/***************************************************************************
* Copyright (C) 2009 by Simon Qian *
* SimonQian@SimonQian.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include
/* AVR_JTAG_Instructions */
#define AVR_JTAG_INS_LEN 4
/* Public Instructions: */
#define AVR_JTAG_INS_EXTEST 0x00
#define AVR_JTAG_INS_IDCODE 0x01
#define AVR_JTAG_INS_SAMPLE_PRELOAD 0x02
#define AVR_JTAG_INS_BYPASS 0x0F
/* AVR Specified Public Instructions: */
#define AVR_JTAG_INS_AVR_RESET 0x0C
#define AVR_JTAG_INS_PROG_ENABLE 0x04
#define AVR_JTAG_INS_PROG_COMMANDS 0x05
#define AVR_JTAG_INS_PROG_PAGELOAD 0x06
#define AVR_JTAG_INS_PROG_PAGEREAD 0x07
/* Data Registers: */
#define AVR_JTAG_REG_Bypass_Len 1
#define AVR_JTAG_REG_DeviceID_Len 32
#define AVR_JTAG_REG_Reset_Len 1
#define AVR_JTAG_REG_JTAGID_Len 32
#define AVR_JTAG_REG_ProgrammingEnable_Len 16
#define AVR_JTAG_REG_ProgrammingCommand_Len 15
#define AVR_JTAG_REG_FlashDataByte_Len 16
struct avrf_type {
char name[15];
uint16_t chip_id;
int flash_page_size;
int flash_page_num;
int eeprom_page_size;
int eeprom_page_num;
};
struct avrf_flash_bank {
int ppage_size;
bool probed;
};
static const struct avrf_type avft_chips_info[] = {
/* name, chip_id, flash_page_size, flash_page_num,
* eeprom_page_size, eeprom_page_num
*/
{"atmega128", 0x9702, 256, 512, 8, 512},
{"atmega128rfa1", 0xa701, 128, 512, 8, 512},
{"atmega256rfr2", 0xa802, 256, 1024, 8, 1024},
{"at90can128", 0x9781, 256, 512, 8, 512},
{"at90usb128", 0x9782, 256, 512, 8, 512},
{"atmega164p", 0x940a, 128, 128, 4, 128},
{"atmega324p", 0x9508, 128, 256, 4, 256},
{"atmega324pa", 0x9511, 128, 256, 4, 256},
{"atmega644p", 0x960a, 256, 256, 8, 256},
{"atmega1284p", 0x9705, 256, 512, 8, 512},
};
/* avr program functions */
static int avr_jtag_reset(struct avr_common *avr, uint32_t reset)
{
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_AVR_RESET);
avr_jtag_senddat(avr->jtag_info.tap, NULL, reset, AVR_JTAG_REG_Reset_Len);
return ERROR_OK;
}
static int avr_jtag_read_jtagid(struct avr_common *avr, uint32_t *id)
{
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_IDCODE);
avr_jtag_senddat(avr->jtag_info.tap, id, 0, AVR_JTAG_REG_JTAGID_Len);
return ERROR_OK;
}
static int avr_jtagprg_enterprogmode(struct avr_common *avr)
{
avr_jtag_reset(avr, 1);
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_ENABLE);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0xA370, AVR_JTAG_REG_ProgrammingEnable_Len);
return ERROR_OK;
}
static int avr_jtagprg_leaveprogmode(struct avr_common *avr)
{
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2300, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3300, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_ENABLE);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0, AVR_JTAG_REG_ProgrammingEnable_Len);
avr_jtag_reset(avr, 0);
return ERROR_OK;
}
static int avr_jtagprg_chiperase(struct avr_common *avr)
{
uint32_t poll_value;
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2380, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3180, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3380, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3380, AVR_JTAG_REG_ProgrammingCommand_Len);
do {
poll_value = 0;
avr_jtag_senddat(avr->jtag_info.tap,
&poll_value,
0x3380,
AVR_JTAG_REG_ProgrammingCommand_Len);
if (ERROR_OK != mcu_execute_queue())
return ERROR_FAIL;
LOG_DEBUG("poll_value = 0x%04" PRIx32 "", poll_value);
} while (!(poll_value & 0x0200));
return ERROR_OK;
}
static int avr_jtagprg_writeflashpage(struct avr_common *avr,
const bool ext_addressing,
const uint8_t *page_buf,
uint32_t buf_size,
uint32_t addr,
uint32_t page_size)
{
uint32_t poll_value;
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x2310, AVR_JTAG_REG_ProgrammingCommand_Len);
/* load extended high byte */
if (ext_addressing)
avr_jtag_senddat(avr->jtag_info.tap,
NULL,
0x0b00 | ((addr >> 17) & 0xFF),
AVR_JTAG_REG_ProgrammingCommand_Len);
/* load addr high byte */
avr_jtag_senddat(avr->jtag_info.tap,
NULL,
0x0700 | ((addr >> 9) & 0xFF),
AVR_JTAG_REG_ProgrammingCommand_Len);
/* load addr low byte */
avr_jtag_senddat(avr->jtag_info.tap,
NULL,
0x0300 | ((addr >> 1) & 0xFF),
AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_PAGELOAD);
for (uint32_t i = 0; i < page_size; i++) {
if (i < buf_size)
avr_jtag_senddat(avr->jtag_info.tap, NULL, page_buf[i], 8);
else
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0xFF, 8);
}
avr_jtag_sendinstr(avr->jtag_info.tap, NULL, AVR_JTAG_INS_PROG_COMMANDS);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3500, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);
avr_jtag_senddat(avr->jtag_info.tap, NULL, 0x3700, AVR_JTAG_REG_ProgrammingCommand_Len);
do {
poll_value = 0;
avr_jtag_senddat(avr->jtag_info.tap,
&poll_value,
0x3700,
AVR_JTAG_REG_ProgrammingCommand_Len);
if (ERROR_OK != mcu_execute_queue())
return ERROR_FAIL;
LOG_DEBUG("poll_value = 0x%04" PRIx32 "", poll_value);
} while (!(poll_value & 0x0200));
return ERROR_OK;
}
FLASH_BANK_COMMAND_HANDLER(avrf_flash_bank_command)
{
struct avrf_flash_bank *avrf_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
avrf_info = malloc(sizeof(struct avrf_flash_bank));
bank->driver_priv = avrf_info;
avrf_info->probed = false;
return ERROR_OK;
}
static int avrf_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
struct avr_common *avr = target->arch_info;
int status;
LOG_DEBUG("%s", __func__);
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
status = avr_jtagprg_enterprogmode(avr);
if (status != ERROR_OK)
return status;
status = avr_jtagprg_chiperase(avr);
if (status != ERROR_OK)
return status;
return avr_jtagprg_leaveprogmode(avr);
}
static int avrf_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct avr_common *avr = target->arch_info;
uint32_t cur_size, cur_buffer_size, page_size;
bool ext_addressing;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
page_size = bank->sectors[0].size;
if ((offset % page_size) != 0) {
LOG_WARNING("offset 0x%" PRIx32 " breaks required %" PRIu32 "-byte alignment",
offset,
page_size);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
LOG_DEBUG("offset is 0x%08" PRIx32 "", offset);
LOG_DEBUG("count is %" PRId32 "", count);
if (ERROR_OK != avr_jtagprg_enterprogmode(avr))
return ERROR_FAIL;
if (bank->size > 0x20000)
ext_addressing = true;
else
ext_addressing = false;
cur_size = 0;
while (count > 0) {
if (count > page_size)
cur_buffer_size = page_size;
else
cur_buffer_size = count;
avr_jtagprg_writeflashpage(avr,
ext_addressing,
buffer + cur_size,
cur_buffer_size,
offset + cur_size,
page_size);
count -= cur_buffer_size;
cur_size += cur_buffer_size;
keep_alive();
}
return avr_jtagprg_leaveprogmode(avr);
}
#define EXTRACT_MFG(X) (((X) & 0xffe) >> 1)
#define EXTRACT_PART(X) (((X) & 0xffff000) >> 12)
#define EXTRACT_VER(X) (((X) & 0xf0000000) >> 28)
static int avrf_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct avrf_flash_bank *avrf_info = bank->driver_priv;
struct avr_common *avr = target->arch_info;
const struct avrf_type *avr_info = NULL;
uint32_t device_id;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
avrf_info->probed = false;
avr_jtag_read_jtagid(avr, &device_id);
if (ERROR_OK != mcu_execute_queue())
return ERROR_FAIL;
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
if (EXTRACT_MFG(device_id) != 0x1F)
LOG_ERROR("0x%" PRIx32 " is invalid Manufacturer for avr, 0x%X is expected",
EXTRACT_MFG(device_id),
0x1F);
for (size_t i = 0; i < ARRAY_SIZE(avft_chips_info); i++) {
if (avft_chips_info[i].chip_id == EXTRACT_PART(device_id)) {
avr_info = &avft_chips_info[i];
LOG_INFO("target device is %s", avr_info->name);
break;
}
}
if (avr_info != NULL) {
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
/* chip found */
bank->base = 0x00000000;
bank->size = (avr_info->flash_page_size * avr_info->flash_page_num);
bank->num_sectors = avr_info->flash_page_num;
bank->sectors = malloc(sizeof(struct flash_sector) * avr_info->flash_page_num);
for (int i = 0; i < avr_info->flash_page_num; i++) {
bank->sectors[i].offset = i * avr_info->flash_page_size;
bank->sectors[i].size = avr_info->flash_page_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = -1;
}
avrf_info->probed = true;
return ERROR_OK;
} else {
/* chip not supported */
LOG_ERROR("0x%" PRIx32 " is not support for avr", EXTRACT_PART(device_id));
avrf_info->probed = true;
return ERROR_FAIL;
}
}
static int avrf_auto_probe(struct flash_bank *bank)
{
struct avrf_flash_bank *avrf_info = bank->driver_priv;
if (avrf_info->probed)
return ERROR_OK;
return avrf_probe(bank);
}
static int avrf_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct target *target = bank->target;
struct avr_common *avr = target->arch_info;
const struct avrf_type *avr_info = NULL;
uint32_t device_id;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
avr_jtag_read_jtagid(avr, &device_id);
if (ERROR_OK != mcu_execute_queue())
return ERROR_FAIL;
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
if (EXTRACT_MFG(device_id) != 0x1F)
LOG_ERROR("0x%" PRIx32 " is invalid Manufacturer for avr, 0x%X is expected",
EXTRACT_MFG(device_id),
0x1F);
for (size_t i = 0; i < ARRAY_SIZE(avft_chips_info); i++) {
if (avft_chips_info[i].chip_id == EXTRACT_PART(device_id)) {
avr_info = &avft_chips_info[i];
LOG_INFO("target device is %s", avr_info->name);
break;
}
}
if (avr_info != NULL) {
/* chip found */
snprintf(buf, buf_size, "%s - Rev: 0x%" PRIx32 "", avr_info->name,
EXTRACT_VER(device_id));
return ERROR_OK;
} else {
/* chip not supported */
snprintf(buf, buf_size, "Cannot identify target as a avr\n");
return ERROR_FLASH_OPERATION_FAILED;
}
}
static int avrf_mass_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
struct avr_common *avr = target->arch_info;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((ERROR_OK != avr_jtagprg_enterprogmode(avr))
|| (ERROR_OK != avr_jtagprg_chiperase(avr))
|| (ERROR_OK != avr_jtagprg_leaveprogmode(avr)))
return ERROR_FAIL;
return ERROR_OK;
}
COMMAND_HANDLER(avrf_handle_mass_erase_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
if (avrf_mass_erase(bank) == ERROR_OK) {
/* set all sectors as erased */
for (int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD, "avr mass erase complete");
} else
command_print(CMD, "avr mass erase failed");
LOG_DEBUG("%s", __func__);
return ERROR_OK;
}
static const struct command_registration avrf_exec_command_handlers[] = {
{
.name = "mass_erase",
.usage = "",
.handler = avrf_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.help = "erase entire device",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration avrf_command_handlers[] = {
{
.name = "avrf",
.mode = COMMAND_ANY,
.help = "AVR flash command group",
.usage = "",
.chain = avrf_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver avr_flash = {
.name = "avr",
.commands = avrf_command_handlers,
.flash_bank_command = avrf_flash_bank_command,
.erase = avrf_erase,
.write = avrf_write,
.read = default_flash_read,
.probe = avrf_probe,
.auto_probe = avrf_auto_probe,
.erase_check = default_flash_blank_check,
.info = avrf_info,
.free_driver_priv = default_flash_free_driver_priv,
};