/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Clement Burin des Roziers *
* clement.burin-des-roziers@hikob.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include
#include
#include
#include
/* stm32lx flash register locations */
#define FLASH_ACR 0x00
#define FLASH_PECR 0x04
#define FLASH_PDKEYR 0x08
#define FLASH_PEKEYR 0x0C
#define FLASH_PRGKEYR 0x10
#define FLASH_OPTKEYR 0x14
#define FLASH_SR 0x18
#define FLASH_OBR 0x1C
#define FLASH_WRPR 0x20
/* FLASH_ACR bites */
#define FLASH_ACR__LATENCY (1<<0)
#define FLASH_ACR__PRFTEN (1<<1)
#define FLASH_ACR__ACC64 (1<<2)
#define FLASH_ACR__SLEEP_PD (1<<3)
#define FLASH_ACR__RUN_PD (1<<4)
/* FLASH_PECR bits */
#define FLASH_PECR__PELOCK (1<<0)
#define FLASH_PECR__PRGLOCK (1<<1)
#define FLASH_PECR__OPTLOCK (1<<2)
#define FLASH_PECR__PROG (1<<3)
#define FLASH_PECR__DATA (1<<4)
#define FLASH_PECR__FTDW (1<<8)
#define FLASH_PECR__ERASE (1<<9)
#define FLASH_PECR__FPRG (1<<10)
#define FLASH_PECR__EOPIE (1<<16)
#define FLASH_PECR__ERRIE (1<<17)
#define FLASH_PECR__OBL_LAUNCH (1<<18)
/* FLASH_SR bits */
#define FLASH_SR__BSY (1<<0)
#define FLASH_SR__EOP (1<<1)
#define FLASH_SR__ENDHV (1<<2)
#define FLASH_SR__READY (1<<3)
#define FLASH_SR__WRPERR (1<<8)
#define FLASH_SR__PGAERR (1<<9)
#define FLASH_SR__SIZERR (1<<10)
#define FLASH_SR__OPTVERR (1<<11)
/* Unlock keys */
#define PEKEY1 0x89ABCDEF
#define PEKEY2 0x02030405
#define PRGKEY1 0x8C9DAEBF
#define PRGKEY2 0x13141516
#define OPTKEY1 0xFBEAD9C8
#define OPTKEY2 0x24252627
/* other registers */
#define DBGMCU_IDCODE 0xE0042000
#define DBGMCU_IDCODE_L0 0x40015800
/* Constants */
#define FLASH_SECTOR_SIZE 4096
#define FLASH_BANK0_ADDRESS 0x08000000
/* option bytes */
#define OPTION_BYTES_ADDRESS 0x1FF80000
#define OPTION_BYTE_0_PR1 0xFFFF0000
#define OPTION_BYTE_0_PR0 0xFF5500AA
static int stm32lx_unlock_program_memory(struct flash_bank *bank);
static int stm32lx_lock_program_memory(struct flash_bank *bank);
static int stm32lx_enable_write_half_page(struct flash_bank *bank);
static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
static int stm32lx_lock(struct flash_bank *bank);
static int stm32lx_unlock(struct flash_bank *bank);
static int stm32lx_mass_erase(struct flash_bank *bank);
static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout);
static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb);
struct stm32lx_rev {
uint16_t rev;
const char *str;
};
struct stm32lx_part_info {
uint16_t id;
const char *device_str;
const struct stm32lx_rev *revs;
size_t num_revs;
unsigned int page_size;
unsigned int pages_per_sector;
uint16_t max_flash_size_kb;
uint16_t first_bank_size_kb; /* used when has_dual_banks is true */
bool has_dual_banks;
uint32_t flash_base; /* Flash controller registers location */
uint32_t fsize_base; /* Location of FSIZE register */
};
struct stm32lx_flash_bank {
bool probed;
uint32_t idcode;
uint32_t user_bank_size;
uint32_t flash_base;
struct stm32lx_part_info part_info;
};
static const struct stm32lx_rev stm32_416_revs[] = {
{ 0x1000, "A" }, { 0x1008, "Y" }, { 0x1038, "W" }, { 0x1078, "V" },
};
static const struct stm32lx_rev stm32_417_revs[] = {
{ 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" }, { 0x1038, "X" }
};
static const struct stm32lx_rev stm32_425_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Y" },
};
static const struct stm32lx_rev stm32_427_revs[] = {
{ 0x1000, "A" }, { 0x1018, "Y" }, { 0x1038, "X" }, { 0x10f8, "V" },
};
static const struct stm32lx_rev stm32_429_revs[] = {
{ 0x1000, "A" }, { 0x1018, "Z" },
};
static const struct stm32lx_rev stm32_436_revs[] = {
{ 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" },
};
static const struct stm32lx_rev stm32_437_revs[] = {
{ 0x1000, "A" },
};
static const struct stm32lx_rev stm32_447_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Z" },
};
static const struct stm32lx_rev stm32_457_revs[] = {
{ 0x1000, "A" }, { 0x1008, "Z" },
};
static const struct stm32lx_part_info stm32lx_parts[] = {
{
.id = 0x416,
.revs = stm32_416_revs,
.num_revs = ARRAY_SIZE(stm32_416_revs),
.device_str = "STM32L1xx (Cat.1 - Low/Medium Density)",
.page_size = 256,
.pages_per_sector = 16,
.max_flash_size_kb = 128,
.has_dual_banks = false,
.flash_base = 0x40023C00,
.fsize_base = 0x1FF8004C,
},
{
.id = 0x417,
.revs = stm32_417_revs,
.num_revs = ARRAY_SIZE(stm32_417_revs),
.device_str = "STM32L0xx (Cat. 3)",
.page_size = 128,
.pages_per_sector = 32,
.max_flash_size_kb = 64,
.has_dual_banks = false,
.flash_base = 0x40022000,
.fsize_base = 0x1FF8007C,
},
{
.id = 0x425,
.revs = stm32_425_revs,
.num_revs = ARRAY_SIZE(stm32_425_revs),
.device_str = "STM32L0xx (Cat. 2)",
.page_size = 128,
.pages_per_sector = 32,
.max_flash_size_kb = 32,
.has_dual_banks = false,
.flash_base = 0x40022000,
.fsize_base = 0x1FF8007C,
},
{
.id = 0x427,
.revs = stm32_427_revs,
.num_revs = ARRAY_SIZE(stm32_427_revs),
.device_str = "STM32L1xx (Cat.3 - Medium+ Density)",
.page_size = 256,
.pages_per_sector = 16,
.max_flash_size_kb = 256,
.has_dual_banks = false,
.flash_base = 0x40023C00,
.fsize_base = 0x1FF800CC,
},
{
.id = 0x429,
.revs = stm32_429_revs,
.num_revs = ARRAY_SIZE(stm32_429_revs),
.device_str = "STM32L1xx (Cat.2)",
.page_size = 256,
.pages_per_sector = 16,
.max_flash_size_kb = 128,
.has_dual_banks = false,
.flash_base = 0x40023C00,
.fsize_base = 0x1FF8004C,
},
{
.id = 0x436,
.revs = stm32_436_revs,
.num_revs = ARRAY_SIZE(stm32_436_revs),
.device_str = "STM32L1xx (Cat.4/Cat.3 - Medium+/High Density)",
.page_size = 256,
.pages_per_sector = 16,
.max_flash_size_kb = 384,
.first_bank_size_kb = 192,
.has_dual_banks = true,
.flash_base = 0x40023C00,
.fsize_base = 0x1FF800CC,
},
{
.id = 0x437,
.revs = stm32_437_revs,
.num_revs = ARRAY_SIZE(stm32_437_revs),
.device_str = "STM32L1xx (Cat.5/Cat.6)",
.page_size = 256,
.pages_per_sector = 16,
.max_flash_size_kb = 512,
.first_bank_size_kb = 0, /* determined in runtime */
.has_dual_banks = true,
.flash_base = 0x40023C00,
.fsize_base = 0x1FF800CC,
},
{
.id = 0x447,
.revs = stm32_447_revs,
.num_revs = ARRAY_SIZE(stm32_447_revs),
.device_str = "STM32L0xx (Cat.5)",
.page_size = 128,
.pages_per_sector = 32,
.max_flash_size_kb = 192,
.first_bank_size_kb = 0, /* determined in runtime */
.has_dual_banks = false, /* determined in runtime */
.flash_base = 0x40022000,
.fsize_base = 0x1FF8007C,
},
{
.id = 0x457,
.revs = stm32_457_revs,
.num_revs = ARRAY_SIZE(stm32_457_revs),
.device_str = "STM32L0xx (Cat.1)",
.page_size = 128,
.pages_per_sector = 32,
.max_flash_size_kb = 16,
.has_dual_banks = false,
.flash_base = 0x40022000,
.fsize_base = 0x1FF8007C,
},
};
/* flash bank stm32lx 0 0
*/
FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
{
struct stm32lx_flash_bank *stm32lx_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
/* Create the bank structure */
stm32lx_info = calloc(1, sizeof(*stm32lx_info));
/* Check allocation */
if (stm32lx_info == NULL) {
LOG_ERROR("failed to allocate bank structure");
return ERROR_FAIL;
}
bank->driver_priv = stm32lx_info;
stm32lx_info->probed = false;
stm32lx_info->user_bank_size = bank->size;
/* the stm32l erased value is 0x00 */
bank->default_padded_value = bank->erased_value = 0x00;
return ERROR_OK;
}
COMMAND_HANDLER(stm32lx_handle_mass_erase_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32lx_mass_erase(bank);
if (retval == ERROR_OK) {
/* set all sectors as erased */
for (int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD, "stm32lx mass erase complete");
} else {
command_print(CMD, "stm32lx mass erase failed");
}
return retval;
}
COMMAND_HANDLER(stm32lx_handle_lock_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32lx_lock(bank);
if (retval == ERROR_OK)
command_print(CMD, "STM32Lx locked, takes effect after power cycle.");
else
command_print(CMD, "STM32Lx lock failed");
return retval;
}
COMMAND_HANDLER(stm32lx_handle_unlock_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32lx_unlock(bank);
if (retval == ERROR_OK)
command_print(CMD, "STM32Lx unlocked, takes effect after power cycle.");
else
command_print(CMD, "STM32Lx unlock failed");
return retval;
}
static int stm32lx_protect_check(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
uint32_t wrpr;
/*
* Read the WRPR word, and check each bit (corresponding to each
* flash sector
*/
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_WRPR,
&wrpr);
if (retval != ERROR_OK)
return retval;
for (int i = 0; i < bank->num_sectors; i++) {
if (wrpr & (1 << i))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
return ERROR_OK;
}
static int stm32lx_erase(struct flash_bank *bank, int first, int last)
{
int retval;
/*
* It could be possible to do a mass erase if all sectors must be
* erased, but it is not implemented yet.
*/
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/*
* Loop over the selected sectors and erase them
*/
for (int i = first; i <= last; i++) {
retval = stm32lx_erase_sector(bank, i);
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_erased = 1;
}
return ERROR_OK;
}
static int stm32lx_write_half_pages(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
uint32_t hp_nb = stm32lx_info->part_info.page_size / 2;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[3];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
static const uint8_t stm32lx_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32lx.inc"
};
/* Make sure we're performing a half-page aligned write. */
if (count % hp_nb) {
LOG_ERROR("The byte count must be %" PRIu32 "B-aligned but count is %" PRIi32 "B)", hp_nb, count);
return ERROR_FAIL;
}
/* flash write code */
if (target_alloc_working_area(target, sizeof(stm32lx_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_DEBUG("no working area for block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* Write the flashing code */
retval = target_write_buffer(target,
write_algorithm->address,
sizeof(stm32lx_flash_write_code),
stm32lx_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* Allocate half pages memory */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
if (buffer_size > 1024)
buffer_size -= 1024;
else
buffer_size /= 2;
if (buffer_size <= stm32lx_info->part_info.page_size) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(®_params[0], "r0", 32, PARAM_OUT);
init_reg_param(®_params[1], "r1", 32, PARAM_OUT);
init_reg_param(®_params[2], "r2", 32, PARAM_OUT);
/* Enable half-page write */
retval = stm32lx_enable_write_half_page(bank);
if (retval != ERROR_OK) {
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
return retval;
}
struct armv7m_common *armv7m = target_to_armv7m(target);
if (armv7m == NULL) {
/* something is very wrong if armv7m is NULL */
LOG_ERROR("unable to get armv7m target");
return retval;
}
/* save any DEMCR flags and configure target to catch any Hard Faults */
uint32_t demcr_save = armv7m->demcr;
armv7m->demcr = VC_HARDERR;
/* Loop while there are bytes to write */
while (count > 0) {
uint32_t this_count;
this_count = (count > buffer_size) ? buffer_size : count;
/* Write the next half pages */
retval = target_write_buffer(target, source->address, this_count, buffer);
if (retval != ERROR_OK)
break;
/* 4: Store useful information in the registers */
/* the destination address of the copy (R0) */
buf_set_u32(reg_params[0].value, 0, 32, address);
/* The source address of the copy (R1) */
buf_set_u32(reg_params[1].value, 0, 32, source->address);
/* The length of the copy (R2) */
buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
/* 5: Execute the bunch of code */
retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
/ sizeof(*reg_params), reg_params,
write_algorithm->address, 0, 10000, &armv7m_info);
if (retval != ERROR_OK)
break;
/* check for Hard Fault */
if (armv7m->exception_number == 3)
break;
/* 6: Wait while busy */
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
break;
buffer += this_count;
address += this_count;
count -= this_count;
}
/* restore previous flags */
armv7m->demcr = demcr_save;
if (armv7m->exception_number == 3) {
/* the stm32l15x devices seem to have an issue when blank.
* if a ram loader is executed on a blank device it will
* Hard Fault, this issue does not happen for a already programmed device.
* A related issue is described in the stm32l151xx errata (Doc ID 17721 Rev 6 - 2.1.3).
* The workaround of handling the Hard Fault exception does work, but makes the
* loader more complicated, as a compromise we manually write the pages, programming time
* is reduced by 50% using this slower method.
*/
LOG_WARNING("Couldn't use loader, falling back to page memory writes");
while (count > 0) {
uint32_t this_count;
this_count = (count > hp_nb) ? hp_nb : count;
/* Write the next half pages */
retval = target_write_buffer(target, address, this_count, buffer);
if (retval != ERROR_OK)
break;
/* Wait while busy */
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
break;
buffer += this_count;
address += this_count;
count -= this_count;
}
}
if (retval == ERROR_OK)
retval = stm32lx_lock_program_memory(bank);
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
return retval;
}
static int stm32lx_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
uint32_t hp_nb = stm32lx_info->part_info.page_size / 2;
uint32_t halfpages_number;
uint32_t bytes_remaining = 0;
uint32_t address = bank->base + offset;
uint32_t bytes_written = 0;
int retval, retval2;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x3) {
LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
/* first we need to write any unaligned head bytes upto
* the next 128 byte page */
if (offset % hp_nb)
bytes_remaining = MIN(count, hp_nb - (offset % hp_nb));
while (bytes_remaining > 0) {
uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
/* copy remaining bytes into the write buffer */
uint32_t bytes_to_write = MIN(4, bytes_remaining);
memcpy(value, buffer + bytes_written, bytes_to_write);
retval = target_write_buffer(target, address, 4, value);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
bytes_written += bytes_to_write;
bytes_remaining -= bytes_to_write;
address += 4;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
}
offset += bytes_written;
count -= bytes_written;
/* this should always pass this check here */
assert((offset % hp_nb) == 0);
/* calculate half pages */
halfpages_number = count / hp_nb;
if (halfpages_number) {
retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, hp_nb * halfpages_number);
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* attempt slow memory writes */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
halfpages_number = 0;
} else {
if (retval != ERROR_OK)
return ERROR_FAIL;
}
}
/* write any remaining bytes */
uint32_t page_bytes_written = hp_nb * halfpages_number;
bytes_written += page_bytes_written;
address += page_bytes_written;
bytes_remaining = count - page_bytes_written;
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
while (bytes_remaining > 0) {
uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
/* copy remaining bytes into the write buffer */
uint32_t bytes_to_write = MIN(4, bytes_remaining);
memcpy(value, buffer + bytes_written, bytes_to_write);
retval = target_write_buffer(target, address, 4, value);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
bytes_written += bytes_to_write;
bytes_remaining -= bytes_to_write;
address += 4;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
}
reset_pg_and_lock:
retval2 = stm32lx_lock_program_memory(bank);
if (retval == ERROR_OK)
retval = retval2;
return retval;
}
static int stm32lx_read_id_code(struct target *target, uint32_t *id)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
int retval;
if (armv7m->arm.is_armv6m == true)
retval = target_read_u32(target, DBGMCU_IDCODE_L0, id);
else
/* read stm32 device id register */
retval = target_read_u32(target, DBGMCU_IDCODE, id);
return retval;
}
static int stm32lx_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
uint16_t flash_size_in_kb;
uint32_t device_id;
uint32_t base_address = FLASH_BANK0_ADDRESS;
uint32_t second_bank_base;
unsigned int n;
stm32lx_info->probed = false;
int retval = stm32lx_read_id_code(bank->target, &device_id);
if (retval != ERROR_OK)
return retval;
stm32lx_info->idcode = device_id;
LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
for (n = 0; n < ARRAY_SIZE(stm32lx_parts); n++) {
if ((device_id & 0xfff) == stm32lx_parts[n].id) {
stm32lx_info->part_info = stm32lx_parts[n];
break;
}
}
if (n == ARRAY_SIZE(stm32lx_parts)) {
LOG_ERROR("Cannot identify target as an STM32 L0 or L1 family device.");
return ERROR_FAIL;
} else {
LOG_INFO("Device: %s", stm32lx_info->part_info.device_str);
}
stm32lx_info->flash_base = stm32lx_info->part_info.flash_base;
/* Get the flash size from target. */
retval = target_read_u16(target, stm32lx_info->part_info.fsize_base,
&flash_size_in_kb);
/* 0x436 devices report their flash size as a 0 or 1 code indicating 384K
* or 256K, respectively. Please see RM0038 r8 or newer and refer to
* section 30.1.1. */
if (retval == ERROR_OK && (device_id & 0xfff) == 0x436) {
if (flash_size_in_kb == 0)
flash_size_in_kb = 384;
else if (flash_size_in_kb == 1)
flash_size_in_kb = 256;
}
/* 0x429 devices only use the lowest 8 bits of the flash size register */
if (retval == ERROR_OK && (device_id & 0xfff) == 0x429) {
flash_size_in_kb &= 0xff;
}
/* Failed reading flash size or flash size invalid (early silicon),
* default to max target family */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash",
stm32lx_info->part_info.max_flash_size_kb);
flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb;
} else if (flash_size_in_kb > stm32lx_info->part_info.max_flash_size_kb) {
LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash",
flash_size_in_kb, stm32lx_info->part_info.max_flash_size_kb,
stm32lx_info->part_info.max_flash_size_kb);
flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb;
}
/* Overwrite default dual-bank configuration */
retval = stm32lx_update_part_info(bank, flash_size_in_kb);
if (retval != ERROR_OK)
return ERROR_FAIL;
if (stm32lx_info->part_info.has_dual_banks) {
/* Use the configured base address to determine if this is the first or second flash bank.
* Verify that the base address is reasonably correct and determine the flash bank size
*/
second_bank_base = base_address +
stm32lx_info->part_info.first_bank_size_kb * 1024;
if (bank->base == second_bank_base || !bank->base) {
/* This is the second bank */
base_address = second_bank_base;
flash_size_in_kb = flash_size_in_kb -
stm32lx_info->part_info.first_bank_size_kb;
} else if (bank->base == base_address) {
/* This is the first bank */
flash_size_in_kb = stm32lx_info->part_info.first_bank_size_kb;
} else {
LOG_WARNING("STM32L flash bank base address config is incorrect. "
TARGET_ADDR_FMT " but should rather be 0x%" PRIx32
" or 0x%" PRIx32,
bank->base, base_address, second_bank_base);
return ERROR_FAIL;
}
LOG_INFO("STM32L flash has dual banks. Bank (%d) size is %dkb, base address is 0x%" PRIx32,
bank->bank_number, flash_size_in_kb, base_address);
} else {
LOG_INFO("STM32L flash size is %dkb, base address is 0x%" PRIx32, flash_size_in_kb, base_address);
}
/* if the user sets the size manually then ignore the probed value
* this allows us to work around devices that have a invalid flash size register value */
if (stm32lx_info->user_bank_size) {
flash_size_in_kb = stm32lx_info->user_bank_size / 1024;
LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb);
}
/* calculate numbers of sectors (4kB per sector) */
int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
bank->size = flash_size_in_kb * 1024;
bank->base = base_address;
bank->num_sectors = num_sectors;
bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
if (bank->sectors == NULL) {
LOG_ERROR("failed to allocate bank sectors");
return ERROR_FAIL;
}
for (int i = 0; i < num_sectors; i++) {
bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
bank->sectors[i].size = FLASH_SECTOR_SIZE;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = -1;
}
stm32lx_info->probed = true;
return ERROR_OK;
}
static int stm32lx_auto_probe(struct flash_bank *bank)
{
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
if (stm32lx_info->probed)
return ERROR_OK;
return stm32lx_probe(bank);
}
/* This method must return a string displaying information about the bank */
static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
const struct stm32lx_part_info *info = &stm32lx_info->part_info;
uint16_t rev_id = stm32lx_info->idcode >> 16;
const char *rev_str = NULL;
if (!stm32lx_info->probed) {
int retval = stm32lx_probe(bank);
if (retval != ERROR_OK) {
snprintf(buf, buf_size,
"Unable to find bank information.");
return retval;
}
}
for (unsigned int i = 0; i < info->num_revs; i++)
if (rev_id == info->revs[i].rev)
rev_str = info->revs[i].str;
if (rev_str != NULL) {
snprintf(buf, buf_size,
"%s - Rev: %s",
info->device_str, rev_str);
} else {
snprintf(buf, buf_size,
"%s - Rev: unknown (0x%04x)",
info->device_str, rev_id);
}
return ERROR_OK;
}
static const struct command_registration stm32lx_exec_command_handlers[] = {
{
.name = "mass_erase",
.handler = stm32lx_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device. including available EEPROM",
},
{
.name = "lock",
.handler = stm32lx_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Increase the readout protection to Level 1.",
},
{
.name = "unlock",
.handler = stm32lx_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lower the readout protection from Level 1 to 0.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32lx_command_handlers[] = {
{
.name = "stm32lx",
.mode = COMMAND_ANY,
.help = "stm32lx flash command group",
.usage = "",
.chain = stm32lx_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver stm32lx_flash = {
.name = "stm32lx",
.commands = stm32lx_command_handlers,
.flash_bank_command = stm32lx_flash_bank_command,
.erase = stm32lx_erase,
.write = stm32lx_write,
.read = default_flash_read,
.probe = stm32lx_probe,
.auto_probe = stm32lx_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32lx_protect_check,
.info = stm32lx_get_info,
.free_driver_priv = default_flash_free_driver_priv,
};
/* Static methods implementation */
static int stm32lx_unlock_program_memory(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
/*
* Unlocking the program memory is done by unlocking the PECR,
* then by writing the 2 PRGKEY to the PRGKEYR register
*/
/* check flash is not already unlocked */
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
if ((reg32 & FLASH_PECR__PRGLOCK) == 0)
return ERROR_OK;
/* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
PEKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
PEKEY2);
if (retval != ERROR_OK)
return retval;
/* Make sure it worked */
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
if (reg32 & FLASH_PECR__PELOCK) {
LOG_ERROR("PELOCK is not cleared :(");
return ERROR_FLASH_OPERATION_FAILED;
}
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
PRGKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
PRGKEY2);
if (retval != ERROR_OK)
return retval;
/* Make sure it worked */
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
if (reg32 & FLASH_PECR__PRGLOCK) {
LOG_ERROR("PRGLOCK is not cleared :(");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int stm32lx_enable_write_half_page(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
/**
* Unlock the program memory, then set the FPRG bit in the PECR register.
*/
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__FPRG;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
reg32);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PROG;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
reg32);
return retval;
}
static int stm32lx_lock_program_memory(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
/* To lock the program memory, simply set the lock bit and lock PECR */
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PRGLOCK;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
reg32);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
®32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PELOCK;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
reg32);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
/*
* To erase a sector (i.e. stm32lx_info->part_info.pages_per_sector pages),
* first unlock the memory, loop over the pages of this sector
* and write 0x0 to its first word.
*/
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
for (int page = 0; page < (int)stm32lx_info->part_info.pages_per_sector;
page++) {
reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
retval = target_write_u32(target,
stm32lx_info->flash_base + FLASH_PECR, reg32);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
return retval;
uint32_t addr = bank->base + bank->sectors[sector].offset + (page
* stm32lx_info->part_info.page_size);
retval = target_write_u32(target, addr, 0x0);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
return retval;
}
retval = stm32lx_lock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static inline int stm32lx_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
return target_read_u32(target, stm32lx_info->flash_base + FLASH_SR, status);
}
static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
{
return stm32lx_wait_until_bsy_clear_timeout(bank, 100);
}
static int stm32lx_unlock_options_bytes(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
uint32_t reg32;
/*
* Unlocking the options bytes is done by unlocking the PECR,
* then by writing the 2 FLASH_PEKEYR to the FLASH_OPTKEYR register
*/
/* check flash is not already unlocked */
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32);
if (retval != ERROR_OK)
return retval;
if ((reg32 & FLASH_PECR__OPTLOCK) == 0)
return ERROR_OK;
if ((reg32 & FLASH_PECR__PELOCK) != 0) {
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY2);
if (retval != ERROR_OK)
return retval;
}
/* To unlock the PECR write the 2 OPTKEY to the FLASH_OPTKEYR register */
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY2);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;) {
retval = stm32lx_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & FLASH_SR__BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_SR__WRPERR) {
LOG_ERROR("access denied / write protected");
retval = ERROR_FAIL;
}
if (status & FLASH_SR__PGAERR) {
LOG_ERROR("invalid program address");
retval = ERROR_FAIL;
}
/* Clear but report errors */
if (status & FLASH_SR__OPTVERR) {
/* If this operation fails, we ignore it and report the original retval */
target_write_u32(target, stm32lx_info->flash_base + FLASH_SR, status & FLASH_SR__OPTVERR);
}
return retval;
}
static int stm32lx_obl_launch(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int retval;
/* This will fail as the target gets immediately rebooted */
target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
FLASH_PECR__OBL_LAUNCH);
size_t tries = 10;
do {
target_halt(target);
retval = target_poll(target);
} while (--tries > 0 &&
(retval != ERROR_OK || target->state != TARGET_HALTED));
return tries ? ERROR_OK : ERROR_FAIL;
}
static int stm32lx_lock(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32lx_unlock_options_bytes(bank);
if (retval != ERROR_OK)
return retval;
/* set the RDP protection level to 1 */
retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR1);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_unlock(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32lx_unlock_options_bytes(bank);
if (retval != ERROR_OK)
return retval;
/* set the RDP protection level to 0 */
retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR0);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_wait_until_bsy_clear_timeout(bank, 30000);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_mass_erase(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = NULL;
uint32_t reg32;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
stm32lx_info = bank->driver_priv;
retval = stm32lx_lock(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_obl_launch(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_unlock(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_obl_launch(bank);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32 | FLASH_PECR__OPTLOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb)
{
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
switch (stm32lx_info->part_info.id) {
case 0x447: /* STM32L0xx (Cat.5) devices */
if (flash_size_in_kb == 192 || flash_size_in_kb == 128) {
stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2;
stm32lx_info->part_info.has_dual_banks = true;
}
break;
case 0x437: /* STM32L1xx (Cat.5/Cat.6) */
stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2;
break;
}
return ERROR_OK;
}