IDLE);
jtag_check_value_mask(fields + 0, &field0_check_value, &field0_check_mask);
jtag_check_value_mask(fields + 2, &field2_check_value, &field2_check_mask);
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("JTAG error while writing RX");
return retval;
}
gettimeofday(&now, NULL);
if ((now.tv_sec > timeout.tv_sec) ||
((now.tv_sec == timeout.tv_sec) && (now.tv_usec > timeout.tv_usec))) {
LOG_ERROR("time out writing RX register");
return ERROR_TARGET_TIMEOUT;
}
if (!(field0_in & 1))
goto done;
if (debug_level >= 3) {
LOG_DEBUG("waiting 100ms");
alive_sleep(100); /* avoid flooding the logs */
} else
keep_alive();
}
done:
/* set rx_valid */
field2 = 0x1;
jtag_add_dr_scan(target->tap, 3, fields, TAP_IDLE);
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("JTAG error while writing RX");
return retval;
}
return ERROR_OK;
}
/* send count elements of size byte to the debug handler */
static int xscale_send(struct target *target, const uint8_t *buffer, int count, int size)
{
struct xscale_common *xscale = target_to_xscale(target);
int retval;
int done_count = 0;
xscale_jtag_set_instr(target->tap,
XSCALE_DBGRX << xscale->xscale_variant,
TAP_IDLE);
static const uint8_t t0;
uint8_t t1[4];
static const uint8_t t2 = 1;
struct scan_field fields[3] = {
{ .num_bits = 3, .out_value = &t0 },
{ .num_bits = 32, .out_value = t1 },
{ .num_bits = 1, .out_value = &t2 },
};
int endianness = target->endianness;
while (done_count++ < count) {
uint32_t t;
switch (size) {
case 4:
if (endianness == TARGET_LITTLE_ENDIAN)
t = le_to_h_u32(buffer);
else
t = be_to_h_u32(buffer);
break;
case 2:
if (endianness == TARGET_LITTLE_ENDIAN)
t = le_to_h_u16(buffer);
else
t = be_to_h_u16(buffer);
break;
case 1:
t = buffer[0];
break;
default:
LOG_ERROR("BUG: size neither 4, 2 nor 1");
return ERROR_COMMAND_SYNTAX_ERROR;
}
buf_set_u32(t1, 0, 32, t);
jtag_add_dr_scan(target->tap,
3,
fields,
TAP_IDLE);
buffer += size;
}
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("JTAG error while sending data to debug handler");
return retval;
}
return ERROR_OK;
}
static int xscale_send_u32(struct target *target, uint32_t value)
{
struct xscale_common *xscale = target_to_xscale(target);
buf_set_u32(xscale->reg_cache->reg_list[XSCALE_RX].value, 0, 32, value);
return xscale_write_rx(target);
}
static int xscale_write_dcsr(struct target *target, int hold_rst, int ext_dbg_brk)
{
struct xscale_common *xscale = target_to_xscale(target);
int retval;
struct scan_field fields[3];
uint8_t field0 = 0x0;
uint8_t field0_check_value = 0x2;
uint8_t field0_check_mask = 0x7;
uint8_t field2 = 0x0;
uint8_t field2_check_value = 0x0;
uint8_t field2_check_mask = 0x1;
if (hold_rst != -1)
xscale->hold_rst = hold_rst;
if (ext_dbg_brk != -1)
xscale->external_debug_break = ext_dbg_brk;
xscale_jtag_set_instr(target->tap,
XSCALE_SELDCSR << xscale->xscale_variant,
TAP_IDLE);
buf_set_u32(&field0, 1, 1, xscale->hold_rst);
buf_set_u32(&field0, 2, 1, xscale->external_debug_break);
memset(&fields, 0, sizeof fields);
fields[0].num_bits = 3;
fields[0].out_value = &field0;
uint8_t tmp;
fields[0].in_value = &tmp;
fields[1].num_bits = 32;
fields[1].out_value = xscale->reg_cache->reg_list[XSCALE_DCSR].value;
fields[2].num_bits = 1;
fields[2].out_value = &field2;
uint8_t tmp2;
fields[2].in_value = &tmp2;
jtag_add_dr_scan(target->tap, 3, fields, TAP_IDLE);
jtag_check_value_mask(fields + 0, &field0_check_value, &field0_check_mask);
jtag_check_value_mask(fields + 2, &field2_check_value, &field2_check_mask);
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("JTAG error while writing DCSR");
return retval;
}
xscale->reg_cache->reg_list[XSCALE_DCSR].dirty = 0;
xscale->reg_cache->reg_list[XSCALE_DCSR].valid = 1;
return ERROR_OK;
}
/* parity of the number of bits 0 if even; 1 if odd. for 32 bit words */
static unsigned int parity(unsigned int v)
{
/* unsigned int ov = v; */
v ^= v >> 16;
v ^= v >> 8;
v ^= v >> 4;
v &= 0xf;
/* LOG_DEBUG("parity of 0x%x is %i", ov, (0x6996 >> v) & 1); */
return (0x6996 >> v) & 1;
}
static int xscale_load_ic(struct target *target, uint32_t va, uint32_t buffer[8])
{
struct xscale_common *xscale = target_to_xscale(target);
uint8_t packet[4];
uint8_t cmd;
int word;
struct scan_field fields[2];
LOG_DEBUG("loading miniIC at 0x%8.8" PRIx32 "", va);
/* LDIC into IR */
xscale_jtag_set_instr(target->tap,
XSCALE_LDIC << xscale->xscale_variant,
TAP_IDLE);
/* CMD is b011 to load a cacheline into the Mini ICache.
* Loading into the main ICache is deprecated, and unused.
* It's followed by three zero bits, and 27 address bits.
*/
buf_set_u32(&cmd, 0, 6, 0x3);
/* virtual address of desired cache line */
buf_set_u32(packet, 0, 27, va >> 5);
memset(&fields, 0, sizeof fields);
fields[0].num_bits = 6;
fields[0].out_value = &cmd;
fields[1].num_bits = 27;
fields[1].out_value = packet;
jtag_add_dr_scan(target->tap, 2, fields, TAP_IDLE);
/* rest of packet is a cacheline: 8 instructions, with parity */
fields[0].num_bits = 32;
fields[0].out_value = packet;
fields[1].num_bits = 1;
fields[1].out_value = &cmd;
for (word = 0; word < 8; word++) {
buf_set_u32(packet, 0, 32, buffer[word]);
uint32_t value;
memcpy(&value, packet, sizeof(uint32_t));
cmd = parity(value);
jtag_add_dr_scan(target->tap, 2, fields, TAP_IDLE);
}
return jtag_execute_queue();
}
static int xscale_invalidate_ic_line(struct target *target, uint32_t va)
{
struct xscale_common *xscale = target_to_xscale(target);
uint8_t packet[4];
uint8_t cmd;
struct scan_field fields[2];
xscale_jtag_set_instr(target->tap,
XSCALE_LDIC << xscale->xscale_variant,
TAP_IDLE);
/* CMD for invalidate IC line b000, bits [6:4] b000 */
buf_set_u32(&cmd, 0, 6, 0x0);
/* virtual address of desired cache line */
buf_set_u32(packet, 0, 27, va >> 5);
memset(&fields, 0, sizeof fields);
fields[0].num_bits = 6;
fields[0].out_value = &cmd;
fields[1].num_bits = 27;
fields[1].out_value = packet;
jtag_add_dr_scan(target->tap, 2, fields, TAP_IDLE);
return ERROR_OK;
}
static int xscale_update_vectors(struct target *target)
{
struct xscale_common *xscale = target_to_xscale(target);
int i;
int retval;
uint32_t low_reset_branch, high_reset_branch;
for (i = 1; i < 8; i++) {
/* if there's a static vector specified for this exception, override */
if (xscale->static_high_vectors_set & (1 << i))
xscale->high_vectors[i] = xscale->static_high_vectors[i];
else {
retval = target_read_u32(target, 0xffff0000 + 4*i, &xscale->high_vectors[i]);
if (retval == ERROR_TARGET_TIMEOUT)
return retval;
if (retval != ERROR_OK) {
/* Some of these reads will fail as part of normal execution */
xscale->high_vectors[i] = ARMV4_5_B(0xfffffe, 0);
}
}
}
for (i = 1; i < 8; i++) {
if (xscale->static_low_vectors_set & (1 << i))
xscale->low_vectors[i] = xscale->static_low_vectors[i];
else {
retval = target_read_u32(target, 0x0 + 4*i, &xscale->low_vectors[i]);
if (retval == ERROR_TARGET_TIMEOUT)
return retval;
if (retval != ERROR_OK) {
/* Some of these reads will fail as part of normal execution */
xscale->low_vectors[i] = ARMV4_5_B(0xfffffe, 0);
}
}
}
/* calculate branches to debug handler */
low_reset_branch = (xscale->handler_address + 0x20 - 0x0 - 0x8) >> 2;
high_reset_branch = (xscale->handler_address + 0x20 - 0xffff0000 - 0x8) >> 2;
xscale->low_vectors[0] = ARMV4_5_B((low_reset_branch & 0xffffff), 0);
xscale->high_vectors[0] = ARMV4_5_B((high_reset_branch & 0xffffff), 0);
/* invalidate and load exception vectors in mini i-cache */
xscale_invalidate_ic_line(target, 0x0);
xscale_invalidate_ic_line(target, 0xffff0000);
xscale_load_ic(target, 0x0, xscale->low_vectors);
xscale_load_ic(target, 0xffff0000, xscale->high_vectors);
return ERROR_OK;
}
static int xscale_arch_state(struct target *target)
{
struct xscale_common *xscale = target_to_xscale(target);
struct arm *arm = &xscale->arm;
static const char *state[] = {
"disabled", "enabled"
};
static const char *arch_dbg_reason[] = {
"", "\n(processor reset)", "\n(trace buffer full)"
};
if (arm->common_magic != ARM_COMMON_MAGIC) {
LOG_ERROR("BUG: called for a non-ARMv4/5 target");
return ERROR_COMMAND_SYNTAX_ERROR;
}
arm_arch_state(target);
LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s%s",
state[xscale->armv4_5_mmu.mmu_enabled],
state[xscale->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
state[xscale->armv4_5_mmu.armv4_5_cache.i_cache_enabled],
arch_dbg_reason[xscale->arch_debug_reason]);
return ERROR_OK;
}
static int xscale_poll(struct target *target)
{
int retval = ERROR_OK;
if ((target->state == TARGET_RUNNING) || (target->state == TARGET_DEBUG_RUNNING)) {
enum target_state previous_state = target->state;
retval = xscale_read_tx(target, 0);
if (retval == ERROR_OK) {
/* there's data to read from the tx register, we entered debug state */
target->state = TARGET_HALTED;
/* process debug entry, fetching current mode regs */
retval = xscale_debug_entry(target);
} else if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
LOG_USER("error while polling TX register, reset CPU");
/* here we "lie" so GDB won't get stuck and a reset can be perfomed */
target->state = TARGET_HALTED;
}
/* debug_entry could have overwritten target state (i.e. immediate resume)
* don't signal event handlers in that case
*/
if (target->state != TARGET_HALTED)
return ERROR_OK;
/* if target was running, signal that we halted
* otherwise we reentered from debug execution */
if (previous_state == TARGET_RUNNING)
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
else
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
}
return retval;
}
static int xscale_debug_entry(struct target *target)
{
struct xscale_common *xscale = target_to_xscale(target);
struct arm *arm = &xscale->arm;
uint32_t pc;
uint32_t buffer[10];
unsigned i;
int retval;
uint32_t moe;
/* clear external dbg break (will be written on next DCSR read) */
xscale->external_debug_break = 0;
retval = xscale_read_dcsr(target);
if (retval != ERROR_OK)
return retval;
/* get r0, pc, r1 to r7 and cpsr */
retval = xscale_receive(target, buffer, 10);
if (retval != ERROR_OK)
return retval;
/* move r0 from buffer to register cache */
buf_set_u32(arm->core_cache->reg_list[0].value, 0, 32, buffer[0]);
arm->core_cache->reg_list[0].dirty = 1;
arm->core_cache->reg_list[0].valid = 1;
LOG_DEBUG("r0: 0x%8.8" PRIx32 "", buffer[0]);
/* move pc from buffer to register cache */
buf_set_u32(arm->pc->value, 0, 32, buffer[1]);
arm->pc->dirty = 1;
arm->pc->valid = 1;
LOG_DEBUG("pc: 0x%8.8" PRIx32 "", buffer[1]);
/* move data from buffer to register cache */
for (i = 1; i <= 7; i++) {
buf_set_u32(arm->core_cache->reg_list[i].value, 0, 32, buffer[1 + i]);
arm->core_cache->reg_list[i].dirty = 1;
arm->core_cache->reg_list[i].valid = 1;
LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, buffer[i + 1]);
}
arm_set_cpsr(arm, buffer[9]);
LOG_DEBUG("cpsr: 0x%8.8" PRIx32 "", buffer[9]);
if (!is_arm_mode(arm->core_mode)) {
target->state = TARGET_UNKNOWN;
LOG_ERROR("cpsr contains invalid mode value - communication failure");
return ERROR_TARGET_FAILURE;
}
LOG_DEBUG("target entered debug state in %s mode",
arm_mode_name(arm->core_mode));
/* get banked registers, r8 to r14, and spsr if not in USR/SYS mode */
if (arm->spsr) {
xscale_receive(target, buffer, 8);
buf_set_u32(arm->spsr->value, 0, 32, buffer[7]);
arm->spsr->dirty = false;
arm->spsr->valid = true;
} else {
/* r8 to r14, but no spsr */
xscale_receive(target, buffer, 7);
}
/* move data from buffer to right banked register in cache */
for (i = 8; i <= 14; i++) {
struct reg *r = arm_reg_current(arm, i);
buf_set_u32(r->value, 0, 32, buffer[i - 8]);
r->dirty = false;
r->valid = true;
}
/* mark xscale regs invalid to ensure they are retrieved from the
* debug handler if requested */
for (i = 0; i < xscale->reg_cache->num_regs; i++)
xscale->reg_cache->reg_list[i].valid = 0;
/* examine debug reason */
xscale_read_dcsr(target);
moe = buf_get_u32(xscale->reg_cache->reg_list[XSCALE_DCSR].value, 2, 3);
/* stored PC (for calculating fixup) */
pc = buf_get_u32(arm->pc->value, 0, 32);
switch (moe) {
case 0x0: /* Processor reset */
target->debug_reason = DBG_REASON_DBGRQ;
xscale->arch_debug_reason = XSCALE_DBG_REASON_RESET;
pc -= 4;
break;
case 0x1: /* Instruction breakpoint hit */
target->debug_reason = DBG_REASON_BREAKPOINT;
xscale->arch_debug_reason = XSCALE_DBG_REASON_GENERIC;
pc -= 4;
break;
case 0x2: /* Data breakpoint hit */
target->debug_reason = DBG_REASON_WATCHPOINT;
xscale->arch_debug_reason = XSCALE_DBG_REASON_GENERIC;
pc -= 4;
break;
case 0x3: /* BKPT instruction executed */
target->debug_reason = DBG_REASON_BREAKPOINT;
xscale->arch_debug_reason = XSCALE_DBG_REASON_GENERIC;
pc -= 4;
break;
case 0x4: /* Ext. debug event */
target->debug_reason = DBG_REASON_DBGRQ;
xscale->arch_debug_reason = XSCALE_DBG_REASON_GENERIC;
pc -= 4;
break;
case 0x5: /* Vector trap occured */
target->debug_reason = DBG_REASON_BREAKPOINT;
xscale->arch_debug_reason = XSCALE_DBG_REASON_GENERIC;
pc -= 4;
break;
case 0x6: /* Trace buffer full break */
target->debug_reason = DBG_REASON_DBGRQ;
xscale->arch_debug_reason = XSCALE_DBG_REASON_TB_FULL;
pc -= 4;
break;
case 0x7: /* Reserved (may flag Hot-Debug support) */
default:
LOG_ERROR("Method of Entry is 'Reserved'");
exit(-1);
break;
}
/* apply PC fixup */
buf_set_u32(arm->pc->value, 0, 32, pc);
/* on the first debug entry, identify cache type */
if (xscale->armv4_5_mmu.armv4_5_cache.ctype == -1) {
uint32_t cache_type_reg;
/* read cp15 cache type register */
xscale_get_reg(&xscale->reg_cache->reg_list[XSCALE_CACHETYPE]);
cache_type_reg = buf_get_u32(xscale->reg_cache->reg_list[XSCALE_CACHETYPE].value,
0,
32);
armv4_5_identify_cache(cache_type_reg, &xscale->armv4_5_mmu.armv4_5_cache);
}
/* examine MMU and Cache settings
* read cp15 control register */
xscale_get_reg(&xscale->reg_cache->reg_list[XSCALE_CTRL]);
xscale->cp15_control_reg =
buf_get_u32(xscale->reg_cache->reg_list[XSCALE_CTRL].value, 0, 32);
xscale->armv4_5_mmu.mmu_enabled = (xscale->cp15_control_reg & 0x1U) ? 1 : 0;
xscale->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
(xscale->cp15_control_reg & 0x4U) ? 1 : 0;
xscale->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
(xscale->cp15_control_reg & 0x1000U) ? 1 : 0;
/* tracing enabled, read collected trace data */
if (xscale->trace.mode != XSCALE_TRACE_DISABLED) {
xscale_read_trace(target);
/* Resume if entered debug due to buffer fill and we're still collecting
* trace data. Note that a debug exception due to trace buffer full
* can only happen in fill mode. */
if (xscale->arch_debug_reason == XSCALE_DBG_REASON_TB_FULL) {
if (--xscale->trace.fill_counter > 0)
xscale_resume(target, 1, 0x0, 1, 0);
} else /* entered debug for other reason; reset counter */
xscale->trace.fill_counter = 0;
}
return ERROR_OK;
}
static int xscale_halt(struct target *target)
{
struct xscale_common *xscale = target_to_xscale(target);
LOG_DEBUG("target->state: %s",
target_state_name(target));
if (target->state == TARGET_HALTED) {
LOG_DEBUG("target was already halted");
return ERROR_OK;
} else if (target->state == TARGET_UNKNOWN) {
/* this must not happen for a xscale target */
LOG_ERROR("target was in unknown state when halt was requested");
return ERROR_TARGET_INVALID;
} else if (target->state == TARGET_RESET)
LOG_DEBUG("target->state == TARGET_RESET");
else {
/* assert external dbg break */
xscale->external_debug_break = 1;
xscale_read_dcsr(target);
target->debug_reason = DBG_REASON_DBGRQ;
}
return ERROR_OK;
}
static int xscale_enable_single_step(struct target *target, uint32_t next_pc)
{
struct xscale_common *xscale = target_to_xscale(target);
struct reg *ibcr0 = &xscale->reg_cache->reg_list[XSCALE_IBCR0];
int retval;
if (xscale->ibcr0_used) {
struct breakpoint *ibcr0_bp =
breakpoint_find(target, buf_get_u32(ibcr0->value, 0, 32) & 0xfffffffe);
if (ibcr0_bp)
xscale_unset_breakpoint(target, ibcr0_bp);
else {
LOG_ERROR(
"BUG: xscale->ibcr0_used is set, but no breakpoint with that address found");
exit(-1);
}
}
retval = xscale_set_reg_u32(ibcr0, next_pc | 0x1);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int xscale_disable_single_step(struct target *target)
{
struct xscale_common *xscale = target_to_xscale(target);
struct reg *ibcr0 = &xscale->reg_cache->reg_list[XSCALE_IBCR0];
int retval;
retval = xscale_set_reg_u32(ibcr0, 0x0);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static void xscale_enable_watchpoints(struct target *target)
{
struct watchpoint *watchpoint = target->watchpoints;
while (watchpoint) {
if (watchpoint->set == 0)
xscale_set_watchpoint(target, watchpoint);
watchpoint = watchpoint->next;
}
}
static void xscale_enable_breakpoints(struct target *target)
{
struct breakpoint *breakpoint = target->breakpoints;
/* set any pending breakpoints */
while (breakpoint) {
if (breakpoint->set == 0)
xscale_set_breakpoint(target, breakpoint);
breakpoint = breakpoint->next;
}
}
static void xscale_free_trace_data(struct xscale_common *xscale)
{
struct xscale_trace_data *td = xscale->trace.data;
while (td) {
struct xscale_trace_data *next_td = td->next;
if (td->entries)
free(td->entries);
free(td);
td = next_td;
}
xscale->trace.data = NULL;
}
static int xscale_resume(struct target *target, int current,
target_addr_t address, int handle_breakpoints, int debug_execution)
{
struct xscale_common *xscale = target_to_xscale(target);
struct arm *arm = &xscale->arm;
uint32_t current_pc;
int retval;
int i;
LOG_DEBUG("-");
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!debug_execution)
target_free_all_working_areas(target);
/* update vector tables */
retval = xscale_update_vectors(target);
if (retval != ERROR_OK)
return retval;
/* current = 1: continue on current pc, otherwise continue at */
if (!current)
buf_set_u32(arm->pc->value, 0, 32, address);
current_pc = buf_get_u32(arm->pc->value, 0, 32);
/* if we're at the reset vector, we have to simulate the branch */
if (current_pc == 0x0) {
arm_simulate_step(target, NULL);
current_pc = buf_get_u32(arm->pc->value, 0, 32);
}
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints) {
struct breakpoint *breakpoint;
breakpoint = breakpoint_find(target,
buf_get_u32(arm->pc->value, 0, 32));
if (breakpoint != NULL) {
uint32_t next_pc;
enum trace_mode saved_trace_mode;
/* there's a breakpoint at the current PC, we have to step over it */
LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT "",
breakpoint->address);
xscale_unset_breakpoint(target, breakpoint);
/* calculate PC of next instruction */
retval = arm_simulate_step(target, &next_pc);
if (retval != ERROR_OK) {
uint32_t current_opcode;
target_read_u32(target, current_pc, ¤t_opcode);
LOG_ERROR(
"BUG: couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
current_opcode);
}
LOG_DEBUG("enable single-step");
xscale_enable_single_step(target, next_pc);
/* restore banked registers */
retval = xscale_restore_banked(target);
if (retval != ERROR_OK)
return retval;
/* send resume request */
xscale_send_u32(target, 0x30);
/* send CPSR */
xscale_send_u32(target,
buf_get_u32(arm->cpsr->value, 0, 32));
LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
buf_get_u32(arm->cpsr->value, 0, 32));
for (i = 7; i >= 0; i--) {
/* send register */
xscale_send_u32(target,
buf_get_u32(arm->core_cache->reg_list[i].value, 0, 32));
LOG_DEBUG("writing r%i with value 0x%8.8" PRIx32 "",
i, buf_get_u32(arm->core_cache->reg_list[i].value, 0, 32));
}
/* send PC */
xscale_send_u32(target,
buf_get_u32(arm->pc->value, 0, 32));
LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
buf_get_u32(arm->pc->value, 0, 32));
/* disable trace data collection in xscale_debug_entry() */
saved_trace_mode = xscale->trace.mode;
xscale->trace.mode = XSCALE_TRACE_DISABLED;
/* wait for and process debug entry */
xscale_debug_entry(target);
/* re-enable trace buffer, if enabled previously */
xscale->trace.mode = saved_trace_mode;
LOG_DEBUG("disable single-step");
xscale_disable_single_step(target);
LOG_DEBUG("set breakpoint at " TARGET_ADDR_FMT "",
breakpoint->address);
xscale_set_breakpoint(target, breakpoint);
}
}
/* enable any pending breakpoints and watchpoints */
xscale_enable_breakpoints(target);
xscale_enable_watchpoints(target);
/* restore banked registers */
retval = xscale_restore_banked(target);
if (retval != ERROR_OK)
return retval;
/* send resume request (command 0x30 or 0x31)
* clean the trace buffer if it is to be enabled (0x62) */
if (xscale->trace.mode != XSCALE_TRACE_DISABLED) {
if (xscale->trace.mode == XSCALE_TRACE_FILL) {
/* If trace enabled in fill mode and starting collection of new set
* of buffers, initialize buffer counter and free previous buffers */
if (xscale->trace.fill_counter == 0) {
xscale->trace.fill_counter = xscale->trace.buffer_fill;
xscale_free_trace_data(xscale);
}
} else /* wrap mode; free previous buffer */
xscale_free_trace_data(xscale);
xscale_send_u32(target, 0x62);
xscale_send_u32(target, 0x31);
} else
xscale_send_u32(target, 0x30);
/* send CPSR */
xscale_send_u32(target, buf_get_u32(arm->cpsr->value, 0, 32));
LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
buf_get_u32(arm->cpsr->value, 0, 32));
for (i = 7; i >= 0; i--) {
/* send register */
xscale_send_u32(target, buf_get_u32(arm->core_cache->reg_list[i].value, 0, 32));
LOG_DEBUG("writing r%i with value 0x%8.8" PRIx32 "",
i, buf_get_u32(arm->core_cache->reg_list[i].value, 0, 32));
}
/* send PC */
xscale_send_u32(target, buf_get_u32(arm->pc->value, 0, 32));
LOG_DEBUG("wrote PC with value 0x%8.8" PRIx32,
buf_get_u32(arm->pc->value, 0, 32));
target->debug_reason = DBG_REASON_NOTHALTED;
if (!debug_execution) {
/* registers are now invalid */
register_cache_invalidate(arm->core_cache);
target->state = TARGET_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
} else {
target->state = TARGET_DEBUG_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
}
LOG_DEBUG("target resumed");
return ERROR_OK;
}
static int xscale_step_inner(struct target *target, int current,
uint32_t address, int handle_breakpoints)
{
struct xscale_common *xscale = target_to_xscale(target);
struct arm *arm = &xscale->arm;
uint32_t next_pc;
int retval;
int i;
target->debug_reason = DBG_REASON_SINGLESTEP;
/* calculate PC of next instruction */
retval = arm_simulate_step(target, &next_pc);
if (retval != ERROR_OK) {
uint32_t current_opcode, current_pc;
current_pc = buf_get_u32(arm->pc->value, 0, 32);
target_read_u32(target, current_pc, ¤t_opcode);
LOG_ERROR(
"BUG: couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
current_opcode);
return retval;
}
LOG_DEBUG("enable single-step");
retval = xscale_enable_single_step(target, next_pc);
if (retval != ERROR_OK)
return retval;
/* restore banked registers */
retval = xscale_restore_banked(target);
if (retval != ERROR_OK)
return retval;
/* send resume request (command 0x30 or 0x31)
* clean the trace buffer if it is to be enabled (0x62) */
if (xscale->trace.mode != XSCALE_TRACE_DISABLED) {
retval = xscale_send_u32(target, 0x62);
if (retval != ERROR_OK)
return retval;
retval = xscale_send_u32(target, 0x31);
if (retval != ERROR_OK)
return retval;
} else {
retval = xscale_send_u32(target, 0x30);
if (retval != ERROR_OK)
return retval;
}
/* send CPSR */
retval = xscale_send_u32(target,
buf_get_u32(arm->cpsr->value, 0, 32));
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
buf_get_u32(arm->cpsr->value, 0, 32));
for (i = 7; i >= 0; i--) {
/* send register */
retval = xscale_send_u32(target,
buf_get_u32(arm->core_cache->reg_list[i].value, 0, 32));
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("writing r%i with value 0x%8.8" PRIx32 "", i,
buf_get_u32(arm->core_cache->reg_list[i].value, 0, 32));
}
/* send PC */
retval = xscale_send_u32(target,
buf_get_u32(arm->pc->value, 0, 32));
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("wrote PC with value 0x%8.8" PRIx32,
buf_get_u32(arm->pc->value, 0, 32));
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
/* registers are now invalid */
register_cache_invalidate(arm->core_cache);
/* wait for and process debug entry */
retval = xscale_debug_entry(target);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("disable single-step");
retval = xscale_disable_single_step(target);
if (retval != ERROR_OK)
return retval;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
return ERROR_OK;
}
static int xscale_step(struct target *target, int current,
target_addr_t address, int handle_breakpoints)
{
struct arm *arm = target_to_arm(target);
struct breakpoint *breakpoint = NULL;
uint32_t current_pc;
int retval;
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* current = 1: continue on current pc, otherwise continue at */
if (!current)
buf_set_u32(arm->pc->value, 0, 32, address);
current_pc = buf_get_u32(arm->pc->value, 0, 32);
/* if we're at the reset vector, we have to simulate the step */
if (current_pc == 0x0) {
retval = arm_simulate_step(target, NULL);
if (retval != ERROR_OK)
return retval;
current_pc = buf_get_u32(arm->pc->value, 0, 32);
LOG_DEBUG("current pc %" PRIx32, current_pc);
target->debug_reason = DBG_REASON_SINGLESTEP;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
return ERROR_OK;
}
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints)
breakpoint = breakpoint_find(target,
buf_get_u32(arm->pc->value, 0, 32));
if (breakpoint != NULL) {
retval = xscale_unset_breakpoint(target, breakpoint);
if (retval != ERROR_OK)
return retval;
}
retval = xscale_step_inner(target, current, address, handle_breakpoints);
if (retval != ERROR_OK)
return retval;
if (breakpoint)
xscale_set_breakpoint(target, breakpoint);
LOG_DEBUG("target stepped");
return ERROR_OK;
}
static int xscale_assert_reset(struct target *target)
{
struct xscale_common *xscale = target_to_xscale(target);
/* TODO: apply hw reset signal in not examined state */
if (!(target_was_examined(target))) {
LOG_WARNING("Reset is not asserted because the target is not examined.");
LOG_WARNING("Use a reset button or power cycle the target.");
return ERROR_TARGET_NOT_EXAMINED;
}
LOG_DEBUG("target->state: %s",
target_state_name(target));
/* assert reset */
jtag_add_reset(0, 1);
/* sleep 1ms, to be sure we fulfill any requirements */
jtag_add_sleep(1000);
jtag_execute_queue();
/* select DCSR instruction (set endstate to R-T-I to ensure we don't
* end up in T-L-R, which would reset JTAG
*/
xscale_jtag_set_instr(target->tap,
XSCALE_SELDCSR << xscale->xscale_variant,
TAP_IDLE);
/* set Hold reset, Halt mode and Trap Reset */
buf_set_u32(xscale->reg_cache->reg_list[XSCALE_DCSR].value, 30, 1, 0x1);
buf_set_u32(xscale->reg_cache->reg_list[XSCALE_DCSR].value, 16, 1, 0x1);
xscale_write_dcsr(target, 1, 0);
/* select BYPASS, because having DCSR selected caused problems on the PXA27x */
xscale_jtag_set_instr(target->tap, ~0, TAP_IDLE);
jtag_execute_queue();
target->state = TARGET_RESET;
if (target->reset_halt) {
int retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
static int xscale_deassert_reset(struct target *target)
{
struct xscale_common *xscale = target_to_xscale(target);
struct breakpoint *breakpoint = target->breakpoints;
LOG_DEBUG("-");
xscale->ibcr_available = 2;
xscale->ibcr0_used = 0;
xscale->ibcr1_used = 0;
xscale->dbr_available = 2;
xscale->dbr0_used = 0;
xscale->dbr1_used = 0;
/* mark all hardware breakpoints as unset */
while (breakpoint) {
if (breakpoint->type == BKPT_HARD)
breakpoint->set = 0;
breakpoint = breakpoint->next;
}
xscale->trace.mode = XSCALE_TRACE_DISABLED;
xscale_free_trace_data(xscale);
register_cache_invalidate(xscale->arm.core_cache);
/* FIXME mark hardware watchpoints got unset too. Also,
* at least some of the XScale registers are invalid...
*/
/*
* REVISIT: *assumes* we had a SRST+TRST reset so the mini-icache
* contents got invalidated. Safer to force that, so writing new
* contents can't ever fail..
*/
{
uint32_t address;
unsigned buf_cnt;
const uint8_t *buffer = xscale_debug_handler;
int retval;
/* release SRST */
jtag_add_reset(0, 0);
/* wait 300ms; 150 and 100ms were not enough */
jtag_add_sleep(300*1000);
jtag_add_runtest(2030, TAP_IDLE);
jtag_execute_queue();
/* set Hold reset, Halt mode and Trap Reset */
buf_set_u32(xscale->reg_cache->reg_list[XSCALE_DCSR].value, 30, 1, 0x1);
buf_set_u32(xscale->reg_cache->reg_list[XSCALE_DCSR].value, 16, 1, 0x1);
xscale_write_dcsr(target, 1, 0);
/* Load the debug handler into the mini-icache. Since
* it's using halt mode (not monitor mode), it runs in
* "Special Debug State" for access to registers, memory,
* coprocessors, trace data, etc.
*/
address = xscale->handler_address;
for (unsigned binary_size = sizeof xscale_debug_handler;
binary_size > 0;
binary_size -= buf_cnt, buffer += buf_cnt) {
uint32_t cache_line[8];
unsigned i;
buf_cnt = binary_size;
if (buf_cnt > 32)
buf_cnt = 32;
for (i = 0; i < buf_cnt; i += 4) {
/* convert LE buffer to host-endian uint32_t */
cache_line[i / 4] = le_to_h_u32(&buffer[i]);
}
for (; i < 32; i += 4)
cache_line[i / 4] = 0xe1a08008;
/* only load addresses other than the reset vectors */
if ((address % 0x400) != 0x0) {
retval = xscale_load_ic(target, address,
cache_line);
if (retval != ERROR_OK)
return retval;
}
address += buf_cnt;
}
retval = xscale_load_ic(target, 0x0,
xscale->low_vectors);
if (retval != ERROR_OK)
return retval;
retval = xscale_load_ic(target, 0xffff0000,
xscale->high_vectors);
if (retval != ERROR_OK)
return retval;
jtag_add_runtest(30, TAP_IDLE);
jtag_add_sleep(100000);
/* set Hold reset, Halt mode and Trap Reset */
buf_set_u32(xscale->reg_cache->reg_list[XSCALE_DCSR].value, 30, 1, 0x1);
buf_set_u32(xscale->reg_cache->reg_list[XSCALE_DCSR].value, 16, 1, 0x1);
xscale_write_dcsr(target, 1, 0);
/* clear Hold reset to let the target run (should enter debug handler) */
xscale_write_dcsr(target, 0, 1);
target->state = TARGET_RUNNING;
if (!target->reset_halt) {
jtag_add_sleep(10000);
/* we should have entered debug now */
xscale_debug_entry(target);
target->state = TARGET_HALTED;
/* resume the target */
xscale_resume(target, 1, 0x0, 1, 0);
}
}
return ERROR_OK;
}
static int xscale_read_core_reg(struct target *target, struct reg *r,
int num, enum arm_mode mode)
{
/** \todo add debug handler support for core register reads */
LOG_ERROR("not implemented");
return ERROR_OK;
}
static int xscale_write_core_reg(struct target *target, struct reg *r,
int num, enum arm_mode mode, uint8_t *value)
{
/** \todo add debug handler support for core register writes */
LOG_ERROR("not implemented");
return ERROR_OK;
}
static int xscale_full_context(struct target *target)
{
struct arm *arm = target_to_arm(target);
uint32_t *buffer;
int i, j;
LOG_DEBUG("-");
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
buffer = malloc(4 * 8);
/* iterate through processor modes (FIQ, IRQ, SVC, ABT, UND and SYS)
* we can't enter User mode on an XScale (unpredictable),
* but User shares registers with SYS
*/
for (i = 1; i < 7; i++) {
enum arm_mode mode = armv4_5_number_to_mode(i);
bool valid = true;
struct reg *r;
if (mode == ARM_MODE_USR)
continue;
/* check if there are invalid registers in the current mode
*/
for (j = 0; valid && j <= 16; j++) {
if (!ARMV4_5_CORE_REG_MODE(arm->core_cache,
mode, j).valid)
valid = false;
}
if (valid)
continue;
/* request banked registers */
xscale_send_u32(target, 0x0);
/* send CPSR for desired bank mode */
xscale_send_u32(target, mode | 0xc0 /* I/F bits */);
/* get banked registers: r8 to r14; and SPSR
* except in USR/SYS mode
*/
if (mode != ARM_MODE_SYS) {
/* SPSR */
r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
mode, 16);
xscale_receive(target, buffer, 8);
buf_set_u32(r->value, 0, 32, buffer[7]);
r->dirty = false;
r->valid = true;
} else
xscale_receive(target, buffer, 7);
/* move data from buffer to register cache */
for (j = 8; j <= 14; j++) {
r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
mode, j);
buf_set_u32(r->value, 0, 32, buffer[j - 8]);
r->dirty = false;
r->valid = true;
}
}
free(buffer);
return ERROR_OK;
}
static int xscale_restore_banked(struct target *target)
{
struct arm *arm = target_to_arm(target);
int i, j;
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* iterate through processor modes (FIQ, IRQ, SVC, ABT, UND and SYS)
* and check if any banked registers need to be written. Ignore
* USR mode (number 0) in favor of SYS; we can't enter User mode on
* an XScale (unpredictable), but they share all registers.
*/
for (i = 1; i < 7; i++) {
enum arm_mode mode = armv4_5_number_to_mode(i);
struct reg *r;
if (mode == ARM_MODE_USR)
continue;
/* check if there are dirty registers in this mode */
for (j = 8; j <= 14; j++) {
if (ARMV4_5_CORE_REG_MODE(arm->core_cache,
mode, j).dirty)
goto dirty;
}
/* if not USR/SYS, check if the SPSR needs to be written */
if (mode != ARM_MODE_SYS) {
if (ARMV4_5_CORE_REG_MODE(arm->core_cache,
mode, 16).dirty)
goto dirty;
}
/* there's nothing to flush for this mode */
continue;
dirty:
/* command 0x1: "send banked registers" */
xscale_send_u32(target, 0x1);
/* send CPSR for desired mode */
xscale_send_u32(target, mode | 0xc0 /* I/F bits */);
/* send r8 to r14/lr ... only FIQ needs more than r13..r14,
* but this protocol doesn't understand that nuance.
*/
for (j = 8; j <= 14; j++) {
r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
mode, j);
xscale_send_u32(target, buf_get_u32(r->value, 0, 32));
r->dirty = false;
}
/* send spsr if not in USR/SYS mode */
if (mode != ARM_MODE_SYS) {
r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
mode, 16);
xscale_send_u32(target, buf_get_u32(r->value, 0, 32));
r->dirty = false;
}
}
return ERROR_OK;
}
static int xscale_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct xscale_common *xscale = target_to_xscale(target);
uint32_t *buf32;
uint32_t i;
int retval;
LOG_DEBUG("address: " TARGET_ADDR_FMT ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32,
address,
size,
count);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* sanitize arguments */
if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
return ERROR_COMMAND_SYNTAX_ERROR;
if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
return ERROR_TARGET_UNALIGNED_ACCESS;
/* send memory read request (command 0x1n, n: access size) */
retval = xscale_send_u32(target, 0x10 | size);
if (retval != ERROR_OK)
return retval;
/* send base address for read request */
retval = xscale_send_u32(target, address);
if (retval != ERROR_OK)
return retval;
/* send number of requested data words */
retval = xscale_send_u32(target, count);
if (retval != ERROR_OK)
return retval;
/* receive data from target (count times 32-bit words in host endianness) */
buf32 = malloc(4 * count);
retval = xscale_receive(target, buf32, count);
if (retval != ERROR_OK) {
free(buf32);
return retval;
}
/* extract data from host-endian buffer into byte stream */
for (i = 0; i < count; i++) {
switch (size) {
case 4:
target_buffer_set_u32(target, buffer, buf32[i]);
buffer += 4;
break;
case 2:
target_buffer_set_u16(target, buffer, buf32[i] & 0xffff);
buffer += 2;
break;
case 1:
*buffer++ = buf32[i] & 0xff;
break;
default:
LOG_ERROR("invalid read size");
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
free(buf32);
/* examine DCSR, to see if Sticky Abort (SA) got set */
retval = xscale_read_dcsr(target);
if (retval != ERROR_OK)
return retval;
if (buf_get_u32(xscale->reg_cache->reg_list[XSCALE_DCSR].value, 5, 1) == 1) {
/* clear SA bit */
retval = xscale_send_u32(target, 0x60);
if (retval != ERROR_OK)
return retval;
return ERROR_TARGET_DATA_ABORT;
}
return ERROR_OK;
}
static int xscale_read_phys_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct xscale_common *xscale = target_to_xscale(target);
/* with MMU inactive, there are only physical addresses */
if (!xscale->armv4_5_mmu.mmu_enabled)
return xscale_read_memory(target, address, size, count, buffer);
/** \todo: provide a non-stub implementation of this routine. */
LOG_ERROR("%s: %s is not implemented. Disable MMU?",
target_name(target), __func__);
return ERROR_FAIL;
}
static int xscale_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
struct xscale_common *xscale = target_to_xscale(target);
int retval;
LOG_DEBUG("address: " TARGET_ADDR_FMT ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32,
address,
size,
count);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* sanitize arguments */
if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
return ERROR_COMMAND_SYNTAX_ERROR;
if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
return ERROR_TARGET_UNALIGNED_ACCESS;
/* send memory write request (command 0x2n, n: access size) */
retval = xscale_send_u32(target, 0x20 | size);
if (retval != ERROR_OK)
return retval;
/* send base address for read request */
retval = xscale_send_u32(target, address);
if (retval != ERROR_OK)
return retval;
/* send number of requested data words to be written*/
retval = xscale_send_u32(target, count);
if (retval != ERROR_OK)
return retval;
/* extract data from host-endian buffer into byte stream */
#if 0
for (i = 0; i < count; i++) {
switch (size) {
case 4:
value = target_buffer_get_u32(target, buffer);
xscale_send_u32(target, value);
buffer += 4;
break;
case 2:
value = target_buffer_get_u16(target, buffer);
xscale_send_u32(target, value);
buffer += 2;
break;
case 1:
value = *buffer;
xscale_send_u32(target, value);
buffer += 1;
break;
default:
LOG_ERROR("should never get here");
exit(-1);
}
}
#endif
retval = xscale_send(target, buffer, count, size);
if (retval != ERROR_OK)
return retval;
/* examine DCSR, to see if Sticky Abort (SA) got set */
retval = xscale_read_dcsr(target);
if (retval != ERROR_OK)
return retval;
if (buf_get_u32(xscale->reg_cache->reg_list[XSCALE_DCSR].value, 5, 1) == 1) {
/* clear SA bit */
retval = xscale_send_u32(target, 0x60);
if (retval != ERROR_OK)
return retval;
LOG_ERROR("data abort writing memory");
return ERROR_TARGET_DATA_ABORT;
}
return ERROR_OK;
}
static int xscale_write_phys_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
struct xscale_common *xscale = target_to_xscale(target);
/* with MMU inactive, there are only physical addresses */
if (!xscale->armv4_5_mmu.mmu_enabled)
return xscale_write_memory(target, address, size, count, buffer);
/** \todo: provide a non-stub implementation of this routine. */
LOG_ERROR("%s: %s is not implemented. Disable MMU?",
target_name(target), __func__);
return ERROR_FAIL;
}
static int xscale_get_ttb(struct target *target, uint32_t *result)
{
struct xscale_common *xscale = target_to_xscale(target);
uint32_t ttb;
int retval;
retval = xscale_get_reg(&xscale->reg_cache->reg_list[XSCALE_TTB]);
if (retval != ERROR_OK)
return retval;
ttb = buf_get_u32(xscale->reg_cache->reg_list[XSCALE_TTB].value, 0, 32);
*result = ttb;
return ERROR_OK;
}
static int xscale_disable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache)
{
struct xscale_common *xscale = target_to_xscale(target);
uint32_t cp15_control;
int retval;
/* read cp15 control register */
retval = xscale_get_reg(&xscale->reg_cache->reg_list[XSCALE_CTRL]);
if (retval != ERROR_OK)
return retval;
cp15_control = buf_get_u32(xscale->reg_cache->reg_list[XSCALE_CTRL].value, 0, 32);
if (mmu)
cp15_control &= ~0x1U;
if (d_u_cache) {
/* clean DCache */
retval = xscale_send_u32(target, 0x50);
if (retval != ERROR_OK)
return retval;
retval = xscale_send_u32(target, xscale->cache_clean_address);
if (retval != ERROR_OK)
return retval;
/* invalidate DCache */
retval = xscale_send_u32(target, 0x51);
if (retval != ERROR_OK)
return retval;
cp15_control &= ~0x4U;
}
if (i_cache) {
/* invalidate ICache */
retval = xscale_send_u32(target, 0x52);
if (retval != ERROR_OK)
return retval;
cp15_control &= ~0x1000U;
}
/* write new cp15 control register */
retval = xscale_set_reg_u32(&xscale->reg_cache->reg_list[XSCALE_CTRL], cp15_control);
if (retval != ERROR_OK)
return retval;
/* execute cpwait to ensure outstanding operations complete */
retval = xscale_send_u32(target, 0x53);
return retval;
}
static int xscale_enable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache)
{
struct xscale_common *xscale = target_to_xscale(target);
uint32_t cp15_control;
int retval;
/* read cp15 control register */
retval = xscale_get_reg(&xscale->reg_cache->reg_list[XSCALE_CTRL]);
if (retval != ERROR_OK)
return retval;
cp15_control = buf_get_u32(xscale->reg_cache->reg_list[XSCALE_CTRL].value, 0, 32);
if (mmu)
cp15_control |= 0x1U;
if (d_u_cache)
cp15_control |= 0x4U;
if (i_cache)
cp15_control |= 0x1000U;
/* write new cp15 control register */
retval = xscale_set_reg_u32(&xscale->reg_cache->reg_list[XSCALE_CTRL], cp15_control);
if (retval != ERROR_OK)
return retval;
/* execute cpwait to ensure outstanding operations complete */
retval = xscale_send_u32(target, 0x53);
return retval;
}
static int xscale_set_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
int retval;
struct xscale_common *xscale = target_to_xscale(target);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (breakpoint->set) {
LOG_WARNING("breakpoint already set");
return ERROR_OK;
}
if (breakpoint->type == BKPT_HARD) {
uint32_t value = breakpoint->address | 1;
if (!xscale->ibcr0_used) {
xscale_set_reg_u32(&xscale->reg_cache->reg_list[XSCALE_IBCR0], value);
xscale->ibcr0_used = 1;
breakpoint->set = 1; /* breakpoint set on first breakpoint register */
} else if (!xscale->ibcr1_used) {
xscale_set_reg_u32(&xscale->reg_cache->reg_list[XSCALE_IBCR1], value);
xscale->ibcr1_used = 1;
breakpoint->set = 2; /* breakpoint set on second breakpoint register */
} else {/* bug: availability previously verified in xscale_add_breakpoint() */
LOG_ERROR("BUG: no hardware comparator available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
} else if (breakpoint->type == BKPT_SOFT) {
if (breakpoint->length == 4) {
/* keep the original instruction in target endianness */
retval = target_read_memory(target, breakpoint->address, 4, 1,
breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
/* write the bkpt instruction in target endianness
*(arm7_9->arm_bkpt is host endian) */
retval = target_write_u32(target, breakpoint->address,
xscale->arm_bkpt);
if (retval != ERROR_OK)
return retval;
} else {
/* keep the original instruction in target endianness */
retval = target_read_memory(target, breakpoint->address, 2, 1,
breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
/* write the bkpt instruction in target endianness
*(arm7_9->arm_bkpt is host endian) */
retval = target_write_u16(target, breakpoint->address,
xscale->thumb_bkpt);
if (retval != ERROR_OK)
return retval;
}
breakpoint->set = 1;
xscale_send_u32(target, 0x50); /* clean dcache */
xscale_send_u32(target, xscale->cache_clean_address);
xscale_send_u32(target, 0x51); /* invalidate dcache */
xscale_send_u32(target, 0x52); /* invalidate icache and flush fetch buffers */
}
return ERROR_OK;
}
static int xscale_add_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct xscale_common *xscale = target_to_xscale(target);
if ((breakpoint->type == BKPT_HARD) && (xscale->ibcr_available < 1)) {
LOG_ERROR("no breakpoint unit available for hardware breakpoint");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if ((breakpoint->length != 2) && (breakpoint->length != 4)) {
LOG_ERROR("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (breakpoint->type == BKPT_HARD)
xscale->ibcr_available--;
return xscale_set_breakpoint(target, breakpoint);
}
static int xscale_unset_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
int retval;
struct xscale_common *xscale = target_to_xscale(target);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!breakpoint->set) {
LOG_WARNING("breakpoint not set");
return ERROR_OK;
}
if (breakpoint->type == BKPT_HARD) {
if (breakpoint->set == 1) {
xscale_set_reg_u32(&xscale->reg_cache->reg_list[XSCALE_IBCR0], 0x0);
xscale->ibcr0_used = 0;
} else if (breakpoint->set == 2) {
xscale_set_reg_u32(&xscale->reg_cache->reg_list[XSCALE_IBCR1], 0x0);
xscale->ibcr1_used = 0;
}
breakpoint->set = 0;
} else {
/* restore original instruction (kept in target endianness) */
if (breakpoint->length == 4) {
retval = target_write_memory(target, breakpoint->address, 4, 1,
breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
} else {
retval = target_write_memory(target, breakpoint->address, 2, 1,
breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
}
breakpoint->set = 0;
xscale_send_u32(target, 0x50); /* clean dcache */
xscale_send_u32(target, xscale->cache_clean_address);
xscale_send_u32(target, 0x51); /* invalidate dcache */
xscale_send_u32(target, 0x52); /* invalidate icache and flush fetch buffers */
}
return ERROR_OK;
}
static int xscale_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
struct xscale_common *xscale = target_to_xscale(target);
if (target->state != TARGET_HALTED) {
LOG_ERROR("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (breakpoint->set)
xscale_unset_breakpoint(target, breakpoint);
if (breakpoint->type == BKPT_HARD)
xscale->ibcr_available++;
return ERROR_OK;
}
static int xscale_set_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
struct xscale_common *xscale = target_to_xscale(target);
uint32_t enable = 0;
struct reg *dbcon = &xscale->reg_cache->reg_list[XSCALE_DBCON];
uint32_t dbcon_value = buf_get_u32(dbcon->value, 0, 32);
if (target->state != TARGET_HALTED) {
LOG_ERROR("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
switch (watchpoint->rw) {
case WPT_READ:
enable = 0x3;
break;
case WPT_ACCESS:
enable = 0x2;
break;
case WPT_WRITE:
enable = 0x1;
break;
default:
LOG_ERROR("BUG: watchpoint->rw neither read, write nor access");
}
/* For watchpoint across more than one word, both DBR registers must
be enlisted, with the second used as a mask. */
if (watchpoint->length > 4) {
if (xscale->dbr0_used || xscale->dbr1_used) {
LOG_ERROR("BUG: sufficient hardware comparators unavailable");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* Write mask value to DBR1, based on the length argument.
* Address bits ignored by the comparator are those set in mask. */
xscale_set_reg_u32(&xscale->reg_cache->reg_list[XSCALE_DBR1],
watchpoint->length - 1);
xscale->dbr1_used = 1;
enable |= 0x100; /* DBCON[M] */
}
if (!xscale->dbr0_used) {
xscale_set_reg_u32(&xscale->reg_cache->reg_list[XSCALE_DBR0], watchpoint->address);
dbcon_value |= enable;
xscale_set_reg_u32(dbcon, dbcon_value);
watchpoint->set = 1;
xscale->dbr0_used = 1;
} else if (!xscale->dbr1_used) {
xscale_set_reg_u32(&xscale->reg_cache->reg_list[XSCALE_DBR1], watchpoint->address);
dbcon_value |= enable << 2;
xscale_set_reg_u32(dbcon, dbcon_value);
watchpoint->set = 2;
xscale->dbr1_used = 1;
} else {
LOG_ERROR("BUG: no hardware comparator available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
return ERROR_OK;
}
static int xscale_add_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
struct xscale_common *xscale = target_to_xscale(target);
if (xscale->dbr_available < 1) {
LOG_ERROR("no more watchpoint registers available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (watchpoint->value)
LOG_WARNING("xscale does not support value, mask arguments; ignoring");
/* check that length is a power of two */
for (uint32_t len = watchpoint->length; len != 1; len /= 2) {
if (len % 2) {
LOG_ERROR("xscale requires that watchpoint length is a power of two");
return ERROR_COMMAND_ARGUMENT_INVALID;
}
}
if (watchpoint->length == 4) { /* single word watchpoint */
xscale->dbr_available--;/* one DBR reg used */
return ERROR_OK;
}
/* watchpoints across multiple words require both DBR registers */
if (xscale->dbr_available < 2) {
LOG_ERROR("insufficient watchpoint registers available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (watchpoint->length > watchpoint->address) {
LOG_ERROR("xscale does not support watchpoints with length "
"greater than address");
return ERROR_COMMAND_ARGUMENT_INVALID;
}
xscale->dbr_available = 0;
return ERROR_OK;
}
static int xscale_unset_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
struct xscale_common *xscale = target_to_xscale(target);
struct reg *dbcon = &xscale->reg_cache->reg_list[XSCALE_DBCON];
uint32_t dbcon_value = buf_get_u32(dbcon->value, 0, 32);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!watchpoint->set) {
LOG_WARNING("breakpoint not set");
return ERROR_OK;
}
if (watchpoint->set == 1) {
if (watchpoint->length > 4) {
dbcon_value &= ~0x103; /* clear DBCON[M] as well */
xscale->dbr1_used = 0; /* DBR1 was used for mask */
} else
dbcon_value &= ~0x3;
xscale_set_reg_u32(dbcon, dbcon_value);
xscale->dbr0_used = 0;
} else if (watchpoint->set == 2) {
dbcon_value &= ~0xc;
xscale_set_reg_u32(dbcon, dbcon_value);
xscale->dbr1_used = 0;
}
watchpoint->set = 0;
return ERROR_OK;
}
static int xscale_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
struct xscale_common *xscale = target_to_xscale(target);
if (target->state != TARGET_HALTED) {
LOG_ERROR("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (watchpoint->set)
xscale_unset_watchpoint(target, watchpoint);
if (watchpoint->length > 4)
xscale->dbr_available++;/* both DBR regs now available */
xscale->dbr_available++;
return ERROR_OK;
}
static int xscale_get_reg(struct reg *reg)
{
struct xscale_reg *arch_info = reg->arch_info;
struct target *target = arch_info->target;
struct xscale_common *xscale = target_to_xscale(target);
/* DCSR, TX and RX are accessible via JTAG */
if (strcmp(reg->name, "XSCALE_DCSR") == 0)
return xscale_read_dcsr(arch_info->target);
else if (strcmp(reg->name, "XSCALE_TX") == 0) {
/* 1 = consume register content */
return xscale_read_tx(arch_info->target, 1);
} else if (strcmp(reg->name, "XSCALE_RX") == 0) {
/* can't read from RX register (host -> debug handler) */
return ERROR_OK;
} else if (strcmp(reg->name, "XSCALE_TXRXCTRL") == 0) {
/* can't (explicitly) read from TXRXCTRL register */
return ERROR_OK;
} else {/* Other DBG registers have to be transfered by the debug handler
* send CP read request (command 0x40) */
xscale_send_u32(target, 0x40);
/* send CP register number */
xscale_send_u32(target, arch_info->dbg_handler_number);
/* read register value */
xscale_read_tx(target, 1);
buf_cpy(xscale->reg_cache->reg_list[XSCALE_TX].value, reg->value, 32);
reg->dirty = 0;
reg->valid = 1;
}
return ERROR_OK;
}
static int xscale_set_reg(struct reg *reg, uint8_t *buf)
{
struct xscale_reg *arch_info = reg->arch_info;
struct target *target = arch_info->target;
struct xscale_common *xscale = target_to_xscale(target);
uint32_t value = buf_get_u32(buf, 0, 32);
/* DCSR, TX and RX are accessible via JTAG */
if (strcmp(reg->name, "XSCALE_DCSR") == 0) {
buf_set_u32(xscale->reg_cache->reg_list[XSCALE_DCSR].value, 0, 32, value);
return xscale_write_dcsr(arch_info->target, -1, -1);
} else if (strcmp(reg->name, "XSCALE_RX") == 0) {
buf_set_u32(xscale->reg_cache->reg_list[XSCALE_RX].value, 0, 32, value);
return xscale_write_rx(arch_info->target);
} else if (strcmp(reg->name, "XSCALE_TX") == 0) {
/* can't write to TX register (debug-handler -> host) */
return ERROR_OK;
} else if (strcmp(reg->name, "XSCALE_TXRXCTRL") == 0) {
/* can't (explicitly) write to TXRXCTRL register */
return ERROR_OK;
} else {/* Other DBG registers have to be transfered by the debug handler
* send CP write request (command 0x41) */
xscale_send_u32(target, 0x41);
/* send CP register number */
xscale_send_u32(target, arch_info->dbg_handler_number);
/* send CP register value */
xscale_send_u32(target, value);
buf_set_u32(reg->value, 0, 32, value);
}
return ERROR_OK;
}
static int xscale_write_dcsr_sw(struct target *target, uint32_t value)
{
struct xscale_common *xscale = target_to_xscale(target);
struct reg *dcsr = &xscale->reg_cache->reg_list[XSCALE_DCSR];
struct xscale_reg *dcsr_arch_info = dcsr->arch_info;
/* send CP write request (command 0x41) */
xscale_send_u32(target, 0x41);
/* send CP register number */
xscale_send_u32(target, dcsr_arch_info->dbg_handler_number);
/* send CP register value */
xscale_send_u32(target, value);
buf_set_u32(dcsr->value, 0, 32, value);
return ERROR_OK;
}
static int xscale_read_trace(struct target *target)
{
struct xscale_common *xscale = target_to_xscale(target);
struct arm *arm = &xscale->arm;
struct xscale_trace_data **trace_data_p;
/* 258 words from debug handler
* 256 trace buffer entries
* 2 checkpoint addresses
*/
uint32_t trace_buffer[258];
int is_address[256];
int i, j;
unsigned int num_checkpoints = 0;
if (target->state != TARGET_HALTED) {
LOG_WARNING("target must be stopped to read trace data");
return ERROR_TARGET_NOT_HALTED;
}
/* send read trace buffer command (command 0x61) */
xscale_send_u32(target, 0x61);
/* receive trace buffer content */
xscale_receive(target, trace_buffer, 258);
/* parse buffer backwards to identify address entries */
for (i = 255; i >= 0; i--) {
/* also count number of checkpointed entries */
if ((trace_buffer[i] & 0xe0) == 0xc0)
num_checkpoints++;
is_address[i] = 0;
if (((trace_buffer[i] & 0xf0) == 0x90) ||
((trace_buffer[i] & 0xf0) == 0xd0)) {
if (i > 0)
is_address[--i] = 1;
if (i > 0)
is_address[--i] = 1;
if (i > 0)
is_address[--i] = 1;
if (i > 0)
is_address[--i] = 1;
}
}
/* search first non-zero entry that is not part of an address */
for (j = 0; (j < 256) && (trace_buffer[j] == 0) && (!is_address[j]); j++)
;
if (j == 256) {
LOG_DEBUG("no trace data collected");
return ERROR_XSCALE_NO_TRACE_DATA;
}
/* account for possible partial address at buffer start (wrap mode only) */
if (is_address[0]) { /* first entry is address; complete set of 4? */
i = 1;
while (i < 4)
if (!is_address[i++])
break;
if (i < 4)
j += i; /* partial address; can't use it */
}
/* if first valid entry is indirect branch, can't use that either (no address) */
if (((trace_buffer[j] & 0xf0) == 0x90) || ((trace_buffer[j] & 0xf0) == 0xd0))
j++;
/* walk linked list to terminating entry */
for (trace_data_p = &xscale->trace.data; *trace_data_p;
trace_data_p = &(*trace_data_p)->next)
;
*trace_data_p = malloc(sizeof(struct xscale_trace_data));
(*trace_data_p)->next = NULL;
(*trace_data_p)->chkpt0 = trace_buffer[256];
(*trace_data_p)->chkpt1 = trace_buffer[257];
(*trace_data_p)->last_instruction = buf_get_u32(arm->pc->value, 0, 32);
(*trace_data_p)->entries = malloc(sizeof(struct xscale_trace_entry) * (256 - j));
(*trace_data_p)->depth = 256 - j;
(*trace_data_p)->num_checkpoints = num_checkpoints;
for (i = j; i < 256; i++) {
(*trace_data_p)->entries[i - j].data = trace_buffer[i];
if (is_address[i])
(*trace_data_p)->entries[i - j].type = XSCALE_TRACE_ADDRESS;
else
(*trace_data_p)->entries[i - j].type = XSCALE_TRACE_MESSAGE;
}
return ERROR_OK;
}
static int xscale_read_instruction(struct target *target, uint32_t pc,
struct arm_instruction *instruction)
{
struct xscale_common *const xscale = target_to_xscale(target);
int i;
int section = -1;
size_t size_read;
uint32_t opcode;
int retval;
if (!xscale->trace.image)
return ERROR_TRACE_IMAGE_UNAVAILABLE;
/* search for the section the current instruction belongs to */
for (i = 0; i < xscale->trace.image->num_sections; i++) {
if ((xscale->trace.image->sections[i].base_address <= pc) &&
(xscale->trace.image->sections[i].base_address +
xscale->trace.image->sections[i].size > pc)) {
section = i;
break;
}
}
if (section == -1) {
/* current instruction couldn't be found in the image */
return ERROR_TRACE_INSTRUCTION_UNAVAILABLE;
}
if (xscale->trace.core_state == ARM_STATE_ARM) {
uint8_t buf[4];
retval = image_read_section(xscale->trace.image, section,
pc - xscale->trace.image->sections[section].base_address,
4, buf, &size_read);
if (retval != ERROR_OK) {
LOG_ERROR("error while reading instruction");
return ERROR_TRACE_INSTRUCTION_UNAVAILABLE;
}
opcode = target_buffer_get_u32(target, buf);
arm_evaluate_opcode(opcode, pc, instruction);
} else if (xscale->trace.core_state == ARM_STATE_THUMB) {
uint8_t buf[2];
retval = image_read_section(xscale->trace.image, section,
pc - xscale->trace.image->sections[section].base_address,
2, buf, &size_read);
if (retval != ERROR_OK) {
LOG_ERROR("error while reading instruction");
return ERROR_TRACE_INSTRUCTION_UNAVAILABLE;
}
opcode = target_buffer_get_u16(target, buf);
thumb_evaluate_opcode(opcode, pc, instruction);
} else {
LOG_ERROR("BUG: unknown core state encountered");
exit(-1);
}
return ERROR_OK;
}
/* Extract address encoded into trace data.
* Write result to address referenced by argument 'target', or 0 if incomplete. */
static inline void xscale_branch_address(struct xscale_trace_data *trace_data,
int i, uint32_t *target)
{
/* if there are less than four entries prior to the indirect branch message
* we can't extract the address */
if (i < 4)
*target = 0;
else {
*target = (trace_data->entries[i-1].data) | (trace_data->entries[i-2].data << 8) |
(trace_data->entries[i-3].data << 16) | (trace_data->entries[i-4].data << 24);
}
}
static inline void xscale_display_instruction(struct target *target, uint32_t pc,
struct arm_instruction *instruction,
struct command_context *cmd_ctx)
{
int retval = xscale_read_instruction(target, pc, instruction);
if (retval == ERROR_OK)
command_print(cmd_ctx, "%s", instruction->text);
else
command_print(cmd_ctx, "0x%8.8" PRIx32 "\t", pc);
}
static int xscale_analyze_trace(struct target *target, struct command_context *cmd_ctx)
{
struct xscale_common *xscale = target_to_xscale(target);
struct xscale_trace_data *trace_data = xscale->trace.data;
int i, retval;
uint32_t breakpoint_pc = 0;
struct arm_instruction instruction;
uint32_t current_pc = 0;/* initialized when address determined */
if (!xscale->trace.image)
LOG_WARNING("No trace image loaded; use 'xscale trace_image'");
/* loop for each trace buffer that was loaded from target */
while (trace_data) {
int chkpt = 0; /* incremented as checkpointed entries found */
int j;
/* FIXME: set this to correct mode when trace buffer is first enabled */
xscale->trace.core_state = ARM_STATE_ARM;
/* loop for each entry in this trace buffer */
for (i = 0; i < trace_data->depth; i++) {
int exception = 0;
uint32_t chkpt_reg = 0x0;
uint32_t branch_target = 0;
int count;
/* trace entry type is upper nybble of 'message byte' */
int trace_msg_type = (trace_data->entries[i].data & 0xf0) >> 4;
/* Target addresses of indirect branches are written into buffer
* before the message byte representing the branch. Skip past it */
if (trace_data->entries[i].type == XSCALE_TRACE_ADDRESS)
continue;
switch (trace_msg_type) {
case 0: /* Exceptions */
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
exception = (trace_data->entries[i].data & 0x70) >> 4;
/* FIXME: vector table may be at ffff0000 */
branch_target = (trace_data->entries[i].data & 0xf0) >> 2;
break;
case 8: /* Direct Branch */
break;
case 9: /* Indirect Branch */
xscale_branch_address(trace_data, i, &branch_target);
break;
case 13: /* Checkpointed Indirect Branch */
xscale_branch_address(trace_data, i, &branch_target);
if ((trace_data->num_checkpoints == 2) && (chkpt == 0))
chkpt_reg = trace_data->chkpt1; /* 2 chkpts, this is
*oldest */
else
chkpt_reg = trace_data->chkpt0; /* 1 chkpt, or 2 and
*newest */
chkpt++;
break;
case 12: /* Checkpointed Direct Branch */
if ((trace_data->num_checkpoints == 2) && (chkpt == 0))
chkpt_reg = trace_data->chkpt1; /* 2 chkpts, this is
*oldest */
else
chkpt_reg = trace_data->chkpt0; /* 1 chkpt, or 2 and
*newest */
/* if no current_pc, checkpoint will be starting point */
if (current_pc == 0)
branch_target = chkpt_reg;
chkpt++;
break;
case 15:/* Roll-over */
break;
default:/* Reserved */
LOG_WARNING("trace is suspect: invalid trace message byte");
continue;
}
/* If we don't have the current_pc yet, but we did get the branch target
* (either from the trace buffer on indirect branch, or from a checkpoint reg),
* then we can start displaying instructions at the next iteration, with
* branch_target as the starting point.
*/
if (current_pc == 0) {
current_pc = branch_target; /* remains 0 unless branch_target *obtained */
continue;
}
/* We have current_pc. Read and display the instructions from the image.
* First, display count instructions (lower nybble of message byte). */
count = trace_data->entries[i].data & 0x0f;
for (j = 0; j < count; j++) {
xscale_display_instruction(target, current_pc, &instruction,
cmd_ctx);
current_pc += xscale->trace.core_state == ARM_STATE_ARM ? 4 : 2;
}
/* An additional instruction is implicitly added to count for
* rollover and some exceptions: undef, swi, prefetch abort. */
if ((trace_msg_type == 15) || (exception > 0 && exception < 4)) {
xscale_display_instruction(target, current_pc, &instruction,
cmd_ctx);
current_pc += xscale->trace.core_state == ARM_STATE_ARM ? 4 : 2;
}
if (trace_msg_type == 15) /* rollover */
continue;
if (exception) {
command_print(cmd_ctx, "--- exception %i ---", exception);
continue;
}
/* not exception or rollover; next instruction is a branch and is
* not included in the count */
xscale_display_instruction(target, current_pc, &instruction, cmd_ctx);
/* for direct branches, extract branch destination from instruction */
if ((trace_msg_type == 8) || (trace_msg_type == 12)) {
retval = xscale_read_instruction(target, current_pc, &instruction);
if (retval == ERROR_OK)
current_pc = instruction.info.b_bl_bx_blx.target_address;
else
current_pc = 0; /* branch destination unknown */
/* direct branch w/ checkpoint; can also get from checkpoint reg */
if (trace_msg_type == 12) {
if (current_pc == 0)
current_pc = chkpt_reg;
else if (current_pc != chkpt_reg) /* sanity check */
LOG_WARNING("trace is suspect: checkpoint register "
"inconsistent with adddress from image");
}
if (current_pc == 0)
command_print(cmd_ctx, "address unknown");
continue;
}
/* indirect branch; the branch destination was read from trace buffer */
if ((trace_msg_type == 9) || (trace_msg_type == 13)) {
current_pc = branch_target;
/* sanity check (checkpoint reg is redundant) */
if ((trace_msg_type == 13) && (chkpt_reg != branch_target))
LOG_WARNING("trace is suspect: checkpoint register "
"inconsistent with address from trace buffer");
}
} /* END: for (i = 0; i < trace_data->depth; i++) */
breakpoint_pc = trace_data->last_instruction; /* used below */
trace_data = trace_data->next;
} /* END: while (trace_data) */
/* Finally... display all instructions up to the value of the pc when the
* debug break occurred (saved when trace data was collected from target).
* This is necessary because the trace only records execution branches and 16
* consecutive instructions (rollovers), so last few typically missed.
*/
if (current_pc == 0)
return ERROR_OK;/* current_pc was never found */
/* how many instructions remaining? */
int gap_count = (breakpoint_pc - current_pc) /
(xscale->trace.core_state == ARM_STATE_ARM ? 4 : 2);
/* should never be negative or over 16, but verify */
if (gap_count < 0 || gap_count > 16) {
LOG_WARNING("trace is suspect: excessive gap at end of trace");
return ERROR_OK;/* bail; large number or negative value no good */
}
/* display remaining instructions */
for (i = 0; i < gap_count; i++) {
xscale_display_instruction(target, current_pc, &instruction, cmd_ctx);
current_pc += xscale->trace.core_state == ARM_STATE_ARM ? 4 : 2;
}
return ERROR_OK;
}
static const struct reg_arch_type xscale_reg_type = {
.get = xscale_get_reg,
.set = xscale_set_reg,
};
static void xscale_build_reg_cache(struct target *target)
{
struct xscale_common *xscale = target_to_xscale(target);
struct arm *arm = &xscale->arm;
struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
struct xscale_reg *arch_info = malloc(sizeof(xscale_reg_arch_info));
int i;
int num_regs = ARRAY_SIZE(xscale_reg_arch_info);
(*cache_p) = arm_build_reg_cache(target, arm);
(*cache_p)->next = malloc(sizeof(struct reg_cache));
cache_p = &(*cache_p)->next;
/* fill in values for the xscale reg cache */
(*cache_p)->name = "XScale registers";
(*cache_p)->next = NULL;
(*cache_p)->reg_list = malloc(num_regs * sizeof(struct reg));
(*cache_p)->num_regs = num_regs;
for (i = 0; i < num_regs; i++) {
(*cache_p)->reg_list[i].name = xscale_reg_list[i];
(*cache_p)->reg_list[i].value = calloc(4, 1);
(*cache_p)->reg_list[i].dirty = 0;
(*cache_p)->reg_list[i].valid = 0;
(*cache_p)->reg_list[i].size = 32;
(*cache_p)->reg_list[i].arch_info = &arch_info[i];
(*cache_p)->reg_list[i].type = &xscale_reg_type;
arch_info[i] = xscale_reg_arch_info[i];
arch_info[i].target = target;
}
xscale->reg_cache = (*cache_p);
}
static int xscale_init_target(struct command_context *cmd_ctx,
struct target *target)
{
xscale_build_reg_cache(target);
return ERROR_OK;
}
static int xscale_init_arch_info(struct target *target,
struct xscale_common *xscale, struct jtag_tap *tap)
{
struct arm *arm;
uint32_t high_reset_branch, low_reset_branch;
int i;
arm = &xscale->arm;
/* store architecture specfic data */
xscale->common_magic = XSCALE_COMMON_MAGIC;
/* PXA3xx with 11 bit IR shifts the JTAG instructions */
if (tap->ir_length == 11)
xscale->xscale_variant = XSCALE_PXA3XX;
else
xscale->xscale_variant = XSCALE_IXP4XX_PXA2XX;
/* the debug handler isn't installed (and thus not running) at this time */
xscale->handler_address = 0xfe000800;
/* clear the vectors we keep locally for reference */
memset(xscale->low_vectors, 0, sizeof(xscale->low_vectors));
memset(xscale->high_vectors, 0, sizeof(xscale->high_vectors));
/* no user-specified vectors have been configured yet */
xscale->static_low_vectors_set = 0x0;
xscale->static_high_vectors_set = 0x0;
/* calculate branches to debug handler */
low_reset_branch = (xscale->handler_address + 0x20 - 0x0 - 0x8) >> 2;
high_reset_branch = (xscale->handler_address + 0x20 - 0xffff0000 - 0x8) >> 2;
xscale->low_vectors[0] = ARMV4_5_B((low_reset_branch & 0xffffff), 0);
xscale->high_vectors[0] = ARMV4_5_B((high_reset_branch & 0xffffff), 0);
for (i = 1; i <= 7; i++) {
xscale->low_vectors[i] = ARMV4_5_B(0xfffffe, 0);
xscale->high_vectors[i] = ARMV4_5_B(0xfffffe, 0);
}
/* 64kB aligned region used for DCache cleaning */
xscale->cache_clean_address = 0xfffe0000;
xscale->hold_rst = 0;
xscale->external_debug_break = 0;
xscale->ibcr_available = 2;
xscale->ibcr0_used = 0;
xscale->ibcr1_used = 0;
xscale->dbr_available = 2;
xscale->dbr0_used = 0;
xscale->dbr1_used = 0;
LOG_INFO("%s: hardware has 2 breakpoints and 2 watchpoints",
target_name(target));
xscale->arm_bkpt = ARMV5_BKPT(0x0);
xscale->thumb_bkpt = ARMV5_T_BKPT(0x0) & 0xffff;
xscale->vector_catch = 0x1;
xscale->trace.data = NULL;
xscale->trace.image = NULL;
xscale->trace.mode = XSCALE_TRACE_DISABLED;
xscale->trace.buffer_fill = 0;
xscale->trace.fill_counter = 0;
/* prepare ARMv4/5 specific information */
arm->arch_info = xscale;
arm->core_type = ARM_MODE_ANY;
arm->read_core_reg = xscale_read_core_reg;
arm->write_core_reg = xscale_write_core_reg;
arm->full_context = xscale_full_context;
arm_init_arch_info(target, arm);
xscale->armv4_5_mmu.armv4_5_cache.ctype = -1;
xscale->armv4_5_mmu.get_ttb = xscale_get_ttb;
xscale->armv4_5_mmu.read_memory = xscale_read_memory;
xscale->armv4_5_mmu.write_memory = xscale_write_memory;
xscale->armv4_5_mmu.disable_mmu_caches = xscale_disable_mmu_caches;
xscale->armv4_5_mmu.enable_mmu_caches = xscale_enable_mmu_caches;
xscale->armv4_5_mmu.has_tiny_pages = 1;
xscale->armv4_5_mmu.mmu_enabled = 0;
return ERROR_OK;
}
static int xscale_target_create(struct target *target, Jim_Interp *interp)
{
struct xscale_common *xscale;
if (sizeof xscale_debug_handler > 0x800) {
LOG_ERROR("debug_handler.bin: larger than 2kb");
return ERROR_FAIL;
}
xscale = calloc(1, sizeof(*xscale));
if (!xscale)
return ERROR_FAIL;
return xscale_init_arch_info(target, xscale, target->tap);
}
COMMAND_HANDLER(xscale_handle_debug_handler_command)
{
struct target *target = NULL;
struct xscale_common *xscale;
int retval;
uint32_t handler_address;
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
target = get_target(CMD_ARGV[0]);
if (target == NULL) {
LOG_ERROR("target '%s' not defined", CMD_ARGV[0]);
return ERROR_FAIL;
}
xscale = target_to_xscale(target);
retval = xscale_verify_pointer(CMD_CTX, xscale);
if (retval != ERROR_OK)
return retval;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], handler_address);
if (((handler_address >= 0x800) && (handler_address <= 0x1fef800)) ||
((handler_address >= 0xfe000800) && (handler_address <= 0xfffff800)))
xscale->handler_address = handler_address;
else {
LOG_ERROR(
"xscale debug_handler must be between 0x800 and 0x1fef800 or between 0xfe000800 and 0xfffff800");
return ERROR_FAIL;
}
return ERROR_OK;
}
COMMAND_HANDLER(xscale_handle_cache_clean_address_command)
{
struct target *target = NULL;
struct xscale_common *xscale;
int retval;
uint32_t cache_clean_address;
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
target = get_target(CMD_ARGV[0]);
if (target == NULL) {
LOG_ERROR("target '%s' not defined", CMD_ARGV[0]);
return ERROR_FAIL;
}
xscale = target_to_xscale(target);
retval = xscale_verify_pointer(CMD_CTX, xscale);
if (retval != ERROR_OK)
return retval;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cache_clean_address);
if (cache_clean_address & 0xffff)
LOG_ERROR("xscale cache_clean_address must be 64kb aligned");
else
xscale->cache_clean_address = cache_clean_address;
return ERROR_OK;
}
COMMAND_HANDLER(xscale_handle_cache_info_command)
{
struct target *target = get_current_target(CMD_CTX);
struct xscale_common *xscale = target_to_xscale(target);
int retval;
retval = xscale_verify_pointer(CMD_CTX, xscale);
if (retval != ERROR_OK)
return retval;
return armv4_5_handle_cache_info_command(CMD_CTX, &xscale->armv4_5_mmu.armv4_5_cache);
}
static int xscale_virt2phys(struct target *target,
target_addr_t virtual, target_addr_t *physical)
{
struct xscale_common *xscale = target_to_xscale(target);
uint32_t cb;
if (xscale->common_magic != XSCALE_COMMON_MAGIC) {
LOG_ERROR(xscale_not);
return ERROR_TARGET_INVALID;
}
uint32_t ret;
int retval = armv4_5_mmu_translate_va(target, &xscale->armv4_5_mmu,
virtual, &cb, &ret);
if (retval != ERROR_OK)
return retval;
*physical = ret;
return ERROR_OK;
}
static int xscale_mmu(struct target *target, int *enabled)
{
struct xscale_common *xscale = target_to_xscale(target);
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_INVALID;
}
*enabled = xscale->armv4_5_mmu.mmu_enabled;
return ERROR_OK;
}
COMMAND_HANDLER(xscale_handle_mmu_command)
{
struct target *target = get_current_target(CMD_CTX);
struct xscale_common *xscale = target_to_xscale(target);
int retval;
retval = xscale_verify_pointer(CMD_CTX, xscale);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED) {
command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
return ERROR_OK;
}
if (CMD_ARGC >= 1) {
bool enable;
COMMAND_PARSE_ENABLE(CMD_ARGV[0], enable);
if (enable)
xscale_enable_mmu_caches(target, 1, 0, 0);
else
xscale_disable_mmu_caches(target, 1, 0, 0);
xscale->armv4_5_mmu.mmu_enabled = enable;
}
command_print(CMD_CTX, "mmu %s",
(xscale->armv4_5_mmu.mmu_enabled) ? "enabled" : "disabled");
return ERROR_OK;
}
COMMAND_HANDLER(xscale_handle_idcache_command)
{
struct target *target = get_current_target(CMD_CTX);
struct xscale_common *xscale = target_to_xscale(target);
int retval = xscale_verify_pointer(CMD_CTX, xscale);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED) {
command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
return ERROR_OK;
}
bool icache = false;
if (strcmp(CMD_NAME, "icache") == 0)
icache = true;
if (CMD_ARGC >= 1) {
bool enable;
COMMAND_PARSE_ENABLE(CMD_ARGV[0], enable);
if (icache) {
xscale->armv4_5_mmu.armv4_5_cache.i_cache_enabled = enable;
if (enable)
xscale_enable_mmu_caches(target, 0, 0, 1);
else
xscale_disable_mmu_caches(target, 0, 0, 1);
} else {
xscale->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = enable;
if (enable)
xscale_enable_mmu_caches(target, 0, 1, 0);
else
xscale_disable_mmu_caches(target, 0, 1, 0);
}
}
bool enabled = icache ?
xscale->armv4_5_mmu.armv4_5_cache.i_cache_enabled :
xscale->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled;
const char *msg = enabled ? "enabled" : "disabled";
command_print(CMD_CTX, "%s %s", CMD_NAME, msg);
return ERROR_OK;
}
static const struct {
char name[15];
unsigned mask;
} vec_ids[] = {
{ "fiq", DCSR_TF, },
{ "irq", DCSR_TI, },
{ "dabt", DCSR_TD, },
{ "pabt", DCSR_TA, },
{ "swi", DCSR_TS, },
{ "undef", DCSR_TU, },
{ "reset", DCSR_TR, },
};
COMMAND_HANDLER(xscale_handle_vector_catch_command)
{
struct target *target = get_current_target(CMD_CTX);
struct xscale_common *xscale = target_to_xscale(target);
int retval;
uint32_t dcsr_value;
uint32_t catch = 0;
struct reg *dcsr_reg = &xscale->reg_cache->reg_list[XSCALE_DCSR];
retval = xscale_verify_pointer(CMD_CTX, xscale);
if (retval != ERROR_OK)
return retval;
dcsr_value = buf_get_u32(dcsr_reg->value, 0, 32);
if (CMD_ARGC > 0) {
if (CMD_ARGC == 1) {
if (strcmp(CMD_ARGV[0], "all") == 0) {
catch = DCSR_TRAP_MASK;
CMD_ARGC--;
} else if (strcmp(CMD_ARGV[0], "none") == 0) {
catch = 0;
CMD_ARGC--;
}
}
while (CMD_ARGC-- > 0) {
unsigned i;
for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name))
continue;
catch |= vec_ids[i].mask;
break;
}
if (i == ARRAY_SIZE(vec_ids)) {
LOG_ERROR("No vector '%s'", CMD_ARGV[CMD_ARGC]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
buf_set_u32(dcsr_reg->value, 0, 32,
(buf_get_u32(dcsr_reg->value, 0, 32) & ~DCSR_TRAP_MASK) | catch);
xscale_write_dcsr(target, -1, -1);
}
dcsr_value = buf_get_u32(dcsr_reg->value, 0, 32);
for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
command_print(CMD_CTX, "%15s: %s", vec_ids[i].name,
(dcsr_value & vec_ids[i].mask) ? "catch" : "ignore");
}
return ERROR_OK;
}
COMMAND_HANDLER(xscale_handle_vector_table_command)
{
struct target *target = get_current_target(CMD_CTX);
struct xscale_common *xscale = target_to_xscale(target);
int err = 0;
int retval;
retval = xscale_verify_pointer(CMD_CTX, xscale);
if (retval != ERROR_OK)
return retval;
if (CMD_ARGC == 0) { /* print current settings */
int idx;
command_print(CMD_CTX, "active user-set static vectors:");
for (idx = 1; idx < 8; idx++)
if (xscale->static_low_vectors_set & (1 << idx))
command_print(CMD_CTX,
"low %d: 0x%" PRIx32,
idx,
xscale->static_low_vectors[idx]);
for (idx = 1; idx < 8; idx++)
if (xscale->static_high_vectors_set & (1 << idx))
command_print(CMD_CTX,
"high %d: 0x%" PRIx32,
idx,
xscale->static_high_vectors[idx]);
return ERROR_OK;
}
if (CMD_ARGC != 3)
err = 1;
else {
int idx;
COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], idx);
uint32_t vec;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], vec);
if (idx < 1 || idx >= 8)
err = 1;
if (!err && strcmp(CMD_ARGV[0], "low") == 0) {
xscale->static_low_vectors_set |= (1<static_low_vectors[idx] = vec;
} else if (!err && (strcmp(CMD_ARGV[0], "high") == 0)) {
xscale->static_high_vectors_set |= (1<static_high_vectors[idx] = vec;
} else
err = 1;
}
if (err)
return ERROR_COMMAND_SYNTAX_ERROR;
return ERROR_OK;
}
COMMAND_HANDLER(xscale_handle_trace_buffer_command)
{
struct target *target = get_current_target(CMD_CTX);
struct xscale_common *xscale = target_to_xscale(target);
uint32_t dcsr_value;
int retval;
retval = xscale_verify_pointer(CMD_CTX, xscale);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED) {
command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
return ERROR_OK;
}
if (CMD_ARGC >= 1) {
if (strcmp("enable", CMD_ARGV[0]) == 0)
xscale->trace.mode = XSCALE_TRACE_WRAP; /* default */
else if (strcmp("disable", CMD_ARGV[0]) == 0)
xscale->trace.mode = XSCALE_TRACE_DISABLED;
else
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (CMD_ARGC >= 2 && xscale->trace.mode != XSCALE_TRACE_DISABLED) {
if (strcmp("fill", CMD_ARGV[1]) == 0) {
int buffcount = 1; /* default */
if (CMD_ARGC >= 3)
COMMAND_PARSE_NUMBER(int, CMD_ARGV[2], buffcount);
if (buffcount < 1) { /* invalid */
command_print(CMD_CTX, "fill buffer count must be > 0");
xscale->trace.mode = XSCALE_TRACE_DISABLED;
return ERROR_COMMAND_SYNTAX_ERROR;
}
xscale->trace.buffer_fill = buffcount;
xscale->trace.mode = XSCALE_TRACE_FILL;
} else if (strcmp("wrap", CMD_ARGV[1]) == 0)
xscale->trace.mode = XSCALE_TRACE_WRAP;
else {
xscale->trace.mode = XSCALE_TRACE_DISABLED;
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
if (xscale->trace.mode != XSCALE_TRACE_DISABLED) {
char fill_string[12];
sprintf(fill_string, "fill %d", xscale->trace.buffer_fill);
command_print(CMD_CTX, "trace buffer enabled (%s)",
(xscale->trace.mode == XSCALE_TRACE_FILL)
? fill_string : "wrap");
} else
command_print(CMD_CTX, "trace buffer disabled");
dcsr_value = buf_get_u32(xscale->reg_cache->reg_list[XSCALE_DCSR].value, 0, 32);
if (xscale->trace.mode == XSCALE_TRACE_FILL)
xscale_write_dcsr_sw(target, (dcsr_value & 0xfffffffc) | 2);
else
xscale_write_dcsr_sw(target, dcsr_value & 0xfffffffc);
return ERROR_OK;
}
COMMAND_HANDLER(xscale_handle_trace_image_command)
{
struct target *target = get_current_target(CMD_CTX);
struct xscale_common *xscale = target_to_xscale(target);
int retval;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
retval = xscale_verify_pointer(CMD_CTX, xscale);
if (retval != ERROR_OK)
return retval;
if (xscale->trace.image) {
image_close(xscale->trace.image);
free(xscale->trace.image);
command_print(CMD_CTX, "previously loaded image found and closed");
}
xscale->trace.image = malloc(sizeof(struct image));
xscale->trace.image->base_address_set = 0;
xscale->trace.image->start_address_set = 0;
/* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
if (CMD_ARGC >= 2) {
xscale->trace.image->base_address_set = 1;
COMMAND_PARSE_NUMBER(llong, CMD_ARGV[1], xscale->trace.image->base_address);
} else
xscale->trace.image->base_address_set = 0;
if (image_open(xscale->trace.image, CMD_ARGV[0],
(CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK) {
free(xscale->trace.image);
xscale->trace.image = NULL;
return ERROR_OK;
}
return ERROR_OK;
}
COMMAND_HANDLER(xscale_handle_dump_trace_command)
{
struct target *target = get_current_target(CMD_CTX);
struct xscale_common *xscale = target_to_xscale(target);
struct xscale_trace_data *trace_data;
struct fileio *file;
int retval;
retval = xscale_verify_pointer(CMD_CTX, xscale);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED) {
command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
return ERROR_OK;
}
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
trace_data = xscale->trace.data;
if (!trace_data) {
command_print(CMD_CTX, "no trace data collected");
return ERROR_OK;
}
if (fileio_open(&file, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
return ERROR_OK;
while (trace_data) {
int i;
fileio_write_u32(file, trace_data->chkpt0);
fileio_write_u32(file, trace_data->chkpt1);
fileio_write_u32(file, trace_data->last_instruction);
fileio_write_u32(file, trace_data->depth);
for (i = 0; i < trace_data->depth; i++)
fileio_write_u32(file, trace_data->entries[i].data |
((trace_data->entries[i].type & 0xffff) << 16));
trace_data = trace_data->next;
}
fileio_close(file);
return ERROR_OK;
}
COMMAND_HANDLER(xscale_handle_analyze_trace_buffer_command)
{
struct target *target = get_current_target(CMD_CTX);
struct xscale_common *xscale = target_to_xscale(target);
int retval;
retval = xscale_verify_pointer(CMD_CTX, xscale);
if (retval != ERROR_OK)
return retval;
xscale_analyze_trace(target, CMD_CTX);
return ERROR_OK;
}
COMMAND_HANDLER(xscale_handle_cp15)
{
struct target *target = get_current_target(CMD_CTX);
struct xscale_common *xscale = target_to_xscale(target);
int retval;
retval = xscale_verify_pointer(CMD_CTX, xscale);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED) {
command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
return ERROR_OK;
}
uint32_t reg_no = 0;
struct reg *reg = NULL;
if (CMD_ARGC > 0) {
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg_no);
/*translate from xscale cp15 register no to openocd register*/
switch (reg_no) {
case 0:
reg_no = XSCALE_MAINID;
break;
case 1:
reg_no = XSCALE_CTRL;
break;
case 2:
reg_no = XSCALE_TTB;
break;
case 3:
reg_no = XSCALE_DAC;
break;
case 5:
reg_no = XSCALE_FSR;
break;
case 6:
reg_no = XSCALE_FAR;
break;
case 13:
reg_no = XSCALE_PID;
break;
case 15:
reg_no = XSCALE_CPACCESS;
break;
default:
command_print(CMD_CTX, "invalid register number");
return ERROR_COMMAND_SYNTAX_ERROR;
}
reg = &xscale->reg_cache->reg_list[reg_no];
}
if (CMD_ARGC == 1) {
uint32_t value;
/* read cp15 control register */
xscale_get_reg(reg);
value = buf_get_u32(reg->value, 0, 32);
command_print(CMD_CTX, "%s (/%i): 0x%" PRIx32 "", reg->name, (int)(reg->size),
value);
} else if (CMD_ARGC == 2) {
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
/* send CP write request (command 0x41) */
xscale_send_u32(target, 0x41);
/* send CP register number */
xscale_send_u32(target, reg_no);
/* send CP register value */
xscale_send_u32(target, value);
/* execute cpwait to ensure outstanding operations complete */
xscale_send_u32(target, 0x53);
} else
return ERROR_COMMAND_SYNTAX_ERROR;
return ERROR_OK;
}
static const struct command_registration xscale_exec_command_handlers[] = {
{
.name = "cache_info",
.handler = xscale_handle_cache_info_command,
.mode = COMMAND_EXEC,
.help = "display information about CPU caches",
},
{
.name = "mmu",
.handler = xscale_handle_mmu_command,
.mode = COMMAND_EXEC,
.help = "enable or disable the MMU",
.usage = "['enable'|'disable']",
},
{
.name = "icache",
.handler = xscale_handle_idcache_command,
.mode = COMMAND_EXEC,
.help = "display ICache state, optionally enabling or "
"disabling it",
.usage = "['enable'|'disable']",
},
{
.name = "dcache",
.handler = xscale_handle_idcache_command,
.mode = COMMAND_EXEC,
.help = "display DCache state, optionally enabling or "
"disabling it",
.usage = "['enable'|'disable']",
},
{
.name = "vector_catch",
.handler = xscale_handle_vector_catch_command,
.mode = COMMAND_EXEC,
.help = "set or display mask of vectors "
"that should trigger debug entry",
.usage = "['all'|'none'|'fiq'|'irq'|'dabt'|'pabt'|'swi'|'undef'|'reset']",
},
{
.name = "vector_table",
.handler = xscale_handle_vector_table_command,
.mode = COMMAND_EXEC,
.help = "set vector table entry in mini-ICache, "
"or display current tables",
.usage = "[('high'|'low') index code]",
},
{
.name = "trace_buffer",
.handler = xscale_handle_trace_buffer_command,
.mode = COMMAND_EXEC,
.help = "display trace buffer status, enable or disable "
"tracing, and optionally reconfigure trace mode",
.usage = "['enable'|'disable' ['fill' [number]|'wrap']]",
},
{
.name = "dump_trace",
.handler = xscale_handle_dump_trace_command,
.mode = COMMAND_EXEC,
.help = "dump content of trace buffer to file",
.usage = "filename",
},
{
.name = "analyze_trace",
.handler = xscale_handle_analyze_trace_buffer_command,
.mode = COMMAND_EXEC,
.help = "analyze content of trace buffer",
.usage = "",
},
{
.name = "trace_image",
.handler = xscale_handle_trace_image_command,
.mode = COMMAND_EXEC,
.help = "load image from file to address (default 0)",
.usage = "filename [offset [filetype]]",
},
{
.name = "cp15",
.handler = xscale_handle_cp15,
.mode = COMMAND_EXEC,
.help = "Read or write coprocessor 15 register.",
.usage = "register [value]",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration xscale_any_command_handlers[] = {
{
.name = "debug_handler",
.handler = xscale_handle_debug_handler_command,
.mode = COMMAND_ANY,
.help = "Change address used for debug handler.",
.usage = " ",
},
{
.name = "cache_clean_address",
.handler = xscale_handle_cache_clean_address_command,
.mode = COMMAND_ANY,
.help = "Change address used for cleaning data cache.",
.usage = "address",
},
{
.chain = xscale_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration xscale_command_handlers[] = {
{
.chain = arm_command_handlers,
},
{
.name = "xscale",
.mode = COMMAND_ANY,
.help = "xscale command group",
.usage = "",
.chain = xscale_any_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct target_type xscale_target = {
.name = "xscale",
.poll = xscale_poll,
.arch_state = xscale_arch_state,
.halt = xscale_halt,
.resume = xscale_resume,
.step = xscale_step,
.assert_reset = xscale_assert_reset,
.deassert_reset = xscale_deassert_reset,
/* REVISIT on some cores, allow exporting iwmmxt registers ... */
.get_gdb_reg_list = arm_get_gdb_reg_list,
.read_memory = xscale_read_memory,
.read_phys_memory = xscale_read_phys_memory,
.write_memory = xscale_write_memory,
.write_phys_memory = xscale_write_phys_memory,
.checksum_memory = arm_checksum_memory,
.blank_check_memory = arm_blank_check_memory,
.run_algorithm = armv4_5_run_algorithm,
.add_breakpoint = xscale_add_breakpoint,
.remove_breakpoint = xscale_remove_breakpoint,
.add_watchpoint = xscale_add_watchpoint,
.remove_watchpoint = xscale_remove_watchpoint,
.commands = xscale_command_handlers,
.target_create = xscale_target_create,
.init_target = xscale_init_target,
.virt2phys = xscale_virt2phys,
.mmu = xscale_mmu
};