/***************************************************************************
* Copyright (C) 2017 by STMicroelectronics *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include
#include
#include
/* Erase time can be as high as 1000ms, 10x this and it's toast... */
#define FLASH_ERASE_TIMEOUT 10000
#define FLASH_WRITE_TIMEOUT 5
/* RM 433 */
/* Same Flash registers for both banks, */
/* access depends on Flash Base address */
#define FLASH_ACR 0x00
#define FLASH_KEYR 0x04
#define FLASH_OPTKEYR 0x08
#define FLASH_CR 0x0C
#define FLASH_SR 0x10
#define FLASH_CCR 0x14
#define FLASH_OPTCR 0x18
#define FLASH_OPTSR_CUR 0x1C
#define FLASH_OPTSR_PRG 0x20
#define FLASH_OPTCCR 0x24
#define FLASH_WPSN_CUR 0x38
#define FLASH_WPSN_PRG 0x3C
/* FLASH_CR register bits */
#define FLASH_LOCK (1 << 0)
#define FLASH_PG (1 << 1)
#define FLASH_SER (1 << 2)
#define FLASH_BER (1 << 3)
#define FLASH_PSIZE_8 (0 << 4)
#define FLASH_PSIZE_16 (1 << 4)
#define FLASH_PSIZE_32 (2 << 4)
#define FLASH_PSIZE_64 (3 << 4)
#define FLASH_FW (1 << 6)
#define FLASH_START (1 << 7)
/* FLASH_SR register bits */
#define FLASH_BSY (1 << 0) /* Operation in progress */
#define FLASH_QW (1 << 2) /* Operation queue in progress */
#define FLASH_WRPERR (1 << 17) /* Write protection error */
#define FLASH_PGSERR (1 << 18) /* Programming sequence error */
#define FLASH_STRBERR (1 << 19) /* Strobe error */
#define FLASH_INCERR (1 << 21) /* Inconsistency error */
#define FLASH_OPERR (1 << 22) /* Operation error */
#define FLASH_RDPERR (1 << 23) /* Read Protection error */
#define FLASH_RDSERR (1 << 24) /* Secure Protection error */
#define FLASH_SNECCERR (1 << 25) /* Single ECC error */
#define FLASH_DBECCERR (1 << 26) /* Double ECC error */
#define FLASH_ERROR (FLASH_WRPERR | FLASH_PGSERR | FLASH_STRBERR | FLASH_INCERR | FLASH_OPERR | \
FLASH_RDPERR | FLASH_RDSERR | FLASH_SNECCERR | FLASH_DBECCERR)
/* FLASH_OPTCR register bits */
#define OPT_LOCK (1 << 0)
#define OPT_START (1 << 1)
/* FLASH_OPTSR register bits */
#define OPT_BSY (1 << 0)
#define OPT_RDP_POS 8
#define OPT_RDP_MASK (0xff << OPT_RDP_POS)
#define OPT_OPTCHANGEERR (1 << 30)
/* FLASH_OPTCCR register bits */
#define OPT_CLR_OPTCHANGEERR (1 << 30)
/* register unlock keys */
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
/* option register unlock key */
#define OPTKEY1 0x08192A3B
#define OPTKEY2 0x4C5D6E7F
#define DBGMCU_IDCODE_REGISTER 0x5C001000
#define FLASH_BANK0_ADDRESS 0x08000000
#define FLASH_BANK1_ADDRESS 0x08100000
#define FLASH_REG_BASE_B0 0x52002000
#define FLASH_REG_BASE_B1 0x52002100
struct stm32h7x_rev {
uint16_t rev;
const char *str;
};
/* stm32h7x_part_info permits the store each device information and specificities.
* the default unit is byte unless the suffix '_kb' is used. */
struct stm32h7x_part_info {
uint16_t id;
const char *device_str;
const struct stm32h7x_rev *revs;
size_t num_revs;
unsigned int page_size_kb;
unsigned int block_size; /* flash write word size in bytes */
uint16_t max_flash_size_kb;
bool has_dual_bank;
uint16_t max_bank_size_kb; /* Used when has_dual_bank is true */
uint32_t fsize_addr; /* Location of FSIZE register */
uint32_t wps_group_size; /* write protection group sectors' count */
uint32_t wps_mask;
/* function to compute flash_cr register values */
uint32_t (*compute_flash_cr)(uint32_t cmd, int snb);
};
struct stm32h7x_flash_bank {
bool probed;
uint32_t idcode;
uint32_t user_bank_size;
uint32_t flash_regs_base; /* Address of flash reg controller */
const struct stm32h7x_part_info *part_info;
};
enum stm32h7x_opt_rdp {
OPT_RDP_L0 = 0xaa,
OPT_RDP_L1 = 0x00,
OPT_RDP_L2 = 0xcc
};
static const struct stm32h7x_rev stm32_450_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x2001, "X" }, { 0x2003, "V" },
};
static const struct stm32h7x_rev stm32_480_revs[] = {
{ 0x1000, "A"},
};
static uint32_t stm32x_compute_flash_cr_450(uint32_t cmd, int snb)
{
return cmd | (snb << 8);
}
static uint32_t stm32x_compute_flash_cr_480(uint32_t cmd, int snb)
{
/* save FW and START bits, to be right shifted by 2 bits later */
const uint32_t tmp = cmd & (FLASH_FW | FLASH_START);
/* mask parallelism (ignored), FW and START bits */
cmd &= ~(FLASH_PSIZE_64 | FLASH_FW | FLASH_START);
return cmd | (tmp >> 2) | (snb << 6);
}
static const struct stm32h7x_part_info stm32h7x_parts[] = {
{
.id = 0x450,
.revs = stm32_450_revs,
.num_revs = ARRAY_SIZE(stm32_450_revs),
.device_str = "STM32H74x/75x",
.page_size_kb = 128,
.block_size = 32,
.max_flash_size_kb = 2048,
.max_bank_size_kb = 1024,
.has_dual_bank = true,
.fsize_addr = 0x1FF1E880,
.wps_group_size = 1,
.wps_mask = 0xFF,
.compute_flash_cr = stm32x_compute_flash_cr_450,
},
{
.id = 0x480,
.revs = stm32_480_revs,
.num_revs = ARRAY_SIZE(stm32_480_revs),
.device_str = "STM32H7Ax/7Bx",
.page_size_kb = 8,
.block_size = 16,
.max_flash_size_kb = 2048,
.max_bank_size_kb = 1024,
.has_dual_bank = true,
.fsize_addr = 0x08FFF80C,
.wps_group_size = 4,
.wps_mask = 0xFFFFFFFF,
.compute_flash_cr = stm32x_compute_flash_cr_480,
},
};
/* flash bank stm32x 0 0 */
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
struct stm32h7x_flash_bank *stm32x_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32x_info = malloc(sizeof(struct stm32h7x_flash_bank));
bank->driver_priv = stm32x_info;
stm32x_info->probed = false;
stm32x_info->user_bank_size = bank->size;
return ERROR_OK;
}
static inline uint32_t stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
{
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
return reg_offset + stm32x_info->flash_regs_base;
}
static inline int stm32x_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
{
uint32_t reg_addr = stm32x_get_flash_reg(bank, reg_offset);
int retval = target_read_u32(bank->target, reg_addr, value);
if (retval != ERROR_OK)
LOG_ERROR("error while reading from address 0x%" PRIx32, reg_addr);
return retval;
}
static inline int stm32x_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
{
uint32_t reg_addr = stm32x_get_flash_reg(bank, reg_offset);
int retval = target_write_u32(bank->target, reg_addr, value);
if (retval != ERROR_OK)
LOG_ERROR("error while writing to address 0x%" PRIx32, reg_addr);
return retval;
}
static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
return stm32x_read_flash_reg(bank, FLASH_SR, status);
}
static int stm32x_wait_flash_op_queue(struct flash_bank *bank, int timeout)
{
uint32_t status;
int retval;
/* wait for flash operations completion */
for (;;) {
retval = stm32x_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
if ((status & FLASH_QW) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("wait_flash_op_queue, time out expired, status: 0x%" PRIx32 "", status);
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_WRPERR) {
LOG_ERROR("wait_flash_op_queue, WRPERR detected");
retval = ERROR_FAIL;
}
/* Clear error + EOP flags but report errors */
if (status & FLASH_ERROR) {
if (retval == ERROR_OK)
retval = ERROR_FAIL;
/* If this operation fails, we ignore it and report the original retval */
stm32x_write_flash_reg(bank, FLASH_CCR, status);
}
return retval;
}
static int stm32x_unlock_reg(struct flash_bank *bank)
{
uint32_t ctrl;
/* first check if not already unlocked
* otherwise writing on FLASH_KEYR will fail
*/
int retval = stm32x_read_flash_reg(bank, FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_LOCK) == 0)
return ERROR_OK;
/* unlock flash registers for bank */
retval = stm32x_write_flash_reg(bank, FLASH_KEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = stm32x_write_flash_reg(bank, FLASH_KEYR, KEY2);
if (retval != ERROR_OK)
return retval;
retval = stm32x_read_flash_reg(bank, FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_LOCK) {
LOG_ERROR("flash not unlocked STM32_FLASH_CRx: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static int stm32x_unlock_option_reg(struct flash_bank *bank)
{
uint32_t ctrl;
int retval = stm32x_read_flash_reg(bank, FLASH_OPTCR, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & OPT_LOCK) == 0)
return ERROR_OK;
/* unlock option registers */
retval = stm32x_write_flash_reg(bank, FLASH_OPTKEYR, OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = stm32x_write_flash_reg(bank, FLASH_OPTKEYR, OPTKEY2);
if (retval != ERROR_OK)
return retval;
retval = stm32x_read_flash_reg(bank, FLASH_OPTCR, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & OPT_LOCK) {
LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static inline int stm32x_lock_reg(struct flash_bank *bank)
{
return stm32x_write_flash_reg(bank, FLASH_CR, FLASH_LOCK);
}
static inline int stm32x_lock_option_reg(struct flash_bank *bank)
{
return stm32x_write_flash_reg(bank, FLASH_OPTCR, OPT_LOCK);
}
static int stm32x_write_option(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
{
int retval, retval2;
/* unlock option bytes for modification */
retval = stm32x_unlock_option_reg(bank);
if (retval != ERROR_OK)
goto flash_options_lock;
/* write option bytes */
retval = stm32x_write_flash_reg(bank, reg_offset, value);
if (retval != ERROR_OK)
goto flash_options_lock;
/* Remove OPT error flag before programming */
retval = stm32x_write_flash_reg(bank, FLASH_OPTCCR, OPT_CLR_OPTCHANGEERR);
if (retval != ERROR_OK)
goto flash_options_lock;
/* start programming cycle */
retval = stm32x_write_flash_reg(bank, FLASH_OPTCR, OPT_START);
if (retval != ERROR_OK)
goto flash_options_lock;
/* wait for completion */
int timeout = FLASH_ERASE_TIMEOUT;
uint32_t status;
for (;;) {
retval = stm32x_read_flash_reg(bank, FLASH_OPTSR_CUR, &status);
if (retval != ERROR_OK) {
LOG_ERROR("stm32x_options_program: failed to read FLASH_OPTSR_CUR");
goto flash_options_lock;
}
if ((status & OPT_BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("waiting for OBL launch, time out expired, OPTSR: 0x%" PRIx32 "", status);
retval = ERROR_FAIL;
goto flash_options_lock;
}
alive_sleep(1);
}
/* check for failure */
if (status & OPT_OPTCHANGEERR) {
LOG_ERROR("error changing option bytes (OPTCHANGEERR=1)");
retval = ERROR_FLASH_OPERATION_FAILED;
}
flash_options_lock:
retval2 = stm32x_lock_option_reg(bank);
if (retval2 != ERROR_OK)
LOG_ERROR("error during the lock of flash options");
return (retval == ERROR_OK) ? retval2 : retval;
}
static int stm32x_modify_option(struct flash_bank *bank, uint32_t reg_offset, uint32_t value, uint32_t mask)
{
uint32_t data;
int retval = stm32x_read_flash_reg(bank, reg_offset, &data);
if (retval != ERROR_OK)
return retval;
data = (data & ~mask) | (value & mask);
return stm32x_write_option(bank, reg_offset, data);
}
static int stm32x_protect_check(struct flash_bank *bank)
{
uint32_t protection;
/* read 'write protection' settings */
int retval = stm32x_read_flash_reg(bank, FLASH_WPSN_CUR, &protection);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read WPSN_CUR register");
return retval;
}
for (int i = 0; i < bank->num_prot_blocks; i++)
bank->prot_blocks[i].is_protected = protection & (1 << i) ? 0 : 1;
return ERROR_OK;
}
static int stm32x_erase(struct flash_bank *bank, int first, int last)
{
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
int retval, retval2;
assert(first < bank->num_sectors);
assert(last < bank->num_sectors);
if (bank->target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
retval = stm32x_unlock_reg(bank);
if (retval != ERROR_OK)
goto flash_lock;
/*
Sector Erase
To erase a sector, follow the procedure below:
1. Check that no Flash memory operation is ongoing by checking the QW bit in the
FLASH_SR register
2. Set the SER bit and select the sector
you wish to erase (SNB) in the FLASH_CR register
3. Set the STRT bit in the FLASH_CR register
4. Wait for flash operations completion
*/
for (int i = first; i <= last; i++) {
LOG_DEBUG("erase sector %d", i);
retval = stm32x_write_flash_reg(bank, FLASH_CR,
stm32x_info->part_info->compute_flash_cr(FLASH_SER | FLASH_PSIZE_64, i));
if (retval != ERROR_OK) {
LOG_ERROR("Error erase sector %d", i);
goto flash_lock;
}
retval = stm32x_write_flash_reg(bank, FLASH_CR,
stm32x_info->part_info->compute_flash_cr(FLASH_SER | FLASH_PSIZE_64 | FLASH_START, i));
if (retval != ERROR_OK) {
LOG_ERROR("Error erase sector %d", i);
goto flash_lock;
}
retval = stm32x_wait_flash_op_queue(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK) {
LOG_ERROR("erase time-out or operation error sector %d", i);
goto flash_lock;
}
bank->sectors[i].is_erased = 1;
}
flash_lock:
retval2 = stm32x_lock_reg(bank);
if (retval2 != ERROR_OK)
LOG_ERROR("error during the lock of flash");
return (retval == ERROR_OK) ? retval2 : retval;
}
static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
{
struct target *target = bank->target;
uint32_t protection;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* read 'write protection' settings */
int retval = stm32x_read_flash_reg(bank, FLASH_WPSN_CUR, &protection);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read WPSN_CUR register");
return retval;
}
for (int i = first; i <= last; i++) {
if (set)
protection &= ~(1 << i);
else
protection |= (1 << i);
}
/* apply WRPSN mask */
protection &= 0xff;
LOG_DEBUG("stm32x_protect, option_bytes written WPSN 0x%" PRIx32, protection);
/* apply new option value */
return stm32x_write_option(bank, FLASH_WPSN_PRG, protection);
}
static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
/*
* If the size of the data part of the buffer is not a multiple of .block_size, we get
* "corrupted fifo read" pointer in target_run_flash_async_algorithm()
*/
uint32_t data_size = 512 * stm32x_info->part_info->block_size;
uint32_t buffer_size = 8 + data_size;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[6];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
static const uint8_t stm32x_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32h7x.inc"
};
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32x_flash_write_code),
stm32x_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
data_size /= 2;
buffer_size = 8 + data_size;
if (data_size <= 256) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
LOG_DEBUG("target_alloc_working_area_try : buffer_size -> 0x%" PRIx32, buffer_size);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* buffer end */
init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* target address */
init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* count of words (word size = .block_size (bytes) */
init_reg_param(®_params[4], "r4", 32, PARAM_OUT); /* word size in bytes */
init_reg_param(®_params[5], "r5", 32, PARAM_OUT); /* flash reg base */
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, count);
buf_set_u32(reg_params[4].value, 0, 32, stm32x_info->part_info->block_size);
buf_set_u32(reg_params[5].value, 0, 32, stm32x_info->flash_regs_base);
retval = target_run_flash_async_algorithm(target,
buffer,
count,
stm32x_info->part_info->block_size,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("error executing stm32h7x flash write algorithm");
uint32_t flash_sr = buf_get_u32(reg_params[0].value, 0, 32);
if (flash_sr & FLASH_WRPERR)
LOG_ERROR("flash memory write protected");
if ((flash_sr & FLASH_ERROR) != 0) {
LOG_ERROR("flash write failed, FLASH_SR = %08" PRIx32, flash_sr);
/* Clear error + EOP flags but report errors */
stm32x_write_flash_reg(bank, FLASH_CCR, flash_sr);
retval = ERROR_FAIL;
}
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
destroy_reg_param(®_params[3]);
destroy_reg_param(®_params[4]);
destroy_reg_param(®_params[5]);
return retval;
}
static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
uint32_t address = bank->base + offset;
int retval, retval2;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* should be enforced via bank->write_start_alignment */
assert(!(offset % stm32x_info->part_info->block_size));
/* should be enforced via bank->write_end_alignment */
assert(!(count % stm32x_info->part_info->block_size));
retval = stm32x_unlock_reg(bank);
if (retval != ERROR_OK)
goto flash_lock;
uint32_t blocks_remaining = count / stm32x_info->part_info->block_size;
/* multiple words (n * .block_size) to be programmed in block */
if (blocks_remaining) {
retval = stm32x_write_block(bank, buffer, offset, blocks_remaining);
if (retval != ERROR_OK) {
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) dword accesses */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
}
} else {
buffer += blocks_remaining * stm32x_info->part_info->block_size;
address += blocks_remaining * stm32x_info->part_info->block_size;
blocks_remaining = 0;
}
if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
goto flash_lock;
}
/*
Standard programming
The Flash memory programming sequence is as follows:
1. Check that no main Flash memory operation is ongoing by checking the QW bit in the
FLASH_SR register.
2. Set the PG bit in the FLASH_CR register
3. 8 x Word access (or Force Write FW)
4. Wait for flash operations completion
*/
while (blocks_remaining > 0) {
retval = stm32x_write_flash_reg(bank, FLASH_CR,
stm32x_info->part_info->compute_flash_cr(FLASH_PG | FLASH_PSIZE_64, 0));
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_buffer(target, address, stm32x_info->part_info->block_size, buffer);
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_flash_op_queue(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
goto flash_lock;
buffer += stm32x_info->part_info->block_size;
address += stm32x_info->part_info->block_size;
blocks_remaining--;
}
flash_lock:
retval2 = stm32x_lock_reg(bank);
if (retval2 != ERROR_OK)
LOG_ERROR("error during the lock of flash");
return (retval == ERROR_OK) ? retval2 : retval;
}
static int stm32x_read_id_code(struct flash_bank *bank, uint32_t *id)
{
/* read stm32 device id register */
int retval = target_read_u32(bank->target, DBGMCU_IDCODE_REGISTER, id);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
uint16_t flash_size_in_kb;
uint32_t device_id;
stm32x_info->probed = false;
stm32x_info->part_info = NULL;
int retval = stm32x_read_id_code(bank, &stm32x_info->idcode);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("device id = 0x%08" PRIx32 "", stm32x_info->idcode);
device_id = stm32x_info->idcode & 0xfff;
for (unsigned int n = 0; n < ARRAY_SIZE(stm32h7x_parts); n++) {
if (device_id == stm32h7x_parts[n].id)
stm32x_info->part_info = &stm32h7x_parts[n];
}
if (!stm32x_info->part_info) {
LOG_WARNING("Cannot identify target as a STM32H7xx family.");
return ERROR_FAIL;
} else {
LOG_INFO("Device: %s", stm32x_info->part_info->device_str);
}
/* update the address of controller */
if (bank->base == FLASH_BANK0_ADDRESS)
stm32x_info->flash_regs_base = FLASH_REG_BASE_B0;
else if (bank->base == FLASH_BANK1_ADDRESS)
stm32x_info->flash_regs_base = FLASH_REG_BASE_B1;
else {
LOG_WARNING("Flash register base not defined for bank %d", bank->bank_number);
return ERROR_FAIL;
}
LOG_DEBUG("flash_regs_base: 0x%" PRIx32, stm32x_info->flash_regs_base);
/* get flash size from target */
retval = target_read_u16(target, stm32x_info->part_info->fsize_addr, &flash_size_in_kb);
if (retval != ERROR_OK) {
/* read error when device has invalid value, set max flash size */
flash_size_in_kb = stm32x_info->part_info->max_flash_size_kb;
} else
LOG_INFO("flash size probed value %d", flash_size_in_kb);
/* setup bank size */
const uint32_t bank1_base = FLASH_BANK0_ADDRESS;
const uint32_t bank2_base = bank1_base + stm32x_info->part_info->max_bank_size_kb * 1024;
bool has_dual_bank = stm32x_info->part_info->has_dual_bank;
switch (device_id) {
case 0x450:
case 0x480:
/* For STM32H74x/75x and STM32H7Ax/Bx
* - STM32H7xxxI devices contains dual bank, 1 Mbyte each
* - STM32H7xxxG devices contains dual bank, 512 Kbyte each
* - STM32H7xxxB devices contains single bank, 128 Kbyte
* - the second bank starts always from 0x08100000
*/
if (flash_size_in_kb == 128)
has_dual_bank = false;
else
/* flash size is 2M or 1M */
flash_size_in_kb /= 2;
break;
default:
LOG_ERROR("unsupported device");
return ERROR_FAIL;
}
if (has_dual_bank) {
LOG_INFO("STM32H7 flash has dual banks");
if (bank->base != bank1_base && bank->base != bank2_base) {
LOG_ERROR("STM32H7 flash bank base address config is incorrect. "
TARGET_ADDR_FMT " but should rather be 0x%" PRIx32 " or 0x%" PRIx32,
bank->base, bank1_base, bank2_base);
return ERROR_FAIL;
}
} else {
LOG_INFO("STM32H7 flash has a single bank");
if (bank->base == bank2_base) {
LOG_ERROR("this device has a single bank only");
return ERROR_FAIL;
} else if (bank->base != bank1_base) {
LOG_ERROR("STM32H7 flash bank base address config is incorrect. "
TARGET_ADDR_FMT " but should be 0x%" PRIx32,
bank->base, bank1_base);
return ERROR_FAIL;
}
}
LOG_INFO("Bank (%d) size is %d kb, base address is 0x%" PRIx32,
bank->bank_number, flash_size_in_kb, (uint32_t) bank->base);
/* if the user sets the size manually then ignore the probed value
* this allows us to work around devices that have an invalid flash size register value */
if (stm32x_info->user_bank_size) {
LOG_INFO("ignoring flash probed value, using configured bank size");
flash_size_in_kb = stm32x_info->user_bank_size / 1024;
} else if (flash_size_in_kb == 0xffff) {
/* die flash size */
flash_size_in_kb = stm32x_info->part_info->max_flash_size_kb;
}
/* did we assign flash size? */
assert(flash_size_in_kb != 0xffff);
bank->size = flash_size_in_kb * 1024;
bank->write_start_alignment = stm32x_info->part_info->block_size;
bank->write_end_alignment = stm32x_info->part_info->block_size;
/* setup sectors */
bank->num_sectors = flash_size_in_kb / stm32x_info->part_info->page_size_kb;
assert(bank->num_sectors > 0);
if (bank->sectors)
free(bank->sectors);
bank->sectors = alloc_block_array(0, stm32x_info->part_info->page_size_kb * 1024,
bank->num_sectors);
if (bank->sectors == NULL) {
LOG_ERROR("failed to allocate bank sectors");
return ERROR_FAIL;
}
/* setup protection blocks */
const uint32_t wpsn = stm32x_info->part_info->wps_group_size;
assert(bank->num_sectors % wpsn == 0);
bank->num_prot_blocks = bank->num_sectors / wpsn;
assert(bank->num_prot_blocks > 0);
if (bank->prot_blocks)
free(bank->prot_blocks);
bank->prot_blocks = alloc_block_array(0, stm32x_info->part_info->page_size_kb * wpsn * 1024,
bank->num_prot_blocks);
if (bank->prot_blocks == NULL) {
LOG_ERROR("failed to allocate bank prot_block");
return ERROR_FAIL;
}
stm32x_info->probed = 1;
return ERROR_OK;
}
static int stm32x_auto_probe(struct flash_bank *bank)
{
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
if (stm32x_info->probed)
return ERROR_OK;
return stm32x_probe(bank);
}
/* This method must return a string displaying information about the bank */
static int stm32x_get_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
const struct stm32h7x_part_info *info = stm32x_info->part_info;
if (!stm32x_info->probed) {
int retval = stm32x_probe(bank);
if (retval != ERROR_OK) {
snprintf(buf, buf_size, "Unable to find bank information.");
return retval;
}
}
if (info) {
const char *rev_str = NULL;
uint16_t rev_id = stm32x_info->idcode >> 16;
for (unsigned int i = 0; i < info->num_revs; i++)
if (rev_id == info->revs[i].rev)
rev_str = info->revs[i].str;
if (rev_str != NULL) {
snprintf(buf, buf_size, "%s - Rev: %s",
stm32x_info->part_info->device_str, rev_str);
} else {
snprintf(buf, buf_size,
"%s - Rev: unknown (0x%04x)",
stm32x_info->part_info->device_str, rev_id);
}
} else {
snprintf(buf, buf_size, "Cannot identify target as a STM32H7x");
return ERROR_FAIL;
}
return ERROR_OK;
}
static int stm32x_set_rdp(struct flash_bank *bank, enum stm32h7x_opt_rdp new_rdp)
{
struct target *target = bank->target;
uint32_t optsr, cur_rdp;
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_read_flash_reg(bank, FLASH_OPTSR_PRG, &optsr);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read FLASH_OPTSR_PRG register");
return retval;
}
/* get current RDP, and check if there is a change */
cur_rdp = (optsr & OPT_RDP_MASK) >> OPT_RDP_POS;
if (new_rdp == cur_rdp) {
LOG_INFO("the requested RDP value is already programmed");
return ERROR_OK;
}
switch (new_rdp) {
case OPT_RDP_L0:
LOG_WARNING("unlocking the entire flash device");
break;
case OPT_RDP_L1:
LOG_WARNING("locking the entire flash device");
break;
case OPT_RDP_L2:
LOG_WARNING("locking the entire flash device, irreversible");
break;
}
/* apply new RDP */
optsr = (optsr & ~OPT_RDP_MASK) | (new_rdp << OPT_RDP_POS);
/* apply new option value */
return stm32x_write_option(bank, FLASH_OPTSR_PRG, optsr);
}
COMMAND_HANDLER(stm32x_handle_lock_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32x_set_rdp(bank, OPT_RDP_L1);
if (retval != ERROR_OK)
command_print(CMD, "%s failed to lock device", bank->driver->name);
else
command_print(CMD, "%s locked", bank->driver->name);
return retval;
}
COMMAND_HANDLER(stm32x_handle_unlock_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32x_set_rdp(bank, OPT_RDP_L0);
if (retval != ERROR_OK)
command_print(CMD, "%s failed to unlock device", bank->driver->name);
else
command_print(CMD, "%s unlocked", bank->driver->name);
return retval;
}
static int stm32x_mass_erase(struct flash_bank *bank)
{
int retval, retval2;
struct target *target = bank->target;
struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_unlock_reg(bank);
if (retval != ERROR_OK)
goto flash_lock;
/* mass erase flash memory bank */
retval = stm32x_write_flash_reg(bank, FLASH_CR,
stm32x_info->part_info->compute_flash_cr(FLASH_BER | FLASH_PSIZE_64, 0));
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_write_flash_reg(bank, FLASH_CR,
stm32x_info->part_info->compute_flash_cr(FLASH_BER | FLASH_PSIZE_64 | FLASH_START, 0));
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_flash_op_queue(bank, 30000);
if (retval != ERROR_OK)
goto flash_lock;
flash_lock:
retval2 = stm32x_lock_reg(bank);
if (retval2 != ERROR_OK)
LOG_ERROR("error during the lock of flash");
return (retval == ERROR_OK) ? retval2 : retval;
}
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
if (CMD_ARGC < 1) {
command_print(CMD, "stm32h7x mass_erase ");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32x_mass_erase(bank);
if (retval == ERROR_OK) {
/* set all sectors as erased */
for (int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD, "stm32h7x mass erase complete");
} else {
command_print(CMD, "stm32h7x mass erase failed");
}
return retval;
}
COMMAND_HANDLER(stm32x_handle_option_read_command)
{
if (CMD_ARGC < 2) {
command_print(CMD, "stm32h7x option_read ");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
uint32_t reg_offset, value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
retval = stm32x_read_flash_reg(bank, reg_offset, &value);
if (ERROR_OK != retval)
return retval;
command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "",
stm32x_get_flash_reg(bank, reg_offset), value);
return retval;
}
COMMAND_HANDLER(stm32x_handle_option_write_command)
{
if (CMD_ARGC < 3) {
command_print(CMD, "stm32h7x option_write [mask]");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
uint32_t reg_offset, value, mask = 0xffffffff;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
if (CMD_ARGC > 3)
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], mask);
return stm32x_modify_option(bank, reg_offset, value, mask);
}
static const struct command_registration stm32x_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32x_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
},
{
.name = "unlock",
.handler = stm32x_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
},
{
.name = "mass_erase",
.handler = stm32x_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "option_read",
.handler = stm32x_handle_option_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset",
.help = "Read and display device option bytes.",
},
{
.name = "option_write",
.handler = stm32x_handle_option_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset value [mask]",
.help = "Write device option bit fields with provided value.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32x_command_handlers[] = {
{
.name = "stm32h7x",
.mode = COMMAND_ANY,
.help = "stm32h7x flash command group",
.usage = "",
.chain = stm32x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver stm32h7x_flash = {
.name = "stm32h7x",
.commands = stm32x_command_handlers,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.read = default_flash_read,
.probe = stm32x_probe,
.auto_probe = stm32x_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32x_protect_check,
.info = stm32x_get_info,
.free_driver_priv = default_flash_free_driver_priv,
};