/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2007-2010 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Broadcom Corporation *
* Evan Hunter - ehunter@broadcom.com *
* *
* Copyright (C) ST-Ericsson SA 2011 *
* michel.jaouen@stericsson.com : smp minimum support *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
***************************************************************************/
#ifndef OPENOCD_TARGET_TARGET_H
#define OPENOCD_TARGET_TARGET_H
#include
#include "helper/replacements.h"
#include "helper/system.h"
#include
struct reg;
struct trace;
struct command_context;
struct command_invocation;
struct breakpoint;
struct watchpoint;
struct mem_param;
struct reg_param;
struct target_list;
struct gdb_fileio_info;
/*
* TARGET_UNKNOWN = 0: we don't know anything about the target yet
* TARGET_RUNNING = 1: the target is executing or ready to execute user code
* TARGET_HALTED = 2: the target is not executing code, and ready to talk to the
* debugger. on an xscale it means that the debug handler is executing
* TARGET_RESET = 3: the target is being held in reset (only a temporary state,
* not sure how this is used with all the recent changes)
* TARGET_DEBUG_RUNNING = 4: the target is running, but it is executing code on
* behalf of the debugger (e.g. algorithm for flashing)
*
* also see: target_state_name();
*/
enum target_state {
TARGET_UNKNOWN = 0,
TARGET_RUNNING = 1,
TARGET_HALTED = 2,
TARGET_RESET = 3,
TARGET_DEBUG_RUNNING = 4,
};
enum nvp_assert {
NVP_DEASSERT,
NVP_ASSERT,
};
enum target_reset_mode {
RESET_UNKNOWN = 0,
RESET_RUN = 1, /* reset and let target run */
RESET_HALT = 2, /* reset and halt target out of reset */
RESET_INIT = 3, /* reset and halt target out of reset, then run init script */
};
enum target_debug_reason {
DBG_REASON_DBGRQ = 0,
DBG_REASON_BREAKPOINT = 1,
DBG_REASON_WATCHPOINT = 2,
DBG_REASON_WPTANDBKPT = 3,
DBG_REASON_SINGLESTEP = 4,
DBG_REASON_NOTHALTED = 5,
DBG_REASON_EXIT = 6,
DBG_REASON_EXC_CATCH = 7,
DBG_REASON_UNDEFINED = 8,
};
enum target_endianness {
TARGET_ENDIAN_UNKNOWN = 0,
TARGET_BIG_ENDIAN = 1, TARGET_LITTLE_ENDIAN = 2
};
struct working_area {
target_addr_t address;
uint32_t size;
bool free;
uint8_t *backup;
struct working_area **user;
struct working_area *next;
};
struct gdb_service {
struct target *target;
/* field for smp display */
/* element 0 coreid currently displayed ( 1 till n) */
/* element 1 coreid to be displayed at next resume 1 till n 0 means resume
* all cores core displayed */
int32_t core[2];
};
/* target back off timer */
struct backoff_timer {
int64_t next_attempt;
unsigned int interval;
};
/* split target registers into multiple class */
enum target_register_class {
REG_CLASS_ALL,
REG_CLASS_GENERAL,
};
/* target_type.h contains the full definition of struct target_type */
struct target {
struct target_type *type; /* target type definition (name, access functions) */
char *cmd_name; /* tcl Name of target */
int target_number; /* DO NOT USE! field to be removed in 2010 */
struct jtag_tap *tap; /* where on the jtag chain is this */
int32_t coreid; /* which device on the TAP? */
/** Should we defer examine to later */
bool defer_examine;
/**
* Indicates whether this target has been examined.
*
* Do @b not access this field directly, use target_was_examined()
* or target_set_examined().
*/
bool examined;
/**
* true if the target is currently running a downloaded
* "algorithm" instead of arbitrary user code. OpenOCD code
* invoking algorithms is trusted to maintain correctness of
* any cached state (e.g. for flash status), which arbitrary
* code will have no reason to know about.
*/
bool running_alg;
struct target_event_action *event_action;
bool reset_halt; /* attempt resetting the CPU into the halted mode? */
target_addr_t working_area; /* working area (initialised RAM). Evaluated
* upon first allocation from virtual/physical address. */
bool working_area_virt_spec; /* virtual address specified? */
target_addr_t working_area_virt; /* virtual address */
bool working_area_phys_spec; /* physical address specified? */
target_addr_t working_area_phys; /* physical address */
uint32_t working_area_size; /* size in bytes */
uint32_t backup_working_area; /* whether the content of the working area has to be preserved */
struct working_area *working_areas;/* list of allocated working areas */
enum target_debug_reason debug_reason;/* reason why the target entered debug state */
enum target_endianness endianness; /* target endianness */
/* also see: target_state_name() */
enum target_state state; /* the current backend-state (running, halted, ...) */
struct reg_cache *reg_cache; /* the first register cache of the target (core regs) */
struct breakpoint *breakpoints; /* list of breakpoints */
struct watchpoint *watchpoints; /* list of watchpoints */
struct trace *trace_info; /* generic trace information */
struct debug_msg_receiver *dbgmsg; /* list of debug message receivers */
uint32_t dbg_msg_enabled; /* debug message status */
void *arch_info; /* architecture specific information */
void *private_config; /* pointer to target specific config data (for jim_configure hook) */
struct target *next; /* next target in list */
bool verbose_halt_msg; /* display async info in telnet session. Do not display
* lots of halted/resumed info when stepping in debugger. */
bool halt_issued; /* did we transition to halted state? */
int64_t halt_issued_time; /* Note time when halt was issued */
/* ARM v7/v8 targets with ADIv5 interface */
bool dbgbase_set; /* By default the debug base is not set */
uint32_t dbgbase; /* Really a Cortex-A specific option, but there is no
* system in place to support target specific options
* currently. */
bool has_dap; /* set to true if target has ADIv5 support */
bool dap_configured; /* set to true if ADIv5 DAP is configured */
bool tap_configured; /* set to true if JTAG tap has been configured
* through -chain-position */
struct rtos *rtos; /* Instance of Real Time Operating System support */
bool rtos_auto_detect; /* A flag that indicates that the RTOS has been specified as "auto"
* and must be detected when symbols are offered */
/* Track when next to poll(). If polling is failing, we don't want to
* poll too quickly because we'll just overwhelm the user with error
* messages. */
struct backoff_timer backoff;
int smp; /* add some target attributes for smp support */
struct list_head *smp_targets; /* list all targets in this smp group/cluster
* The head of the list is shared between the
* cluster, thus here there is a pointer */
/* the gdb service is there in case of smp, we have only one gdb server
* for all smp target
* the target attached to the gdb is changing dynamically by changing
* gdb_service->target pointer */
struct gdb_service *gdb_service;
/* file-I/O information for host to do syscall */
struct gdb_fileio_info *fileio_info;
char *gdb_port_override; /* target-specific override for gdb_port */
int gdb_max_connections; /* max number of simultaneous gdb connections */
/* The semihosting information, extracted from the target. */
struct semihosting *semihosting;
};
struct target_list {
struct list_head lh;
struct target *target;
};
struct gdb_fileio_info {
char *identifier;
uint64_t param_1;
uint64_t param_2;
uint64_t param_3;
uint64_t param_4;
};
/** Returns a description of the endianness for the specified target. */
static inline const char *target_endianness(struct target *target)
{
return (target->endianness == TARGET_ENDIAN_UNKNOWN) ? "unknown" :
(target->endianness == TARGET_BIG_ENDIAN) ? "big endian" : "little endian";
}
/** Returns the instance-specific name of the specified target. */
static inline const char *target_name(struct target *target)
{
return target->cmd_name;
}
const char *debug_reason_name(struct target *t);
enum target_event {
/* allow GDB to do stuff before others handle the halted event,
* this is in lieu of defining ordering of invocation of events,
* which would be more complicated
*
* Telling GDB to halt does not mean that the target stopped running,
* simply that we're dropping out of GDB's waiting for step or continue.
*
* This can be useful when e.g. detecting power dropout.
*/
TARGET_EVENT_GDB_HALT,
TARGET_EVENT_HALTED, /* target entered debug state from normal execution or reset */
TARGET_EVENT_RESUMED, /* target resumed to normal execution */
TARGET_EVENT_RESUME_START,
TARGET_EVENT_RESUME_END,
TARGET_EVENT_STEP_START,
TARGET_EVENT_STEP_END,
TARGET_EVENT_GDB_START, /* debugger started execution (step/run) */
TARGET_EVENT_GDB_END, /* debugger stopped execution (step/run) */
TARGET_EVENT_RESET_START,
TARGET_EVENT_RESET_ASSERT_PRE,
TARGET_EVENT_RESET_ASSERT, /* C code uses this instead of SRST */
TARGET_EVENT_RESET_ASSERT_POST,
TARGET_EVENT_RESET_DEASSERT_PRE,
TARGET_EVENT_RESET_DEASSERT_POST,
TARGET_EVENT_RESET_INIT,
TARGET_EVENT_RESET_END,
TARGET_EVENT_DEBUG_HALTED, /* target entered debug state, but was executing on behalf of the debugger */
TARGET_EVENT_DEBUG_RESUMED, /* target resumed to execute on behalf of the debugger */
TARGET_EVENT_EXAMINE_START,
TARGET_EVENT_EXAMINE_FAIL,
TARGET_EVENT_EXAMINE_END,
TARGET_EVENT_GDB_ATTACH,
TARGET_EVENT_GDB_DETACH,
TARGET_EVENT_GDB_FLASH_ERASE_START,
TARGET_EVENT_GDB_FLASH_ERASE_END,
TARGET_EVENT_GDB_FLASH_WRITE_START,
TARGET_EVENT_GDB_FLASH_WRITE_END,
TARGET_EVENT_TRACE_CONFIG,
TARGET_EVENT_SEMIHOSTING_USER_CMD_0x100 = 0x100, /* semihosting allows user cmds from 0x100 to 0x1ff */
TARGET_EVENT_SEMIHOSTING_USER_CMD_0x101 = 0x101,
TARGET_EVENT_SEMIHOSTING_USER_CMD_0x102 = 0x102,
TARGET_EVENT_SEMIHOSTING_USER_CMD_0x103 = 0x103,
TARGET_EVENT_SEMIHOSTING_USER_CMD_0x104 = 0x104,
TARGET_EVENT_SEMIHOSTING_USER_CMD_0x105 = 0x105,
TARGET_EVENT_SEMIHOSTING_USER_CMD_0x106 = 0x106,
TARGET_EVENT_SEMIHOSTING_USER_CMD_0x107 = 0x107,
};
struct target_event_action {
enum target_event event;
Jim_Interp *interp;
Jim_Obj *body;
struct target_event_action *next;
};
bool target_has_event_action(struct target *target, enum target_event event);
struct target_event_callback {
int (*callback)(struct target *target, enum target_event event, void *priv);
void *priv;
struct target_event_callback *next;
};
struct target_reset_callback {
struct list_head list;
void *priv;
int (*callback)(struct target *target, enum target_reset_mode reset_mode, void *priv);
};
struct target_trace_callback {
struct list_head list;
void *priv;
int (*callback)(struct target *target, size_t len, uint8_t *data, void *priv);
};
enum target_timer_type {
TARGET_TIMER_TYPE_ONESHOT,
TARGET_TIMER_TYPE_PERIODIC
};
struct target_timer_callback {
int (*callback)(void *priv);
unsigned int time_ms;
enum target_timer_type type;
bool removed;
int64_t when; /* output of timeval_ms() */
void *priv;
struct target_timer_callback *next;
};
struct target_memory_check_block {
target_addr_t address;
uint32_t size;
uint32_t result;
};
int target_register_commands(struct command_context *cmd_ctx);
int target_examine(void);
int target_register_event_callback(
int (*callback)(struct target *target,
enum target_event event, void *priv),
void *priv);
int target_unregister_event_callback(
int (*callback)(struct target *target,
enum target_event event, void *priv),
void *priv);
int target_register_reset_callback(
int (*callback)(struct target *target,
enum target_reset_mode reset_mode, void *priv),
void *priv);
int target_unregister_reset_callback(
int (*callback)(struct target *target,
enum target_reset_mode reset_mode, void *priv),
void *priv);
int target_register_trace_callback(
int (*callback)(struct target *target,
size_t len, uint8_t *data, void *priv),
void *priv);
int target_unregister_trace_callback(
int (*callback)(struct target *target,
size_t len, uint8_t *data, void *priv),
void *priv);
/* Poll the status of the target, detect any error conditions and report them.
*
* Also note that this fn will clear such error conditions, so a subsequent
* invocation will then succeed.
*
* These error conditions can be "sticky" error conditions. E.g. writing
* to memory could be implemented as an open loop and if memory writes
* fails, then a note is made of it, the error is sticky, but the memory
* write loop still runs to completion. This improves performance in the
* normal case as there is no need to verify that every single write succeed,
* yet it is possible to detect error conditions.
*/
int target_poll(struct target *target);
int target_resume(struct target *target, int current, target_addr_t address,
int handle_breakpoints, int debug_execution);
int target_halt(struct target *target);
int target_call_event_callbacks(struct target *target, enum target_event event);
int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode);
int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data);
/**
* The period is very approximate, the callback can happen much more often
* or much more rarely than specified
*/
int target_register_timer_callback(int (*callback)(void *priv),
unsigned int time_ms, enum target_timer_type type, void *priv);
int target_unregister_timer_callback(int (*callback)(void *priv), void *priv);
int target_call_timer_callbacks(void);
/**
* Invoke this to ensure that e.g. polling timer callbacks happen before
* a synchronous command completes.
*/
int target_call_timer_callbacks_now(void);
/**
* Returns when the next registered event will take place. Callers can use this
* to go to sleep until that time occurs.
*/
int64_t target_timer_next_event(void);
struct target *get_target_by_num(int num);
struct target *get_current_target(struct command_context *cmd_ctx);
struct target *get_current_target_or_null(struct command_context *cmd_ctx);
struct target *get_target(const char *id);
/**
* Get the target type name.
*
* This routine is a wrapper for the target->type->name field.
* Note that this is not an instance-specific name for his target.
*/
const char *target_type_name(struct target *target);
/**
* Examine the specified @a target, letting it perform any
* Initialisation that requires JTAG access.
*
* This routine is a wrapper for target->type->examine.
*/
int target_examine_one(struct target *target);
/** @returns @c true if target_set_examined() has been called. */
static inline bool target_was_examined(struct target *target)
{
return target->examined;
}
/** Sets the @c examined flag for the given target. */
/** Use in target->type->examine() after one-time setup is done. */
static inline void target_set_examined(struct target *target)
{
target->examined = true;
}
/**
* Add the @a breakpoint for @a target.
*
* This routine is a wrapper for target->type->add_breakpoint.
*/
int target_add_breakpoint(struct target *target,
struct breakpoint *breakpoint);
/**
* Add the @a ContextID breakpoint for @a target.
*
* This routine is a wrapper for target->type->add_context_breakpoint.
*/
int target_add_context_breakpoint(struct target *target,
struct breakpoint *breakpoint);
/**
* Add the @a ContextID & IVA breakpoint for @a target.
*
* This routine is a wrapper for target->type->add_hybrid_breakpoint.
*/
int target_add_hybrid_breakpoint(struct target *target,
struct breakpoint *breakpoint);
/**
* Remove the @a breakpoint for @a target.
*
* This routine is a wrapper for target->type->remove_breakpoint.
*/
int target_remove_breakpoint(struct target *target,
struct breakpoint *breakpoint);
/**
* Add the @a watchpoint for @a target.
*
* This routine is a wrapper for target->type->add_watchpoint.
*/
int target_add_watchpoint(struct target *target,
struct watchpoint *watchpoint);
/**
* Remove the @a watchpoint for @a target.
*
* This routine is a wrapper for target->type->remove_watchpoint.
*/
int target_remove_watchpoint(struct target *target,
struct watchpoint *watchpoint);
/**
* Find out the just hit @a watchpoint for @a target.
*
* This routine is a wrapper for target->type->hit_watchpoint.
*/
int target_hit_watchpoint(struct target *target,
struct watchpoint **watchpoint);
/**
* Obtain the architecture for GDB.
*
* This routine is a wrapper for target->type->get_gdb_arch.
*/
const char *target_get_gdb_arch(struct target *target);
/**
* Obtain the registers for GDB.
*
* This routine is a wrapper for target->type->get_gdb_reg_list.
*/
int target_get_gdb_reg_list(struct target *target,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class);
/**
* Obtain the registers for GDB, but don't read register values from the
* target.
*
* This routine is a wrapper for target->type->get_gdb_reg_list_noread.
*/
int target_get_gdb_reg_list_noread(struct target *target,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class);
/**
* Check if @a target allows GDB connections.
*
* Some target do not implement the necessary code required by GDB.
*/
bool target_supports_gdb_connection(struct target *target);
/**
* Step the target.
*
* This routine is a wrapper for target->type->step.
*/
int target_step(struct target *target,
int current, target_addr_t address, int handle_breakpoints);
/**
* Run an algorithm on the @a target given.
*
* This routine is a wrapper for target->type->run_algorithm.
*/
int target_run_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_param,
target_addr_t entry_point, target_addr_t exit_point,
int timeout_ms, void *arch_info);
/**
* Starts an algorithm in the background on the @a target given.
*
* This routine is a wrapper for target->type->start_algorithm.
*/
int target_start_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
target_addr_t entry_point, target_addr_t exit_point,
void *arch_info);
/**
* Wait for an algorithm on the @a target given.
*
* This routine is a wrapper for target->type->wait_algorithm.
*/
int target_wait_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
target_addr_t exit_point, int timeout_ms,
void *arch_info);
/**
* This routine is a wrapper for asynchronous algorithms.
*
*/
int target_run_flash_async_algorithm(struct target *target,
const uint8_t *buffer, uint32_t count, int block_size,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
uint32_t buffer_start, uint32_t buffer_size,
uint32_t entry_point, uint32_t exit_point,
void *arch_info);
/**
* This routine is a wrapper for asynchronous algorithms.
*
*/
int target_run_read_async_algorithm(struct target *target,
uint8_t *buffer, uint32_t count, int block_size,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
uint32_t buffer_start, uint32_t buffer_size,
uint32_t entry_point, uint32_t exit_point,
void *arch_info);
/**
* Read @a count items of @a size bytes from the memory of @a target at
* the @a address given.
*
* This routine is a wrapper for target->type->read_memory.
*/
int target_read_memory(struct target *target,
target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
int target_read_phys_memory(struct target *target,
target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
/**
* Write @a count items of @a size bytes to the memory of @a target at
* the @a address given. @a address must be aligned to @a size
* in target memory.
*
* The endianness is the same in the host and target memory for this
* function.
*
* \todo TODO:
* Really @a buffer should have been defined as "const void *" and
* @a buffer should have been aligned to @a size in the host memory.
*
* This is not enforced via e.g. assert's today and e.g. the
* target_write_buffer fn breaks this assumption.
*
* This routine is wrapper for target->type->write_memory.
*/
int target_write_memory(struct target *target,
target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
int target_write_phys_memory(struct target *target,
target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
/*
* Write to target memory using the virtual address.
*
* Note that this fn is used to implement software breakpoints. Targets
* can implement support for software breakpoints to memory marked as read
* only by making this fn write to ram even if it is read only(MMU or
* MPUs).
*
* It is sufficient to implement for writing a single word(16 or 32 in
* ARM32/16 bit case) to write the breakpoint to ram.
*
* The target should also take care of "other things" to make sure that
* software breakpoints can be written using this function. E.g.
* when there is a separate instruction and data cache, this fn must
* make sure that the instruction cache is synced up to the potential
* code change that can happen as a result of the memory write(typically
* by invalidating the cache).
*
* The high level wrapper fn in target.c will break down this memory write
* request to multiple write requests to the target driver to e.g. guarantee
* that writing 4 bytes to an aligned address happens with a single 32 bit
* write operation, thus making this fn suitable to e.g. write to special
* peripheral registers which do not support byte operations.
*/
int target_write_buffer(struct target *target,
target_addr_t address, uint32_t size, const uint8_t *buffer);
int target_read_buffer(struct target *target,
target_addr_t address, uint32_t size, uint8_t *buffer);
int target_checksum_memory(struct target *target,
target_addr_t address, uint32_t size, uint32_t *crc);
int target_blank_check_memory(struct target *target,
struct target_memory_check_block *blocks, int num_blocks,
uint8_t erased_value);
int target_wait_state(struct target *target, enum target_state state, int ms);
/**
* Obtain file-I/O information from target for GDB to do syscall.
*
* This routine is a wrapper for target->type->get_gdb_fileio_info.
*/
int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info);
/**
* Pass GDB file-I/O response to target after finishing host syscall.
*
* This routine is a wrapper for target->type->gdb_fileio_end.
*/
int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c);
/**
* Return the highest accessible address for this target.
*/
target_addr_t target_address_max(struct target *target);
/**
* Return the number of address bits this target supports.
*
* This routine is a wrapper for target->type->address_bits.
*/
unsigned target_address_bits(struct target *target);
/**
* Return the number of data bits this target supports.
*
* This routine is a wrapper for target->type->data_bits.
*/
unsigned int target_data_bits(struct target *target);
/** Return the *name* of this targets current state */
const char *target_state_name(struct target *target);
/** Return the *name* of a target event enumeration value */
const char *target_event_name(enum target_event event);
/** Return the *name* of a target reset reason enumeration value */
const char *target_reset_mode_name(enum target_reset_mode reset_mode);
/* DANGER!!!!!
*
* if "area" passed in to target_alloc_working_area() points to a memory
* location that goes out of scope (e.g. a pointer on the stack), then
* the caller of target_alloc_working_area() is responsible for invoking
* target_free_working_area() before "area" goes out of scope.
*
* target_free_all_working_areas() will NULL out the "area" pointer
* upon resuming or resetting the CPU.
*
*/
int target_alloc_working_area(struct target *target,
uint32_t size, struct working_area **area);
/* Same as target_alloc_working_area, except that no error is logged
* when ERROR_TARGET_RESOURCE_NOT_AVAILABLE is returned.
*
* This allows the calling code to *try* to allocate target memory
* and have a fallback to another behaviour(slower?).
*/
int target_alloc_working_area_try(struct target *target,
uint32_t size, struct working_area **area);
/**
* Free a working area.
* Restore target data if area backup is configured.
* @param target
* @param area Pointer to the area to be freed or NULL
* @returns ERROR_OK if successful; error code if restore failed
*/
int target_free_working_area(struct target *target, struct working_area *area);
void target_free_all_working_areas(struct target *target);
uint32_t target_get_working_area_avail(struct target *target);
/**
* Free all the resources allocated by targets and the target layer
*/
void target_quit(void);
extern struct target *all_targets;
uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer);
uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer);
uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer);
uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer);
void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value);
void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value);
void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value);
void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value);
void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf);
void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf);
void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf);
void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf);
void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf);
void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf);
int target_read_u64(struct target *target, target_addr_t address, uint64_t *value);
int target_read_u32(struct target *target, target_addr_t address, uint32_t *value);
int target_read_u16(struct target *target, target_addr_t address, uint16_t *value);
int target_read_u8(struct target *target, target_addr_t address, uint8_t *value);
int target_write_u64(struct target *target, target_addr_t address, uint64_t value);
int target_write_u32(struct target *target, target_addr_t address, uint32_t value);
int target_write_u16(struct target *target, target_addr_t address, uint16_t value);
int target_write_u8(struct target *target, target_addr_t address, uint8_t value);
int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value);
int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value);
int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value);
int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value);
/* Issues USER() statements with target state information */
int target_arch_state(struct target *target);
void target_handle_event(struct target *t, enum target_event e);
void target_handle_md_output(struct command_invocation *cmd,
struct target *target, target_addr_t address, unsigned size,
unsigned count, const uint8_t *buffer, bool include_address);
int target_profiling_default(struct target *target, uint32_t *samples, uint32_t
max_num_samples, uint32_t *num_samples, uint32_t seconds);
#define ERROR_TARGET_INVALID (-300)
#define ERROR_TARGET_INIT_FAILED (-301)
#define ERROR_TARGET_TIMEOUT (-302)
#define ERROR_TARGET_NOT_HALTED (-304)
#define ERROR_TARGET_FAILURE (-305)
#define ERROR_TARGET_UNALIGNED_ACCESS (-306)
#define ERROR_TARGET_DATA_ABORT (-307)
#define ERROR_TARGET_RESOURCE_NOT_AVAILABLE (-308)
#define ERROR_TARGET_TRANSLATION_FAULT (-309)
#define ERROR_TARGET_NOT_RUNNING (-310)
#define ERROR_TARGET_NOT_EXAMINED (-311)
#define ERROR_TARGET_DUPLICATE_BREAKPOINT (-312)
#define ERROR_TARGET_ALGO_EXIT (-313)
extern bool get_target_reset_nag(void);
#define TARGET_DEFAULT_POLLING_INTERVAL 100
#endif /* OPENOCD_TARGET_TARGET_H */