/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2008 by Oyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arm.h"
#include "armv4_5.h"
#include "arm_jtag.h"
#include "breakpoints.h"
#include "arm_disassembler.h"
#include
#include "algorithm.h"
#include "register.h"
/* offsets into armv4_5 core register cache */
enum {
/* ARMV4_5_CPSR = 31, */
ARMV4_5_SPSR_FIQ = 32,
ARMV4_5_SPSR_IRQ = 33,
ARMV4_5_SPSR_SVC = 34,
ARMV4_5_SPSR_ABT = 35,
ARMV4_5_SPSR_UND = 36,
ARM_SPSR_MON = 41,
};
static const uint8_t arm_usr_indices[17] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
};
static const uint8_t arm_fiq_indices[8] = {
16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
};
static const uint8_t arm_irq_indices[3] = {
23, 24, ARMV4_5_SPSR_IRQ,
};
static const uint8_t arm_svc_indices[3] = {
25, 26, ARMV4_5_SPSR_SVC,
};
static const uint8_t arm_abt_indices[3] = {
27, 28, ARMV4_5_SPSR_ABT,
};
static const uint8_t arm_und_indices[3] = {
29, 30, ARMV4_5_SPSR_UND,
};
static const uint8_t arm_mon_indices[3] = {
39, 40, ARM_SPSR_MON,
};
static const struct {
const char *name;
unsigned short psr;
/* For user and system modes, these list indices for all registers.
* otherwise they're just indices for the shadow registers and SPSR.
*/
unsigned short n_indices;
const uint8_t *indices;
} arm_mode_data[] = {
/* Seven modes are standard from ARM7 on. "System" and "User" share
* the same registers; other modes shadow from 3 to 8 registers.
*/
{
.name = "User",
.psr = ARM_MODE_USR,
.n_indices = ARRAY_SIZE(arm_usr_indices),
.indices = arm_usr_indices,
},
{
.name = "FIQ",
.psr = ARM_MODE_FIQ,
.n_indices = ARRAY_SIZE(arm_fiq_indices),
.indices = arm_fiq_indices,
},
{
.name = "Supervisor",
.psr = ARM_MODE_SVC,
.n_indices = ARRAY_SIZE(arm_svc_indices),
.indices = arm_svc_indices,
},
{
.name = "Abort",
.psr = ARM_MODE_ABT,
.n_indices = ARRAY_SIZE(arm_abt_indices),
.indices = arm_abt_indices,
},
{
.name = "IRQ",
.psr = ARM_MODE_IRQ,
.n_indices = ARRAY_SIZE(arm_irq_indices),
.indices = arm_irq_indices,
},
{
.name = "Undefined instruction",
.psr = ARM_MODE_UND,
.n_indices = ARRAY_SIZE(arm_und_indices),
.indices = arm_und_indices,
},
{
.name = "System",
.psr = ARM_MODE_SYS,
.n_indices = ARRAY_SIZE(arm_usr_indices),
.indices = arm_usr_indices,
},
/* TrustZone "Security Extensions" add a secure monitor mode.
* This is distinct from a "debug monitor" which can support
* non-halting debug, in conjunction with some debuggers.
*/
{
.name = "Secure Monitor",
.psr = ARM_MODE_MON,
.n_indices = ARRAY_SIZE(arm_mon_indices),
.indices = arm_mon_indices,
},
{
.name = "Secure Monitor ARM1176JZF-S",
.psr = ARM_MODE_1176_MON,
.n_indices = ARRAY_SIZE(arm_mon_indices),
.indices = arm_mon_indices,
},
/* These special modes are currently only supported
* by ARMv6M and ARMv7M profiles */
{
.name = "Thread",
.psr = ARM_MODE_THREAD,
},
{
.name = "Thread (User)",
.psr = ARM_MODE_USER_THREAD,
},
{
.name = "Handler",
.psr = ARM_MODE_HANDLER,
},
};
/** Map PSR mode bits to the name of an ARM processor operating mode. */
const char *arm_mode_name(unsigned psr_mode)
{
for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
if (arm_mode_data[i].psr == psr_mode)
return arm_mode_data[i].name;
}
LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
return "UNRECOGNIZED";
}
/** Return true iff the parameter denotes a valid ARM processor mode. */
bool is_arm_mode(unsigned psr_mode)
{
for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
if (arm_mode_data[i].psr == psr_mode)
return true;
}
return false;
}
/** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
int arm_mode_to_number(enum arm_mode mode)
{
switch (mode) {
case ARM_MODE_ANY:
/* map MODE_ANY to user mode */
case ARM_MODE_USR:
return 0;
case ARM_MODE_FIQ:
return 1;
case ARM_MODE_IRQ:
return 2;
case ARM_MODE_SVC:
return 3;
case ARM_MODE_ABT:
return 4;
case ARM_MODE_UND:
return 5;
case ARM_MODE_SYS:
return 6;
case ARM_MODE_MON:
case ARM_MODE_1176_MON:
return 7;
default:
LOG_ERROR("invalid mode value encountered %d", mode);
return -1;
}
}
/** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
enum arm_mode armv4_5_number_to_mode(int number)
{
switch (number) {
case 0:
return ARM_MODE_USR;
case 1:
return ARM_MODE_FIQ;
case 2:
return ARM_MODE_IRQ;
case 3:
return ARM_MODE_SVC;
case 4:
return ARM_MODE_ABT;
case 5:
return ARM_MODE_UND;
case 6:
return ARM_MODE_SYS;
case 7:
return ARM_MODE_MON;
default:
LOG_ERROR("mode index out of bounds %d", number);
return ARM_MODE_ANY;
}
}
static const char *arm_state_strings[] = {
"ARM", "Thumb", "Jazelle", "ThumbEE",
};
/* Templates for ARM core registers.
*
* NOTE: offsets in this table are coupled to the arm_mode_data
* table above, the armv4_5_core_reg_map array below, and also to
* the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
*/
static const struct {
/* The name is used for e.g. the "regs" command. */
const char *name;
/* The {cookie, mode} tuple uniquely identifies one register.
* In a given mode, cookies 0..15 map to registers R0..R15,
* with R13..R15 usually called SP, LR, PC.
*
* MODE_ANY is used as *input* to the mapping, and indicates
* various special cases (sigh) and errors.
*
* Cookie 16 is (currently) confusing, since it indicates
* CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
* (Exception modes have both CPSR and SPSR registers ...)
*/
unsigned cookie;
unsigned gdb_index;
enum arm_mode mode;
} arm_core_regs[] = {
/* IMPORTANT: we guarantee that the first eight cached registers
* correspond to r0..r7, and the fifteenth to PC, so that callers
* don't need to map them.
*/
{ .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, .gdb_index = 0, },
{ .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, .gdb_index = 1, },
{ .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, .gdb_index = 2, },
{ .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, .gdb_index = 3, },
{ .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, .gdb_index = 4, },
{ .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, .gdb_index = 5, },
{ .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, .gdb_index = 6, },
{ .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, .gdb_index = 7, },
/* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
* them as MODE_ANY creates special cases. (ANY means
* "not mapped" elsewhere; here it's "everything but FIQ".)
*/
{ .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, .gdb_index = 8, },
{ .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, .gdb_index = 9, },
{ .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, .gdb_index = 10, },
{ .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, .gdb_index = 11, },
{ .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, .gdb_index = 12, },
/* Historical GDB mapping of indices:
* - 13-14 are sp and lr, but banked counterparts are used
* - 16-24 are left for deprecated 8 FPA + 1 FPS
* - 25 is the cpsr
*/
/* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
{ .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, .gdb_index = 26, },
{ .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, .gdb_index = 27, },
/* guaranteed to be at index 15 */
{ .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, .gdb_index = 15, },
{ .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, .gdb_index = 28, },
{ .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, .gdb_index = 29, },
{ .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, .gdb_index = 30, },
{ .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, .gdb_index = 31, },
{ .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, .gdb_index = 32, },
{ .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, .gdb_index = 33, },
{ .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, .gdb_index = 34, },
{ .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, .gdb_index = 35, },
{ .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, .gdb_index = 36, },
{ .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, .gdb_index = 37, },
{ .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, .gdb_index = 38, },
{ .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, .gdb_index = 39, },
{ .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, .gdb_index = 40, },
{ .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, .gdb_index = 41, },
{ .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, .gdb_index = 42, },
{ .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, .gdb_index = 25, },
{ .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, .gdb_index = 43, },
{ .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, .gdb_index = 44, },
{ .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, .gdb_index = 45, },
{ .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, .gdb_index = 46, },
{ .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, .gdb_index = 47, },
/* These are only used for GDB target description, banked registers are accessed instead */
{ .name = "sp", .cookie = 13, .mode = ARM_MODE_ANY, .gdb_index = 13, },
{ .name = "lr", .cookie = 14, .mode = ARM_MODE_ANY, .gdb_index = 14, },
/* These exist only when the Security Extension (TrustZone) is present */
{ .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, .gdb_index = 48, },
{ .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, .gdb_index = 49, },
{ .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, .gdb_index = 50, },
};
static const struct {
unsigned int id;
const char *name;
uint32_t bits;
enum arm_mode mode;
enum reg_type type;
const char *group;
const char *feature;
} arm_vfp_v3_regs[] = {
{ ARM_VFP_V3_D0, "d0", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D1, "d1", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D2, "d2", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D3, "d3", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D4, "d4", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D5, "d5", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D6, "d6", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D7, "d7", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D8, "d8", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D9, "d9", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D10, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D11, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D12, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D13, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D14, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D15, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D16, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D17, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D18, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D19, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D20, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D21, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D22, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D23, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D24, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D25, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D26, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D27, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D28, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D29, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D30, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_D31, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
{ ARM_VFP_V3_FPSCR, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp"},
};
/* map core mode (USR, FIQ, ...) and register number to
* indices into the register cache
*/
const int armv4_5_core_reg_map[8][17] = {
{ /* USR */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
},
{ /* FIQ (8 shadows of USR, vs normal 3) */
0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
},
{ /* IRQ */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
},
{ /* SVC */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
},
{ /* ABT */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
},
{ /* UND */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
},
{ /* SYS (same registers as USR) */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
},
{ /* MON */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 37, 38, 15, 39,
}
};
/**
* Configures host-side ARM records to reflect the specified CPSR.
* Later, code can use arm_reg_current() to map register numbers
* according to how they are exposed by this mode.
*/
void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
{
enum arm_mode mode = cpsr & 0x1f;
int num;
/* NOTE: this may be called very early, before the register
* cache is set up. We can't defend against many errors, in
* particular against CPSRs that aren't valid *here* ...
*/
if (arm->cpsr) {
buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
arm->cpsr->valid = 1;
arm->cpsr->dirty = 0;
}
arm->core_mode = mode;
/* mode_to_number() warned; set up a somewhat-sane mapping */
num = arm_mode_to_number(mode);
if (num < 0) {
mode = ARM_MODE_USR;
num = 0;
}
arm->map = &armv4_5_core_reg_map[num][0];
arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
? NULL
: arm->core_cache->reg_list + arm->map[16];
/* Older ARMs won't have the J bit */
enum arm_state state;
if (cpsr & (1 << 5)) { /* T */
if (cpsr & (1 << 24)) { /* J */
LOG_WARNING("ThumbEE -- incomplete support");
state = ARM_STATE_THUMB_EE;
} else
state = ARM_STATE_THUMB;
} else {
if (cpsr & (1 << 24)) { /* J */
LOG_ERROR("Jazelle state handling is BROKEN!");
state = ARM_STATE_JAZELLE;
} else
state = ARM_STATE_ARM;
}
arm->core_state = state;
LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
arm_mode_name(mode),
arm_state_strings[arm->core_state]);
}
/**
* Returns handle to the register currently mapped to a given number.
* Someone must have called arm_set_cpsr() before.
*
* \param arm This core's state and registers are used.
* \param regnum From 0..15 corresponding to R0..R14 and PC.
* Note that R0..R7 don't require mapping; you may access those
* as the first eight entries in the register cache. Likewise
* R15 (PC) doesn't need mapping; you may also access it directly.
* However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
* CPSR (arm->cpsr) is also not mapped.
*/
struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
{
struct reg *r;
if (regnum > 16)
return NULL;
if (!arm->map) {
LOG_ERROR("Register map is not available yet, the target is not fully initialised");
r = arm->core_cache->reg_list + regnum;
} else
r = arm->core_cache->reg_list + arm->map[regnum];
/* e.g. invalid CPSR said "secure monitor" mode on a core
* that doesn't support it...
*/
if (!r) {
LOG_ERROR("Invalid CPSR mode");
r = arm->core_cache->reg_list + regnum;
}
return r;
}
static const uint8_t arm_gdb_dummy_fp_value[12];
static struct reg_feature arm_gdb_dummy_fp_features = {
.name = "net.sourceforge.openocd.fake_fpa"
};
/**
* Dummy FPA registers are required to support GDB on ARM.
* Register packets require eight obsolete FPA register values.
* Modern ARM cores use Vector Floating Point (VFP), if they
* have any floating point support. VFP is not FPA-compatible.
*/
struct reg arm_gdb_dummy_fp_reg = {
.name = "GDB dummy FPA register",
.value = (uint8_t *) arm_gdb_dummy_fp_value,
.valid = 1,
.size = 96,
.exist = false,
.number = 16,
.feature = &arm_gdb_dummy_fp_features,
.group = "fake_fpa",
};
static const uint8_t arm_gdb_dummy_fps_value[4];
/**
* Dummy FPA status registers are required to support GDB on ARM.
* Register packets require an obsolete FPA status register.
*/
struct reg arm_gdb_dummy_fps_reg = {
.name = "GDB dummy FPA status register",
.value = (uint8_t *) arm_gdb_dummy_fps_value,
.valid = 1,
.size = 32,
.exist = false,
.number = 24,
.feature = &arm_gdb_dummy_fp_features,
.group = "fake_fpa",
};
static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
static void arm_gdb_dummy_init(void)
{
register_init_dummy(&arm_gdb_dummy_fp_reg);
register_init_dummy(&arm_gdb_dummy_fps_reg);
}
static int armv4_5_get_core_reg(struct reg *reg)
{
int retval;
struct arm_reg *reg_arch_info = reg->arch_info;
struct target *target = reg_arch_info->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = reg_arch_info->arm->read_core_reg(target, reg,
reg_arch_info->num, reg_arch_info->mode);
if (retval == ERROR_OK) {
reg->valid = 1;
reg->dirty = 0;
}
return retval;
}
static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
{
struct arm_reg *reg_arch_info = reg->arch_info;
struct target *target = reg_arch_info->target;
struct arm *armv4_5_target = target_to_arm(target);
uint32_t value = buf_get_u32(buf, 0, 32);
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Except for CPSR, the "reg" command exposes a writeback model
* for the register cache.
*/
if (reg == armv4_5_target->cpsr) {
arm_set_cpsr(armv4_5_target, value);
/* Older cores need help to be in ARM mode during halt
* mode debug, so we clear the J and T bits if we flush.
* For newer cores (v6/v7a/v7r) we don't need that, but
* it won't hurt since CPSR is always flushed anyway.
*/
if (armv4_5_target->core_mode !=
(enum arm_mode)(value & 0x1f)) {
LOG_DEBUG("changing ARM core mode to '%s'",
arm_mode_name(value & 0x1f));
value &= ~((1 << 24) | (1 << 5));
uint8_t t[4];
buf_set_u32(t, 0, 32, value);
armv4_5_target->write_core_reg(target, reg,
16, ARM_MODE_ANY, t);
}
} else {
buf_set_u32(reg->value, 0, 32, value);
if (reg->size == 64) {
value = buf_get_u32(buf + 4, 0, 32);
buf_set_u32(reg->value + 4, 0, 32, value);
}
reg->valid = 1;
}
reg->dirty = 1;
return ERROR_OK;
}
static const struct reg_arch_type arm_reg_type = {
.get = armv4_5_get_core_reg,
.set = armv4_5_set_core_reg,
};
struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
{
int num_regs = ARRAY_SIZE(arm_core_regs);
int num_core_regs = num_regs;
if (arm->arm_vfp_version == ARM_VFP_V3)
num_regs += ARRAY_SIZE(arm_vfp_v3_regs);
struct reg_cache *cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
struct arm_reg *reg_arch_info = calloc(num_regs, sizeof(struct arm_reg));
int i;
if (!cache || !reg_list || !reg_arch_info) {
free(cache);
free(reg_list);
free(reg_arch_info);
return NULL;
}
cache->name = "ARM registers";
cache->next = NULL;
cache->reg_list = reg_list;
cache->num_regs = 0;
for (i = 0; i < num_core_regs; i++) {
/* Skip registers this core doesn't expose */
if (arm_core_regs[i].mode == ARM_MODE_MON
&& arm->core_type != ARM_MODE_MON)
continue;
/* REVISIT handle Cortex-M, which only shadows R13/SP */
reg_arch_info[i].num = arm_core_regs[i].cookie;
reg_arch_info[i].mode = arm_core_regs[i].mode;
reg_arch_info[i].target = target;
reg_arch_info[i].arm = arm;
reg_list[i].name = arm_core_regs[i].name;
reg_list[i].number = arm_core_regs[i].gdb_index;
reg_list[i].size = 32;
reg_list[i].value = reg_arch_info[i].value;
reg_list[i].type = &arm_reg_type;
reg_list[i].arch_info = ®_arch_info[i];
reg_list[i].exist = true;
/* This really depends on the calling convention in use */
reg_list[i].caller_save = false;
/* Registers data type, as used by GDB target description */
reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
switch (arm_core_regs[i].cookie) {
case 13:
reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR;
break;
case 14:
case 15:
reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR;
break;
default:
reg_list[i].reg_data_type->type = REG_TYPE_UINT32;
break;
}
/* let GDB shows banked registers only in "info all-reg" */
reg_list[i].feature = malloc(sizeof(struct reg_feature));
if (reg_list[i].number <= 15 || reg_list[i].number == 25) {
reg_list[i].feature->name = "org.gnu.gdb.arm.core";
reg_list[i].group = "general";
} else {
reg_list[i].feature->name = "net.sourceforge.openocd.banked";
reg_list[i].group = "banked";
}
cache->num_regs++;
}
int j;
for (i = num_core_regs, j = 0; i < num_regs; i++, j++) {
reg_arch_info[i].num = arm_vfp_v3_regs[j].id;
reg_arch_info[i].mode = arm_vfp_v3_regs[j].mode;
reg_arch_info[i].target = target;
reg_arch_info[i].arm = arm;
reg_list[i].name = arm_vfp_v3_regs[j].name;
reg_list[i].number = arm_vfp_v3_regs[j].id;
reg_list[i].size = arm_vfp_v3_regs[j].bits;
reg_list[i].value = reg_arch_info[i].value;
reg_list[i].type = &arm_reg_type;
reg_list[i].arch_info = ®_arch_info[i];
reg_list[i].exist = true;
reg_list[i].caller_save = false;
reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
reg_list[i].reg_data_type->type = arm_vfp_v3_regs[j].type;
reg_list[i].feature = malloc(sizeof(struct reg_feature));
reg_list[i].feature->name = arm_vfp_v3_regs[j].feature;
reg_list[i].group = arm_vfp_v3_regs[j].group;
cache->num_regs++;
}
arm->pc = reg_list + 15;
arm->cpsr = reg_list + ARMV4_5_CPSR;
arm->core_cache = cache;
return cache;
}
int arm_arch_state(struct target *target)
{
struct arm *arm = target_to_arm(target);
if (arm->common_magic != ARM_COMMON_MAGIC) {
LOG_ERROR("BUG: called for a non-ARM target");
return ERROR_FAIL;
}
/* avoid filling log waiting for fileio reply */
if (arm->semihosting_hit_fileio)
return ERROR_OK;
LOG_USER("target halted in %s state due to %s, current mode: %s\n"
"cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s%s",
arm_state_strings[arm->core_state],
debug_reason_name(target),
arm_mode_name(arm->core_mode),
buf_get_u32(arm->cpsr->value, 0, 32),
buf_get_u32(arm->pc->value, 0, 32),
arm->is_semihosting ? ", semihosting" : "",
arm->is_semihosting_fileio ? " fileio" : "");
return ERROR_OK;
}
#define ARMV4_5_CORE_REG_MODENUM(cache, mode, num) \
(cache->reg_list[armv4_5_core_reg_map[mode][num]])
COMMAND_HANDLER(handle_armv4_5_reg_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct reg *regs;
if (!is_arm(arm)) {
command_print(CMD_CTX, "current target isn't an ARM");
return ERROR_FAIL;
}
if (target->state != TARGET_HALTED) {
command_print(CMD_CTX, "error: target must be halted for register accesses");
return ERROR_FAIL;
}
if (arm->core_type != ARM_MODE_ANY) {
command_print(CMD_CTX,
"Microcontroller Profile not supported - use standard reg cmd");
return ERROR_OK;
}
if (!is_arm_mode(arm->core_mode)) {
LOG_ERROR("not a valid arm core mode - communication failure?");
return ERROR_FAIL;
}
if (!arm->full_context) {
command_print(CMD_CTX, "error: target doesn't support %s",
CMD_NAME);
return ERROR_FAIL;
}
regs = arm->core_cache->reg_list;
for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
const char *name;
char *sep = "\n";
char *shadow = "";
/* label this bank of registers (or shadows) */
switch (arm_mode_data[mode].psr) {
case ARM_MODE_SYS:
continue;
case ARM_MODE_USR:
name = "System and User";
sep = "";
break;
case ARM_MODE_MON:
if (arm->core_type != ARM_MODE_MON)
continue;
/* FALLTHROUGH */
default:
name = arm_mode_data[mode].name;
shadow = "shadow ";
break;
}
command_print(CMD_CTX, "%s%s mode %sregisters",
sep, name, shadow);
/* display N rows of up to 4 registers each */
for (unsigned i = 0; i < arm_mode_data[mode].n_indices; ) {
char output[80];
int output_len = 0;
for (unsigned j = 0; j < 4; j++, i++) {
uint32_t value;
struct reg *reg = regs;
if (i >= arm_mode_data[mode].n_indices)
break;
reg += arm_mode_data[mode].indices[i];
/* REVISIT be smarter about faults... */
if (!reg->valid)
arm->full_context(target);
value = buf_get_u32(reg->value, 0, 32);
output_len += snprintf(output + output_len,
sizeof(output) - output_len,
"%8s: %8.8" PRIx32 " ",
reg->name, value);
}
command_print(CMD_CTX, "%s", output);
}
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_armv4_5_core_state_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD_CTX, "current target isn't an ARM");
return ERROR_FAIL;
}
if (arm->core_type == ARM_MODE_THREAD) {
/* armv7m not supported */
command_print(CMD_CTX, "Unsupported Command");
return ERROR_OK;
}
if (CMD_ARGC > 0) {
if (strcmp(CMD_ARGV[0], "arm") == 0)
arm->core_state = ARM_STATE_ARM;
if (strcmp(CMD_ARGV[0], "thumb") == 0)
arm->core_state = ARM_STATE_THUMB;
}
command_print(CMD_CTX, "core state: %s", arm_state_strings[arm->core_state]);
return ERROR_OK;
}
COMMAND_HANDLER(handle_arm_disassemble_command)
{
int retval = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
if (target == NULL) {
LOG_ERROR("No target selected");
return ERROR_FAIL;
}
struct arm *arm = target_to_arm(target);
target_addr_t address;
int count = 1;
int thumb = 0;
if (!is_arm(arm)) {
command_print(CMD_CTX, "current target isn't an ARM");
return ERROR_FAIL;
}
if (arm->core_type == ARM_MODE_THREAD) {
/* armv7m is always thumb mode */
thumb = 1;
}
switch (CMD_ARGC) {
case 3:
if (strcmp(CMD_ARGV[2], "thumb") != 0)
goto usage;
thumb = 1;
/* FALL THROUGH */
case 2:
COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
/* FALL THROUGH */
case 1:
COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
if (address & 0x01) {
if (!thumb) {
command_print(CMD_CTX, "Disassemble as Thumb");
thumb = 1;
}
address &= ~1;
}
break;
default:
usage:
count = 0;
retval = ERROR_COMMAND_SYNTAX_ERROR;
}
while (count-- > 0) {
struct arm_instruction cur_instruction;
if (thumb) {
/* Always use Thumb2 disassembly for best handling
* of 32-bit BL/BLX, and to work with newer cores
* (some ARMv6, all ARMv7) that use Thumb2.
*/
retval = thumb2_opcode(target, address,
&cur_instruction);
if (retval != ERROR_OK)
break;
} else {
uint32_t opcode;
retval = target_read_u32(target, address, &opcode);
if (retval != ERROR_OK)
break;
retval = arm_evaluate_opcode(opcode, address,
&cur_instruction) != ERROR_OK;
if (retval != ERROR_OK)
break;
}
command_print(CMD_CTX, "%s", cur_instruction.text);
address += cur_instruction.instruction_size;
}
return retval;
}
static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
{
struct command_context *context;
struct target *target;
struct arm *arm;
int retval;
context = current_command_context(interp);
assert(context != NULL);
target = get_current_target(context);
if (target == NULL) {
LOG_ERROR("%s: no current target", __func__);
return JIM_ERR;
}
if (!target_was_examined(target)) {
LOG_ERROR("%s: not yet examined", target_name(target));
return JIM_ERR;
}
arm = target_to_arm(target);
if (!is_arm(arm)) {
LOG_ERROR("%s: not an ARM", target_name(target));
return JIM_ERR;
}
if ((argc < 6) || (argc > 7)) {
/* FIXME use the command name to verify # params... */
LOG_ERROR("%s: wrong number of arguments", __func__);
return JIM_ERR;
}
int cpnum;
uint32_t op1;
uint32_t op2;
uint32_t CRn;
uint32_t CRm;
uint32_t value;
long l;
/* NOTE: parameter sequence matches ARM instruction set usage:
* MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
* MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
* The "rX" is necessarily omitted; it uses Tcl mechanisms.
*/
retval = Jim_GetLong(interp, argv[1], &l);
if (retval != JIM_OK)
return retval;
if (l & ~0xf) {
LOG_ERROR("%s: %s %d out of range", __func__,
"coprocessor", (int) l);
return JIM_ERR;
}
cpnum = l;
retval = Jim_GetLong(interp, argv[2], &l);
if (retval != JIM_OK)
return retval;
if (l & ~0x7) {
LOG_ERROR("%s: %s %d out of range", __func__,
"op1", (int) l);
return JIM_ERR;
}
op1 = l;
retval = Jim_GetLong(interp, argv[3], &l);
if (retval != JIM_OK)
return retval;
if (l & ~0xf) {
LOG_ERROR("%s: %s %d out of range", __func__,
"CRn", (int) l);
return JIM_ERR;
}
CRn = l;
retval = Jim_GetLong(interp, argv[4], &l);
if (retval != JIM_OK)
return retval;
if (l & ~0xf) {
LOG_ERROR("%s: %s %d out of range", __func__,
"CRm", (int) l);
return JIM_ERR;
}
CRm = l;
retval = Jim_GetLong(interp, argv[5], &l);
if (retval != JIM_OK)
return retval;
if (l & ~0x7) {
LOG_ERROR("%s: %s %d out of range", __func__,
"op2", (int) l);
return JIM_ERR;
}
op2 = l;
value = 0;
/* FIXME don't assume "mrc" vs "mcr" from the number of params;
* that could easily be a typo! Check both...
*
* FIXME change the call syntax here ... simplest to just pass
* the MRC() or MCR() instruction to be executed. That will also
* let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
* if that's ever needed.
*/
if (argc == 7) {
retval = Jim_GetLong(interp, argv[6], &l);
if (retval != JIM_OK)
return retval;
value = l;
/* NOTE: parameters reordered! */
/* ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2) */
retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value);
if (retval != ERROR_OK)
return JIM_ERR;
} else {
/* NOTE: parameters reordered! */
/* ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2) */
retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value);
if (retval != ERROR_OK)
return JIM_ERR;
Jim_SetResult(interp, Jim_NewIntObj(interp, value));
}
return JIM_OK;
}
COMMAND_HANDLER(handle_arm_semihosting_command)
{
struct target *target = get_current_target(CMD_CTX);
if (target == NULL) {
LOG_ERROR("No target selected");
return ERROR_FAIL;
}
struct arm *arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD_CTX, "current target isn't an ARM");
return ERROR_FAIL;
}
if (!arm->setup_semihosting) {
command_print(CMD_CTX, "semihosting not supported for current target");
return ERROR_FAIL;
}
if (CMD_ARGC > 0) {
int semihosting;
COMMAND_PARSE_ENABLE(CMD_ARGV[0], semihosting);
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (arm->setup_semihosting(target, semihosting) != ERROR_OK) {
LOG_ERROR("Failed to Configure semihosting");
return ERROR_FAIL;
}
/* FIXME never let that "catch" be dropped! */
arm->is_semihosting = semihosting;
}
command_print(CMD_CTX, "semihosting is %s",
arm->is_semihosting
? "enabled" : "disabled");
return ERROR_OK;
}
COMMAND_HANDLER(handle_arm_semihosting_fileio_command)
{
struct target *target = get_current_target(CMD_CTX);
if (target == NULL) {
LOG_ERROR("No target selected");
return ERROR_FAIL;
}
struct arm *arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD_CTX, "current target isn't an ARM");
return ERROR_FAIL;
}
if (!arm->is_semihosting) {
command_print(CMD_CTX, "semihosting is not enabled");
return ERROR_FAIL;
}
if (CMD_ARGC > 0)
COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm->is_semihosting_fileio);
command_print(CMD_CTX, "semihosting fileio is %s",
arm->is_semihosting_fileio
? "enabled" : "disabled");
return ERROR_OK;
}
COMMAND_HANDLER(handle_arm_semihosting_cmdline)
{
struct target *target = get_current_target(CMD_CTX);
unsigned int i;
if (target == NULL) {
LOG_ERROR("No target selected");
return ERROR_FAIL;
}
struct arm *arm = target_to_arm(target);
if (!is_arm(arm)) {
command_print(CMD_CTX, "current target isn't an ARM");
return ERROR_FAIL;
}
if (!arm->setup_semihosting) {
command_print(CMD_CTX, "semihosting not supported for current target");
return ERROR_FAIL;
}
free(arm->semihosting_cmdline);
arm->semihosting_cmdline = CMD_ARGC > 0 ? strdup(CMD_ARGV[0]) : NULL;
for (i = 1; i < CMD_ARGC; i++) {
char *cmdline = alloc_printf("%s %s", arm->semihosting_cmdline, CMD_ARGV[i]);
if (cmdline == NULL)
break;
free(arm->semihosting_cmdline);
arm->semihosting_cmdline = cmdline;
}
return ERROR_OK;
}
static const struct command_registration arm_exec_command_handlers[] = {
{
.name = "reg",
.handler = handle_armv4_5_reg_command,
.mode = COMMAND_EXEC,
.help = "display ARM core registers",
.usage = "",
},
{
.name = "core_state",
.handler = handle_armv4_5_core_state_command,
.mode = COMMAND_EXEC,
.usage = "['arm'|'thumb']",
.help = "display/change ARM core state",
},
{
.name = "disassemble",
.handler = handle_arm_disassemble_command,
.mode = COMMAND_EXEC,
.usage = "address [count ['thumb']]",
.help = "disassemble instructions ",
},
{
.name = "mcr",
.mode = COMMAND_EXEC,
.jim_handler = &jim_mcrmrc,
.help = "write coprocessor register",
.usage = "cpnum op1 CRn CRm op2 value",
},
{
.name = "mrc",
.jim_handler = &jim_mcrmrc,
.help = "read coprocessor register",
.usage = "cpnum op1 CRn CRm op2",
},
{
"semihosting",
.handler = handle_arm_semihosting_command,
.mode = COMMAND_EXEC,
.usage = "['enable'|'disable']",
.help = "activate support for semihosting operations",
},
{
"semihosting_cmdline",
.handler = handle_arm_semihosting_cmdline,
.mode = COMMAND_EXEC,
.usage = "arguments",
.help = "command line arguments to be passed to program",
},
{
"semihosting_fileio",
.handler = handle_arm_semihosting_fileio_command,
.mode = COMMAND_EXEC,
.usage = "['enable'|'disable']",
.help = "activate support for semihosting fileio operations",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration arm_command_handlers[] = {
{
.name = "arm",
.mode = COMMAND_ANY,
.help = "ARM command group",
.usage = "",
.chain = arm_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
int arm_get_gdb_reg_list(struct target *target,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class)
{
struct arm *arm = target_to_arm(target);
unsigned int i;
if (!is_arm_mode(arm->core_mode)) {
LOG_ERROR("not a valid arm core mode - communication failure?");
return ERROR_FAIL;
}
switch (reg_class) {
case REG_CLASS_GENERAL:
*reg_list_size = 26;
*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
for (i = 0; i < 16; i++)
(*reg_list)[i] = arm_reg_current(arm, i);
/* For GDB compatibility, take FPA registers size into account and zero-fill it*/
for (i = 16; i < 24; i++)
(*reg_list)[i] = &arm_gdb_dummy_fp_reg;
(*reg_list)[24] = &arm_gdb_dummy_fps_reg;
(*reg_list)[25] = arm->cpsr;
return ERROR_OK;
break;
case REG_CLASS_ALL:
*reg_list_size = (arm->core_type != ARM_MODE_MON ? 48 : 51);
unsigned int list_size_core = *reg_list_size;
if (arm->arm_vfp_version == ARM_VFP_V3)
*reg_list_size += 33;
*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
for (i = 0; i < 16; i++)
(*reg_list)[i] = arm_reg_current(arm, i);
for (i = 13; i < ARRAY_SIZE(arm_core_regs); i++) {
int reg_index = arm->core_cache->reg_list[i].number;
if (!(arm_core_regs[i].mode == ARM_MODE_MON
&& arm->core_type != ARM_MODE_MON))
(*reg_list)[reg_index] = &(arm->core_cache->reg_list[i]);
}
/* When we supply the target description, there is no need for fake FPA */
for (i = 16; i < 24; i++) {
(*reg_list)[i] = &arm_gdb_dummy_fp_reg;
(*reg_list)[i]->size = 0;
}
(*reg_list)[24] = &arm_gdb_dummy_fps_reg;
(*reg_list)[24]->size = 0;
if (arm->arm_vfp_version == ARM_VFP_V3) {
unsigned int num_core_regs = ARRAY_SIZE(arm_core_regs);
for (i = 0; i < 33; i++)
(*reg_list)[list_size_core + i] = &(arm->core_cache->reg_list[num_core_regs + i]);
}
return ERROR_OK;
break;
default:
LOG_ERROR("not a valid register class type in query.");
return ERROR_FAIL;
break;
}
}
/* wait for execution to complete and check exit point */
static int armv4_5_run_algorithm_completion(struct target *target,
uint32_t exit_point,
int timeout_ms,
void *arch_info)
{
int retval;
struct arm *arm = target_to_arm(target);
retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED) {
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
retval = target_wait_state(target, TARGET_HALTED, 500);
if (retval != ERROR_OK)
return retval;
return ERROR_TARGET_TIMEOUT;
}
/* fast exit: ARMv5+ code can use BKPT */
if (exit_point && buf_get_u32(arm->pc->value, 0, 32) != exit_point) {
LOG_WARNING(
"target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
buf_get_u32(arm->pc->value, 0, 32));
return ERROR_TARGET_TIMEOUT;
}
return ERROR_OK;
}
int armv4_5_run_algorithm_inner(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
uint32_t entry_point, uint32_t exit_point,
int timeout_ms, void *arch_info,
int (*run_it)(struct target *target, uint32_t exit_point,
int timeout_ms, void *arch_info))
{
struct arm *arm = target_to_arm(target);
struct arm_algorithm *arm_algorithm_info = arch_info;
enum arm_state core_state = arm->core_state;
uint32_t context[17];
uint32_t cpsr;
int exit_breakpoint_size = 0;
int i;
int retval = ERROR_OK;
LOG_DEBUG("Running algorithm");
if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC) {
LOG_ERROR("current target isn't an ARMV4/5 target");
return ERROR_TARGET_INVALID;
}
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!is_arm_mode(arm->core_mode)) {
LOG_ERROR("not a valid arm core mode - communication failure?");
return ERROR_FAIL;
}
/* armv5 and later can terminate with BKPT instruction; less overhead */
if (!exit_point && arm->is_armv4) {
LOG_ERROR("ARMv4 target needs HW breakpoint location");
return ERROR_FAIL;
}
/* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
* they'll be restored later.
*/
for (i = 0; i <= 16; i++) {
struct reg *r;
r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
arm_algorithm_info->core_mode, i);
if (!r->valid)
arm->read_core_reg(target, r, i,
arm_algorithm_info->core_mode);
context[i] = buf_get_u32(r->value, 0, 32);
}
cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
for (i = 0; i < num_mem_params; i++) {
retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size,
mem_params[i].value);
if (retval != ERROR_OK)
return retval;
}
for (i = 0; i < num_reg_params; i++) {
struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, 0);
if (!reg) {
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (reg->size != reg_params[i].size) {
LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
retval = armv4_5_set_core_reg(reg, reg_params[i].value);
if (retval != ERROR_OK)
return retval;
}
arm->core_state = arm_algorithm_info->core_state;
if (arm->core_state == ARM_STATE_ARM)
exit_breakpoint_size = 4;
else if (arm->core_state == ARM_STATE_THUMB)
exit_breakpoint_size = 2;
else {
LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (arm_algorithm_info->core_mode != ARM_MODE_ANY) {
LOG_DEBUG("setting core_mode: 0x%2.2x",
arm_algorithm_info->core_mode);
buf_set_u32(arm->cpsr->value, 0, 5,
arm_algorithm_info->core_mode);
arm->cpsr->dirty = 1;
arm->cpsr->valid = 1;
}
/* terminate using a hardware or (ARMv5+) software breakpoint */
if (exit_point) {
retval = breakpoint_add(target, exit_point,
exit_breakpoint_size, BKPT_HARD);
if (retval != ERROR_OK) {
LOG_ERROR("can't add HW breakpoint to terminate algorithm");
return ERROR_TARGET_FAILURE;
}
}
retval = target_resume(target, 0, entry_point, 1, 1);
if (retval != ERROR_OK)
return retval;
retval = run_it(target, exit_point, timeout_ms, arch_info);
if (exit_point)
breakpoint_remove(target, exit_point);
if (retval != ERROR_OK)
return retval;
for (i = 0; i < num_mem_params; i++) {
if (mem_params[i].direction != PARAM_OUT) {
int retvaltemp = target_read_buffer(target, mem_params[i].address,
mem_params[i].size,
mem_params[i].value);
if (retvaltemp != ERROR_OK)
retval = retvaltemp;
}
}
for (i = 0; i < num_reg_params; i++) {
if (reg_params[i].direction != PARAM_OUT) {
struct reg *reg = register_get_by_name(arm->core_cache,
reg_params[i].reg_name,
0);
if (!reg) {
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
retval = ERROR_COMMAND_SYNTAX_ERROR;
continue;
}
if (reg->size != reg_params[i].size) {
LOG_ERROR(
"BUG: register '%s' size doesn't match reg_params[i].size",
reg_params[i].reg_name);
retval = ERROR_COMMAND_SYNTAX_ERROR;
continue;
}
buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
}
}
/* restore everything we saved before (17 or 18 registers) */
for (i = 0; i <= 16; i++) {
uint32_t regvalue;
regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
arm_algorithm_info->core_mode, i).value, 0, 32);
if (regvalue != context[i]) {
LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "",
ARMV4_5_CORE_REG_MODE(arm->core_cache,
arm_algorithm_info->core_mode, i).name, context[i]);
buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
i).valid = 1;
ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
i).dirty = 1;
}
}
arm_set_cpsr(arm, cpsr);
arm->cpsr->dirty = 1;
arm->core_state = core_state;
return retval;
}
int armv4_5_run_algorithm(struct target *target,
int num_mem_params,
struct mem_param *mem_params,
int num_reg_params,
struct reg_param *reg_params,
target_addr_t entry_point,
target_addr_t exit_point,
int timeout_ms,
void *arch_info)
{
return armv4_5_run_algorithm_inner(target,
num_mem_params,
mem_params,
num_reg_params,
reg_params,
(uint32_t)entry_point,
(uint32_t)exit_point,
timeout_ms,
arch_info,
armv4_5_run_algorithm_completion);
}
/**
* Runs ARM code in the target to calculate a CRC32 checksum.
*
*/
int arm_checksum_memory(struct target *target,
target_addr_t address, uint32_t count, uint32_t *checksum)
{
struct working_area *crc_algorithm;
struct arm_algorithm arm_algo;
struct arm *arm = target_to_arm(target);
struct reg_param reg_params[2];
int retval;
uint32_t i;
uint32_t exit_var = 0;
static const uint8_t arm_crc_code_le[] = {
#include "../../contrib/loaders/checksum/armv4_5_crc.inc"
};
assert(sizeof(arm_crc_code_le) % 4 == 0);
retval = target_alloc_working_area(target,
sizeof(arm_crc_code_le), &crc_algorithm);
if (retval != ERROR_OK)
return retval;
/* convert code into a buffer in target endianness */
for (i = 0; i < ARRAY_SIZE(arm_crc_code_le) / 4; i++) {
retval = target_write_u32(target,
crc_algorithm->address + i * sizeof(uint32_t),
le_to_h_u32(&arm_crc_code_le[i * 4]));
if (retval != ERROR_OK)
goto cleanup;
}
arm_algo.common_magic = ARM_COMMON_MAGIC;
arm_algo.core_mode = ARM_MODE_SVC;
arm_algo.core_state = ARM_STATE_ARM;
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT);
init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
buf_set_u32(reg_params[1].value, 0, 32, count);
/* 20 second timeout/megabyte */
int timeout = 20000 * (1 + (count / (1024 * 1024)));
/* armv4 must exit using a hardware breakpoint */
if (arm->is_armv4)
exit_var = crc_algorithm->address + sizeof(arm_crc_code_le) - 8;
retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
crc_algorithm->address,
exit_var,
timeout, &arm_algo);
if (retval == ERROR_OK)
*checksum = buf_get_u32(reg_params[0].value, 0, 32);
else
LOG_ERROR("error executing ARM crc algorithm");
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
cleanup:
target_free_working_area(target, crc_algorithm);
return retval;
}
/**
* Runs ARM code in the target to check whether a memory block holds
* all ones. NOR flash which has been erased, and thus may be written,
* holds all ones.
*
*/
int arm_blank_check_memory(struct target *target,
struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
{
struct working_area *check_algorithm;
struct reg_param reg_params[3];
struct arm_algorithm arm_algo;
struct arm *arm = target_to_arm(target);
int retval;
uint32_t i;
uint32_t exit_var = 0;
static const uint8_t check_code_le[] = {
#include "../../contrib/loaders/erase_check/armv4_5_erase_check.inc"
};
assert(sizeof(check_code_le) % 4 == 0);
if (erased_value != 0xff) {
LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for ARMv4/v5 targets",
erased_value);
return ERROR_FAIL;
}
/* make sure we have a working area */
retval = target_alloc_working_area(target,
sizeof(check_code_le), &check_algorithm);
if (retval != ERROR_OK)
return retval;
/* convert code into a buffer in target endianness */
for (i = 0; i < ARRAY_SIZE(check_code_le) / 4; i++) {
retval = target_write_u32(target,
check_algorithm->address
+ i * sizeof(uint32_t),
le_to_h_u32(&check_code_le[i * 4]));
if (retval != ERROR_OK)
goto cleanup;
}
arm_algo.common_magic = ARM_COMMON_MAGIC;
arm_algo.core_mode = ARM_MODE_SVC;
arm_algo.core_state = ARM_STATE_ARM;
init_reg_param(®_params[0], "r0", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
init_reg_param(®_params[2], "r2", 32, PARAM_IN_OUT);
buf_set_u32(reg_params[2].value, 0, 32, erased_value);
/* armv4 must exit using a hardware breakpoint */
if (arm->is_armv4)
exit_var = check_algorithm->address + sizeof(check_code_le) - 4;
retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
check_algorithm->address,
exit_var,
10000, &arm_algo);
if (retval == ERROR_OK)
blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
cleanup:
target_free_working_area(target, check_algorithm);
if (retval != ERROR_OK)
return retval;
return 1; /* only one block has been checked */
}
static int arm_full_context(struct target *target)
{
struct arm *arm = target_to_arm(target);
unsigned num_regs = arm->core_cache->num_regs;
struct reg *reg = arm->core_cache->reg_list;
int retval = ERROR_OK;
for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
if (reg->valid)
continue;
retval = armv4_5_get_core_reg(reg);
}
return retval;
}
static int arm_default_mrc(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t *value)
{
LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
return ERROR_FAIL;
}
static int arm_default_mcr(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t value)
{
LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
return ERROR_FAIL;
}
int arm_init_arch_info(struct target *target, struct arm *arm)
{
target->arch_info = arm;
arm->target = target;
arm->common_magic = ARM_COMMON_MAGIC;
/* core_type may be overridden by subtype logic */
if (arm->core_type != ARM_MODE_THREAD) {
arm->core_type = ARM_MODE_ANY;
arm_set_cpsr(arm, ARM_MODE_USR);
}
/* default full_context() has no core-specific optimizations */
if (!arm->full_context && arm->read_core_reg)
arm->full_context = arm_full_context;
if (!arm->mrc)
arm->mrc = arm_default_mrc;
if (!arm->mcr)
arm->mcr = arm_default_mcr;
return ERROR_OK;
}