aboutsummaryrefslogtreecommitdiff
path: root/src/d.tex
blob: 8a481371e9e3bb82b3b30e6b4b37a679aa21613b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
\chapter{``D'' Standard Extension for Double-Precision Floating-Point,
Version 2.0}

This chapter describes the standard double-precision floating-point
instruction-set extension, which is named ``D'' and adds
double-precision floating-point computational instructions compliant
with the IEEE 754-2008 arithmetic standard.  The D extension depends on
the base single-precision instruction subset F.

\section{D Register State}

The D extension widens the 32 floating-point registers, {\tt f0}--{\tt
f31}, to 64 bits (FLEN=64 in Figure~\ref{fprs}).

\section{Double-Precision Load and Store Instructions}

The FLD instruction loads a double-precision floating-point value from
memory into floating-point register {\em rd}.  FSD stores a double-precision
value from the floating-point registers to memory.
\vspace{-0.2in}
\begin{center}
\begin{tabular}{M@{}R@{}F@{}R@{}O}
\\
\instbitrange{31}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{imm[11:0]} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{width} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
12 & 5 & 3 & 5 & 7 \\
offset[11:0] & base & D & dest & LOAD-FP \\
\end{tabular}
\end{center}

\vspace{-0.2in}
\begin{center}
\begin{tabular}{O@{}R@{}R@{}F@{}R@{}O}
\\
\instbitrange{31}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{imm[11:5]} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{width} &
\multicolumn{1}{c|}{imm[4:0]} &
\multicolumn{1}{c|}{opcode} \\
\hline
7 & 5 & 5 & 3 & 5 & 7 \\
offset[11:5] & src & base & D & offset[4:0] & STORE-FP \\
\end{tabular}
\end{center}

If a floating-point register holds a single-precision value, it is
guaranteed that a FSD of that register will place a value into memory
that when reloaded with a FLD will recreate the original
single-precision value in a register.  The data format that is
stored in memory is undefined beyond having this property.

\begin{commentary}
User-level code might not know the current type of data stored in a
floating-point register but has to be able to save and restore the
register values.  A common case is for callee-save registers, but this
is also essential to implement varargs and user-level threading
libraries.
\end{commentary}

FLD and FSD are only guaranteed to execute atomically if the effective address
is naturally aligned and XLEN$\geq$64.

\section{Double-Precision Floating-Point Computational Instructions}

The double-precision floating-point computational instructions are
defined analogously to their single-precision counterparts, but operate on
double-precision operands and produce double-precision results.
\vspace{-0.2in}
\begin{center}
\begin{tabular}{R@{}F@{}R@{}R@{}F@{}R@{}O}
\\
\instbitrange{31}{27} &
\instbitrange{26}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct5} &
\multicolumn{1}{c|}{fmt} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{rm} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
5 & 2 & 5 & 5 & 3 & 5 & 7 \\
FADD/FSUB & D & src2 & src1 & RM  & dest & OP-FP  \\
FMUL/FDIV & D & src2 & src1 & RM  & dest & OP-FP  \\
FMIN-MAX  & D & src2 & src1 & MIN/MAX & dest & OP-FP  \\
FSQRT     & D & 0    & src  & RM  & dest & OP-FP  \\
\end{tabular}
\end{center}

\vspace{-0.2in}
\begin{center}
\begin{tabular}{R@{}F@{}R@{}R@{}F@{}R@{}O}
\\
\instbitrange{31}{27} &
\instbitrange{26}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{rs3} &
\multicolumn{1}{c|}{fmt} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{rm} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
5 & 2 & 5 & 5 & 3 & 5 & 7 \\
src3 & D & src2 & src1 & RM  & dest & F[N]MADD/F[N]MSUB  \\
\end{tabular}
\end{center}

\section{Double-Precision Floating-Point Conversion and Move Instructions}

Floating-point-to-integer and integer-to-floating-point conversion
instructions are encoded in the OP-FP major opcode space.
FCVT.W.D or FCVT.L.D converts a double-precision floating-point number
in floating-point register {\em rs1} to a signed 32-bit or 64-bit
integer, respectively, in integer register {\em rd}.  FCVT.D.W
or FCVT.D.L converts a 32-bit or 64-bit signed integer,
respectively, in integer register {\em rs1} into a
double-precision floating-point
number in floating-point register {\em rd}. FCVT.WU.D,
FCVT.LU.D, FCVT.D.WU, and FCVT.D.LU variants
convert to or from unsigned integer values.  FCVT.L[U].D and
FCVT.D.L[U] are illegal in RV32.
The range of valid inputs for FCVT.{\em int}.D and
the behavior for invalid inputs are the same as for FCVT.{\em int}.S.

All floating-point to integer and integer to floating-point conversion
instructions round according to the {\em rm} field.  Note FCVT.D.W[U] always
produces an exact result and is unaffected by rounding mode.

\vspace{-0.2in}
\begin{center}
\begin{tabular}{R@{}F@{}R@{}R@{}F@{}R@{}O}
\\
\instbitrange{31}{27} &
\instbitrange{26}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct5} &
\multicolumn{1}{c|}{fmt} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{rm} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
5 & 2 & 5 & 5 & 3 & 5 & 7 \\
FCVT.{\em int}.{\em fmt} & D & W[U]/L[U] & src & RM  & dest & OP-FP  \\
FCVT.{\em fmt}.{\em int} & D & W[U]/L[U] & src & RM  & dest & OP-FP  \\
\end{tabular}
\end{center}

The double-precision to single-precision and single-precision to
double-precision conversion instructions, FCVT.S.D and FCVT.D.S, are
encoded in the OP-FP major opcode space and both the source and
destination are floating-point registers.  The {\em rs2} field
encodes the datatype of the source, and the {\em fmt} field encodes
the datatype of the destination.  FCVT.S.D rounds according to the
RM field; FCVT.D.S will never round.

\vspace{-0.2in}
\begin{center}
\begin{tabular}{R@{}F@{}R@{}R@{}F@{}R@{}O}
\\
\instbitrange{31}{27} &
\instbitrange{26}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct5} &
\multicolumn{1}{c|}{fmt} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{rm} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
5 & 2 & 5 & 5 & 3 & 5 & 7 \\
FCVT.{\em fmt}.{\em fmt} & S & D & src & RM  & dest & OP-FP  \\
FCVT.{\em fmt}.{\em fmt} & D & S & src & RM  & dest & OP-FP  \\
\end{tabular}
\end{center}

Floating-point to floating-point sign-injection instructions, FSGNJ.D,
FSGNJN.D, and FSGNJX.D are defined analogously to the single-precision
sign-injection instruction.

For FSGNJ.D, if {\em rs1} and {\em rs2} are the same register, which contains
a single-precision floating-point value, the single-precision value will be
correctly copied to {\em rd}.  If {\em rs1} and {\em rs2} are not the same,
the result is undefined.  For FSGNJN.D and FSGNJX.D, the result is undefined
for any single-precision inputs.

\vspace{-0.2in}
\begin{center}
\begin{tabular}{R@{}F@{}R@{}R@{}F@{}R@{}O}
\\
\instbitrange{31}{27} &
\instbitrange{26}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct5} &
\multicolumn{1}{c|}{fmt} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{rm} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
5 & 2 & 5 & 5 & 3 & 5 & 7 \\
FSGNJ & D & src2 & src1 & J[N]/JX & dest & OP-FP  \\
\end{tabular}
\end{center}

For RV64 only, instructions are provided to move bit patterns between
the floating-point and integer registers.  FMV.X.D moves the
double-precision value in floating-point register {\em rs1} to a
representation in IEEE 754-2008 standard encoding in integer register
{\em rd}.  If the last value written to the source floating-point
register was a single-precision floating-point value, then the value
returned by FMV.X.D is undefined beyond having the property that
moving the value back to a floating-point register will recreate the
original single-precision value.  FMV.D.X moves the double-precision
value encoded in IEEE 754-2008 standard encoding from the integer
register {\em rs1} to the floating-point register {\em rd}.

\vspace{-0.2in}
\begin{center}
\begin{tabular}{R@{}F@{}R@{}R@{}F@{}R@{}O}
\\
\instbitrange{31}{27} &
\instbitrange{26}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct5} &
\multicolumn{1}{c|}{fmt} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{rm} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
5 & 2 & 5 & 5 & 3 & 5 & 7 \\
FMV.X.{\em fmt} & D & 0    & src  & 000  & dest & OP-FP  \\
FMV.{\em fmt}.X & D & 0    & src  & 000  & dest & OP-FP  \\
\end{tabular}
\end{center}

\section{Double-Precision Floating-Point Compare Instructions}

The double-precision floating-point compare instructions are
defined analogously to their single-precision counterparts, but operate on
double-precision operands.

\vspace{-0.2in}
\begin{center}
\begin{tabular}{S@{}F@{}R@{}R@{}F@{}R@{}O}
\\
\instbitrange{31}{27} &
\instbitrange{26}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct5} &
\multicolumn{1}{c|}{fmt} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{rm} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
5 & 2 & 5 & 5 & 3 & 5 & 7 \\
FCMP & D & src2 & src1 & EQ/LT/LE & dest & OP-FP  \\
\end{tabular}
\end{center}

\section{Double-Precision Floating-Point Classify Instruction}

The double-precision floating-point classify instruction, FCLASS.D, is
defined analogously to its single-precision counterpart, but operates on
double-precision operands.

\vspace{-0.2in}
\begin{center}
\begin{tabular}{S@{}F@{}R@{}R@{}F@{}R@{}O}
\\
\instbitrange{31}{27} &
\instbitrange{26}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct5} &
\multicolumn{1}{c|}{fmt} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{rm} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
5 & 2 & 5 & 5 & 3 & 5 & 7 \\
FCLASS & D & 0 & src & 001 & dest & OP-FP  \\
\end{tabular}
\end{center}