
The RISC-V Instruction Set
Manual

Version Convert pre, 10/2021: Pre-release version

Table of Contents
Preamble . 1
Preface . 2
1. Introduction . 10

1.1. RISC-V Hardware Platform Terminology . 11
1.2. RISC-V Software Execution Environments and Harts . 11
1.3. RISC-V ISA Overview . 13
1.4. Memory. 15
1.5. Base Instruction-Length Encoding. 17

1.5.1. Expanded Instruction-Length Encoding. 17
1.6. Exceptions, Traps, and Interrupts. 20
1.7. UNSPECIFIED Behaviors and Values . 22

2. RV32I Base Integer Instruction Set, Version 2.1 . 23
2.1. Programmers’ Model for Base Integer ISA . 23
2.2. Base Instruction Formats. 25
2.3. Immediate Encoding Variants . 26
2.4. Integer Computational Instructions. 28

2.4.1. Integer Register-Immediate Instructions . 28
2.4.2. Integer Register-Register Operations . 30
2.4.3. NOP Instruction. 30

2.5. Control Transfer Instructions. 31
2.5.1. Unconditional Jumps . 31
2.5.2. Conditional Branches . 33

2.6. Load and Store Instructions . 35
2.7. Memory Ordering Instructions . 36
2.8. Environment Call and Breakpoints . 38
2.9. HINT Instructions . 39

3. "Zifencei" Instruction-Fetch Fence, Version 2.0 . 42
4. "Zihintpause" Pause Hint, Version 2.0 . 44
5. RV32E Base Integer Instruction Set, Version 1.9 . 45

5.1. RV32E Programmers’ Model . 45
5.2. RV32E Instruction Set . 45

6. RV64I Base Integer Instruction Set, Version 2.1 . 46
6.1. Register State . 46
6.2. Integer Computational Instructions . 46

6.2.1. Integer Register-Immediate Instructions . 46
6.2.2. Integer Register-Register Operations . 47

6.3. Load and Store Instructions . 48
6.4. HINT Instructions . 49

7. RV128I Base Integer Instruction Set, Version 1.7 . 52
8. M Standard Extension for Integer Multiplication and Division, Version 2.0 . 54

8.1. Multiplication Operations . 54
8.2. Division Operations . 55
8.3. Zmmul Extension, Version 0.1 . 56

9. A Standard Extension for Atomic Instructions, Version 2.1 . 57
9.1. Specifying Ordering of Atomic Instructions . 57
9.2. Load-Reserved/Store-Conditional Instructions . 57
9.3. Eventual Success of Store-Conditional Instructions . 60
9.4. Atomic Memory Operations . 62

10. "Zicsr" Control and Status Register (CSR) Instructions, Version 2.0 . 65
10.1. CSR Instructions. 65

10.1.1. CSR Access Ordering . 67
11. Counters. 69

11.1. Base Counters and Timers . 69
11.2. Hardware Performance Counters . 71

12. F Standard Extension for Single-Precision Floating-Point, Version 2.2 . 73
12.1. F Register State. 73
12.2. Floating-Point Control and Status Register . 74
12.3. NaN Generation and Propagation . 76
12.4. Subnormal Arithmetic. 77
12.5. Single-Precision Load and Store Instructions . 77
12.6. Single-Precision Floating-Point Computational Instructions . 77
12.7. Single-Precision Floating-Point Conversion and Move Instructions. 79
12.8. Single-Precision Floating-Point Compare Instructions . 81
12.9. Single-Precision Floating-Point Classify Instruction . 82

13. D Standard Extension for Double-Precision Floating-Point, Version 2.2. 83
13.1. D Register State . 83
13.2. NaN Boxing of Narrower Values . 83
13.3. Double-Precision Load and Store Instructions . 84
13.4. Double-Precision Floating-Point Computational Instructions . 85
13.5. Double-Precision Floating-Point Conversion and Move Instructions . 85
13.6. Double-Precision Floating-Point Compare Instructions . 87
13.7. Double-Precision Floating-Point Classify Instruction . 87

14. Q Standard Extension for Quad-Precision Floating-Point, Version 2.2 . 88
14.1. Quad-Precision Load and Store Instructions . 88
14.2. Quad-Precision Computational Instructions . 88
14.3. Quad-Precision Convert and Move Instructions . 89
14.4. Quad-precision floating-Point compare insturctions . 90
14.5. Quad-Precision Floating-Point Classify Instruction . 90

15. RVWMO Memory Consistency Model, Version 2.0 . 92
15.1. Definition of the RVWMO Memory Model . 92

15.1.1. Memory Model Primitives . 93
15.1.2. Syntactic Dependencies . 94
15.1.3. Preserved Program Order. 95

15.1.4. Memory Model Axioms. 96
Load Value Axiom . 96
Atomicity Axiom . 96
Progress Axiom . 97

15.2. CSR Dependency Tracking Granularity . 97
15.3. Source and Destination Register Listings . 97

16. C Standard Extension for Compressed Instructions, Version 2.0. 104
16.1. Overview . 104
16.2. Compressed Instruction Formats . 106
16.3. Load and Store Instructions . 108

16.3.1. Stack-Pointer-Based Loads and Stores . 108
16.3.2. Register-Based Loads and Stores . 110

16.4. Control Transfer Instructions . 112
16.5. Integer Computational Instructions . 113

16.5.1. Integer Constant-Generation Instructions . 113
16.5.2. Integer Register-Immediate Operations . 114
16.5.3. Integer Register-Register Operations . 115
16.5.4. Defined Illegal Instruction . 117
16.5.5. NOP Instruction . 117
16.5.6. Breakpoint Instruction . 117

16.6. Usage of C Instructions in LR/SC Sequences . 117
16.7. HINT Instructions. 118
16.8. RVC Instruction Set Listings . 119

17. B Standard Extension for Bit Manipulation, Version 0.0. 122
18. J Standard Extension for Dynamically Translated Languages, Version 0.0 . 123
19. P Standard Extension for Packed-SIMD Instructions, Version 0.2. 124
20. V Standard Extension for Vector Operations, Version 0.7 . 125
21. Zam Standard Extension for Misaligned Atomics, v0.1 . 126

21.1. Atomicity Axiom for misaligned atomics . 126
22. Ztso Standard Extension for Total Store Ordering, v0.1 . 127
23. RV32/64G Instruction Set Listings. 128
24. Extending RISC-V . 138

24.1. Extension Terminology. 138
24.1.1. Standard versus Non-Standard Extension . 138
24.1.2. Instruction Encoding Spaces and Prefixes . 138
24.1.3. Greenfield versus Brownfield Extensions. 139
24.1.4. Standard-Compatible Global Encodings. 140
24.1.5. Guaranteed Non-Standard Encoding Space . 140

24.2. RISC-V Extension Design Philosophy. 140
24.3. Extensions within fixed-width 32-bit instruction format . 141

24.3.1. Available 30-bit instruction encoding spaces . 141
24.3.2. Available 25-bit instruction encoding spaces . 141
24.3.3. Available 22-bit instruction encoding spaces . 142

24.3.4. Other spaces . 142
24.4. Adding aligned 64-bit instruction extensions . 142
24.5. Supporting VLIW encodings. 142

24.5.1. Fixed-size instruction group . 142
24.5.2. Encoded-Length Groups . 143
24.5.3. Fixed-Size Instruction Bundles . 143
24.5.4. End-of-Group bits in Prefix. 143

25. ISA Extension Naming Conventions . 144
25.1. Case Sensitivity . 144
25.2. Base Integer ISA . 144
25.3. Instruction-Set Extension Names . 144
25.4. Version Numbers . 144
25.5. Underscores . 145
25.6. Additional Standard Extension Names. 145
25.7. Supervisor-level Instruction-Set Extensions . 145
25.8. Hypervisor-level Instruction-Set Extensions . 145
25.9. Machine-level Instruction-Set Extensions . 146
25.10. Non-Standard Extension Names . 146
25.11. Subset Naming Convention. 146

26. History and Acknowledgments . 148
26.1. Why Develop a new ISA? Rationale from Berkeley Group . 148
26.2. History from Revision 1.0 of ISA manual . 150
26.3. History from Revision 2.0 of ISA manual. 151
26.4. Acknowledgments . 152
26.5. History from Revision 2.1 . 152
26.6. Acknowledgments . 153
26.7. History from Revision 2.2 . 153
26.8. Acknowledgments . 153
26.9. History for Revision 2.3 . 153
26.10. Funding . 153

Appendix A: RVWMO Explanatory Material, Version 0.1 . 154
A.1. Why RVWMO?. 154
A.2. Litmus Tests. 154
A.3. Explaining the RVWMO Rules . 156

A.3.1. Preserved Program Order and Global Memory Order . 156
A.3.2. Load value axiom . 157
A.3.3. Atomicity axiom . 160
A.3.4. Progress axiom . 161
A.3.5. Overlapping-Address Orderings (Rules 1–3). 161
A.3.6. Fences . 164
A.3.7. Explicit Synchronization (Rules 5–8) . 165
A.3.8. Syntactic Dependencies (Rules ppo:addr –11). 167
A.3.9. Pipeline Dependencies . 170

A.4. Beyond Main Memory . 172
A.4.1. Coherence and Cacheability . 172
A.4.2. I/O Ordering . 173

A.5. Code Porting and Mapping Guidelines . 174
A.6. Implementation Guidelines. 180

A.6.1. Possible Future Extensions . 183
A.7. Known Issues . 184

A.7.1. Mixed-size RSW . 184
Appendix B: Formal Memory Model Specifications, Version 0.1 . 186

B.1. Formal Axiomatic Specification in Alloy . 186
B.2. Formal Axiomatic Specification in Herd . 192
B.3. An Operational Memory Model . 195

B.3.1. Model states . 196
B.3.2. Model transitions . 196
B.3.3. Intra-instruction Pseudocode Execution . 198
B.3.4. Instruction Instance State . 200
B.3.5. Hart State . 201
B.3.6. Shared Memory State. 201
B.3.7. Transitions. 201

Fetch instruction . 202
Initiate memory load operations . 202
Satisfy memory load operation by forwarding from unpropagated stores 203
Satisfy memory load operation from memory . 204
Complete load operations . 204
Early sc fail . 204
Paired sc. 204
Initiate memory store operation footprints. 204
Instantiate memory store operation values. 205
Commit store instruction . 205
Propagate store operation . 206
Commit and propagate store operation of an sc . 206
Late sc fail . 207
Complete store operations . 207
Satisfy, commit and propagate operations of an AMO . 207
Commit fence . 208
Register read . 208
Register write . 208
Pseudocode internal step . 208
Finish instruction . 208

B.3.8. Limitations . 209
Index. 210
Bibliography . 212

Preamble
Contributors to all versions of the spec in alphabetical order (please contact editors to suggest corrections):
Arvind, Krste Asanovi´c, Rimas Aviˇzienis, Jacob Bachmeyer, Christopher F. Batten, Allen J. Baum, Alex
Bradbury, Scott Beamer, Preston Briggs, Christopher Celio, Chuanhua Chang, David Chisnall, Paul Clayton,
Palmer Dabbelt, Ken Dockser, Roger Espasa, Greg Favor, Shaked Flur, Stefan Freudenberger, Marc Gauthier,
Andy Glew, Jan Gray, Michael Hamburg, John Hauser, David Horner, Bruce Hoult, Bill Huffman, Alexandre
Joannou, Olof Johansson, Ben Keller, David Kruckemyer, Yunsup Lee, Paul Loewenstein, Daniel Lustig, Yatin
Manerkar, Luc Maranget, Margaret Martonosi, Joseph Myers, Vijayanand Nagarajan, Rishiyur Nikhil, Jonas
Oberhauser, Stefan O’Rear, Albert Ou, John Ousterhout, David Patterson, Christopher Pulte, Jose Renau, Josh
Scheid, Colin Schmidt, Peter Sewell, Susmit Sarkar, Michael Taylor, Wesley Terpstra, Matt Thomas, Tommy
Thorn, Caroline Trippel, Ray VanDeWalker, Muralidaran Vijayaraghavan, Megan Wachs, Andrew
Waterman, Robert Watson, Derek Williams, Andrew Wright, Reinoud Zandijk, and Sizhuo Zhang.

This document is released under a Creative Commons Attribution 4.0 International License.

This document is a derivative of “The RISC-V Instruction Set Manual, Volume I: User-Level ISA Version 2.1”
released under the following license: ©2010–2017 Andrew Waterman, Yunsup Lee, David Patterson, Krste
Asanovi’c. Creative Commons Attribution 4.0 International License. Please cite as: “The RISC-V Instruction
Set Manual, Volume I: User-Level ISA, Document Version 20191214-draft”, Editors Andrew Waterman and
Krste Asanovi´c, RISC-V Foundation, December 2019.

Preamble | Page 1

The RISC-V Instruction Set Manual | © RISC-V

Preface
This document describes the RISC-V unprivileged architecture.

The ISA modules marked Ratified have been ratified at this time. The modules marked Frozen are not
expected to change significantly before being put up for ratification. The modules marked Draft are
expected to change before ratification.

The document contains the following versions of the RISC-V ISA modules:

Base Version Status

RVWMO 2.0 Ratified

RV32I 2.1 Ratified

RV64I 2.1 Ratified

RV32E 1.9 Draft

RV128I 1.7 Draft

Extension Version Status

M 2.0 Ratified

A 2.1 Ratified

F 2.2 Ratified

D 2.2 Ratified

Q 2.2 Ratified

C 2.0 Ratified

Counters 2.0 Draft

L 0.0 Draft

B 0.0 Draft

J 0.0 Draft

T 0.0 Draft

P 0.2 Draft

V 0.7 Draft

Zicsr 2.0 Ratified

Zifencei 2.0 Ratified

Zihintpause 2.0 Ratified

Zam 0.1 Draft

Zfh 0.1 Draft

Zfhmin 0.1 Draft

Zfinx 0.1 Frozen

Zdinx 1.0 Frozen

Zhinx 1.0 Frozen

Preface | Page 2

The RISC-V Instruction Set Manual | © RISC-V

Base Version Status

Zhinxmin 1.0 Frozen

Ztso 0.1 Frozen

Preface to Document Version 20191213-Base-Ratified

This document describes the RISC-V unprivileged architecture.

The ISA modules marked Ratified have been ratified at this time. The modules marked Frozen are not
expected to change significantly before being put up for ratification. The modules marked Draft are
expected to change before ratification.

The document contains the following versions of the RISC-V ISA modules:

Base Version Status

RVWMO 2.0 Ratified

RV32I 2.1 Ratified

RV64I 2.1 Ratified

RV32E 1.9 Draft

RV128I 1.7 Draft

Extension Version Status

M 2.0 Ratified

A 2.1 Ratified

F 2.2 Ratified

D 2.2 Ratified

Q 2.2 Ratified

C 2.0 Ratified

Counters 2.0 Draft

L 0.0 Draft

B 0.0 Draft

J 0.0 Draft

T 0.0 Draft

P 0.2 Draft

V 0.7 Draft

Zicsr 2.0 Ratified

Zifencei 2.0 Ratified

Zam 0.1 Draft

Ztso 0.1 Frozen

The changes in this version of the document include:

Preface | Page 3

The RISC-V Instruction Set Manual | © RISC-V

• The A extension, now version 2.1, was ratified by the board in December 2019.

• Defined big-endian ISA variant.

• Moved N extension for user-mode interrupts into Volume II.

• Defined PAUSE hint instruction.

Preface to Document Version 20190608-Base-Ratified

This document describes the RISC-V unprivileged architecture.

The RVWMO memory model has been ratified at this time. The ISA modules marked Ratified, have
been ratified at this time. The modules marked Frozen are not expected to change significantly before
being put up for ratification. The modules marked Draft are expected to change before ratification.

The document contains the following versions of the RISC-V ISA modules:

Base Version Status

RVWMO 2.0 Ratified

RV32I 2.1 Ratified

RV64I 2.1 Ratified

RV32E 1.9 Draft

RV128I 1.7 Draft

Extension Version Status

Zifencei 2.0 Ratified

Zicsr 2.0 Ratified

M 2.0 Ratified

A 2.0 Frozen

F 2.2 Ratified

D 2.2 Ratified

Q 2.2 Ratified

C 2.0 Ratified

Ztso 0.1 Frozen

Counters 2.0 Draft

L 0.0 Draft

B 0.0 Draft

J 0.0 Draft

T 0.0 Draft

P 0.2 Draft

V 0.7 Draft

N 1.1 Draft

Zam 0.1 Draft

Preface | Page 4

The RISC-V Instruction Set Manual | © RISC-V

The changes in this version of the document include:

• Moved description to Ratified for the ISA modules ratified by the board in early 2019.

• Removed the A extension from ratification.

• Changed document version scheme to avoid confusion with versions of the ISA modules.

• Incremented the version numbers of the base integer ISA to 2.1, reflecting the presence of the
ratified RVWMO memory model and exclusion of FENCE.I, counters, and CSR instructions that
were in previous base ISA.

• Incremented the version numbers of the F and D extensions to 2.2, reflecting that version 2.1
changed the canonical NaN, and version 2.2 defined the NaN-boxing scheme and changed the
definition of the FMIN and FMAX instructions.

• Changed name of document to refer to unprivileged instructions as part of move to separate ISA
specifications from platform profile mandates.

• Added clearer and more precise definitions of execution environments, harts, traps, and memory
accesses.

• Defined instruction-set categories: standard, reserved, custom, non-standard, and non-conforming.

• Removed text implying operation under alternate endianness, as alternate-endianness operation
has not yet been defined for RISC-V.

• Changed description of misaligned load and store behavior. The specification now allows visible
misaligned address traps in execution environment interfaces, rather than just mandating
invisible handling of misaligned loads and stores in user mode. Also, now allows access-fault
exceptions to be reported for misaligned accesses (including atomics) that should not be emulated.

• Moved FENCE.I out of the mandatory base and into a separate extension, with Zifencei ISA name.
FENCE.I was removed from the Linux user ABI and is problematic in implementations with large
incoherent instruction and data caches. However, it remains the only standard instruction-fetch
coherence mechanism.

• Removed prohibitions on using RV32E with other extensions.

• Removed platform-specific mandates that certain encodings produce illegal instruction exceptions
in RV32E and RV64I chapters.

• Counter/timer instructions are now not considered part of the mandatory base ISA, and so CSR
instructions were moved into separate chapter and marked as version 2.0, with the unprivileged
counters moved into another separate chapter. The counters are not ready for ratification as there
are outstanding issues, including counter inaccuracies.

• A CSR-access ordering model has been added.

• Explicitly defined the 16-bit half-precision floating-point format for floating-point instructions in
the 2-bit fmt field.

• Defined the signed-zero behavior of FMIN.fmt and FMAX.fmt, and changed their behavior on
signaling-NaN inputs to conform to the minimumNumber and maximumNumber operations in
the proposed IEEE 754-201x specification.

• The memory consistency model, RVWMO, has been defined.

• The Zam extension, which permits misaligned AMOs and specifies their semantics, has been
defined.

• The Ztso extension, which enforces a stricter memory consistency model than RVWMO, has been
defined.

Preface | Page 5

The RISC-V Instruction Set Manual | © RISC-V

• Improvements to the description and commentary.

• Defined the term IALIGN as shorthand to describe the instruction-address alignment constraint.

• Removed text of P extension chapter as now superseded by active task group documents.

• Removed text of V extension chapter as now superseded by separate vector extension draft
document.

Preface to Document Version 2.2

This is version 2.2 of the document describing the RISC-V user-level architecture. The document
contains the following versions of the RISC-V ISA modules:

Base Version Draft Frozen?

RV32I 2.0 Y

RV32E 1.9 N

RV64I 2.0 Y

RV128I 1.7 N

Extension Version Frozen?

M 2.0 Y

A 2.0 Y

F 2.0 Y

D 2.0 Y

Q 2.0 Y

L 0.0 N

C 2.0 Y

B 0.0 N

J 0.0 N

T 0.0 N

P 0.1 N

V 0.7 N

N 1.1 N

To date, no parts of the standard have been officially ratified by the RISC-V Foundation, but the
components labeled frozen above are not expected to change during the ratification process beyond
resolving ambiguities and holes in the specification.

The major changes in this version of the document include:

• The previous version of this document was released under a Creative Commons Attribution 4.0
International License by the original authors, and this and future versions of this document will be
released under the same license.

• Rearranged chapters to put all extensions first in canonical order.

• Improvements to the description and commentary.

Preface | Page 6

The RISC-V Instruction Set Manual | © RISC-V

• Modified implicit hinting suggestion on JALR to support more efficient macro-op fusion of
LUI/JALR and AUIPC/JALR pairs.

• Clarification of constraints on load-reserved/store-conditional sequences.

• A new table of control and status register (CSR) mappings.

• Clarified purpose and behavior of high-order bits of fcsr.

• Corrected the description of the FNMADD.fmt and FNMSUB.fmt instructions, which had suggested
the incorrect sign of a zero result.

• Instructions FMV.S.X and FMV.X.S were renamed to FMV.W.X and FMV.X.W respectively to be
more consistent with their semantics, which did not change. The old names will continue to be
supported in the tools.

• Specified behavior of narrower (FLEN) floating-point values held in wider f registers using NaN-
boxing model.

• Defined the exception behavior of FMA(, 0, qNaN).

• Added note indicating that the P extension might be reworked into an integer packed-SIMD
proposal for fixed-point operations using the integer registers.

• A draft proposal of the V vector instruction-set extension.

• An early draft proposal of the N user-level traps extension.

• An expanded pseudoinstruction listing.

• Removal of the calling convention chapter, which has been superseded by the RISC-V ELF psABI
Specification (RISC-V ELF PsABI Specification, n.d.).

• The C extension has been frozen and renumbered version 2.0.

Preface to Document Version 2.1

This is version 2.1 of the document describing the RISC-V user-level architecture. Note the frozen
user-level ISA base and extensions IMAFDQ version 2.0 have not changed from the previous version
of this document (Waterman et al., 2014), but some specification holes have been fixed and the
documentation has been improved. Some changes have been made to the software conventions.

• Numerous additions and improvements to the commentary sections.

• Separate version numbers for each chapter.

• Modification to long instruction encodings 64 bits to avoid moving the rd specifier in very long
instruction formats.

• CSR instructions are now described in the base integer format where the counter registers are
introduced, as opposed to only being introduced later in the floating-point section (and the
companion privileged architecture manual).

• The SCALL and SBREAK instructions have been renamed to ECALL and EBREAK, respectively.
Their encoding and functionality are unchanged.

• Clarification of floating-point NaN handling, and a new canonical NaN value.

• Clarification of values returned by floating-point to integer conversions that overflow.

• Clarification of LR/SC allowed successes and required failures, including use of compressed
instructions in the sequence.

• A new RV32E base ISA proposal for reduced integer register counts, supports MAC extensions.

Preface | Page 7

The RISC-V Instruction Set Manual | © RISC-V

• A revised calling convention.

• Relaxed stack alignment for soft-float calling convention, and description of the RV32E calling
convention.

• A revised proposal for the C compressed extension, version 1.9 .

Preface to Version 2.0

This is the second release of the user ISA specification, and we intend the specification of the base user
ISA plus general extensions (i.e., IMAFD) to remain fixed for future development. The following
changes have been made since Version 1.0 (OpenCores, 2012) of this ISA specification.

• The ISA has been divided into an integer base with several standard extensions.

• The instruction formats have been rearranged to make immediate encoding more efficient.

• The base ISA has been defined to have a little-endian memory system, with big-endian or bi-
endian as non-standard variants.

• Load-Reserved/Store-Conditional (LR/SC) instructions have been added in the atomic instruction
extension.

• AMOs and LR/SC can support the release consistency model.

• The FENCE instruction provides finer-grain memory and I/O orderings.

• An AMO for fetch-and-XOR (AMOXOR) has been added, and the encoding for AMOSWAP has
been changed to make room.

• The AUIPC instruction, which adds a 20-bit upper immediate to the PC, replaces the RDNPC
instruction, which only read the current PC value. This results in significant savings for position-
independent code.

• The JAL instruction has now moved to the U-Type format with an explicit destination register, and
the J instruction has been dropped being replaced by JAL with rd=x0. This removes the only
instruction with an implicit destination register and removes the J-Type instruction format from
the base ISA. There is an accompanying reduction in JAL reach, but a significant reduction in base
ISA complexity.

• The static hints on the JALR instruction have been dropped. The hints are redundant with the rd
and rs1 register specifiers for code compliant with the standard calling convention.

• The JALR instruction now clears the lowest bit of the calculated target address, to simplify
hardware and to allow auxiliary information to be stored in function pointers.

• The MFTX.S and MFTX.D instructions have been renamed to FMV.X.S and FMV.X.D, respectively.
Similarly, MXTF.S and MXTF.D instructions have been renamed to FMV.S.X and FMV.D.X,
respectively.

• The MFFSR and MTFSR instructions have been renamed to FRCSR and FSCSR, respectively.
FRRM, FSRM, FRFLAGS, and FSFLAGS instructions have been added to individually access the
rounding mode and exception flags subfields of the fcsr.

• The FMV.X.S and FMV.X.D instructions now source their operands from rs1, instead of rs2. This
change simplifies datapath design.

• FCLASS.S and FCLASS.D floating-point classify instructions have been added.

• A simpler NaN generation and propagation scheme has been adopted.

• For RV32I, the system performance counters have been extended to 64-bits wide, with separate

Preface | Page 8

The RISC-V Instruction Set Manual | © RISC-V

read access to the upper and lower 32 bits.

• Canonical NOP and MV encodings have been defined.

• Standard instruction-length encodings have been defined for 48-bit, 64-bit, and 64-bit
instructions.

• Description of a 128-bit address space variant, RV128, has been added.

• Major opcodes in the 32-bit base instruction format have been allocated for user-defined custom
extensions.

• A typographical error that suggested that stores source their data from rd has been corrected to
refer to rs2.

Preface | Page 9

The RISC-V Instruction Set Manual | © RISC-V

Chapter 1. Introduction
RISC-V (pronounced "risk-five") is a new instruction-set architecture (ISA) that was originally designed
to support computer architecture research and education, but which we now hope will also become a
standard free and open architecture for industry implementations. Our goals in defining RISC-V
include:

• A completely open ISA that is freely available to academia and industry.

• A real ISA suitable for direct native hardware implementation, not just simulation or binary
translation.

• An ISA that avoids "over-architecting" for a particular microarchitecture style (e.g., microcoded, in-
order, decoupled, out-of-order) or implementation technology (e.g., full-custom, ASIC, FPGA), but
which allows efficient implementation in any of these.

• An ISA separated into a small base integer ISA, usable by itself as a base for customized
accelerators or for educational purposes, and optional standard extensions, to support general-
purpose software development.

• Support for the revised 2008 IEEE-754 floating-point standard .

• An ISA supporting extensive ISA extensions and specialized variants.

• Both 32-bit and 64-bit address space variants for applications, operating system kernels, and
hardware implementations.

• An ISA with support for highly parallel multicore or manycore implementations, including
heterogeneous multiprocessors.

• Optional variable-length instructions to both expand available instruction encoding space and to
support an optional dense instruction encoding for improved performance, static code size, and
energy efficiency.

• A fully virtualizable ISA to ease hypervisor development.

• An ISA that simplifies experiments with new privileged architecture designs.


Commentary on our design decisions is formatted as in this paragraph. This non-
normative text can be skipped if the reader is only interested in the specification itself.



The name RISC-V was chosen to represent the fifth major RISC ISA design from UC
Berkeley (RISC-I (Patterson & Séquin, 1981), RISC-II (Katevenis et al., 1983), SOAR (Ungar
et al., 1984), and SPUR (Lee et al., 1989) were the first four). We also pun on the use of the
Roman numeral "V" to signify "variations" and "vectors", as support for a range of
architecture research, including various data-parallel accelerators, is an explicit goal of
the ISA design.

The RISC-V ISA is defined avoiding implementation details as much as possible (although
commentary is included on implementation-driven decisions) and should be read as the software-
visible interface to a wide variety of implementations rather than as the design of a particular
hardware artifact. The RISC-V manual is structured in two volumes. This volume covers the design of
the base unprivileged instructions, including optional unprivileged ISA extensions. Unprivileged
instructions are those that are generally usable in all privilege modes in all privileged architectures,

Chapter 1. Introduction | Page 10

The RISC-V Instruction Set Manual | © RISC-V

though behavior might vary depending on privilege mode and privilege architecture. The second
volume provides the design of the first ("classic") privileged architecture. The manuals use IEC
80000-13:2008 conventions, with a byte of 8 bits.



In the unprivileged ISA design, we tried to remove any dependence on particular
microarchitectural features, such as cache line size, or on privileged architecture details,
such as page translation. This is both for simplicity and to allow maximum flexibility for
alternative microarchitectures or alternative privileged architectures.

1.1. RISC-V Hardware Platform Terminology
A RISC-V hardware platform can contain one or more RISC-V-compatible processing cores together
with other non-RISC-V-compatible cores, fixed-function accelerators, various physical memory
structures, I/O devices, and an interconnect structure to allow the components to communicate.

A component is termed a core if it contains an independent instruction fetch unit. A RISC-V-
compatible core might support multiple RISC-V-compatible hardware threads, or harts, through
multithreading.

A RISC-V core might have additional specialized instruction-set extensions or an added coprocessor.
We use the term coprocessor to refer to a unit that is attached to a RISC-V core and is mostly
sequenced by a RISC-V instruction stream, but which contains additional architectural state and
instruction-set extensions, and possibly some limited autonomy relative to the primary RISC-V
instruction stream.

We use the term accelerator to refer to either a non-programmable fixed-function unit or a core that
can operate autonomously but is specialized for certain tasks. In RISC-V systems, we expect many
programmable accelerators will be RISC-V-based cores with specialized instruction-set extensions
and/or customized coprocessors. An important class of RISC-V accelerators are I/O accelerators,
which offload I/O processing tasks from the main application cores.

The system-level organization of a RISC-V hardware platform can range from a single-core
microcontroller to a many-thousand-node cluster of shared-memory manycore server nodes. Even
small systems-on-a-chip might be structured as a hierarchy of multicomputers and/or
multiprocessors to modularize development effort or to provide secure isolation between subsystems.

1.2. RISC-V Software Execution Environments and
Harts
The behavior of a RISC-V program depends on the execution environment in which it runs. A RISC-V
execution environment interface (EEI) defines the initial state of the program, the number and type of
harts in the environment including the privilege modes supported by the harts, the accessibility and
attributes of memory and I/O regions, the behavior of all legal instructions executed on each hart (i.e.,
the ISA is one component of the EEI), and the handling of any interrupts or exceptions raised during
execution including environment calls. Examples of EEIs include the Linux application binary
interface (ABI), or the RISC-V supervisor binary interface (SBI). The implementation of a RISC-V
execution environment can be pure hardware, pure software, or a combination of hardware and
software. For example, opcode traps and software emulation can be used to implement functionality

1.1. RISC-V Hardware Platform Terminology | Page 11

The RISC-V Instruction Set Manual | © RISC-V

not provided in hardware. Examples of execution environment implementations include:

• "Bare metal" hardware platforms where harts are directly implemented by physical processor
threads and instructions have full access to the physical address space. The hardware platform
defines an execution environment that begins at power-on reset.

• RISC-V operating systems that provide multiple user-level execution environments by
multiplexing user-level harts onto available physical processor threads and by controlling access to
memory via virtual memory.

• RISC-V hypervisors that provide multiple supervisor-level execution environments for guest
operating systems.

• RISC-V emulators, such as Spike, QEMU or rv8, which emulate RISC-V harts on an underlying x86
system, and which can provide either a user-level or a supervisor-level execution environment.



A bare hardware platform can be considered to define an EEI, where the accessible harts,
memory, and other devices populate the environment, and the initial state is that at
power-on reset. Generally, most software is designed to use a more abstract interface to
the hardware, as more abstract EEIs provide greater portability across different hardware
platforms. Often EEIs are layered on top of one another, where one higher-level EEI uses
another lower-level EEI.

From the perspective of software running in a given execution environment, a hart is a resource that
autonomously fetches and executes RISC-V instructions within that execution environment. In this
respect, a hart behaves like a hardware thread resource even if time-multiplexed onto real hardware by
the execution environment. Some EEIs support the creation and destruction of additional harts, for
example, via environment calls to fork new harts.

The execution environment is responsible for ensuring the eventual forward progress of each of its
harts. For a given hart, that responsibility is suspended while the hart is exercising a mechanism that
explicitly waits for an event, such as the wait-for-interrupt instruction defined in Volume II of this
specification; and that responsibility ends if the hart is terminated. The following events constitute
forward progress:

• The retirement of an instruction.

• A trap, as defined in Section 1.6, “Exceptions, Traps, and Interrupts”.

• Any other event defined by an extension to constitute forward progress.

1.2. RISC-V Software Execution Environments and Harts | Page 12

The RISC-V Instruction Set Manual | © RISC-V



The term hart was introduced in the work on Lithe (Pan et al., 2009) and (Pan et al., 2010)
to provide a term to represent an abstract execution resource as opposed to a software
thread programming abstraction.

The important distinction between a hardware thread (hart) and a software thread context
is that the software running inside an execution environment is not responsible for
causing progress of each of its harts; that is the responsibility of the outer execution
environment. So the environment’s harts operate like hardware threads from the
perspective of the software inside the execution environment.

An execution environment implementation might time-multiplex a set of guest harts onto
fewer host harts provided by its own execution environment but must do so in a way that
guest harts operate like independent hardware threads. In particular, if there are more
guest harts than host harts then the execution environment must be able to preempt the
guest harts and must not wait indefinitely for guest software on a guest hart to “yield"
control of the guest hart.

1.3. RISC-V ISA Overview
A RISC-V ISA is defined as a base integer ISA, which must be present in any implementation, plus
optional extensions to the base ISA. The base integer ISAs are very similar to that of the early RISC
processors except with no branch delay slots and with support for optional variable-length instruction
encodings. A base is carefully restricted to a minimal set of instructions sufficient to provide a
reasonable target for compilers, assemblers, linkers, and operating systems (with additional privileged
operations), and so provides a convenient ISA and software toolchain "skeleton" around which more
customized processor ISAs can be built.

Although it is convenient to speak of the RISC-V ISA, RISC-V is actually a family of related ISAs, of
which there are currently four base ISAs. Each base integer instruction set is characterized by the
width of the integer registers and the corresponding size of the address space and by the number of
integer registers. There are two primary base integer variants, RV32I and RV64I, described in Chapter
2, RV32I Base Integer Instruction Set, Version 2.1 and Chapter 6, RV64I Base Integer Instruction Set,
Version 2.1, which provide 32-bit or 64-bit address spaces respectively. We use the term XLEN to refer
to the width of an integer register in bits (either 32 or 64). Chapter 5, RV32E Base Integer Instruction
Set, Version 1.9 describes the RV32E subset variant of the RV32I base instruction set, which has been
added to support small microcontrollers, and which has half the number of integer registers. Chapter
7, RV128I Base Integer Instruction Set, Version 1.7 sketches a future RV128I variant of the base integer
instruction set supporting a flat 128-bit address space (XLEN=128). The base integer instruction sets
use a two’s-complement representation for signed integer values.

1.3. RISC-V ISA Overview | Page 13

The RISC-V Instruction Set Manual | © RISC-V



Although 64-bit address spaces are a requirement for larger systems, we believe 32-bit
address spaces will remain adequate for many embedded and client devices for decades to
come and will be desirable to lower memory traffic and energy consumption. In addition,
32-bit address spaces are sufficient for educational purposes. A larger flat 128-bit address
space might eventually be required, so we ensured this could be accommodated within the
RISC-V ISA framework.

The four base ISAs in RISC-V are treated as distinct base ISAs. A common question is why
is there not a single ISA, and in particular, why is RV32I not a strict subset of RV64I?
Some earlier ISA designs (SPARC, MIPS) adopted a strict superset policy when increasing
address space size to support running existing 32-bit binaries on new 64-bit hardware.

The main advantage of explicitly separating base ISAs is that each base ISA can be
optimized for its needs without requiring to support all the operations needed for other
base ISAs. For example, RV64I can omit instructions and CSRs that are only needed to
cope with the narrower registers in RV32I. The RV32I variants can use encoding space
otherwise reserved for instructions only required by wider address-space variants.

The main disadvantage of not treating the design as a single ISA is that it complicates the
hardware needed to emulate one base ISA on another (e.g., RV32I on RV64I). However,
differences in addressing and illegal instruction traps generally mean some mode switch
would be required in hardware in any case even with full superset instruction encodings,
and the different RISC-V base ISAs are similar enough that supporting multiple versions
is relatively low cost. Although some have proposed that the strict superset design would
allow legacy 32-bit libraries to be linked with 64-bit code, this is impractical in practice,
even with compatible encodings, due to the differences in software calling conventions and
system-call interfaces.

The RISC-V privileged architecture provides fields in "misa" to control the unprivileged ISA
at each level to support emulating different base ISAs on the same hardware. We note that
newer SPARC and MIPS ISA revisions have deprecated support for running 32-bit code
unchanged on 64-bit systems.

A related question is why there is a different encoding for 32-bit adds in RV32I (ADD) and
RV64I (ADDW)? The ADDW opcode could be used for 32-bit adds in RV32I and ADDD for
64-bit adds in RV64I, instead of the existing design which uses the same opcode ADD for
32-bit adds in RV32I and 64-bit adds in RV64I with a different opcode ADDW for 32-bit
adds in RV64I. This would also be more consistent with the use of the same LW opcode for
32-bit load in both RV32I and RV64I. The very first versions of RISC-V ISA did have a
variant of this alternate design, but the RISC-V design was changed to the current choice
in January 2011. Our focus was on supporting 32-bit integers in the 64-bit ISA not on
providing compatibility with the 32-bit ISA, and the motivation was to remove the
asymmetry that arose from having not all opcodes in RV32I have a "W" suffix (e.g., ADDW,
but AND not ANDW). In hindsight, this was perhaps not well-justified and a consequence
of designing both ISAs at the same time as opposed to adding one later to sit on top of
another, and also from a belief we had to fold platform requirements into the ISA spec
which would imply that all the RV32I instructions would have been required in RV64I. It is
too late to change the encoding now, but this is also of little practical consequence for the
reasons stated above.

It has been noted we could enable the "W" variants as an extension to RV32I systems to
provide a common encoding across RV64I and a future RV32 variant.

1.3. RISC-V ISA Overview | Page 14

The RISC-V Instruction Set Manual | © RISC-V

RISC-V has been designed to support extensive customization and specialization. Each base integer
ISA can be extended with one or more optional instruction-set extensions. An extension may be
categorized as either standard, custom, or non-conforming. For this purpose, we divide each RISC-V
instruction-set encoding space (and related encoding spaces such as the CSRs) into three disjoint
categories: standard, reserved, and custom. Standard extensions and encodings are defined by the
Foundation; any extensions not defined by the Foundation are non-standard. Each base ISA and its
standard extensions use only standard encodings, and shall not conflict with each other in their uses
of these encodings. Reserved encodings are currently not defined but are saved for future standard
extensions; once thus used, they become standard encodings. Custom encodings shall never be used
for standard extensions and are made available for vendor-specific non-standard extensions. Non-
standard extensions are either custom extensions, that use only custom encodings, or non-conforming
extensions, that use any standard or reserved encoding. Instruction-set extensions are generally
shared but may provide slightly different functionality depending on the base ISA. [extensions]
describes various ways of extending the RISC-V ISA. We have also developed a naming convention for
RISC-V base instructions and instruction-set extensions, described in detail in Chapter 25, ISA
Extension Naming Conventions.

To support more general software development, a set of standard extensions are defined to provide
integer multiply/divide, atomic operations, and single and double-precision floating-point arithmetic.
The base integer ISA is named "I" (prefixed by RV32 or RV64 depending on integer register width), and
contains integer computational instructions, integer loads, integer stores, and control-flow
instructions. The standard integer multiplication and division extension is named "M", and adds
instructions to multiply and divide values held in the integer registers. The standard atomic
instruction extension, denoted by "A", adds instructions that atomically read, modify, and write
memory for inter-processor synchronization. The standard single-precision floating-point extension,
denoted by "F", adds floating-point registers, single-precision computational instructions, and single-
precision loads and stores. The standard double-precision floating-point extension, denoted by "D",
expands the floating-point registers, and adds double-precision computational instructions, loads, and
stores. The standard "C" compressed instruction extension provides narrower 16-bit forms of common
instructions.

Beyond the base integer ISA and the standard GC extensions, we believe it is rare that a new
instruction will provide a significant benefit for all applications, although it may be very beneficial for
a certain domain. As energy efficiency concerns are forcing greater specialization, we believe it is
important to simplify the required portion of an ISA specification. Whereas other architectures
usually treat their ISA as a single entity, which changes to a new version as instructions are added over
time, RISC-V will endeavor to keep the base and each standard extension constant over time, and
instead layer new instructions as further optional extensions. For example, the base integer ISAs will
continue as fully supported standalone ISAs, regardless of any subsequent extensions.

1.4. Memory
A RISC-V hart has a single byte-addressable address space of bytes for all memory accesses. A
word of memory is defined as 32 bits (4 bytes). Correspondingly, a halfword is 16 bits (2 bytes), a
doubleword is 64 bits (8 bytes), and a quadword is 128 bits (16 bytes). The memory address space is
circular, so that the byte at address is adjacent to the byte at address zero. Accordingly,
memory address computations done by the hardware ignore overflow and instead wrap around
modulo .

The execution environment determines the mapping of hardware resources into a hart’s address
space. Different address ranges of a hart’s address space may (1) be vacant, or (2) contain main memory,

1.4. Memory | Page 15

The RISC-V Instruction Set Manual | © RISC-V

or (3) contain one or more I/O devices. Reads and writes of I/O devices may have visible side effects,
but accesses to main memory cannot. Although it is possible for the execution environment to call
everything in a hart’s address space an I/O device, it is usually expected that some portion will be
specified as main memory.

When a RISC-V platform has multiple harts, the address spaces of any two harts may be entirely the
same, or entirely different, or may be partly different but sharing some subset of resources, mapped
into the same or different address ranges.



For a purely "bare metal" environment, all harts may see an identical address space,
accessed entirely by physical addresses. However, when the execution environment
includes an operating system employing address translation, it is common for each hart to
be given a virtual address space that is largely or entirely its own.

Executing each RISC-V machine instruction entails one or more memory accesses, subdivided into
implicit and explicit accesses. For each instruction executed, an implicit memory read (instruction
fetch) is done to obtain the encoded instruction to execute. Many RISC-V instructions perform no
further memory accesses beyond instruction fetch. Specific load and store instructions perform an
explicit read or write of memory at an address determined by the instruction. The execution
environment may dictate that instruction execution performs other implicit memory accesses (such as
to implement address translation) beyond those documented for the unprivileged ISA.

The execution environment determines what portions of the non-vacant address space are accessible
for each kind of memory access. For example, the set of locations that can be implicitly read for
instruction fetch may or may not have any overlap with the set of locations that can be explicitly read
by a load instruction; and the set of locations that can be explicitly written by a store instruction may
be only a subset of locations that can be read. Ordinarily, if an instruction attempts to access memory
at an inaccessible address, an exception is raised for the instruction. Vacant locations in the address
space are never accessible.

Except when specified otherwise, implicit reads that do not raise an exception and that have no side
effects may occur arbitrarily early and speculatively, even before the machine could possibly prove
that the read will be needed. For instance, a valid implementation could attempt to read all of main
memory at the earliest opportunity, cache as many fetchable (executable) bytes as possible for later
instruction fetches, and avoid reading main memory for instruction fetches ever again. To ensure that
certain implicit reads are ordered only after writes to the same memory locations, software must
execute specific fence or cache-control instructions defined for this purpose (such as the FENCE.I
instruction defined in Chapter 3, "Zifencei" Instruction-Fetch Fence, Version 2.0.

The memory accesses (implicit or explicit) made by a hart may appear to occur in a different order as
perceived by another hart or by any other agent that can access the same memory. This perceived
reordering of memory accesses is always constrained, however, by the applicable memory consistency
model. The default memory consistency model for RISC-V is the RISC-V Weak Memory Ordering
(RVWMO), defined in Chapter 15, RVWMO Memory Consistency Model, Version 2.0 and in appendices.
Optionally, an implementation may adopt the stronger model of Total Store Ordering, as defined in
Chapter 22, Ztso Standard Extension for Total Store Ordering, v0.1. The execution environment may also
add constraints that further limit the perceived reordering of memory accesses. Since the RVWMO
model is the weakest model allowed for any RISC-V implementation, software written for this model is
compatible with the actual memory consistency rules of all RISC-V implementations. As with implicit
reads, software must execute fence or cache-control instructions to ensure specific ordering of

1.4. Memory | Page 16

The RISC-V Instruction Set Manual | © RISC-V

memory accesses beyond the requirements of the assumed memory consistency model and execution
environment.

1.5. Base Instruction-Length Encoding
The base RISC-V ISA has fixed-length 32-bit instructions that must be naturally aligned on 32-bit
boundaries. However, the standard RISC-V encoding scheme is designed to support ISA extensions
with variable-length instructions, where each instruction can be any number of 16-bit instruction
parcels in length and parcels are naturally aligned on 16-bit boundaries. The standard compressed ISA
extension described in Chapter 16, C Standard Extension for Compressed Instructions, Version 2.0
reduces code size by providing compressed 16-bit instructions and relaxes the alignment constraints
to allow all instructions (16 bit and 32 bit) to be aligned on any 16-bit boundary to improve code
density.

We use the term IALIGN (measured in bits) to refer to the instruction-address alignment constraint
the implementation enforces. IALIGN is 32 bits in the base ISA, but some ISA extensions, including
the compressed ISA extension, relax IALIGN to 16 bits. IALIGN may not take on any value other than
16 or 32.

We use the term ILEN (measured in bits) to refer to the maximum instruction length supported by an
implementation, and which is always a multiple of IALIGN. For implementations supporting only a
base instruction set, ILEN is 32 bits. Implementations supporting longer instructions have larger
values of ILEN.

Table 1, “RISC-V instruction length encoding. Only the 16-bit and 32-bit encodings are considered
frozen at this time.” illustrates the standard RISC-V instruction-length encoding convention. All the
32-bit instructions in the base ISA have their lowest two bits set to "11". The optional compressed 16-bit
instruction-set extensions have their lowest two bits equal to "00", "01", or "10".

1.5.1. Expanded Instruction-Length Encoding

A portion of the 32-bit instruction-encoding space has been tentatively allocated for instructions
longer than 32 bits. The entirety of this space is reserved at this time, and the following proposal for
encoding instructions longer than 32 bits is not considered frozen.

Standard instruction-set extensions encoded with more than 32 bits have additional low-order bits set
to "1", with the conventions for 48-bit and 64-bit lengths shown in Table 1, “RISC-V instruction length
encoding. Only the 16-bit and 32-bit encodings are considered frozen at this time.”. Instruction
lengths between 80 bits and 176 bits are encoded using a 3-bit field in bits [14:12] giving the number of
16-bit words in addition to the first 5 16-bit words. The encoding with bits [14:12] set to "111" is
reserved for future longer instruction encodings.

Table 1. RISC-V instruction length encoding. Only the 16-bit and 32-bit encodings are considered frozen at this
time.

xxxxxxxxxxxxxxaa 16-bit (
aa≠`11`)

xxxxxxxxxxxxxxxx xxxxxxxxxxxbbb11 32-bit (
bbb≠`111`)

xxxx xxxxxxxxxxxxxxxx xxxxxxxxxx011111 48-bit

1.5. Base Instruction-Length Encoding | Page 17

The RISC-V Instruction Set Manual | © RISC-V

xxxxxxxxxxxxxxaa 16-bit (
aa≠`11`)

xxxx xxxxxxxxxxxxxxxx xxxxxxxxx0111111 64-bit

xxxx xxxxxxxxxxxxxxxx xnnnxxxxx1111111 (80+16*nnn)-
bit, nnn≠`111`

xxxx xxxxxxxxxxxxxxxx x111xxxxx1111111 Reserved for
≥192-bits

Byte Address: base+4 base+2 base



Given the code size and energy savings of a compressed format, we wanted to build in
support for a compressed format to the ISA encoding scheme rather than adding this as
an afterthought, but to allow simpler implementations we didn’t want to make the
compressed format mandatory. We also wanted to optionally allow longer instructions to
support experimentation and larger instruction-set extensions. Although our encoding
convention required a tighter encoding of the core RISC-V ISA, this has several beneficial
effects.

An implementation of the standard IMAFD ISA need only hold the most-significant 30
bits in instruction caches (a 6.25% saving). On instruction cache refills, any instructions
encountered with either low bit clear should be recoded into illegal 30-bit instructions
before storing in the cache to preserve illegal instruction exception behavior.

Perhaps more importantly, by condensing our base ISA into a subset of the 32-bit
instruction word, we leave more space available for non-standard and custom extensions.
In particular, the base RV32I ISA uses less than 1/8 of the encoding space in the 32-bit
instruction word. As described [extensions], an implementation that does not require
support for the standard compressed instruction extension can map 3 additional non-
conforming 30-bit instruction spaces into the 32-bit fixed-width format, while preserving
support for standard ≥32-bit instruction-set extensions. Further, if the implementation
also does not need instructions >32-bits in length, it can recover a further four major
opcodes for non-conforming extensions.

Encodings with bits [15:0] all zeros are defined as illegal instructions. These instructions are
considered to be of minimal length: 16 bits if any 16-bit instruction-set extension is present, otherwise
32 bits. The encoding with bits [ILEN-1:0] all ones is also illegal; this instruction is considered to be
ILEN bits long.

1.5. Base Instruction-Length Encoding | Page 18

The RISC-V Instruction Set Manual | © RISC-V



We consider it a feature that any length of instruction containing all zero bits is not legal,
as this quickly traps erroneous jumps into zeroed memory regions. Similarly, we also
reserve the instruction encoding containing all ones to be an illegal instruction, to catch
the other common pattern observed with unprogrammed non-volatile memory devices,
disconnected memory buses, or broken memory devices.

Software can rely on a naturally aligned 32-bit word containing zero to act as an illegal
instruction on all RISC-V implementations, to be used by software where an illegal
instruction is explicitly desired. Defining a corresponding known illegal value for all ones
is more difficult due to the variable-length encoding. Software cannot generally use the
illegal value of ILEN bits of all 1s, as software might not know ILEN for the eventual target
machine (e.g., if software is compiled into a standard binary library used by many different
machines). Defining a 32-bit word of all ones as illegal was also considered, as all
machines must support a 32-bit instruction size, but this requires the instruction-fetch
unit on machines with ILEN >32 report an illegal instruction exception rather than an
access-fault exception when such an instruction borders a protection boundary,
complicating variable-instruction-length fetch and decode.

RISC-V base ISAs have either little-endian or big-endian memory systems, with the privileged
architecture further defining bi-endian operation. Instructions are stored in memory as a sequence of
16-bit little-endian parcels, regardless of memory system endianness. Parcels forming one instruction
are stored at increasing halfword addresses, with the lowest-addressed parcel holding the lowest-
numbered bits in the instruction specification.

1.5. Base Instruction-Length Encoding | Page 19

The RISC-V Instruction Set Manual | © RISC-V



We originally chose little-endian byte ordering for the RISC-V memory system because
little-endian systems are currently dominant commercially (all x86 systems; iOS, Android,
and Windows for ARM). A minor point is that we have also found little-endian memory
systems to be more natural for hardware designers. However, certain application areas,
such as IP networking, operate on big-endian data structures, and certain legacy code
bases have been built assuming big-endian processors, so we have defined big-endian and
bi-endian variants of RISC-V.

We have to fix the order in which instruction parcels are stored in memory, independent of
memory system endianness, to ensure that the length-encoding bits always appear first in
halfword address order. This allows the length of a variable-length instruction to be
quickly determined by an instruction-fetch unit by examining only the first few bits of the
first 16-bit instruction parcel.

We further make the instruction parcels themselves little-endian to decouple the
instruction encoding from the memory system endianness altogether. This design benefits
both software tooling and bi-endian hardware. Otherwise, for instance, a RISC-V
assembler or disassembler would always need to know the intended active endianness,
despite that in bi-endian systems, the endianness mode might change dynamically during
execution. In contrast, by giving instructions a fixed endianness, it is sometimes possible
for carefully written software to be endianness-agnostic even in binary form, much like
position-independent code.

The choice to have instructions be only little-endian does have consequences, however, for
RISC-V software that encodes or decodes machine instructions. Big-endian JIT compilers,
for example, must swap the byte order when storing to instruction memory.

Once we had decided to fix on a little-endian instruction encoding, this naturally led to
placing the length-encoding bits in the LSB positions of the instruction format to avoid
breaking up opcode fields.

1.6. Exceptions, Traps, and Interrupts
We use the term exception to refer to an unusual condition occurring at run time associated with an
instruction in the current RISC-V hart. We use the term interrupt to refer to an external asynchronous
event that may cause a RISC-V hart to experience an unexpected transfer of control. We use the term
trap to refer to the transfer of control to a trap handler caused by either an exception or an interrupt.

The instruction descriptions in following chapters describe conditions that can raise an exception
during execution. The general behavior of most RISC-V EEIs is that a trap to some handler occurs
when an exception is signaled on an instruction (except for floating-point exceptions, which, in the
standard floating-point extensions, do not cause traps). The manner in which interrupts are generated,
routed to, and enabled by a hart depends on the EEI.


Our use of "exception" and "trap" is compatible with that in the IEEE-754 floating-point
standard.

How traps are handled and made visible to software running on the hart depends on the enclosing
execution environment. From the perspective of software running inside an execution environment,
traps encountered by a hart at runtime can have four different effects:

1.6. Exceptions, Traps, and Interrupts | Page 20

The RISC-V Instruction Set Manual | © RISC-V

Contained Trap
The trap is visible to, and handled by, software running inside the execution environment. For
example, in an EEI providing both supervisor and user mode on harts, an ECALL by a user-mode
hart will generally result in a transfer of control to a supervisor-mode handler running on the same
hart. Similarly, in the same environment, when a hart is interrupted, an interrupt handler will be
run in supervisor mode on the hart.

Requested Trap
The trap is a synchronous exception that is an explicit call to the execution environment requesting
an action on behalf of software inside the execution environment. An example is a system call. In
this case, execution may or may not resume on the hart after the requested action is taken by the
execution environment. For example, a system call could remove the hart or cause an orderly
termination of the entire execution environment.

Invisible Trap
The trap is handled transparently by the execution environment and execution resumes normally
after the trap is handled. Examples include emulating missing instructions, handling non-resident
page faults in a demand-paged virtual-memory system, or handling device interrupts for a
different job in a multiprogrammed machine. In these cases, the software running inside the
execution environment is not aware of the trap (we ignore timing effects in these definitions).

Fatal Trap
The trap represents a fatal failure and causes the execution environment to terminate execution.
Examples include failing a virtual-memory page-protection check or allowing a watchdog timer to
expire. Each EEI should define how execution is terminated and reported to an external
environment.

Table 2, “Characteristics of traps: 1) Termination may be requested. 2) Imprecise fatal traps might be
observable by software.” shows the characteristics of each kind of trap.

Table 2. Characteristics of traps: 1) Termination may be requested. 2) Imprecise fatal traps might be observable by
software.

Contained Requested Invisible Fatal

Execution
terminates

No No No Yes

Software is
oblivious

No No Yes Yes

Handled by
environment

No Yes Yes Yes

The EEI defines for each trap whether it is handled precisely, though the recommendation is to
maintain preciseness where possible. Contained and requested traps can be observed to be imprecise
by software inside the execution environment. Invisible traps, by definition, cannot be observed to be
precise or imprecise by software running inside the execution environment. Fatal traps can be
observed to be imprecise by software running inside the execution environment, if known-errorful
instructions do not cause immediate termination.

Because this document describes unprivileged instructions, traps are rarely mentioned. Architectural
means to handle contained traps are defined in the privileged architecture manual, along with other
features to support richer EEIs. Unprivileged instructions that are defined solely to cause requested

1.6. Exceptions, Traps, and Interrupts | Page 21

The RISC-V Instruction Set Manual | © RISC-V

traps are documented here. Invisible traps are, by their nature, out of scope for this document.
Instruction encodings that are not defined here and not defined by some other means may cause a
fatal trap.

1.7. UNSPECIFIED Behaviors and Values
The architecture fully describes what implementations must do and any constraints on what they may
do. In cases where the architecture intentionally does not constrain implementations, the term is
explicitly used.

The term unspecified refers to a behavior or value that is intentionally unconstrained. The definition of
these behaviors or values is open to extensions, platform standards, or implementations. Extensions,
platform standards, or implementation documentation may provide normative content to further
constrain cases that the base architecture defines as .

Like the base architecture, extensions should fully describe allowable behavior and values and use the
term unspecified for cases that are intentionally unconstrained. These cases may be constrained or
defined by other extensions, platform standards, or implementations.

1.7. UNSPECIFIED Behaviors and Values | Page 22

The RISC-V Instruction Set Manual | © RISC-V

Chapter 2. RV32I Base Integer Instruction
Set, Version 2.1
This chapter describes the RV32I base integer instruction set.



RV32I was designed to be sufficient to form a compiler target and to support modern
operating system environments. The ISA was also designed to reduce the hardware
required in a minimal implementation. RV32I contains 40 unique instructions, though a
simple implementation might cover the ECALL/EBREAK instructions with a single
SYSTEM hardware instruction that always traps and might be able to implement the
FENCE instruction as a NOP, reducing base instruction count to 38 total. RV32I can
emulate almost any other ISA extension (except the A extension, which requires additional
hardware support for atomicity).

In practice, a hardware implementation including the machine-mode privileged
architecture will also require the 6 CSR instructions.

Subsets of the base integer ISA might be useful for pedagogical purposes, but the base has
been defined such that there should be little incentive to subset a real hardware
implementation beyond omitting support for misaligned memory accesses and treating all
SYSTEM instructions as a single trap.


The standard RISC-V assembly language syntax is documented in the Assembly
Programmer’s Manual (RISC-V Assembly Programmer’s Manual, n.d.).

 Most of the commentary for RV32I also applies to the RV64I base.

2.1. Programmers’ Model for Base Integer ISA
Table 3, “RISC-V base unprivileged integer register state.” shows the unprivileged state for the base
integer ISA. For RV32I, the 32 x registers are each 32 bits wide, i.e., XLEN=32. Register x0 is hardwired
with all bits equal to 0. General purpose registers x1–x31 hold values that various instructions
interpret as a collection of Boolean values, or as two’s complement signed binary integers or unsigned
binary integers.

There is one additional unprivileged register: the program counter pc holds the address of the current
instruction.

Table 3. RISC-V base unprivileged integer register state.

XLEN-1 0

x0/zero

x1

x2

x3

x4

2.1. Programmers’ Model for Base Integer ISA | Page 23

The RISC-V Instruction Set Manual | © RISC-V

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29

x30

x31

XLEN

31 0

pc

XLEN

There is no dedicated stack pointer or subroutine return address link register in the Base Integer ISA;
the instruction encoding allows any x register to be used for these purposes. However, the standard
software calling convention uses register x1 to hold the return address for a call, with register x5
available as an alternate link register. The standard calling convention uses register x2 as the stack
pointer.

Hardware might choose to accelerate function calls and returns that use x1 or x5. See the descriptions
of the JAL and JALR instructions.

The optional compressed 16-bit instruction format is designed around the assumption that x1 is the

2.1. Programmers’ Model for Base Integer ISA | Page 24

The RISC-V Instruction Set Manual | © RISC-V

return address register and x2 is the stack pointer. Software using other conventions will operate
correctly but may have greater code size.

The number of available architectural registers can have large impacts on code size, performance, and
energy consumption. Although 16 registers would arguably be sufficient for an integer ISA running
compiled code, it is impossible to encode a complete ISA with 16 registers in 16-bit instructions using a
3-address format. Although a 2-address format would be possible, it would increase instruction count
and lower efficiency. We wanted to avoid intermediate instruction sizes (such as Xtensa’s 24-bit
instructions) to simplify base hardware implementations, and once a 32-bit instruction size was
adopted, it was straightforward to support 32 integer registers. A larger number of integer registers
also helps performance on high-performance code, where there can be extensive use of loop unrolling,
software pipelining, and cache tiling.

For these reasons, we chose a conventional size of 32 integer registers for RV32I. Dynamic register
usage tends to be dominated by a few frequently accessed registers, and regfile implementations can
be optimized to reduce access energy for the frequently accessed registers. The optional compressed
16-bit instruction format mostly only accesses 8 registers and hence can provide a dense instruction
encoding, while additional instruction-set extensions could support a much larger register space
(either flat or hierarchical) if desired.

For resource-constrained embedded applications, we have defined the RV32E subset, which only has
16 registers (Chapter 5, RV32E Base Integer Instruction Set, Version 1.9).

2.2. Base Instruction Formats
In the base RV32I ISA, there are four core instruction formats (R/I/S/U), as shown in Figure 1, “RISC-V
base instruction formats”. All are a fixed 32 bits in length and must be aligned on a four-byte
boundary in memory. An instruction-address-misaligned exception is generated on a taken branch or
unconditional jump if the target address is not four-byte aligned. This exception is reported on the
branch or jump instruction, not on the target instruction. No instruction-address-misaligned
exception is generated for a conditional branch that is not taken.



The alignment constraint for base ISA instructions is relaxed to a two-byte boundary when
instruction extensions with 16-bit lengths or other odd multiples of 16-bit lengths are
added (i.e., IALIGN=16).

Instruction-address-misaligned exceptions are reported on the branch or jump that would
cause instruction misalignment to help debugging, and to simplify hardware design for
systems with IALIGN=32, where these are the only places where misalignment can occur.

The behavior upon decoding a reserved instruction is UNSPECIFIED.


Some platforms may require that opcodes reserved for standard use raise an illegal-
instruction exception. Other platforms may permit reserved opcode space be used for non-
conforming extensions.

The RISC-V ISA keeps the source (rs1 and rs2) and destination (rd) registers at the same position in all
formats to simplify decoding. Except for the 5-bit immediates used in CSR instructions (Chapter 10,
"Zicsr" Control and Status Register (CSR) Instructions, Version 2.0), immediates are always sign-extended,
and are generally packed towards the leftmost available bits in the instruction and have been allocated
to reduce hardware complexity. In particular, the sign bit for all immediates is always in bit 31 of the

2.2. Base Instruction Formats | Page 25

The RISC-V Instruction Set Manual | © RISC-V

instruction to speed sign-extension circuitry.

Figure 1. RISC-V base instruction formats

Each immediate subfield in Figure 1, “RISC-V base instruction formats” above is labeled with the bit
position (imm[x]) in the immediate value being produced, rather than the bit position within the
instruction’s immediate field as is usually done.



Decoding register specifiers is usually on the critical paths in implementations, and so the
instruction format was chosen to keep all register specifiers at the same position in all
formats at the expense of having to move immediate bits across formats (a property
shared with RISC-IV aka. SPUR (Lee et al., 1989)).

In practice, most immediates are either small or require all XLEN bits. We chose an
asymmetric immediate split (12 bits in regular instructions plus a special load-upper-
immediate instruction with 20 bits) to increase the opcode space available for regular
instructions.

Immediates are sign-extended because we did not observe a benefit to using zero-
extension for some immediates as in the MIPS ISA and wanted to keep the ISA as simple
as possible.

2.3. Immediate Encoding Variants
There are a further two variants of the instruction formats (B/J) based on the handling of immediates,
as shown in Figure 2, “RISC-V base instruction formats.”.

2.3. Immediate Encoding Variants | Page 26

The RISC-V Instruction Set Manual | © RISC-V

Figure 2. RISC-V base instruction formats.

The only difference between the S and B formats is that the 12-bit immediate field is used to encode
branch offsets in multiples of 2 in the B format. Instead of shifting all bits in the instruction-encoded
immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1]) and sign bit
stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B format.

Similarly, the only difference between the U and J formats is that the 20-bit immediate is shifted left
by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction bits in
the U and J format immediates is chosen to maximize overlap with the other formats and with each
other.

Figure 3, “Immediate variants for I, S, B, U, and J” shows the immediates produced by each of the base
instruction formats, and is labeled to show which instruction bit (inst[y]) produces each bit of the
immediate value.

Figure 3. Immediate variants for I, S, B, U, and J

2.3. Immediate Encoding Variants | Page 27

The RISC-V Instruction Set Manual | © RISC-V



Sign-extension is one of the most critical operations on immediates (particularly for
XLEN>32), and in RISC-V the sign bit for all immediates is always held in bit 31 of the
instruction to allow sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and
jump calculations and so would not benefit from keeping the location of immediate bits
constant across types of instruction, we wanted to reduce the hardware cost of the
simplest implementations. By rotating bits in the instruction encoding of B and J
immediates instead of using dynamic hardware muxes to multiply the immediate by 2, we
reduce instruction signal fanout and immediate mux costs by around a factor of 2. The
scrambled immediate encoding will add negligible time to static or ahead-of-time
compilation. For dynamic generation of instructions, there is some small additional
overhead, but the most common short forward branches have straightforward immediate
encodings.

2.4. Integer Computational Instructions
Most integer computational instructions operate on XLEN bits of values held in the integer register
file. Integer computational instructions are either encoded as register-immediate operations using the
I-type format or as register-register operations using the R-type format. The destination is register rd
for both register-immediate and register-register instructions. No integer computational instructions
cause arithmetic exceptions.



We did not include special instruction-set support for overflow checks on integer
arithmetic operations in the base instruction set, as many overflow checks can be cheaply
implemented using RISC-V branches. Overflow checking for unsigned addition requires
only a single additional branch instruction after the addition: add t0, t1, t2; bltu
t0, t1, overflow.

For signed addition, if one operand’s sign is known, overflow checking requires only a
single branch after the addition: addi t0, t1, +imm; blt t0, t1, overflow. This
covers the common case of addition with an immediate operand.

For general signed addition, three additional instructions after the addition are required,
leveraging the observation that the sum should be less than one of the operands if and
only if the other operand is negative.

 add t0, t1, t2
 slti t3, t2, 0
 slt t4, t0, t1
 bne t3, t4, overflow

In RV64I, checks of 32-bit signed additions can be optimized further by comparing the
results of ADD and ADDW on the operands.

2.4.1. Integer Register-Immediate Instructions

2.4. Integer Computational Instructions | Page 28

The RISC-V Instruction Set Manual | © RISC-V

Figure 4. Integer Computational Instructions

ADDI adds the sign-extended 12-bit immediate to register rs1. Arithmetic overflow is ignored and the
result is simply the low XLEN bits of the result. ADDI rd, rs1, 0 is used to implement the MV rd, rs1
assembler pseudoinstruction.

SLTI (set less than immediate) places the value 1 in register rd if register rs1 is less than the sign-
extended immediate when both are treated as signed numbers, else 0 is written to rd. SLTIU is similar
but compares the values as unsigned numbers (i.e., the immediate is first sign-extended to XLEN bits
then treated as an unsigned number). Note, SLTIU rd, rs1, 1 sets rd to 1 if rs1 equals zero, otherwise sets
rd to 0 (assembler pseudoinstruction SEQZ rd, rs).

ANDI, ORI, XORI are logical operations that perform bitwise AND, OR, and XOR on register rs1 and
the sign-extended 12-bit immediate and place the result in rd. Note, XORI rd, rs1, -1 performs a bitwise
logical inversion of register rs1 (assembler pseudoinstruction NOT rd, rs).

Figure 5. Integer register-immediate, SLLI, SRLI, SRAI

Shifts by a constant are encoded as a specialization of the I-type format. The operand to be shifted is in
rs1, and the shift amount is encoded in the lower 5 bits of the I-immediate field. The right shift type is
encoded in bit 30. SLLI is a logical left shift (zeros are shifted into the lower bits); SRLI is a logical
right shift (zeros are shifted into the upper bits); and SRAI is an arithmetic right shift (the original sign
bit is copied into the vacated upper bits).

Figure 6. Integer register-immediate, U-immediate

LUI (load upper immediate) is used to build 32-bit constants and uses the U-type format. LUI places
the 32-bit U-immediate value into the destination register rd, filling in the lowest 12 bits with zeros.

AUIPC (add upper immediate to pc) is used to build pc-relative addresses and uses the U-type format.
AUIPC forms a 32-bit offset from the U-immediate, filling in the lowest 12 bits with zeros, adds this
offset to the address of the AUIPC instruction, then places the result in register rd.

2.4. Integer Computational Instructions | Page 29

The RISC-V Instruction Set Manual | © RISC-V



The assembly syntax for lui and auipc does not represent the lower 12 bits of the U-
immediate, which are always zero.

The AUIPC instruction supports two-instruction sequences to access arbitrary offsets from
the PC for both control-flow transfers and data accesses. The combination of an AUIPC
and the 12-bit immediate in a JALR can transfer control to any 32-bit PC-relative address,
while an AUIPC plus the 12-bit immediate offset in regular load or store instructions can
access any 32-bit PC-relative data address.

The current PC can be obtained by setting the U-immediate to 0. Although a JAL +4
instruction could also be used to obtain the local PC (of the instruction following the JAL),
it might cause pipeline breaks in simpler microarchitectures or pollute BTB structures in
more complex microarchitectures.

2.4.2. Integer Register-Register Operations

RV32I defines several arithmetic R-type operations. All operations read the rs1 and rs2 registers as
source operands and write the result into register rd. The funct7 and funct3 fields select the type of
operation.

Figure 7. Integer register-register

ADD performs the addition of rs1 and rs2. SUB performs the subtraction of rs2 from rs1. Overflows are
ignored and the low XLEN bits of results are written to the destination rd. SLT and SLTU perform
signed and unsigned compares respectively, writing 1 to rd if rs1 < rs2, 0 otherwise. Note, SLTU rd, x0,
rs2 sets rd to 1 if rs2 is not equal to zero, otherwise sets rd to zero (assembler pseudoinstruction SNEZ
rd, rs). AND, OR, and XOR perform bitwise logical operations.

SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value in register
rs1 by the shift amount held in the lower 5 bits of register rs2.

2.4.3. NOP Instruction

Figure 8. NOP instructions

The NOP instruction does not change any architecturally visible state, except for advancing the pc and
incrementing any applicable performance counters. NOP is encoded as ADDI x0, x0, 0.

2.4. Integer Computational Instructions | Page 30

The RISC-V Instruction Set Manual | © RISC-V



NOPs can be used to align code segments to microarchitecturally significant address
boundaries, or to leave space for inline code modifications. Although there are many
possible ways to encode a NOP, we define a canonical NOP encoding to allow
microarchitectural optimizations as well as for more readable disassembly output. The
other NOP encodings are made available for HINT instructions (Section [rv32i-hints]).

ADDI was chosen for the NOP encoding as this is most likely to take fewest resources to
execute across a range of systems (if not optimized away in decode). In particular, the
instruction only reads one register. Also, an ADDI functional unit is more likely to be
available in a superscalar design as adds are the most common operation. In particular,
address-generation functional units can execute ADDI using the same hardware needed
for base+offset address calculations, while register-register ADD or logical/shift
operations require additional hardware.

2.5. Control Transfer Instructions
RV32I provides two types of control transfer instructions: unconditional jumps and conditional
branches. Control transfer instructions in RV32I do not have architecturally visible delay slots.

If an instruction access-fault or instruction page-fault exception occurs on the target of a jump or
taken branch, the exception is reported on the target instruction, not on the jump or branch
instruction.

2.5.1. Unconditional Jumps

The jump and link (JAL) instruction uses the J-type format, where the J-immediate encodes a signed
offset in multiples of 2 bytes. The offset is sign-extended and added to the address of the jump
instruction to form the jump target address. Jumps can therefore target a ±1 MiB range. JAL stores the
address of the instruction following the jump (pc+4) into register rd. The standard software calling
convention uses x1 as the return address register and x5 as an alternate link register.



The alternate link register supports calling millicode routines (e.g., those to save and
restore registers in compressed code) while preserving the regular return address register.
The register x5 was chosen as the alternate link register as it maps to a temporary in the
standard calling convention, and has an encoding that is only one bit different than the
regular link register.

Plain unconditional jumps (assembler pseudoinstruction J) are encoded as a JAL with rd=x0.

Figure 9. The unconditional-jump instruction, JAL

The indirect jump instruction JALR (jump and link register) uses the I-type encoding. The target
address is obtained by adding the sign-extended 12-bit I-immediate to the register rs1, then setting the
least-significant bit of the result to zero. The address of the instruction following the jump (pc+4) is
written to register rd. Register x0 can be used as the destination if the result is not required.

2.5. Control Transfer Instructions | Page 31

The RISC-V Instruction Set Manual | © RISC-V

Figure 10. The indirect unconditional-jump instruction, JALR



The unconditional jump instructions all use PC-relative addressing to help support
position-independent code. The JALR instruction was defined to enable a two-instruction
sequence to jump anywhere in a 32-bit absolute address range. A LUI instruction can first
load rs1 with the upper 20 bits of a target address, then JALR can add in the lower bits.
Similarly, AUIPC then JALR can jump anywhere in a 32-bit pc-relative address range.

Note that the JALR instruction does not treat the 12-bit immediate as multiples of 2 bytes,
unlike the conditional branch instructions. This avoids one more immediate format in
hardware. In practice, most uses of JALR will have either a zero immediate or be paired
with a LUI or AUIPC, so the slight reduction in range is not significant.

Clearing the least-significant bit when calculating the JALR target address both simplifies
the hardware slightly and allows the low bit of function pointers to be used to store
auxiliary information. Although there is potentially a slight loss of error checking in this
case, in practice jumps to an incorrect instruction address will usually quickly raise an
exception.

When used with a base rs1=x0, JALR can be used to implement a single instruction
subroutine call to the lowest or highest address region from anywhere in the address
space, which could be used to implement fast calls to a small runtime library.
Alternatively, an ABI could dedicate a general-purpose register to point to a library
elsewhere in the address space.

The JAL and JALR instructions will generate an instruction-address-misaligned exception if the target
address is not aligned to a four-byte boundary.


Instruction-address-misaligned exceptions are not possible on machines that support
extensions with 16-bit aligned instructions, such as the compressed instruction-set
extension, C.

Return-address prediction stacks are a common feature of high-performance instruction-fetch units,
but require accurate detection of instructions used for procedure calls and returns to be effective. For
RISC-V, hints as to the instructions’ usage are encoded implicitly via the register numbers used. A JAL
instruction should push the return address onto a return-address stack (RAS) only when rd is x1 or x5.
JALR instructions should push/pop a RAS as shown in Table 4, “Return-address stack prediction hints
encoded in the register operands of a JALR instruction.”.

Table 4. Return-address stack prediction hints encoded in the register operands of a JALR instruction.

rd is x1/x5 rs1 is x1/x5 rd=rs1 RAS action

No No  —  None

No Yes  —  Pop

Yes No  —  Push

Yes Yes No Pop, then push

2.5. Control Transfer Instructions | Page 32

The RISC-V Instruction Set Manual | © RISC-V

rd is x1/x5 rs1 is x1/x5 rd=rs1 RAS action

Yes Yes Yes Push



Some other ISAs added explicit hint bits to their indirect-jump instructions to guide
return-address stack manipulation. We use implicit hinting tied to register numbers and
the calling convention to reduce the encoding space used for these hints.

When two different link registers (x1 and x5) are given as rs1 and rd, then the RAS is both
popped and pushed to support coroutines. If rs1 and rd are the same link register (either
x1 or x5), the RAS is only pushed to enable macro-op fusion of the sequences: lui ra,
imm20; jalr ra, imm12(ra) and auipc ra, imm20; jalr ra, imm12(ra)

2.5.2. Conditional Branches

All branch instructions use the B-type instruction format. The 12-bit B-immediate encodes signed
offsets in multiples of 2 bytes. The offset is sign-extended and added to the address of the branch
instruction to give the target address. The conditional branch range is ±4 KiB.

Figure 11. Conditional branches

Branch instructions compare two registers. BEQ and BNE take the branch if registers rs1 and rs2 are
equal or unequal respectively. BLT and BLTU take the branch if rs1 is less than rs2, using signed and
unsigned comparison respectively. BGE and BGEU take the branch if rs1 is greater than or equal to rs2,
using signed and unsigned comparison respectively. Note, BGT, BGTU, BLE, and BLEU can be
synthesized by reversing the operands to BLT, BLTU, BGE, and BGEU, respectively.


Signed array bounds may be checked with a single BLTU instruction, since any negative
index will compare greater than any nonnegative bound.

Software should be optimized such that the sequential code path is the most common path, with less-
frequently taken code paths placed out of line. Software should also assume that backward branches
will be predicted taken and forward branches as not taken, at least the first time they are encountered.
Dynamic predictors should quickly learn any predictable branch behavior.

Unlike some other architectures, the RISC-V jump (JAL with rd=x0) instruction should always be used
for unconditional branches instead of a conditional branch instruction with an always-true condition.
RISC-V jumps are also PC-relative and support a much wider offset range than branches, and will not
pollute conditional-branch prediction tables.

2.5. Control Transfer Instructions | Page 33

The RISC-V Instruction Set Manual | © RISC-V



The conditional branches were designed to include arithmetic comparison operations
between two registers (as also done in PA-RISC, Xtensa, and MIPS R6), rather than use
condition codes (x86, ARM, SPARC, PowerPC), or to only compare one register against
zero (Alpha, MIPS), or two registers only for equality (MIPS). This design was motivated by
the observation that a combined compare-and-branch instruction fits into a regular
pipeline, avoids additional condition code state or use of a temporary register, and reduces
static code size and dynamic instruction fetch traffic. Another point is that comparisons
against zero require non-trivial circuit delay (especially after the move to static logic in
advanced processes) and so are almost as expensive as arithmetic magnitude compares.
Another advantage of a fused compare-and-branch instruction is that branches are
observed earlier in the front-end instruction stream, and so can be predicted earlier. There
is perhaps an advantage to a design with condition codes in the case where multiple
branches can be taken based on the same condition codes, but we believe this case to be
relatively rare.

We considered but did not include static branch hints in the instruction encoding. These
can reduce the pressure on dynamic predictors, but require more instruction encoding
space and software profiling for best results, and can result in poor performance if
production runs do not match profiling runs.

We considered but did not include conditional moves or predicated instructions, which can
effectively replace unpredictable short forward branches. Conditional moves are the
simpler of the two, but are difficult to use with conditional code that might cause
exceptions (memory accesses and floating-point operations). Predication adds additional
flag state to a system, additional instructions to set and clear flags, and additional
encoding overhead on every instruction. Both conditional move and predicated
instructions add complexity to out-of-order microarchitectures, adding an implicit third
source operand due to the need to copy the original value of the destination architectural
register into the renamed destination physical register if the predicate is false. Also, static
compile-time decisions to use predication instead of branches can result in lower
performance on inputs not included in the compiler training set, especially given that
unpredictable branches are rare, and becoming rarer as branch prediction techniques
improve.

We note that various microarchitectural techniques exist to dynamically convert
unpredictable short forward branches into internally predicated code to avoid the cost of
flushing pipelines on a branch mispredict (Heil & Smith, 1996), (Klauser et al., 1998), (Kim
et al., 2005) and have been implemented in commercial processors (Sinharoy et al., 2011).
The simplest techniques just reduce the penalty of recovering from a mispredicted short
forward branch by only flushing instructions in the branch shadow instead of the entire
fetch pipeline, or by fetching instructions from both sides using wide instruction fetch or
idle instruction fetch slots. More complex techniques for out-of-order cores add internal
predicates on instructions in the branch shadow, with the internal predicate value written
by the branch instruction, allowing the branch and following instructions to be executed
speculatively and out-of-order with respect to other code.

The conditional branch instructions will generate an instruction-address-misaligned exception if the
target address is not aligned to a four-byte boundary and the branch condition evaluates to true. If the
branch condition evaluates to false, the instruction-address-misaligned exception will not be raised.

Instruction-address-misaligned exceptions are not possible on machines that support extensions with

2.5. Control Transfer Instructions | Page 34

The RISC-V Instruction Set Manual | © RISC-V

16-bit aligned instructions, such as the compressed instruction-set extension, C.

2.6. Load and Store Instructions
RV32I is a load-store architecture, where only load and store instructions access memory and
arithmetic instructions only operate on CPU registers. RV32I provides a 32-bit address space that is
byte-addressed. The EEI will define what portions of the address space are legal to access with which
instructions (e.g., some addresses might be read only, or support word access only). Loads with a
destination of x0 must still raise any exceptions and cause any other side effects even though the load
value is discarded.

The EEI will define whether the memory system is little-endian or big-endian. In RISC-V, endianness
is byte-address invariant.



In a system for which endianness is byte-address invariant, the following property holds: if
a byte is stored to memory at some address in some endianness, then a byte-sized load
from that address in any endianness returns the stored value.

In a little-endian configuration, multibyte stores write the least-significant register byte at
the lowest memory byte address, followed by the other register bytes in ascending order of
their significance. Loads similarly transfer the contents of the lesser memory byte
addresses to the less-significant register bytes.

In a big-endian configuration, multibyte stores write the most-significant register byte at
the lowest memory byte address, followed by the other register bytes in descending order of
their significance. Loads similarly transfer the contents of the greater memory byte
addresses to the less-significant register bytes.

Figure 12. Load and store instructions

Load and store instructions transfer a value between the registers and memory. Loads are encoded in
the I-type format and stores are S-type. The effective address is obtained by adding register rs1 to the
sign-extended 12-bit offset. Loads copy a value from memory to register rd. Stores copy the value in
register rs2 to memory.

The LW instruction loads a 32-bit value from memory into rd. LH loads a 16-bit value from memory,
then sign-extends to 32-bits before storing in rd. LHU loads a 16-bit value from memory but then zero
extends to 32-bits before storing in rd. LB and LBU are defined analogously for 8-bit values. The SW,
SH, and SB instructions store 32-bit, 16-bit, and 8-bit values from the low bits of register rs2 to
memory.

Regardless of EEI, loads and stores whose effective addresses are naturally aligned shall not raise an
address-misaligned exception. Loads and stores whose effective address is not naturally aligned to the

2.6. Load and Store Instructions | Page 35

The RISC-V Instruction Set Manual | © RISC-V

referenced datatype (i.e., the effective address is not divisible by the size of the access in bytes) have
behavior dependent on the EEI.

An EEI may guarantee that misaligned loads and stores are fully supported, and so the software
running inside the execution environment will never experience a contained or fatal address-
misaligned trap. In this case, the misaligned loads and stores can be handled in hardware, or via an
invisible trap into the execution environment implementation, or possibly a combination of hardware
and invisible trap depending on address.

An EEI may not guarantee misaligned loads and stores are handled invisibly. In this case, loads and
stores that are not naturally aligned may either complete execution successfully or raise an exception.
The exception raised can be either an address-misaligned exception or an access-fault exception. For a
memory access that would otherwise be able to complete except for the misalignment, an access-fault
exception can be raised instead of an address-misaligned exception if the misaligned access should
not be emulated, e.g., if accesses to the memory region have side effects. When an EEI does not
guarantee misaligned loads and stores are handled invisibly, the EEI must define if exceptions caused
by address misalignment result in a contained trap (allowing software running inside the execution
environment to handle the trap) or a fatal trap (terminating execution).



Misaligned accesses are occasionally required when porting legacy code, and help
performance on applications when using any form of packed-SIMD extension or handling
externally packed data structures. Our rationale for allowing EEIs to choose to support
misaligned accesses via the regular load and store instructions is to simplify the addition
of misaligned hardware support. One option would have been to disallow misaligned
accesses in the base ISAs and then provide some separate ISA support for misaligned
accesses, either special instructions to help software handle misaligned accesses or a new
hardware addressing mode for misaligned accesses. Special instructions are difficult to
use, complicate the ISA, and often add new processor state (e.g., SPARC VIS align address
offset register) or complicate access to existing processor state (e.g., MIPS LWL/LWR
partial register writes). In addition, for loop-oriented packed-SIMD code, the extra
overhead when operands are misaligned motivates software to provide multiple forms of
loop depending on operand alignment, which complicates code generation and adds to
loop startup overhead. New misaligned hardware addressing modes take considerable
space in the instruction encoding or require very simplified addressing modes (e.g.,
register indirect only).

Even when misaligned loads and stores complete successfully, these accesses might run extremely
slowly depending on the implementation (e.g., when implemented via an invisible trap). Furthermore,
whereas naturally aligned loads and stores are guaranteed to execute atomically, misaligned loads and
stores might not, and hence require additional synchronization to ensure atomicity.



We do not mandate atomicity for misaligned accesses so execution environment
implementations can use an invisible machine trap and a software handler to handle
some or all misaligned accesses. If hardware misaligned support is provided, software can
exploit this by simply using regular load and store instructions. Hardware can then
automatically optimize accesses depending on whether runtime addresses are aligned.

2.7. Memory Ordering Instructions

2.7. Memory Ordering Instructions | Page 36

The RISC-V Instruction Set Manual | © RISC-V

Figure 13. Memory ordering instructions

The FENCE instruction is used to order device I/O and memory accesses as viewed by other RISC-V
harts and external devices or coprocessors. Any combination of device input (I), device output (O),
memory reads (R), and memory writes (W) may be ordered with respect to any combination of the
same. Informally, no other RISC-V hart or external device can observe any operation in the successor
set following a FENCE before any operation in the predecessor set preceding the FENCE.
[memorymodeL] provides a precise description of the RISC-V memory consistency model.

The FENCE instruction also orders memory reads and writes made by the hart as observed by memory
reads and writes made by an external device. However, FENCE does not order observations of events
made by an external device using any other signaling mechanism.



A device might observe an access to a memory location via some external communication
mechanism, e.g., a memory-mapped control register that drives an interrupt signal to an
interrupt controller. This communication is outside the scope of the FENCE ordering
mechanism and hence the FENCE instruction can provide no guarantee on when a change
in the interrupt signal is visible to the interrupt controller. Specific devices might provide
additional ordering guarantees to reduce software overhead but those are outside the
scope of the RISC-V memory model.

The EEI will define what I/O operations are possible, and in particular, which memory addresses when
accessed by load and store instructions will be treated and ordered as device input and device output
operations respectively rather than memory reads and writes. For example, memory-mapped I/O
devices will typically be accessed with uncached loads and stores that are ordered using the I and O
bits rather than the R and W bits. Instruction-set extensions might also describe new I/O instructions
that will also be ordered using the I and O bits in a FENCE.

Table 5. Fence mode encoding

fm field Mnemonic Meaning

0000 none Normal Fence

1000 TSO With FENCE RW,RW: exclude
write-to-read ordering;
otherwise: Reserved for future use.

other Reserved for future use.

The fence mode field fm defines the semantics of the FENCE. A FENCE with fm=0000 orders all
memory operations in its predecessor set before all memory operations in its successor set.

The FENCE.TSO instruction is encoded as a FENCE instruction with fm=1000, predecessor=RW, and
successor=RW. FENCE.TSO orders all load operations in its predecessor set before all memory
operations in its successor set, and all store operations in its predecessor set before all store operations
in its successor set. This leaves non-AMO store operations in the FENCE.TSO’s predecessor set
unordered with non-AMO loads in its successor set.

2.7. Memory Ordering Instructions | Page 37

The RISC-V Instruction Set Manual | © RISC-V


Because FENCE RW,RW imposes a superset of the orderings that FENCE.TSO imposes, it
is correct to ignore the fm field and implement FENCE.TSO as FENCE RW,RW.

The unused fields in the FENCE instructions--rs1 and rd--are reserved for finer-grain fences in future
extensions. For forward compatibility, base implementations shall ignore these fields, and standard
software shall zero these fields. Likewise, many fm and predecessor/successor set settings in Table 5,
“Fence mode encoding” are also reserved for future use. Base implementations shall treat all such
reserved configurations as normal fences with fm=0000, and standard software shall use only non-
reserved configurations.



We chose a relaxed memory model to allow high performance from simple machine
implementations and from likely future coprocessor or accelerator extensions. We
separate out I/O ordering from memory R/W ordering to avoid unnecessary serialization
within a device-driver hart and also to support alternative non-memory paths to control
added coprocessors or I/O devices. Simple implementations may additionally ignore the
predecessor and successor fields and always execute a conservative fence on all
operations.

2.8. Environment Call and Breakpoints
SYSTEM instructions are used to access system functionality that might require privileged access and
are encoded using the I-type instruction format. These can be divided into two main classes: those that
atomically read-modify-write control and status registers (CSRs), and all other potentially privileged
instructions. CSR instructions are described in Chapter 10, "Zicsr" Control and Status Register (CSR)
Instructions, Version 2.0, and the base unprivileged instructions are described in the following section.


The SYSTEM instructions are defined to allow simpler implementations to always trap to a
single software trap handler. More sophisticated implementations might execute more of
each system instruction in hardware.

Figure 14. Evironment call and breakpoint instructions

These two instructions cause a precise requested trap to the supporting execution environment.

The ECALL instruction is used to make a service request to the execution environment. The EEI will
define how parameters for the service request are passed, but usually these will be in defined locations
in the integer register file.

The EBREAK instruction is used to return control to a debugging environment.


ECALL and EBREAK were previously named SCALL and SBREAK. The instructions have
the same functionality and encoding, but were renamed to reflect that they can be used
more generally than to call a supervisor-level operating system or debugger.

2.8. Environment Call and Breakpoints | Page 38

The RISC-V Instruction Set Manual | © RISC-V



EBREAK was primarily designed to be used by a debugger to cause execution to stop and
fall back into the debugger. EBREAK is also used by the standard gcc compiler to mark
code paths that should not be executed.

Another use of EBREAK is to support “semihosting”, where the execution environment
includes a debugger that can provide services over an alternate system call interface built
around the EBREAK instruction. Because the RISC-V base ISAs do not provide more than
one EBREAK instruction, RISC-V semihosting uses a special sequence of instructions to
distinguish a semihosting EBREAK from a debugger inserted EBREAK.

 slli x0, x0, 0x1f # Entry NOP
 ebreak # Break to debugger
 srai x0, x0, 7 # NOP encoding the semihosting call number 7

Note that these three instructions must be 32-bit-wide instructions, i.e., they mustn’t be
among the compressed 16-bit instructions described in Chapter 16, C Standard Extension
for Compressed Instructions, Version 2.0.

The shift NOP instructions are still considered available for use as HINTs.

Semihosting is a form of service call and would be more naturally encoded as an ECALL
using an existing ABI, but this would require the debugger to be able to intercept ECALLs,
which is a newer addition to the debug standard. We intend to move over to using ECALLs
with a standard ABI, in which case, semihosting can share a service ABI with an existing
standard.

We note that ARM processors have also moved to using SVC instead of BKPT for
semihosting calls in newer designs.

2.9. HINT Instructions
RV32I reserves a large encoding space for HINT instructions, which are usually used to communicate
performance hints to the microarchitecture. Like the NOP instruction, HINTs do not change any
architecturally visible state, except for advancing the pc and any applicable performance counters.
Implementations are always allowed to ignore the encoded hints.

Most RV32I HINTs are encoded as integer computational instructions with rd=x0. The other RV32I
HINTs are encoded as FENCE instructions with a null predecessor or successor set and with fm=0.

2.9. HINT Instructions | Page 39

The RISC-V Instruction Set Manual | © RISC-V



These HINT encodings have been chosen so that simple implementations can ignore
HINTs altogether, and instead execute a HINT as a regular instruction that happens not
to mutate the architectural state. For example, ADD is a HINT if the destination register is
x0; the five-bit rs1 and rs2 fields encode arguments to the HINT. However, a simple
implementation can simply execute the HINT as an ADD of rs1 and rs2 that writes x0,
which has no architecturally visible effect.

As another example, a FENCE instruction with a zero pred field and a zero fm field is a
HINT; the succ, rs1, and rd fields encode the arguments to the HINT. A simple
implementation can simply execute the HINT as a FENCE that orders the null set of prior
memory accesses before whichever subsequent memory accesses are encoded in the succ
field. Since the intersection of the predecessor and successor sets is null, the instruction
imposes no memory orderings, and so it has no architecturally visible effect.

Table 6, “RV32I HINT instructions.” lists all RV32I HINT code points. 91% of the HINT space is
reserved for standard HINTs. The remainder of the HINT space is designated for custom HINTs: no
standard HINTs will ever be defined in this subspace.


We anticipate standard hints to eventually include memory-system spatial and temporal
locality hints, branch prediction hints, thread-scheduling hints, security tags, and
instrumentation flags for simulation/emulation.

Table 6. RV32I HINT instructions.

2.9. HINT Instructions | Page 40

The RISC-V Instruction Set Manual | © RISC-V

Instruction Constraints Code Points Purpose

LUI rd=x0

Reserved for future
standard use

AUIPC rd=x0

ADDI rd=x0, and either rs1 ≠
x0 or imm≠0

ANDI rd=x0

ORI rd=x0

XORI rd=x0

ADD rd=x0

SUB rd=x0

AND rd=x0

OR rd=x0

XOR rd=x0

SLL rd=x0

SRL rd=x0

SRA rd=x0

FENCE rd=x0, rs1 ≠ x0, fm=0,
and either pred=0 or
succ=0

FENCE rd ≠ x0, rs1=x0, fm=0,
and either pred=0 or
succ=0

FENCE rd=rs1=x0, fm=0,
pred=0, succ≠0

15

FENCE rd=rs1=x0, fm=0,
pred≠W, succ≠0

15

FENCE rd=rs1=x0, fm=0,
pred=W, succ=0

1 PAUSE

SLTI rd=x0

Designated for
custom use

SLTIU rd=x0

SLLI rd=x0

SRLI rd=x0

SRAI rd=x0

SLT rd=x0

SLTU rd=x0

2.9. HINT Instructions | Page 41

The RISC-V Instruction Set Manual | © RISC-V

Chapter 3. "Zifencei" Instruction-Fetch
Fence, Version 2.0
This chapter defines the Zifencei extension, which includes the FENCE.I instruction that provides
explicit synchronization between writes to instruction memory and instruction fetches on the same
hart. Currently, this instruction is the only standard mechanism to ensure that stores visible to a hart
will also be visible to its instruction fetches.



We considered but did not include a store instruction word instruction as in
(Tremblay et al., 2000). JIT compilers may generate a large trace of instructions before a
single FENCE.I, and amortize any instruction cache snooping/invalidation overhead by
writing translated instructions to memory regions that are known not to reside in the I-
cache.



The FENCE.I instruction was designed to support a wide variety of implementations. A
simple implementation can flush the local instruction cache and the instruction pipeline
when the FENCE.I is executed. A more complex implementation might snoop the
instruction (data) cache on every data (instruction) cache miss, or use an inclusive unified
private L2 cache to invalidate lines from the primary instruction cache when they are
being written by a local store instruction. If instruction and data caches are kept coherent
in this way, or if the memory system consists of only uncached RAMs, then just the fetch
pipeline needs to be flushed at a FENCE.I.

The FENCE.I instruction was previously part of the base I instruction set. Two main issues
are driving moving this out of the mandatory base, although at time of writing it is still the
only standard method for maintaining instruction-fetch coherence.

First, it has been recognized that on some systems, FENCE.I will be expensive to
implement and alternate mechanisms are being discussed in the memory model task
group. In particular, for designs that have an incoherent instruction cache and an
incoherent data cache, or where the instruction cache refill does not snoop a coherent
data cache, both caches must be completely flushed when a FENCE.I instruction is
encountered. This problem is exacerbated when there are multiple levels of I and D cache
in front of a unified cache or outer memory system.

Second, the instruction is not powerful enough to make available at user level in a Unix-
like operating system environment. The FENCE.I only synchronizes the local hart, and the
OS can reschedule the user hart to a different physical hart after the FENCE.I. This would
require the OS to execute an additional FENCE.I as part of every context migration. For
this reason, the standard Linux ABI has removed FENCE.I from user-level and now
requires a system call to maintain instruction-fetch coherence, which allows the OS to
minimize the number of FENCE.I executions required on current systems and provides
forward-compatibility with future improved instruction-fetch coherence mechanisms.

Future approaches to instruction-fetch coherence under discussion include providing
more restricted versions of FENCE.I that only target a given address specified in rs1,
and/or allowing software to use an ABI that relies on machine-mode cache-maintenance
operations.

Chapter 3. "Zifencei" Instruction-Fetch Fence, Version 2.0 | Page 42

The RISC-V Instruction Set Manual | © RISC-V

Figure 15. FENCE.I instruction

The FENCE.I instruction is used to synchronize the instruction and data streams. RISC-V does not
guarantee that stores to instruction memory will be made visible to instruction fetches on a RISC-V
hart until that hart executes a FENCE.I instruction. A FENCE.I instruction ensures that a subsequent
instruction fetch on a RISC-V hart will see any previous data stores already visible to the same RISC-V
hart. FENCE.I does not ensure that other RISC-V harts’ instruction fetches will observe the local hart’s
stores in a multiprocessor system. To make a store to instruction memory visible to all RISC-V harts,
the writing hart also has to execute a data FENCE before requesting that all remote RISC-V harts
execute a FENCE.I.

The unused fields in the FENCE.I instruction, imm[11:0], rs1, and rd, are reserved for finer-grain fences
in future extensions. For forward compatibility, base implementations shall ignore these fields, and
standard software shall zero these fields.



Because FENCE.I only orders stores with a hart’s own instruction fetches, application code
should only rely upon FENCE.I if the application thread will not be migrated to a different
hart. The EEI can provide mechanisms for efficient multiprocessor instruction-stream
synchronization.

Chapter 3. "Zifencei" Instruction-Fetch Fence, Version 2.0 | Page 43

The RISC-V Instruction Set Manual | © RISC-V

Chapter 4. "Zihintpause" Pause Hint,
Version 2.0
The PAUSE instruction is a HINT that indicates the current hart’s rate of instruction retirement
should be temporarily reduced or paused. The duration of its effect must be bounded and may be zero.
No architectural state is changed.



Software can use the PAUSE instruction to reduce energy consumption while executing
spin-wait code sequences. Multithreaded cores might temporarily relinquish execution
resources to other harts when PAUSE is executed. It is recommended that a PAUSE
instruction generally be included in the code sequence for a spin-wait loop.

A future extension might add primitives similar to the x86 MONITOR/MWAIT
instructions, which provide a more efficient mechanism to wait on writes to a specific
memory location. However, these instructions would not supplant PAUSE. PAUSE is more
appropriate when polling for non-memory events, when polling for multiple events, or
when software does not know precisely what events it is polling for.

The duration of a PAUSE instruction’s effect may vary significantly within and among
implementations. In typical implementations this duration should be much less than the
time to perform a context switch, probably more on the rough order of an on-chip cache
miss latency or a cacheless access to main memory.

A series of PAUSE instructions can be used to create a cumulative delay loosely
proportional to the number of PAUSE instructions. In spin-wait loops in portable code,
however, only one PAUSE instruction should be used before re-evaluating loop conditions,
else the hart might stall longer than optimal on some implementations, degrading system
performance.

PAUSE is encoded as a FENCE instruction with pred=W, succ=0, fm=0, rd=x0, and rs1=x0.

Figure 16. Zihintpause fence instructions



PAUSE is encoded as a hint within the FENCE opcode because some implementations are
expected to deliberately stall the PAUSE instruction until outstanding memory
transactions have completed. Because the successor set is null, however, PAUSE does not
mandate any particular memory ordering—hence, it truly is a HINT.

Like other FENCE instructions, PAUSE cannot be used within LR/SC sequences without
voiding the forward-progress guarantee.

The choice of a predecessor set of W is arbitrary, since the successor set is null. Other
HINTs similar to PAUSE might be encoded with other predecessor sets.

Chapter 4. "Zihintpause" Pause Hint, Version 2.0 | Page 44

The RISC-V Instruction Set Manual | © RISC-V

Chapter 5. RV32E Base Integer Instruction
Set, Version 1.9
This chapter describes a draft proposal for the RV32E base integer instruction set, which is a reduced
version of RV32I designed for embedded systems. The only change is to reduce the number of integer
registers to 16. This chapter only outlines the differences between RV32E and RV32I, and so should be
read after Chapter 2, RV32I Base Integer Instruction Set, Version 2.1.



RV32E was designed to provide an even smaller base core for embedded microcontrollers.
Although we had mentioned this possibility in version 2.0 of this document, we initially
resisted defining this subset. However, given the demand for the smallest possible 32-bit
microcontroller, and in the interests of preempting fragmentation in this space, we have
now defined RV32E as a fourth standard base ISA in addition to RV32I, RV64I, and
RV128I. There is also interest in defining an RV64E to reduce context state for highly
threaded 64-bit processors.

5.1. RV32E Programmers’ Model
RV32E reduces the integer register count to 16 general-purpose registers, (x0–x15), where x0 is a
dedicated zero register.



We have found that in the small RV32I core designs, the upper 16 registers consume
around one quarter of the total area of the core excluding memories, thus their removal
saves around 25% core area with a corresponding core power reduction.

This change requires a different calling convention and ABI. In particular, RV32E is only
used with a soft-float calling convention. A new embedded ABI is under consideration that
would work across RV32E and RV32I.

5.2. RV32E Instruction Set

RV32E uses the same instruction-set encoding as RV32I, except that only registers x0–x15 are
provided. Any future standard extensions will not make use of the instruction bits freed up by the
reduced register-specifier fields and so these are designated for custom extensions.



RV32E can be combined with all current standard extensions. Defining the F, D, and Q
extensions as having a 16-entry floating point register file when combined with RV32E was
considered but decided against. To support systems with reduced floating-point register
state, we intend to define a Zfinx extension that makes floating-point computations use
the integer registers, removing the floating-point loads, stores, and moves between floating
point and integer registers.

5.1. RV32E Programmers’ Model | Page 45

The RISC-V Instruction Set Manual | © RISC-V

Chapter 6. RV64I Base Integer Instruction
Set, Version 2.1
This chapter describes the RV64I base integer instruction set, which builds upon the RV32I variant
described in Chapter 2, RV32I Base Integer Instruction Set, Version 2.1. This chapter presents only the
differences with RV32I, so should be read in conjunction with the earlier chapter.

6.1. Register State
RV64I widens the integer registers and supported user address space to 64 bits (XLEN=64 in Table 3,
“RISC-V base unprivileged integer register state.”.

6.2. Integer Computational Instructions
Most integer computational instructions operate on XLEN-bit values. Additional instruction variants
are provided to manipulate 32-bit values in RV64I, indicated by a W suffix to the opcode. These W
instructions ignore the upper 32 bits of their inputs and always produce 32-bit signed values, sign-
extending them to 64 bits, i.e. bits XLEN-1 through 31 are equal.



The compiler and calling convention maintain an invariant that all 32-bit values are held
in a sign-extended format in 64-bit registers. Even 32-bit unsigned integers extend bit 31
into bits 63 through 32. Consequently, conversion between unsigned and signed 32-bit
integers is a no-op, as is conversion from a signed 32-bit integer to a signed 64-bit integer.
Existing 64-bit wide SLTU and unsigned branch compares still operate correctly on
unsigned 32-bit integers under this invariant. Similarly, existing 64-bit wide logical
operations on 32-bit sign-extended integers preserve the sign-extension property. A few
new instructions (ADD[I]W/SUBW/SxxW) are required for addition and shifts to ensure
reasonable performance for 32-bit values.

6.2.1. Integer Register-Immediate Instructions

Figure 17. RV64I register-immediate instructions

ADDIW is an RV64I instruction that adds the sign-extended 12-bit immediate to register rs1 and
produces the proper sign-extension of a 32-bit result in rd. Overflows are ignored and the result is the
low 32 bits of the result sign-extended to 64 bits. Note, ADDIW rd, rs1, 0 writes the sign-extension of
the lower 32 bits of register rs1 into register rd (assembler pseudoinstruction SEXT.W).

6.1. Register State | Page 46

The RISC-V Instruction Set Manual | © RISC-V

Figure 18. RV64I register-immediate (descr ADDIW) instructions

Shifts by a constant are encoded as a specialization of the I-type format using the same instruction
opcode as RV32I. The operand to be shifted is in rs1, and the shift amount is encoded in the lower 6
bits of the I-immediate field for RV64I. The right shift type is encoded in bit 30. SLLI is a logical left
shift (zeros are shifted into the lower bits); SRLI is a logical right shift (zeros are shifted into the upper
bits); and SRAI is an arithmetic right shift (the original sign bit is copied into the vacated upper bits).

SLLIW, SRLIW, and SRAIW are RV64I-only instructions that are analogously defined but operate on
32-bit values and sign-extend their 32-bit results to 64 bits. SLLIW, SRLIW, and SRAIW encodings
with imm[5] ≠ 0 are reserved.


Previously, SLLIW, SRLIW, and SRAIW with imm[5] ≠ 0 were defined to cause illegal
instruction exceptions, whereas now they are marked as reserved. This is a backwards-
compatible change.

Figure 19. RV64I register-immediate (descr) instructions

LUI (load upper immediate) uses the same opcode as RV32I. LUI places the 32-bit U-immediate into
register rd, filling in the lowest 12 bits with zeros. The 32-bit result is sign-extended to 64 bits.

AUIPC (add upper immediate to pc) uses the same opcode as RV32I. AUIPC is used to build pc-relative
addresses and uses the U-type format. AUIPC forms a 32-bit offset from the U-immediate, filling in
the lowest 12 bits with zeros, sign-extends the result to 64 bits, adds it to the address of the AUIPC
instruction, then places the result in register rd.


Note that the set of address offsets that can be formed by pairing LUI with LD, AUIPC with
JALR, etc.in RV64I is [,].

6.2.2. Integer Register-Register Operations

6.2. Integer Computational Instructions | Page 47

The RISC-V Instruction Set Manual | © RISC-V

067111214151920242531

opcoderdfunc3rs1rs2funct7

OP-32destADDW
SLLW
SRLW
SUBW
SRAW

src1src20000000
0000000
0000000
0000010
0000010

Figure 20. RV64I integer register-register instructions

ADDW and SUBW are RV64I-only instructions that are defined analogously to ADD and SUB but
operate on 32-bit values and produce signed 32-bit results. Overflows are ignored, and the low 32-bits
of the result is sign-extended to 64-bits and written to the destination register.

SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value in register
rs1 by the shift amount held in register rs2. In RV64I, only the low 6 bits of rs2 are considered for the
shift amount.

SLLW, SRLW, and SRAW are RV64I-only instructions that are analogously defined but operate on 32-
bit values and sign-extend their 32-bit results to 64 bits. The shift amount is given by rs2[4:0].

6.3. Load and Store Instructions
RV64I extends the address space to 64 bits. The execution environment will define what portions of
the address space are legal to access.

Figure 21. Load and store instructions

The LD instruction loads a 64-bit value from memory into register rd for RV64I.

The LW instruction loads a 32-bit value from memory and sign-extends this to 64 bits before storing it
in register rd for RV64I. The LWU instruction, on the other hand, zero-extends the 32-bit value from
memory for RV64I. LH and LHU are defined analogously for 16-bit values, as are LB and LBU for 8-bit
values. The SD, SW, SH, and SB instructions store 64-bit, 32-bit, 16-bit, and 8-bit values from the low
bits of register rs2 to memory respectively.

6.3. Load and Store Instructions | Page 48

The RISC-V Instruction Set Manual | © RISC-V

6.4. HINT Instructions
All instructions that are microarchitectural HINTs in RV32I (see Chapter 2, RV32I Base Integer
Instruction Set, Version 2.1 are also HINTs in RV64I. The additional computational instructions in
RV64I expand both the standard and custom HINT encoding spaces.

Table 7, “RV64I HINT instructions.” lists all RV64I HINT code points. 91% of the HINT space is
reserved for standard HINTs, but none are presently defined. The remainder of the HINT space is
designated for custom HINTs; no standard HINTs will ever be defined in this subspace.

Table 7. RV64I HINT instructions.

6.4. HINT Instructions | Page 49

The RISC-V Instruction Set Manual | © RISC-V

Instruction Constraints Code Points Purpose

LUI rd=x0

Reserved for future
standard use

AUIPC rd=x0

ADDI rd=x0, and either
rs1_ _x0 or
imm 0

ANDI rd=x0

ORI rd=x0

XORI rd=x0

ADDIW rd=x0

ADD rd=x0

SUB rd=x0

AND rd=x0

OR rd=x0

XOR rd=x0

SLL rd=x0

SRL rd=x0

SRA rd=x0

ADDW rd=x0

SUBW rd=x0

SLLW rd=x0

SRLW rd=x0

SRAW rd=x0

FENCE rd=x0, rs1_ _x0,
fm=0, and either pred=0
or succ=0

rd_ _x0, rs1=x0,
fm=0, and either pred=0
or succ=0

rd=rs1=x0, fm=0,
pred=0, _succ_ 0

15

pred=0 or succ=0,
pred_ W, _succ=0

15

rd=rs1=x0, fm=0,
pred=W, succ=0

1 PAUSE

6.4. HINT Instructions | Page 50

The RISC-V Instruction Set Manual | © RISC-V

Instruction Constraints Code Points Purpose

SLTI rd=x0

Designated for custom
use

SLTIU rd=x0

SLLI rd=x0

SRLI rd=x0

SRAI rd=x0

SLLIW rd=x0

SRLIW rd=x0

SRAIW rd=x0

SLT rd=x0

SLTU rd=x0

6.4. HINT Instructions | Page 51

The RISC-V Instruction Set Manual | © RISC-V

Chapter 7. RV128I Base Integer
Instruction Set, Version 1.7

"There is only one mistake that can be made in computer design that is difficult to recover
from—not having enough address bits for memory addressing and memory management." Bell
and Strecker, ISCA-3, 1976.

This chapter describes RV128I, a variant of the RISC-V ISA supporting a flat 128-bit address space. The
variant is a straightforward extrapolation of the existing RV32I and RV64I designs.



The primary reason to extend integer register width is to support larger address spaces. It
is not clear when a flat address space larger than 64 bits will be required. At the time of
writing, the fastest supercomputer in the world as measured by the Top500 benchmark
had over 1PB of DRAM, and would require over 50 bits of address space if all the DRAM
resided in a single address space. Some warehouse-scale computers already contain even
larger quantities of DRAM, and new dense solid-state non-volatile memories and fast
interconnect technologies might drive a demand for even larger memory spaces. Exascale
systems research is targeting 100PB memory systems, which occupy 57 bits of address
space. At historic rates of growth, it is possible that greater than 64 bits of address space
might be required before 2030.

History suggests that whenever it becomes clear that more than 64 bits of address space is
needed, architects will repeat intensive debates about alternatives to extending the
address space, including segmentation, 96-bit address spaces, and software workarounds,
until, finally, flat 128-bit address spaces will be adopted as the simplest and best solution.


We have not frozen the RV128 spec at this time, as there might be need to evolve the design
based on actual usage of 128-bit address spaces.

RV128I builds upon RV64I in the same way RV64I builds upon RV32I, with integer registers extended
to 128 bits (i.e., XLEN=128). Most integer computational instructions are unchanged as they are
defined to operate on XLEN bits. The RV64I W integer instructions that operate on 32-bit values in the
low bits of a register are retained but now sign extend their results from bit 31 to bit 127. A new set of D
integer instructions are added that operate on 64-bit values held in the low bits of the 128-bit integer
registers and sign extend their results from bit 63 to bit 127. The D instructions consume two major
opcodes (OP-IMM-64 and OP-64) in the standard 32-bit encoding.



To improve compatibility with RV64, in a reverse of how RV32 to RV64 was handled, we
might change the decoding around to rename RV64I ADD as a 64-bit ADDD, and add a
128-bit ADDQ in what was previously the OP-64 major opcode (now renamed the OP-128
major opcode).

Shifts by an immediate (SLLI/SRLI/SRAI) are now encoded using the low 7 bits of the I-immediate,

Chapter 7. RV128I Base Integer Instruction Set, Version 1.7 | Page 52

The RISC-V Instruction Set Manual | © RISC-V

and variable shifts (SLL/SRL/SRA) use the low 7 bits of the shift amount source register.

A LDU (load double unsigned) instruction is added using the existing LOAD major opcode, along with
new LQ and SQ instructions to load and store quadword values. SQ is added to the STORE major
opcode, while LQ is added to the MISC-MEM major opcode.

The floating-point instruction set is unchanged, although the 128-bit Q floating-point extension can
now support FMV.X.Q and FMV.Q.X instructions, together with additional FCVT instructions to and
from the T (128-bit) integer format.

Chapter 7. RV128I Base Integer Instruction Set, Version 1.7 | Page 53

The RISC-V Instruction Set Manual | © RISC-V

Chapter 8. M Standard Extension for
Integer Multiplication and Division,
Version 2.0
This chapter describes the standard integer multiplication and division instruction extension, which
is named M and contains instructions that multiply or divide values held in two integer registers.


We separate integer multiply and divide out from the base to simplify low-end
implementations, or for applications where integer multiply and divide operations are
either infrequent or better handled in attached accelerators.

8.1. Multiplication Operations

Figure 22. Multiplication operation instructions

MUL performs an XLEN-bit X XLEN-bit multiplication of rs1 by rs2 and places the lower XLEN bits in
the destination register. MULH, MULHU, and MULHSU perform the same multiplication but return
the upper XLEN bits of the full 2 X XLEN-bit product, for signed X signed, unsigned X unsigned, and
rs1X unsigned rs2 multiplication, respectively. If both the high and low bits of the same product are
required, then t he recommended code sequence is: MULH[[S]U] rdh, rs1, rs2; MUL rdl, rs1, rs2 (source
register specifiers must be in same order and rdh cannot be the same as rs1 or rs2). Microarchitectures
can then fuse these into a single multiply operation instead of performing two separate multiplies.


MULHSU is used in multi-word signed multiplication to multiply the most-significant
word of the multiplicand (which contains the sign bit) with the less-significant words of
the multiplier (which are unsigned).

MULW is an RV64 instruction that multiplies the lower 32 bits of the source registers, placing the
sign-extension of the lower 32 bits of the result into the destination register.



In RV64, MUL can be used to obtain the upper 32 bits of the 64-bit product, but signed
arguments must be proper 32-bit signed values, whereas unsigned arguments must have
their upper 32 bits clear. If the arguments are not known to be sign- or zero-extended, an
alternative is to shift both arguments left by 32 bits, then use MULH[[S]U].

8.1. Multiplication Operations | Page 54

The RISC-V Instruction Set Manual | © RISC-V

8.2. Division Operations

067111214151920242531

opcoderdfunc3rs1rs2funct7

OP-32destDIVW
DIVUW
REMW

REMUW

dividenddivisorMULDIV

Figure 23. Division operation instructions

DIV and DIVU perform an XLEN bits by XLEN bits signed and unsigned integer division of rs1 by rs2,
rounding towards zero. REM and REMU provide the remainder of the corresponding division
operation. For REM, the sign of the result equals the sign of the dividend.

 For both signed and unsigned division, it holds that .

If both the quotient and remainder are required from the same division, the recommended code
sequence is: DIV[U] rdq, rs1, rs2; REM[U] rdr, rs1, rs2 (rdq cannot be the same as rs1 or rs2).
Microarchitectures can then fuse these into a single divide operation instead of performing two
separate divides.

DIVW and DIVUW are RV64 instructions that divide the lower 32 bits of rs1 by the lower 32 bits of rs2,
treating them as signed and unsigned integers respectively, placing the 32-bit quotient in rd, sign-
extended to 64 bits. REMW and REMUW are RV64 instructions that provide the corresponding signed
and unsigned remainder operations respectively. Both REMW and REMUW always sign-extend the
32-bit result to 64 bits, including on a divide by zero.

The semantics for division by zero and division overflow are summarized in Table 8, “Semantics for
division by zero and division overflow.”. The quotient of division by zero has all bits set, and the
remainder of division by zero equals the dividend. Signed division overflow occurs only when the
most-negative integer is divided by . The quotient of a signed division with overflow is equal to the
dividend, and the remainder is zero. Unsigned division overflow cannot occur.

Table 8. Semantics for division by zero and division overflow.

Condition Dividend Divisor DIVU[W] REMU[W] DIV[W] REM[W]

Division by
zero

0

Overflow
(signed only)

– – 0

In Table 8, “Semantics for division by zero and division overflow.”, L is the width of the operation in
bits: XLEN for DIV[U] and REM[U], or 32 for DIV[U]W and REM[U]W.

8.2. Division Operations | Page 55

The RISC-V Instruction Set Manual | © RISC-V



We considered raising exceptions on integer divide by zero, with these exceptions causing
a trap in most execution environments. However, this would be the only arithmetic trap in
the standard ISA (floating-point exceptions set flags and write default values, but do not
cause traps) and would require language implementors to interact with the execution
environment’s trap handlers for this case. Further, where language standards mandate
that a divide-by-zero exception must cause an immediate control flow change, only a
single branch instruction needs to be added to each divide operation, and this branch
instruction can be inserted after the divide and should normally be very predictably not
taken, adding little runtime overhead.

The value of all bits set is returned for both unsigned and signed divide by zero to simplify
the divider circuitry. The value of all 1s is both the natural value to return for unsigned
divide, representing the largest unsigned number, and also the natural result for simple
unsigned divider implementations. Signed division is often implemented using an
unsigned division circuit and specifying the same overflow result simplifies the hardware.

8.3. Zmmul Extension, Version 0.1
The Zmmul extension implements the multiplication subset of the M extension. It adds all of the
instructions defined in Section 8.1, “Multiplication Operations”, namely: MUL, MULH, MULHU,
MULHSU, and (for RV64 only) MULW. The encodings are identical to those of the corresponding M-
extension instructions.



The Zmmul extension enables low-cost implementations that require multiplication
operations but not division. For many microcontroller applications, division operations are
too infrequent to justify the cost of divider hardware. By contrast, multiplication operations
are more frequent, making the cost of multiplier hardware more justifiable. Simple FPGA
soft cores particularly benefit from eliminating division but retaining multiplication, since
many FPGAs provide hardwired multipliers but require dividers be implemented in soft
logic.

8.3. Zmmul Extension, Version 0.1 | Page 56

The RISC-V Instruction Set Manual | © RISC-V

Chapter 9. A Standard Extension for
Atomic Instructions, Version 2.1
The standard atomic-instruction extension, named A, contains instructions that atomically read-
modify-write memory to support synchronization between multiple RISC-V harts running in the same
memory space. The two forms of atomic instruction provided are load-reserved/store-conditional
instructions and atomic fetch-and-op memory instructions. Both types of atomic instruction support
various memory consistency orderings including unordered, acquire, release, and sequentially
consistent semantics. These instructions allow RISC-V to support the RCsc memory consistency
model (Gharachorloo et al., 1990).


After much debate, the language community and architecture community appear to have
finally settled on release consistency as the standard memory consistency model and so
the RISC-V atomic support is built around this model.

9.1. Specifying Ordering of Atomic Instructions
The base RISC-V ISA has a relaxed memory model, with the FENCE instruction used to impose
additional ordering constraints. The address space is divided by the execution environment into
memory and I/O domains, and the FENCE instruction provides options to order accesses to one or
both of these two address domains.

To provide more efficient support for release consistency (Gharachorloo et al., 1990), each atomic
instruction has two bits, aq and rl, used to specify additional memory ordering constraints as viewed
by other RISC-V harts. The bits order accesses to one of the two address domains, memory or I/O,
depending on which address domain the atomic instruction is accessing. No ordering constraint is
implied to accesses to the other domain, and a FENCE instruction should be used to order across both
domains.

If both bits are clear, no additional ordering constraints are imposed on the atomic memory operation.
If only the aq bit is set, the atomic memory operation is treated as an acquire access, i.e., no following
memory operations on this RISC-V hart can be observed to take place before the acquire memory
operation. If only the rl bit is set, the atomic memory operation is treated as a release access, i.e., the
release memory operation cannot be observed to take place before any earlier memory operations on
this RISC-V hart. If both the aq and rl bits are set, the atomic memory operation is sequentially
consistent and cannot be observed to happen before any earlier memory operations or after any later
memory operations in the same RISC-V hart and to the same address domain.

9.2. Load-Reserved/Store-Conditional Instructions

Figure 24. Load-Reserved/Store-Conditional Instructions

9.1. Specifying Ordering of Atomic Instructions | Page 57

The RISC-V Instruction Set Manual | © RISC-V

Complex atomic memory operations on a single memory word or doubleword are performed with the
load-reserved (LR) and store-conditional (SC) instructions. LR.W loads a word from the address in rs1,
places the sign-extended value in rd, and registers a reservation set—a set of bytes that subsumes the
bytes in the addressed word. SC.W conditionally writes a word in rs2 to the address in rs1: the SC.W
succeeds only if the reservation is still valid and the reservation set contains the bytes being written. If
the SC.W succeeds, the instruction writes the word in rs2 to memory, and it writes zero to rd. If the
SC.W fails, the instruction does not write to memory, and it writes a nonzero value to rd. Regardless of
success or failure, executing an SC.W instruction invalidates any reservation held by this hart. LR.D
and SC.D act analogously on doublewords and are only available on RV64. For RV64, LR.W and SC.W
sign-extend the value placed in rd.



Both compare-and-swap (CAS) and LR/SC can be used to build lock-free data structures.
After extensive discussion, we opted for LR/SC for several reasons: 1) CAS suffers from the
ABA problem, which LR/SC avoids because it monitors all writes to the address rather
than only checking for changes in the data value; 2) CAS would also require a new integer
instruction format to support three source operands (address, compare value, swap value)
as well as a different memory system message format, which would complicate
microarchitectures; 3) Furthermore, to avoid the ABA problem, other systems provide a
double-wide CAS (DW-CAS) to allow a counter to be tested and incremented along with a
data word. This requires reading five registers and writing two in one instruction, and also
a new larger memory system message type, further complicating implementations; 4)
LR/SC provides a more efficient implementation of many primitives as it only requires one
load as opposed to two with CAS (one load before the CAS instruction to obtain a value for
speculative computation, then a second load as part of the CAS instruction to check if
value is unchanged before updating).

The main disadvantage of LR/SC over CAS is livelock, which we avoid, under certain
circumstances, with an architected guarantee of eventual forward progress as described
below. Another concern is whether the influence of the current x86 architecture, with its
DW-CAS, will complicate porting of synchronization libraries and other software that
assumes DW-CAS is the basic machine primitive. A possible mitigating factor is the recent
addition of transactional memory instructions to x86, which might cause a move away
from DW-CAS.

More generally, a multi-word atomic primitive is desirable, but there is still considerable
debate about what form this should take, and guaranteeing forward progress adds
complexity to a system.

The failure code with value 1 is reserved to encode an unspecified failure. Other failure codes are
reserved at this time, and portable software should only assume the failure code will be non-zero.


We reserve a failure code of 1 to mean unspecified so that simple implementations may
return this value using the existing mux required for the SLT/SLTU instructions. More
specific failure codes might be defined in future versions or extensions to the ISA.

For LR and SC, the A extension requires that the address held in rs1 be naturally aligned to the size of
the operand (i.e., eight-byte aligned for 64-bit words and four-byte aligned for 32-bit words). If the
address is not naturally aligned, an address-misaligned exception or an access-fault exception will be
generated. The access-fault exception can be generated for a memory access that would otherwise be
able to complete except for the misalignment, if the misaligned access should not be emulated.

9.2. Load-Reserved/Store-Conditional Instructions | Page 58

The RISC-V Instruction Set Manual | © RISC-V



Emulating misaligned LR/SC sequences is impractical in most systems.

Misaligned LR/SC sequences also raise the possibility of accessing multiple reservation
sets at once, which present definitions do not provide for.

An implementation can register an arbitrarily large reservation set on each LR, provided the
reservation set includes all bytes of the addressed data word or doubleword. An SC can only pair with
the most recent LR in program order. An SC may succeed only if no store from another hart to the
reservation set can be observed to have occurred between the LR and the SC, and if there is no other
SC between the LR and itself in program order. An SC may succeed only if no write from a device
other than a hart to the bytes accessed by the LR instruction can be observed to have occurred between
the LR and SC. Note this LR might have had a different effective address and data size, but reserved
the SC’s address as part of the reservation set.



Following this model, in systems with memory translation, an SC is allowed to succeed if
the earlier LR reserved the same location using an alias with a different virtual address,
but is also allowed to fail if the virtual address is different.

To accommodate legacy devices and buses, writes from devices other than RISC-V harts
are only required to invalidate reservations when they overlap the bytes accessed by the
LR. These writes are not required to invalidate the reservation when they access other
bytes in the reservation set.

The SC must fail if the address is not within the reservation set of the most recent LR in program
order. The SC must fail if a store to the reservation set from another hart can be observed to occur
between the LR and SC. The SC must fail if a write from some other device to the bytes accessed by the
LR can be observed to occur between the LR and SC. (If such a device writes the reservation set but
does not write the bytes accessed by the LR, the SC may or may not fail.) An SC must fail if there is
another SC (to any address) between the LR and the SC in program order. The precise statement of the
atomicity requirements for successful LR/SC sequences is defined by the Atomicity Axiom in Section
15.1, “Definition of the RVWMO Memory Model”.



The platform should provide a means to determine the size and shape of the reservation
set.

A platform specification may constrain the size and shape of the reservation set. For
example, the Unix platform is expected to require of main memory that the reservation set
be of fixed size, contiguous, naturally aligned, and no greater than the virtual memory
page size.

A store-conditional instruction to a scratch word of memory should be used to forcibly
invalidate any existing load reservation:

• during a preemptive context switch, and

• if necessary when changing virtual to physical address mappings, such as when
migrating pages that might contain an active reservation.

The invalidation of a hart’s reservation when it executes an LR or SC imply that a hart can only hold
one reservation at a time, and that an SC can only pair with the most recent LR, and LR with the next
following SC, in program order. This is a restriction to the Atomicity Axiom in Section 15.1, “Definition
of the RVWMO Memory Model” that ensures software runs correctly on expected common

9.2. Load-Reserved/Store-Conditional Instructions | Page 59

The RISC-V Instruction Set Manual | © RISC-V

implementations that operate in this manner.

An SC instruction can never be observed by another RISC-V hart before the LR instruction that
established the reservation. The LR/SC sequence can be given acquire semantics by setting the aq bit
on the LR instruction. The LR/SC sequence can be given release semantics by setting the rl bit on the
SC instruction. Setting the aq bit on the LR instruction, and setting both the aq and the rl bit on the SC
instruction makes the LR/SC sequence sequentially consistent, meaning that it cannot be reordered
with earlier or later memory operations from the same hart.

If neither bit is set on both LR and SC, the LR/SC sequence can be observed to occur before or after
surrounding memory operations from the same RISC-V hart. This can be appropriate when the LR/SC
sequence is used to implement a parallel reduction operation.

Software should not set the rl bit on an LR instruction unless the aq bit is also set, nor should software
set the aq bit on an SC instruction unless the rl bit is also set. LR.rl and SC.aq instructions are not
guaranteed to provide any stronger ordering than those with both bits clear, but may result in lower
performance.

Example 1. Sample code for compare-and-swap function using LR/SC.

 # a0 holds address of memory location
 # a1 holds expected value
 # a2 holds desired value
 # a0 holds return value, 0 if successful, !0 otherwise
 cas:
 lr.w t0, (a0) # Load original value.
 bne t0, a1, fail # Doesn't match, so fail.
 sc.w t0, a2, (a0) # Try to update.
 bnez t0, cas # Retry if store-conditional failed.
 li a0, 0 # Set return to success.
 jr ra # Return.
 fail:
 li a0, 1 # Set return to failure.
 jr ra # Return.

LR/SC can be used to construct lock-free data structures. An example using LR/SC to implement a
compare-and-swap function is shown in [cas]. If inlined, compare-and-swap functionality need only
take four instructions.

9.3. Eventual Success of Store-Conditional
Instructions
The standard A extension defines constrained LR/SC loops, which have the following properties:

• The loop comprises only an LR/SC sequence and code to retry the sequence in the case of failure,
and must comprise at most 16 instructions placed sequentially in memory.

• An LR/SC sequence begins with an LR instruction and ends with an SC instruction. The dynamic
code executed between the LR and SC instructions can only contain instructions from the base I
instruction set, excluding loads, stores, backward jumps, taken backward branches, JALR, FENCE,

9.3. Eventual Success of Store-Conditional Instructions | Page 60

The RISC-V Instruction Set Manual | © RISC-V

and SYSTEM instructions. If the C extension is supported, then compressed forms of the
aforementioned I instructions are also permitted.

• The code to retry a failing LR/SC sequence can contain backwards jumps and/or branches to
repeat the LR/SC sequence, but otherwise has the same constraint as the code between the LR and
SC.

• The LR and SC addresses must lie within a memory region with the LR/SC eventuality property.
The execution environment is responsible for communicating which regions have this property.

• The SC must be to the same effective address and of the same data size as the latest LR executed by
the same hart.

LR/SC sequences that do not lie within constrained LR/SC loops are unconstrained. Unconstrained
LR/SC sequences might succeed on some attempts on some implementations, but might never
succeed on other implementations.



We restricted the length of LR/SC loops to fit within 64 contiguous instruction bytes in the
base ISA to avoid undue restrictions on instruction cache and TLB size and associativity.
Similarly, we disallowed other loads and stores within the loops to avoid restrictions on
data-cache associativity in simple implementations that track the reservation within a
private cache. The restrictions on branches and jumps limit the time that can be spent in
the sequence. Floating-point operations and integer multiply/divide were disallowed to
simplify the operating system’s emulation of these instructions on implementations
lacking appropriate hardware support.

Software is not forbidden from using unconstrained LR/SC sequences, but portable
software must detect the case that the sequence repeatedly fails, then fall back to an
alternate code sequence that does not rely on an unconstrained LR/SC sequence.
Implementations are permitted to unconditionally fail any unconstrained LR/SC sequence.

If a hart H enters a constrained LR/SC loop, the execution environment must guarantee that one of the
following events eventually occurs:

• H or some other hart executes a successful SC to the reservation set of the LR instruction in H’s
constrained LR/SC loops.

• Some other hart executes an unconditional store or AMO instruction to the reservation set of the
LR instruction in H’s constrained LR/SC loop, or some other device in the system writes to that
reservation set.

• H executes a branch or jump that exits the constrained LR/SC loop.

• H traps.


Note that these definitions permit an implementation to fail an SC instruction
occasionally for any reason, provided the aforementioned guarantee is not violated.

9.3. Eventual Success of Store-Conditional Instructions | Page 61

The RISC-V Instruction Set Manual | © RISC-V



As a consequence of the eventuality guarantee, if some harts in an execution environment
are executing constrained LR/SC loops, and no other harts or devices in the execution
environment execute an unconditional store or AMO to that reservation set, then at least
one hart will eventually exit its constrained LR/SC loop. By contrast, if other harts or
devices continue to write to that reservation set, it is not guaranteed that any hart will exit
its LR/SC loop.

Loads and load-reserved instructions do not by themselves impede the progress of other
harts’ LR/SC sequences. We note this constraint implies, among other things, that loads
and load-reserved instructions executed by other harts (possibly within the same core)
cannot impede LR/SC progress indefinitely. For example, cache evictions caused by
another hart sharing the cache cannot impede LR/SC progress indefinitely. Typically, this
implies reservations are tracked independently of evictions from any shared cache.
Similarly, cache misses caused by speculative execution within a hart cannot impede
LR/SC progress indefinitely.

These definitions admit the possibility that SC instructions may spuriously fail for
implementation reasons, provided progress is eventually made.



One advantage of CAS is that it guarantees that some hart eventually makes progress,
whereas an LR/SC atomic sequence could livelock indefinitely on some systems. To avoid
this concern, we added an architectural guarantee of livelock freedom for certain LR/SC
sequences.

Earlier versions of this specification imposed a stronger starvation-freedom guarantee.
However, the weaker livelock-freedom guarantee is sufficient to implement the C11 and
C++11 languages, and is substantially easier to provide in some microarchitectural styles.

9.4. Atomic Memory Operations

Figure 25. Atomic memory operations

The atomic memory operation (AMO) instructions perform read-modify-write operations for
multiprocessor synchronization and are encoded with an R-type instruction format. These AMO
instructions atomically load a data value from the address in rs1, place the value into register rd, apply
a binary operator to the loaded value and the original value in rs2, then store the result back to the
original address in rs1. AMOs can either operate on 64-bit (RV64 only) or 32-bit words in memory. For
RV64, 32-bit AMOs always sign-extend the value placed in rd, and ignore the upper 32 bits of the
original value of rs2.

For AMOs, the A extension requires that the address held in rs1 be naturally aligned to the size of the
operand (i.e., eight-byte aligned for 64-bit words and four-byte aligned for 32-bit words). If the address

9.4. Atomic Memory Operations | Page 62

The RISC-V Instruction Set Manual | © RISC-V

is not naturally aligned, an address-misaligned exception or an access-fault exception will be
generated. The access-fault exception can be generated for a memory access that would otherwise be
able to complete except for the misalignment, if the misaligned access should not be emulated. The
Zam extension, described in Chapter 21, Zam Standard Extension for Misaligned Atomics, v0.1, relaxes
this requirement and specifies the semantics of misaligned AMOs.

The operations supported are swap, integer add, bitwise AND, bitwise OR, bitwise XOR, and signed and
unsigned integer maximum and minimum. Without ordering constraints, these AMOs can be used to
implement parallel reduction operations, where typically the return value would be discarded by
writing to x0.



We provided fetch-and-op style atomic primitives as they scale to highly parallel systems
better than LR/SC or CAS. A simple microarchitecture can implement AMOs using the
LR/SC primitives, provided the implementation can guarantee the AMO eventually
completes. More complex implementations might also implement AMOs at memory
controllers, and can optimize away fetching the original value when the destination is x0.

The set of AMOs was chosen to support the C11/C++11 atomic memory operations
efficiently, and also to support parallel reductions in memory. Another use of AMOs is to
provide atomic updates to memory-mapped device registers (e.g., setting, clearing, or
toggling bits) in the I/O space.

To help implement multiprocessor synchronization, the AMOs optionally provide release consistency
semantics. If the aq bit is set, then no later memory operations in this RISC-V hart can be observed to
take place before the AMO. Conversely, if the rl bit is set, then other RISC-V harts will not observe the
AMO before memory accesses preceding the AMO in this RISC-V hart. Setting both the aq and the rl
bit on an AMO makes the sequence sequentially consistent, meaning that it cannot be reordered with
earlier or later memory operations from the same hart.



The AMOs were designed to implement the C11 and C++11 memory models efficiently.
Although the FENCE R, RW instruction suffices to implement the acquire operation and
FENCE RW, W suffices to implement release, both imply additional unnecessary ordering
as compared to AMOs with the corresponding aq or rl bit set.

An example code sequence for a critical section guarded by a test-and-test-and-set spinlock is shown
in Sample code for mutual exclusion. a0 contains the address of the lock.. Note the first AMO is
marked aq to order the lock acquisition before the critical section, and the second AMO is marked rl to
order the critical section before the lock relinquishment.

9.4. Atomic Memory Operations | Page 63

The RISC-V Instruction Set Manual | © RISC-V

Sample code for mutual exclusion. a0 contains the address of the lock.

 li t0, 1 # Initialize swap value.
 again:
 lw t1, (a0) # Check if lock is held.
 bnez t1, again # Retry if held.
 amoswap.w.aq t1, t0, (a0) # Attempt to acquire lock.
 bnez t1, again # Retry if held.
 # ...
 # Critical section.
 # ...
 amoswap.w.rl x0, x0, (a0) # Release lock by storing 0.


We recommend the use of the AMO Swap idiom shown above for both lock acquire and
release to simplify the implementation of speculative lock elision (Rajwar & Goodman,
2001).

The instructions in the A extension can also be used to provide sequentially consistent loads and
stores. A sequentially consistent load can be implemented as an LR with both aq and rl set. A
sequentially consistent store can be implemented as an AMOSWAP that writes the old value to x0 and
has both aq and rl set.

9.4. Atomic Memory Operations | Page 64

The RISC-V Instruction Set Manual | © RISC-V

Chapter 10. "Zicsr" Control and Status
Register (CSR) Instructions, Version 2.0
RISC-V defines a separate address space of 4096 Control and Status registers associated with each
hart. This chapter defines the full set of CSR instructions that operate on these CSRs.



While CSRs are primarily used by the privileged architecture, there are several uses in
unprivileged code including for counters and timers, and for floating-point status.

The counters and timers are no longer considered mandatory parts of the standard base
ISAs, and so the CSR instructions required to access them have been moved out of Chapter
2, RV32I Base Integer Instruction Set, Version 2.1 into this separate chapter.

10.1. CSR Instructions
All CSR instructions atomically read-modify-write a single CSR, whose CSR specifier is encoded in the
12-bit csr field of the instruction held in bits 31–20. The immediate forms use a 5-bit zero-extended
immediate encoded in the rs1 field.

Figure 26. CSR instructions

The CSRRW (Atomic Read/Write CSR) instruction atomically swaps values in the CSRs and integer
registers. CSRRW reads the old value of the CSR, zero-extends the value to XLEN bits, then writes it to
integer register rd. The initial value in rs1 is written to the CSR. If rd=x0, then the instruction shall not
read the CSR and shall not cause any of the side effects that might occur on a CSR read.

The CSRRS (Atomic Read and Set Bits in CSR) instruction reads the value of the CSR, zero-extends the
value to XLEN bits, and writes it to integer register rd. The initial value in integer register rs1 is treated
as a bit mask that specifies bit positions to be set in the CSR. Any bit that is high in rs1 will cause the
corresponding bit to be set in the CSR, if that CSR bit is writable. Other bits in the CSR are not
explicitly written.

The CSRRC (Atomic Read and Clear Bits in CSR) instruction reads the value of the CSR, zero-extends
the value to XLEN bits, and writes it to integer register rd. The initial value in integer register rs1 is
treated as a bit mask that specifies bit positions to be cleared in the CSR. Any bit that is high in rs1 will

10.1. CSR Instructions | Page 65

The RISC-V Instruction Set Manual | © RISC-V

cause the corresponding bit to be cleared in the CSR, if that CSR bit is writable. Other bits in the CSR
are not explicitly written.

For both CSRRS and CSRRC, if rs1=x0, then the instruction will not write to the CSR at all, and so shall
not cause any of the side effects that might otherwise occur on a CSR write, nor raise illegal
instruction exceptions on accesses to read-only CSRs. Both CSRRS and CSRRC always read the
addressed CSR and cause any read side effects regardless of rs1 and rd fields. Note that if rs1 specifies a
register holding a zero value other than ` x0`, the instruction will still attempt to write the unmodified
value back to the CSR and will cause any attendant side effects. A CSRRW with rs1=x0 will attempt to
write zero to the destination CSR.

The CSRRWI, CSRRSI, and CSRRCI variants are similar to CSRRW, CSRRS, and CSRRC respectively,
except they update the CSR using an XLEN-bit value obtained by zero-extending a 5-bit unsigned
immediate (uimm[4:0]) field encoded in the rs1 field instead of a value from an integer register. For
CSRRSI and CSRRCI, if the uimm[4:0] field is zero, then these instructions will not write to the CSR,
and shall not cause any of the side effects that might otherwise occur on a CSR write, nor raise illegal
instruction exceptions on accesses to read-only CSRs. For CSRRWI, if rd=x0, then the instruction shall
not read the CSR and shall not cause any of the side effects that might occur on a CSR read. Both
CSRRSI and CSRRCI will always read the CSR and cause any read side effects regardless of rd and rs1
fields.

Table 9. Conditions determining whether a CSR instruction reads or writes the specified CSR.

Register operand

Instruction rd is x0 rs1 is x0 Reads CSR Writes CSR

CSRRW Yes – No Yes

CSRRW No – Yes Yes

CSRRS/CSRRC – Yes Yes No

CSRRS/CSRRC – No Yes Yes

Immediate operand

Instruction rd is x0 uimm 0 Reads CSR Writes CSR

CSRRWI Yes – No Yes

CSRRWI No – Yes Yes

CSRRSI/CSRRCI – Yes Yes No

CSRRSI/CSRRCI – No Yes Yes

Table 9, “Conditions determining whether a CSR instruction reads or writes the specified CSR.”
summarizes the behavior of the CSR instructions with respect to whether they read and/or write the
CSR.

For any event or consequence that occurs due to a CSR having a particular value, if a write to the CSR
gives it that value, the resulting event or consequence is said to be an indirect effect of the write.
Indirect effects of a CSR write are not considered by the RISC-V ISA to be side effects of that write.

10.1. CSR Instructions | Page 66

The RISC-V Instruction Set Manual | © RISC-V



An example of side effects for CSR accesses would be if reading from a specific CSR causes
a light bulb to turn on, while writing an odd value to the same CSR causes the light to turn
off. Assume writing an even value has no effect. In this case, both the read and write have
side effects controlling whether the bulb is lit, as this condition is not determined solely
from the CSR value. (Note that after writing an odd value to the CSR to turn off the light,
then reading to turn the light on, writing again the same odd value causes the light to turn
off again. Hence, on the last write, it is not a change in the CSR value that turns off the
light.)

On the other hand, if a bulb is rigged to light whenever the value of a particular CSR is
odd, then turning the light on and off is not considered a side effect of writing to the CSR
but merely an indirect effect of such writes.

More concretely, the RISC-V privileged architecture defined in Volume II specifies that
certain combinations of CSR values cause a trap to occur. When an explicit write to a CSR
creates the conditions that trigger the trap, the trap is not considered a side effect of the
write but merely an indirect effect.

Standard CSRs do not have any side effects on reads. Standard CSRs may have side effects
on writes. Custom extensions might add CSRs for which accesses have side effects on
either reads or writes.

Some CSRs, such as the instructions-retired counter, instret, may be modified as side effects of
instruction execution. In these cases, if a CSR access instruction reads a CSR, it reads the value prior to
the execution of the instruction. If a CSR access instruction writes such a CSR, the write is done
instead of the increment. In particular, a value written to instret by one instruction will be the value
read by the following instruction.

The assembler pseudoinstruction to read a CSR, CSRR rd, csr, is encoded as CSRRS rd, csr, x0. The
assembler pseudoinstruction to write a CSR, CSRW csr, rs1, is encoded as CSRRW x0, csr, rs1, while
CSRWI csr, uimm, is encoded as CSRRWI x0, csr, uimm.

Further assembler pseudoinstructions are defined to set and clear bits in the CSR when the old value
is not required: CSRS/CSRC csr, rs1; CSRSI/CSRCI csr, uimm.

10.1.1. CSR Access Ordering

Each RISC-V hart normally observes its own CSR accesses, including its implicit CSR accesses, as
performed in program order. In particular, unless specified otherwise, a CSR access is performed after
the execution of any prior instructions in program order whose behavior modifies or is modified by
the CSR state and before the execution of any subsequent instructions in program order whose
behavior modifies or is modified by the CSR state. Furthermore, an explicit CSR read returns the CSR
state before the execution of the instruction, while an explict CSR write suppresses and overrides any
implicit writes or modifications to the same CSR by the same instruction.

Likewise, any side effects from an explicit CSR access are normally observed to occur synchronously
in program order. Unless specified otherwise, the full consequences of any such side effects are
observable by the very next instruction, and no consequences may be observed out-of-order by
preceding instructions. (Note the distinction made earlier between side effects and indirect effects of
CSR writes.)

For the RVWMO memory consistency model Chapter 15, RVWMO Memory Consistency Model, Version

10.1. CSR Instructions | Page 67

The RISC-V Instruction Set Manual | © RISC-V

2.0, CSR accesses are weakly ordered by default, so other harts or devices may observe CSR accesses in
an order different from program order. In addition, CSR accesses are not ordered with respect to
explicit memory accesses, unless a CSR access modifies the execution behavior of the instruction that
performs the explicit memory access or unless a CSR access and an explicit memory access are
ordered by either the syntactic dependencies defined by the memory model or the ordering
requirements defined by the Memory-Ordering PMAs section in Volume II of this manual. To enforce
ordering in all other cases, software should execute a FENCE instruction between the relevant
accesses. For the purposes of the FENCE instruction, CSR read accesses are classified as device input
(I), and CSR write accesses are classified as device output (O).



Informally, the CSR space acts as a weakly ordered memory-mapped I/O region, as
defined by the Memory-Ordering PMAs section in Volume II of this manual. As a result,
the order of CSR accesses with respect to all other accesses is constrained by the same
mechanisms that constrain the order of memory-mapped I/O accesses to such a region.

These CSR-ordering constraints are imposed to support ordering main memory and
memory-mapped I/O accesses with respect to CSR accesses that are visible to, or affected
by, devices or other harts. Examples include the time, cycle, and mcycle CSRs, in
addition to CSRs that reflect pending interrupts, like mip and sip. Note that implicit
reads of such CSRs (e.g., taking an interrupt because of a change in mip) are also ordered
as device input.

Most CSRs (including, e.g., the "fcsr") are not visible to other harts; their accesses can be freely
reordered in the global memory order with respect to FENCE instructions without violating this
specification.

The hardware platform may define that accesses to certain CSRs are strongly ordered, as defined by
the Memory-Ordering PMAs section in Volume II of this manual. Accesses to strongly ordered CSRs
have stronger ordering constraints with respect to accesses to both weakly ordered CSRs and accesses
to memory-mapped I/O regions.


The rules for the reordering of CSR accesses in the global memory order should probably
be moved to Chapter 15, RVWMO Memory Consistency Model, Version 2.0 concerning the
RVWMO memory consistency model.

10.1. CSR Instructions | Page 68

The RISC-V Instruction Set Manual | © RISC-V

Chapter 11. Counters
RISC-V ISAs provide a set of up to 32_X_64-bit performance counters and timers that are accessible
via unprivileged XLEN read-only CSR registers 0xC00–0xC1F (with the upper 32 bits accessed via
CSR registers 0xC80–0xC9F on RV32). The first three of these (CYCLE, TIME, and INSTRET) have
dedicated functions (cycle count, real-time clock, and instructions-retired respectively), while the
remaining counters, if implemented, provide programmable event counting.

11.1. Base Counters and Timers
06711121415192031

opcoderdfunc3rs1csr

7
SYSTEM
SYSTEM
SYSTEM

5
dest
dest
dest

3
CSRRS
CSRRS
CSRRS

5
0
0
0

12
RDCYCLE[H]
RDTIME[H]

RDINSTRET[H]

Figure 27. Base counters and timers

RV32I provides a number of 64-bit read-only user-level counters, which are mapped into the 12-bit
CSR address space and accessed in 32-bit pieces using CSRRS instructions. In RV64I, the CSR
instructions can manipulate 64-bit CSRs. In particular, the RDCYCLE, RDTIME, and RDINSTRET
pseudoinstructions read the full 64 bits of the cycle, time, and instret counters. Hence, the RDCYCLEH,
RDTIMEH, and RDINSTRETH instructions are RV32I-only.


Some execution environments might prohibit access to counters to impede timing side-
channel attacks.

The RDCYCLE pseudoinstruction reads the low XLEN bits of the cycle CSR which holds a count of the
number of clock cycles executed by the processor core on which the hart is running from an arbitrary
start time in the past. RDCYCLEH is an RV32I-only instruction that reads bits 63–32 of the same
cycle counter. The underlying 64-bit counter should never overflow in practice. The rate at which the
cycle counter advances will depend on the implementation and operating environment. The execution
environment should provide a means to determine the current rate (cycles/second) at which the cycle
counter is incrementing.

11.1. Base Counters and Timers | Page 69

The RISC-V Instruction Set Manual | © RISC-V



RDCYCLE is intended to return the number of cycles executed by the processor core, not
the hart. Precisely defining what is a "core" is difficult given some implementation choices
(e.g., AMD Bulldozer). Precisely defining what is a "clock cycle" is also difficult given the
range of implementations (including software emulations), but the intent is that
RDCYCLE is used for performance monitoring along with the other performance counters.
In particular, where there is one hart/core, one would expect cycle-count/instructions-
retired to measure CPI for a hart.

Cores don’t have to be exposed to software at all, and an implementor might choose to
pretend multiple harts on one physical core are running on separate cores with one
hart/core, and provide separate cycle counters for each hart. This might make sense in a
simple barrel processor (e.g., CDC 6600 peripheral processors) where inter-hart timing
interactions are non-existent or minimal.

Where there is more than one hart/core and dynamic multithreading, it is not generally
possible to separate out cycles per hart (especially with SMT). It might be possible to
define a separate performance counter that tried to capture the number of cycles a
particular hart was running, but this definition would have to be very fuzzy to cover all the
possible threading implementations. For example, should we only count cycles for which
any instruction was issued to execution for this hart, and/or cycles any instruction retired,
or include cycles this hart was occupying machine resources but couldn’t execute due to
stalls while other harts went into execution? Likely, all of the above would be needed to
have understandable performance stats. This complexity of defining a per-hart cycle
count, and also the need in any case for a total per-core cycle count when tuning
multithreaded code led to just standardizing the per-core cycle counter, which also
happens to work well for the common single hart/core case.

Standardizing what happens during "sleep" is not practical given that what "sleep" means
is not standardized across execution environments, but if the entire core is paused
(entirely clock-gated or powered-down in deep sleep), then it is not executing clock cycles,
and the cycle count shouldn’t be increasing per the spec. There are many details, e.g.,
whether clock cycles required to reset a processor after waking up from a power-down
event should be counted, and these are considered execution-environment-specific details.

Even though there is no precise definition that works for all platforms, this is still a useful
facility for most platforms, and an imprecise, common, "usually correct" standard here is
better than no standard. The intent of RDCYCLE was primarily performance
monitoring/tuning, and the specification was written with that goal in mind.

The RDTIME pseudoinstruction reads the low XLEN bits of the time CSR, which counts wall-clock
real time that has passed from an arbitrary start time in the past. RDTIMEH is an RV32I-only
instruction that reads bits 63–32 of the same real-time counter. The underlying 64-bit counter should
never overflow in practice. The execution environment should provide a means of determining the
period of the real-time counter (seconds/tick). The period must be constant. The real-time clocks of all
harts in a single user application should be synchronized to within one tick of the real-time clock. The
environment should provide a means to determine the accuracy of the clock.



On some simple platforms, cycle count might represent a valid implementation of
RDTIME, but in this case, platforms should implement the RDTIME instruction as an
alias for RDCYCLE to make code more portable, rather than using RDCYCLE to measure
wall-clock time.

11.1. Base Counters and Timers | Page 70

The RISC-V Instruction Set Manual | © RISC-V

The RDINSTRET pseudoinstruction reads the low XLEN bits of the instret CSR, which counts the
number of instructions retired by this hart from some arbitrary start point in the past. RDINSTRETH
is an RV32I-only instruction that reads bits 63–32 of the same instruction counter. The underlying
64-bit counter should never overflow in practice.

The following code sequence will read a valid 64-bit cycle counter value into x3:_x2_, even if the
counter overflows its lower half between reading its upper and lower halves.

Sample code for reading the 64-bit cycle counter in RV32.

 again:
 rdcycleh x3
 rdcycle x2
 rdcycleh x4
 bne x3, x4, again



We recommend provision of these basic counters in implementations as they are essential
for basic performance analysis, adaptive and dynamic optimization, and to allow an
application to work with real-time streams. Additional counters should be provided to help
diagnose performance problems and these should be made accessible from user-level
application code with low overhead.

We required the counters be 64 bits wide, even on RV32, as otherwise it is very difficult for
software to determine if values have overflowed. For a low-end implementation, the upper
32 bits of each counter can be implemented using software counters incremented by a trap
handler triggered by overflow of the lower 32 bits. The sample code described above shows
how the full 64-bit width value can be safely read using the individual 32-bit instructions.

In some applications, it is important to be able to read multiple counters at the same
instant in time. When run under a multitasking environment, a user thread can suffer a
context switch while attempting to read the counters. One solution is for the user thread to
read the real-time counter before and after reading the other counters to determine if a
context switch occurred in the middle of the sequence, in which case the reads can be
retried. We considered adding output latches to allow a user thread to snapshot the
counter values atomically, but this would increase the size of the user context, especially
for implementations with a richer set of counters.

11.2. Hardware Performance Counters

There is CSR space allocated for 29 additional unprivileged 64-bit hardware performance counters,
'hpmcounter3'–'hpmcounter31'. For RV32, the upper 32 bits of these performance counters is
accessible via additional CSRs 'hpmcounter3h'–'hpmcounter31h'. These counters count platform-
specific events and are configured via additional privileged registers. The number and width of these
additional counters, and the set of events they count is platform-specific.

11.2. Hardware Performance Counters | Page 71

The RISC-V Instruction Set Manual | © RISC-V



The privileged architecture manual describes the privileged CSRs controlling access to
these counters and to set the events to be counted.

It would be useful to eventually standardize event settings to count ISA-level metrics, such
as the number of floating-point instructions executed for example, and possibly a few
common microarchitectural metrics, such as "L1 instruction cache misses".

11.2. Hardware Performance Counters | Page 72

The RISC-V Instruction Set Manual | © RISC-V

Chapter 12. F Standard Extension for
Single-Precision Floating-Point, Version
2.2
This chapter describes the standard instruction-set extension for single-precision floating-point,
which is named "F" and adds single-precision floating-point computational instructions compliant
with the IEEE 754-2008 arithmetic standard (ANSI/IEEE Std 754-2008, IEEE Standard for Floating-
Point Arithmetic, 2008). The F extension depends on the "Zicsr" extension for control and status
register access.

12.1. F Register State
The F extension adds 32 floating-point registers, f0–f31, each 32 bits wide, and a floating-point
control and status register fcsr, which contains the operating mode and exception status of the
floating-point unit. This additional state is shown in Table 10, “RISC-V standard F extension single-
precision floating-point state”. We use the term FLEN to describe the width of the floating-point
registers in the RISC-V ISA, and FLEN=32 for the F single-precision floating-point extension. Most
floating-point instructions operate on values in the floating-point register file. Floating-point load and
store instructions transfer floating-point values between registers and memory. Instructions to
transfer values to and from the integer register file are also provided.



We considered a unified register file for both integer and floating-point values as this
simplifies software register allocation and calling conventions, and reduces total user
state. However, a split organization increases the total number of registers accessible with
a given instruction width, simplifies provision of enough regfile ports for wide superscalar
issue, supports decoupled floating-point-unit architectures, and simplifies use of internal
floating-point encoding techniques. Compiler support and calling conventions for split
register file architectures are well understood, and using dirty bits on floating-point
register file state can reduce context-switch overhead.

Table 10. RISC-V standard F extension single-precision
floating-point state

FLEN-1 0

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

12.1. F Register State | Page 73

The RISC-V Instruction Set Manual | © RISC-V

f10

f11

f12

f13

f14

f15

f16

f17

f18

f19

f20

f21

f22

f23

f24

f25

f26

f27

f28

f29

f30

f31

FLEN

31 0

fcsr

32

12.2. Floating-Point Control and Status Register
The floating-point control and status register, fcsr, is a RISC-V control and status register (CSR). It is
a 32-bit read/write register that selects the dynamic rounding mode for floating-point arithmetic
operations and holds the accrued exception flags, as shown in Figure 28, “Floating-point control and
status register”.

Figure 28. Floating-point control and status register

The fcsr register can be read and written with the FRCSR and FSCSR instructions, which are
assembler pseudoinstructions built on the underlying CSR access instructions. FRCSR reads fcsr by

12.2. Floating-Point Control and Status Register | Page 74

The RISC-V Instruction Set Manual | © RISC-V

copying it into integer register rd. FSCSR swaps the value in fcsr by copying the original value into
integer register rd, and then writing a new value obtained from integer register rs1 into fcsr.

The fields within the fcsr can also be accessed individually through different CSR addresses, and
separate assembler pseudoinstructions are defined for these accesses. The FRRM instruction reads the
Rounding Mode field frm and copies it into the least-significant three bits of integer register rd, with
zero in all other bits. FSRM swaps the value in frm by copying the original value into integer register
rd, and then writing a new value obtained from the three least-significant bits of integer register rs1
into frm. FRFLAGS and FSFLAGS are defined analogously for the Accrued Exception Flags field
fflags.

Bits 31–8 of the fcsr are reserved for other standard extensions. If these extensions are not present,
implementations shall ignore writes to these bits and supply a zero value when read. Standard
software should preserve the contents of these bits.

Floating-point operations use either a static rounding mode encoded in the instruction, or a dynamic
rounding mode held in frm. Rounding modes are encoded as shown in Table 11, “Rounding mode
encoding.”. A value of 111 in the instruction’s rm field selects the dynamic rounding mode held in frm.
The behavior of floating-point instructions that depend on rounding mode when executed with a
reserved rounding mode is reserved, including both static reserved rounding modes (101–110) and
dynamic reserved rounding modes (101–111). Some instructions, including widening conversions,
have the rm field but are nevertheless mathematically unaffected by the rounding mode; software
should set their rm field to RNE (000) but implementations must treat the rm field as usual (in
particular, with regard to decoding legal vs. reserved encodings).

Table 11. Rounding mode encoding.

Rounding Mode Mnemonic Meaning

000 RNE Round to Nearest, ties to Even

001 RTZ Round towards Zero

010 RDN Round Down (towards)

011 RUP Round Up (towards)

100 RMM Round to Nearest, ties to Max Magnitude

101 Reserved for future use.

110 Reserved for future use.

111 DYN In instruction’s rm field, selects dynamic rounding mode; In
Rounding Mode register, reserved.

12.2. Floating-Point Control and Status Register | Page 75

The RISC-V Instruction Set Manual | © RISC-V



The C99 language standard effectively mandates the provision of a dynamic rounding
mode register. In typical implementations, writes to the dynamic rounding mode CSR state
will serialize the pipeline. Static rounding modes are used to implement specialized
arithmetic operations that often have to switch frequently between different rounding
modes.

The ratified version of the F spec mandated that an illegal instruction exception was
raised when an instruction was executed with a reserved dynamic rounding mode. This
has been weakened to reserved, which matches the behavior of static rounding-mode
instructions. Raising an illegal instruction exception is still valid behavior when
encountering a reserved encoding, so implementations compatible with the ratified spec
are compatible with the weakened spec.

The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software, as shown in Table 12, “Accrued
exception flag encoding.”. The base RISC-V ISA does not support generating a trap on the setting of a
floating-point exception flag.

Table 12. Accrued exception flag encoding.

Flag Mnemonic Flag Meaning

NV Invalid Operation

DZ Divide by Zero

OF Overflow

UF Underflow

NX Inexact



As allowed by the standard, we do not support traps on floating-point exceptions in the F
extension, but instead require explicit checks of the flags in software. We considered
adding branches controlled directly by the contents of the floating-point accrued exception
flags, but ultimately chose to omit these instructions to keep the ISA simple.

12.3. NaN Generation and Propagation
Except when otherwise stated, if the result of a floating-point operation is NaN, it is the canonical
NaN. The canonical NaN has a positive sign and all significand bits clear except the MSB, a.k.a. the
quiet bit. For single-precision floating-point, this corresponds to the pattern 0x7fc00000.



We considered propagating NaN payloads, as is recommended by the standard, but this
decision would have increased hardware cost. Moreover, since this feature is optional in
the standard, it cannot be used in portable code.

Implementors are free to provide a NaN payload propagation scheme as a nonstandard
extension enabled by a nonstandard operating mode. However, the canonical NaN scheme
described above must always be supported and should be the default mode.

12.3. NaN Generation and Propagation | Page 76

The RISC-V Instruction Set Manual | © RISC-V



We require implementations to return the standard-mandated default values in the case
of exceptional conditions, without any further intervention on the part of user-level
software (unlike the Alpha ISA floating-point trap barriers). We believe full hardware
handling of exceptional cases will become more common, and so wish to avoid
complicating the user-level ISA to optimize other approaches. Implementations can
always trap to machine-mode software handlers to provide exceptional default values.

12.4. Subnormal Arithmetic
Operations on subnormal numbers are handled in accordance with the IEEE 754-2008 standard.

In the parlance of the IEEE standard, tininess is detected after rounding.

 Detecting tininess after rounding results in fewer spurious underflow signals.

12.5. Single-Precision Load and Store Instructions
Floating-point loads and stores use the same base+offset addressing mode as the integer base ISAs,
with a base address in register rs1 and a 12-bit signed byte offset. The FLW instruction loads a single-
precision floating-point value from memory into floating-point register rd. FSW stores a single-
precision value from floating-point register rs2 to memory.

Figure 29. SP load and store

FLW and FSW are only guaranteed to execute atomically if the effective address is naturally aligned.

FLW and FSW do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved.

As described in Section 2.6, “Load and Store Instructions”, the execution environment defines whether
misaligned floating-point loads and stores are handled invisibly or raise a contained or fatal trap.

12.6. Single-Precision Floating-Point
Computational Instructions
Floating-point arithmetic instructions with one or two source operands use the R-type format with the
OP-FP major opcode. FADD.S and FMUL.S perform single-precision floating-point addition and
multiplication respectively, between rs1 and rs2. FSUB.S performs the single-precision floating-point
subtraction of rs2 from rs1. FDIV.S performs the single-precision floating-point division of rs1 by rs2.
FSQRT.S computes the square root of rs1. In each case, the result is written to rd.

12.4. Subnormal Arithmetic | Page 77

The RISC-V Instruction Set Manual | © RISC-V

The 2-bit floating-point format field fmt is encoded as shown in Table 13, “Format field encoding”. It is
set to S (00) for all instructions in the F extension.

Table 13. Format field encoding

fmt field Mnemonic Meaning

00 S 32-bit single-precision

01 D 64-bit double-precision

10 H 16-bit half-precision

11 Q 128-bit quad-precision

All floating-point operations that perform rounding can select the rounding mode using the rm field
with the encoding shown in Table 11, “Rounding mode encoding.”.

Floating-point minimum-number and maximum-number instructions FMIN.S and FMAX.S write,
respectively, the smaller or larger of rs1 and rs2 to rd. For the purposes of these instructions only, the
value is considered to be less than the value . If both inputs are NaNs, the result is the
canonical NaN. If only one operand is a NaN, the result is the non-NaN operand. Signaling NaN
inputs set the invalid operation exception flag, even when the result is not NaN.



Note that in version 2.2 of the F extension, the FMIN.S and FMAX.S instructions were
amended to implement the proposed IEEE 754-201x minimumNumber and
maximumNumber operations, rather than the IEEE 754-2008 minNum and maxNum
operations. These operations differ in their handling of signaling NaNs.

Figure 30. Single-Precision Floating-Point Computational Instructions

Floating-point fused multiply-add instructions require a new standard instruction format. R4-type
instructions specify three source registers (rs1, rs2, and rs3) and a destination register (rd). This format
is only used by the floating-point fused multiply-add instructions.

FMADD.S multiplies the values in rs1 and rs2, adds the value in rs3, and writes the final result to rd.
FMADD.S computes (rs1 rs2)+rs3.

FMSUB.S multiplies the values in rs1 and rs2, subtracts the value in rs3, and writes the final result to
rd. FMSUB.S computes (rs1 rs2)-rs3.

FNMSUB.S multiplies the values in rs1 and rs2, negates the product, adds the value in rs3, and writes
the final result to rd. FNMSUB.S computes -(rs1 rs2)+rs3.

FNMADD.S multiplies the values in rs1 and rs2, negates the product, subtracts the value in rs3, and
writes the final result to rd. FNMADD.S computes -(rs1 rs2)-rs3.

12.6. Single-Precision Floating-Point Computational Instructions | Page 78

The RISC-V Instruction Set Manual | © RISC-V



The FNMSUB and FNMADD instructions are counterintuitively named, owing to the
naming of the corresponding instructions in MIPS-IV. The MIPS instructions were defined
to negate the sum, rather than negating the product as the RISC-V instructions do, so the
naming scheme was more rational at the time. The two definitions differ with respect to
signed-zero results. The RISC-V definition matches the behavior of the x86 and ARM
fused multiply-add instructions, but unfortunately the RISC-V FNMSUB and FNMADD
instruction names are swapped compared to x86 and ARM.

Figure 31. F[N]MADD/F[N]MSUB instructions



The fused multiply-add (FMA) instructions consume a large part of the 32-bit instruction
encoding space. Some alternatives considered were to restrict FMA to only use dynamic
rounding modes, but static rounding modes are useful in code that exploits the lack of
product rounding. Another alternative would have been to use rd to provide rs3, but this
would require additional move instructions in some common sequences. The current
design still leaves a large portion of the 32-bit encoding space open while avoiding having
FMA be non-orthogonal.

The fused multiply-add instructions must set the invalid operation exception flag when the
multiplicands are and zero, even when the addend is a quiet NaN.


The IEEE 754-2008 standard permits, but does not require, raising the invalid exception
for the operation qNaN.

12.7. Single-Precision Floating-Point Conversion
and Move Instructions
Floating-point-to-integer and integer-to-floating-point conversion instructions are encoded in the OP-
FP major opcode space. FCVT.W.S or FCVT.L.S converts a floating-point number in floating-point
register rs1 to a signed 32-bit or 64-bit integer, respectively, in integer register rd. FCVT.S.W or
FCVT.S.L converts a 32-bit or 64-bit signed integer, respectively, in integer register rs1 into a floating-
point number in floating-point register rd. FCVT.WU.S, FCVT.LU.S, FCVT.S.WU, and FCVT.S.LU
variants convert to or from unsigned integer values. For XLEN , FCVT.W[U].S sign-extends the 32-
bit result to the destination register width. FCVT.L[U].S and FCVT.S.L[U] are RV64-only instructions. If
the rounded result is not representable in the destination format, it is clipped to the nearest value and
the invalid flag is set. Table 14, “Domains of float-to-integer conversions and behavior for invalid
inputs” gives the range of valid inputs for FCVT.int.S and the behavior for invalid inputs.

Table 14. Domains of float-to-integer conversions and behavior for invalid inputs

12.7. Single-Precision Floating-Point Conversion and Move Instructions | Page 79

The RISC-V Instruction Set Manual | © RISC-V

FCVT.W.S FCVT.WU.S FCVT.L.S FCVT.LU.S

Minimum valid
input (after
rounding)

0 0

Maximum valid
input (after
rounding)

Output for out-of-
range negative
input

0 0

Output for 0 0

Output for out-of-
range positive
input

Output for or
NaN

All floating-point to integer and integer to floating-point conversion instructions round according to
the rm field. A floating-point register can be initialized to floating-point positive zero using FCVT.S.W
rd, x0, which will never set any exception flags.

All floating-point conversion instructions set the Inexact exception flag if the rounded result differs
from the operand value and the Invalid exception flag is not set.

Figure 32. SP float convert and move

Floating-point to floating-point sign-injection instructions, FSGNJ.S, FSGNJN.S, and FSGNJX.S,
produce a result that takes all bits except the sign bit from rs1. For FSGNJ, the result’s sign bit is rs2’s
sign bit; for FSGNJN, the result’s sign bit is the opposite of rs2’s sign bit; and for FSGNJX, the sign bit is
the XOR of the sign bits of rs1 and rs2. Sign-injection instructions do not set floating-point exception
flags, nor do they canonicalize NaNs. Note, FSGNJ.S rx, ry, ry moves ry to rx (assembler
pseudoinstruction FMV.S rx, ry); FSGNJN.S rx, ry, ry moves the negation of ry to rx (assembler
pseudoinstruction FNEG.S rx, ry); and FSGNJX.S rx, ry, ry moves the absolute value of ry to rx
(assembler pseudoinstruction FABS.S rx, ry).



The sign-injection instructions provide floating-point MV, ABS, and NEG, as well as
supporting a few other operations, including the IEEE copySign operation and sign
manipulation in transcendental math function libraries. Although MV, ABS, and NEG only
need a single register operand, whereas FSGNJ instructions need two, it is unlikely most
microarchitectures would add optimizations to benefit from the reduced number of
register reads for these relatively infrequent instructions. Even in this case, a
microarchitecture can simply detect when both source registers are the same for FSGNJ
instructions and only read a single copy.

12.7. Single-Precision Floating-Point Conversion and Move Instructions | Page 80

The RISC-V Instruction Set Manual | © RISC-V

Instructions are provided to move bit patterns between the floating-point and integer registers.
FMV.X.W moves the single-precision value in floating-point register rs1 represented in IEEE 754-2008
encoding to the lower 32 bits of integer register rd. The bits are not modified in the transfer, and in
particular, the payloads of non-canonical NaNs are preserved. For RV64, the higher 32 bits of the
destination register are filled with copies of the floating-point number’s sign bit.

FMV.W.X moves the single-precision value encoded in IEEE 754-2008 standard encoding from the
lower 32 bits of integer register rs1 to the floating-point register rd. The bits are not modified in the
transfer, and in particular, the payloads of non-canonical NaNs are preserved.



The FMV.W.X and FMV.X.W instructions were previously called FMV.S.X and FMV.X.S.
The use of W is more consistent with their semantics as an instruction that moves 32 bits
without interpreting them. This became clearer after defining NaN-boxing. To avoid
disturbing existing code, both the W and S versions will be supported by tools.

Figure 33. SP floating point move



The base floating-point ISA was defined so as to allow implementations to employ an
internal recoding of the floating-point format in registers to simplify handling of
subnormal values and possibly to reduce functional unit latency. To this end, the F
extension avoids representing integer values in the floating-point registers by defining
conversion and comparison operations that read and write the integer register file directly.
This also removes many of the common cases where explicit moves between integer and
floating-point registers are required, reducing instruction count and critical paths for
common mixed-format code sequences.

12.8. Single-Precision Floating-Point Compare
Instructions
Floating-point compare instructions (FEQ.S, FLT.S, FLE.S) perform the specified comparison between
floating-point registers (, ,) writing 1 to the integer register rd if the condition holds, and 0
otherwise.

FLT.S and FLE.S perform what the IEEE 754-2008 standard refers to as signaling comparisons: that is,
they set the invalid operation exception flag if either input is NaN. FEQ.S performs a quiet comparison:
it only sets the invalid operation exception flag if either input is a signaling NaN. For all three
instructions, the result is 0 if either operand is NaN.

Figure 34. SP floating point compare

12.8. Single-Precision Floating-Point Compare Instructions | Page 81

The RISC-V Instruction Set Manual | © RISC-V



The F extension provides a comparison, whereas the base ISAs provide a branch
comparison. Because can be synthesized from and vice-versa, there is no
performance implication to this inconsistency, but it is nevertheless an unfortunate
incongruity in the ISA.

12.9. Single-Precision Floating-Point Classify
Instruction
The FCLASS.S instruction examines the value in floating-point register rs1 and writes to integer
register rd a 10-bit mask that indicates the class of the floating-point number. The format of the mask
is described in Table 15, “Format of result of FCLASS instruction.”. The corresponding bit in rd will be
set if the property is true and clear otherwise. All other bits in rd are cleared. Note that exactly one bit
in rd will be set. FCLASS.S does not set the floating-point exception flags.

Figure 35. SP floating point classify

Table 15. Format of result of FCLASS instruction.

rd bit Meaning

0 rs1 is .

1 rs1 is a negative normal number.

2 rs1 is a negative subnormal number.

3 rs1 is .

4 rs1 is .

5 rs1 is a positive subnormal number.

6 rs1 is a positive normal number.

7 rs1 is .

8 rs1 is a signaling NaN.

9 rs1 is a quiet NaN.

12.9. Single-Precision Floating-Point Classify Instruction | Page 82

The RISC-V Instruction Set Manual | © RISC-V

Chapter 13. D Standard Extension for
Double-Precision Floating-Point, Version
2.2
This chapter describes the standard double-precision floating-point instruction-set extension, which
is named "D" and adds double-precision floating-point computational instructions compliant with the
IEEE 754-2008 arithmetic standard. The D extension depends on the base single-precision
instruction subset F.

13.1. D Register State
The D extension widens the 32 floating-point registers, f0–f31, to 64 bits (FLEN=64 in [fprs-d]. The f
registers can now hold either 32-bit or 64-bit floating-point values as described below in Section 13.2,
“NaN Boxing of Narrower Values”.


FLEN can be 32, 64, or 128 depending on which of the F, D, and Q extensions are
supported. There can be up to four different floating-point precisions supported, including
H, F, D, and Q.

13.2. NaN Boxing of Narrower Values
When multiple floating-point precisions are supported, then valid values of narrower -bit types,

FLEN, are represented in the lower bits of an FLEN-bit NaN value, in a process termed NaN-
boxing. The upper bits of a valid NaN-boxed value must be all 1s. Valid NaN-boxed -bit values
therefore appear as negative quiet NaNs (qNaNs) when viewed as any wider -bit value, FLEN.
Any operation that writes a narrower result to an f register must write all 1s to the uppermost FLEN
bits to yield a legal NaN-boxed value.



Software might not know the current type of data stored in a floating-point register but
has to be able to save and restore the register values, hence the result of using wider
operations to transfer narrower values has to be defined. A common case is for callee-
saved registers, but a standard convention is also desirable for features including varargs,
user-level threading libraries, virtual machine migration, and debugging.

Floating-point -bit transfer operations move external values held in IEEE standard formats into and
out of the f registers, and comprise floating-point loads and stores (FL /FS) and floating-point move
instructions (FMV. .X/FMV.X.). A narrower -bit transfer, FLEN, into the f registers will create a
valid NaN-boxed value. A narrower -bit transfer out of the floating-point registers will transfer the
lower bits of the register ignoring the upper FLEN bits.

Apart from transfer operations described in the previous paragraph, all other floating-point operations
on narrower -bit operations, FLEN, check if the input operands are correctly NaN-boxed, i.e., all
upper FLEN bits are 1. If so, the least-significant bits of the input are used as the input value,
otherwise the input value is treated as an -bit canonical NaN.

13.1. D Register State | Page 83

The RISC-V Instruction Set Manual | © RISC-V



Earlier versions of this document did not define the behavior of feeding the results of
narrower or wider operands into an operation, except to require that wider saves and
restores would preserve the value of a narrower operand. The new definition removes this
implementation-specific behavior, while still accommodating both non-recoded and
recoded implementations of the floating-point unit. The new definition also helps catch
software errors by propagating NaNs if values are used incorrectly.

Non-recoded implementations unpack and pack the operands to IEEE standard format on
the input and output of every floating-point operation. The NaN-boxing cost to a non-
recoded implementation is primarily in checking if the upper bits of a narrower operation
represent a legal NaN-boxed value, and in writing all 1s to the upper bits of a result.

Recoded implementations use a more convenient internal format to represent floating-
point values, with an added exponent bit to allow all values to be held normalized. The cost
to the recoded implementation is primarily the extra tagging needed to track the internal
types and sign bits, but this can be done without adding new state bits by recoding NaNs
internally in the exponent field. Small modifications are needed to the pipelines used to
transfer values in and out of the recoded format, but the datapath and latency costs are
minimal. The recoding process has to handle shifting of input subnormal values for wide
operands in any case, and extracting the NaN-boxed value is a similar process to
normalization except for skipping over leading-1 bits instead of skipping over leading-0
bits, allowing the datapath muxing to be shared.

13.3. Double-Precision Load and Store Instructions
The FLD instruction loads a double-precision floating-point value from memory into floating-point
register rd. FSD stores a double-precision value from the floating-point registers to memory. floating
point, load and store

 The double-precision value may be a NaN-boxed single-precision value.

Figure 36. Double-precision load and store

FLD and FSD are only guaranteed to execute atomically if the effective address is naturally aligned
and XLEN 64.

FLD and FSD do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved.

13.3. Double-Precision Load and Store Instructions | Page 84

The RISC-V Instruction Set Manual | © RISC-V

13.4. Double-Precision Floating-Point
Computational Instructions
The double-precision floating-point computational instructions are defined analogously to their
single-precision counterparts, but operate on double-precision operands and produce double-
precision results.

Figure 37. Double-precision float computational

13.5. Double-Precision Floating-Point Conversion
and Move Instructions
Floating-point-to-integer and integer-to-floating-point conversion instructions are encoded in the OP-
FP major opcode space. FCVT.W.D or FCVT.L.D converts a double-precision floating-point number in
floating-point register rs1 to a signed 32-bit or 64-bit integer, respectively, in integer register rd.
FCVT.D.W or FCVT.D.L converts a 32-bit or 64-bit signed integer, respectively, in integer register rs1
into a double-precision floating-point number in floating-point register rd. FCVT.WU.D, FCVT.LU.D,
FCVT.D.WU, and FCVT.D.LU variants convert to or from unsigned integer values. For RV64,
FCVT.W[U].D sign-extends the 32-bit result. FCVT.L[U].D and FCVT.D.L[U] are RV64-only
instructions. The range of valid inputs for FCVT.int.D and the behavior for invalid inputs are the same
as for FCVT.int.S.

All floating-point to integer and integer to floating-point conversion instructions round according to
the rm field. Note FCVT.D.W[U] always produces an exact result and is unaffected by rounding mode.

13.4. Double-Precision Floating-Point Computational Instructions | Page 85

The RISC-V Instruction Set Manual | © RISC-V

Figure 38. Double-precision float convert and move

The double-precision to single-precision and single-precision to double-precision conversion
instructions, FCVT.S.D and FCVT.D.S, are encoded in the OP-FP major opcode space and both the
source and destination are floating-point registers. The rs2 field encodes the datatype of the source,
and the fmt field encodes the datatype of the destination. FCVT.S.D rounds according to the RM field;
FCVT.D.S will never round.

Figure 39. Double-precision FCVT.S.D and FCVT.D.S

Floating-point to floating-point sign-injection instructions, FSGNJ.D, FSGNJN.D, and FSGNJX.D are
defined analogously to the single-precision sign-injection instruction.

Figure 40. Double-precision sign-injection

For XLEN 64 only, instructions are provided to move bit patterns between the floating-point and
integer registers. FMV.X.D moves the double-precision value in floating-point register rs1 to a
representation in IEEE 754-2008 standard encoding in integer register rd. FMV.D.X moves the
double-precision value encoded in IEEE 754-2008 standard encoding from the integer register rs1 to
the floating-point register rd.

FMV.X.D and FMV.D.X do not modify the bits being transferred; in particular, the payloads of non-
canonical NaNs are preserved.

Figure 41. Double-precision float move to rd

13.5. Double-Precision Floating-Point Conversion and Move Instructions | Page 86

The RISC-V Instruction Set Manual | © RISC-V



Early versions of the RISC-V ISA had additional instructions to allow RV32 systems to
transfer between the upper and lower portions of a 64-bit floating-point register and an
integer register. However, these would be the only instructions with partial register writes
and would add complexity in implementations with recoded floating-point or register
renaming, requiring a pipeline read-modify-write sequence. Scaling up to handling quad-
precision for RV32 and RV64 would also require additional instructions if they were to
follow this pattern. The ISA was defined to reduce the number of explicit int-float register
moves, by having conversions and comparisons write results to the appropriate register
file, so we expect the benefit of these instructions to be lower than for other ISAs.

We note that for systems that implement a 64-bit floating-point unit including fused
multiply-add support and 64-bit floating-point loads and stores, the marginal hardware
cost of moving from a 32-bit to a 64-bit integer datapath is low, and a software ABI
supporting 32-bit wide address-space and pointers can be used to avoid growth of static
data and dynamic memory traffic.

13.6. Double-Precision Floating-Point Compare
Instructions
The double-precision floating-point compare instructions are defined analogously to their single-
precision counterparts, but operate on double-precision operands.

Figure 42. Double-precision float compare

13.7. Double-Precision Floating-Point Classify
Instruction
The double-precision floating-point classify instruction, FCLASS.D, is defined analogously to its
single-precision counterpart, but operates on double-precision operands.

Figure 43. Double-precision float classify

13.6. Double-Precision Floating-Point Compare Instructions | Page 87

The RISC-V Instruction Set Manual | © RISC-V

Chapter 14. Q Standard Extension for
Quad-Precision Floating-Point, Version
2.2
This chapter describes the Q standard extension for 128-bit quad-precision binary floating-point
instructions compliant with the IEEE 754-2008 arithmetic standard. The quad-precision binary
floating-point instruction-set extension is named "Q"; it depends on the double-precision floating-
point extension D. The floating-point registers are now extended to hold either a single, double, or
quad-precision floating-point value (FLEN=128). The NaN-boxing scheme described in Section 13.2,
“NaN Boxing of Narrower Values” is now extended recursively to allow a single-precision value to be
NaN-boxed inside a double-precision value which is itself NaN-boxed inside a quad-precision value.

14.1. Quad-Precision Load and Store Instructions
New 128-bit variants of LOAD-FP and STORE-FP instructions are added, encoded with a new value for
the funct3 width field.

Figure 44. Quad-precision load and store

FLQ and FSQ are only guaranteed to execute atomically if the effective address is naturally aligned
and XLEN=128.

FLQ and FSQ do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved.

14.2. Quad-Precision Computational Instructions
A new supported format is added to the format field of most instructions, as shown in Table 16,
“Format field encoding.”

Table 16. Format field encoding.

fmt field Mnemonic Meaning

00 S 32-bit single-precision

01 D 64-bit double-precision

10 H 16-bit half-precision

11 Q 128-bit quad-precision

14.1. Quad-Precision Load and Store Instructions | Page 88

The RISC-V Instruction Set Manual | © RISC-V

The quad-precision floating-point computational instructions are defined analogously to their double-
precision counterparts, but operate on quad-precision operands and produce quad-precision results.

Figure 45. Quad-precision computational

14.3. Quad-Precision Convert and Move
Instructions
New floating-point-to-integer and integer-to-floating-point conversion instructions are added. These
instructions are defined analogously to the double-precision-to-integer and integer-to-double-
precision conversion instructions. FCVT.W.Q or FCVT.L.Q converts a quad-precision floating-point
number to a signed 32-bit or 64-bit integer, respectively. FCVT.Q.W or FCVT.Q.L converts a 32-bit or
64-bit signed integer, respectively, into a quad-precision floating-point number. FCVT.WU.Q,
FCVT.LU.Q, FCVT.Q.WU, and FCVT.Q.LU variants convert to or from unsigned integer values.
FCVT.L[U].Q and FCVT.Q.L[U] are RV64-only instructions.

Figure 46. Quad-precision convert and move

14.3. Quad-Precision Convert and Move Instructions | Page 89

The RISC-V Instruction Set Manual | © RISC-V

New floating-point-to-floating-point conversion instructions are added. These instructions are
defined analogously to the double-precision floating-point-to-floating-point conversion instructions.
FCVT.S.Q or FCVT.Q.S converts a quad-precision floating-point number to a single-precision floating-
point number, or vice-versa, respectively. FCVT.D.Q or FCVT.Q.D converts a quad-precision floating-
point number to a double-precision floating-point number, or vice-versa, respectively.

Figure 47. Quad-precision convert and move interchangeably

Floating-point to floating-point sign-injection instructions, FSGNJ.Q, FSGNJN.Q, and FSGNJX.Q are
defined analogously to the double-precision sign-injection instruction.

Figure 48. Quad-precision convert and move interchangeably XQ-QX

FMV.X.Q and FMV.Q.X instructions are not provided in RV32 or RV64, so quad-precision bit patterns
must be moved to the integer registers via memory.

 RV128 will support FMV.X.Q and FMV.Q.X in the Q extension.

14.4. Quad-precision floating-Point compare
insturctions
The quad-precision floating-point compare instructions are defined analogously to their double-
precision counterparts, but operate on quad-precision operands.

Figure 49. Quad-precision floatinf-point compare

14.5. Quad-Precision Floating-Point Classify
Instruction
The quad-precision floating-point classify instruction, FCLASS.Q, is defined analogously to its double-
precision counterpart, but operates on quad-precision operands.

14.4. Quad-precision floating-Point compare insturctions | Page 90

The RISC-V Instruction Set Manual | © RISC-V

Figure 50. Quad-precision floating point classify

14.5. Quad-Precision Floating-Point Classify Instruction | Page 91

The RISC-V Instruction Set Manual | © RISC-V

Chapter 15. RVWMO Memory Consistency
Model, Version 2.0
This chapter defines the RISC-V memory consistency model. A memory consistency model is a set of
rules specifying the values that can be returned by loads of memory. RISC-V uses a memory model
called RVWMO (RISC-V Weak Memory Ordering) which is designed to provide flexibility for
architects to build high-performance scalable designs while simultaneously supporting a tractable
programming model.

Under RVWMO, code running on a single hart appears to execute in order from the perspective of
other memory instructions in the same hart, but memory instructions from another hart may observe
the memory instructions from the first hart being executed in a different order. Therefore,
multithreaded code may require explicit synchronization to guarantee ordering between memory
instructions from different harts. The base RISC-V ISA provides a FENCE instruction for this purpose,
described in Section 2.7, “Memory Ordering Instructions”, while the atomics extension A additionally
defines load-reserved/store-conditional and atomic read-modify-write instructions.

The standard ISA extension for misaligned atomics Zam (Chapter 21, Zam Standard Extension for
Misaligned Atomics, v0.1) and the standard ISA extension for total store ordering Ztso (Chapter 22, Ztso
Standard Extension for Total Store Ordering, v0.1) augment RVWMO with additional rules specific to
those extensions.

The appendices to this specification provide both axiomatic and operational formalizations of the
memory consistency model as well as additional explanatory material.



This chapter defines the memory model for regular main memory operations. The
interaction of the memory model with I/O memory, instruction fetches, FENCE.I, page
table walks, and SFENCE.VMA is not (yet) formalized. Some or all of the above may be
formalized in a future revision of this specification. The RV128 base ISA and future ISA
extensions such as the V vector and J JIT extensions will need to be incorporated into a
future revision as well.

Memory consistency models supporting overlapping memory accesses of different widths
simultaneously remain an active area of academic research and are not yet fully
understood. The specifics of how memory accesses of different sizes interact under
RVWMO are specified to the best of our current abilities, but they are subject to revision
should new issues be uncovered.

15.1. Definition of the RVWMO Memory Model
The RVWMO memory model is defined in terms of the global memory order, a total ordering of the
memory operations produced by all harts. In general, a multithreaded program has many different
possible executions, with each execution having its own corresponding global memory order.

RVWMO

The global memory order is defined over the primitive load and store operations generated by memory
instructions. It is then subject to the constraints defined in the rest of this chapter. Any execution
satisfying all of the memory model constraints is a legal execution (as far as the memory model is
concerned).

15.1. Definition of the RVWMO Memory Model | Page 92

The RISC-V Instruction Set Manual | © RISC-V

15.1.1. Memory Model Primitives

The program order over memory operations reflects the order in which the instructions that generate
each load and store are logically laid out in that hart’s dynamic instruction stream; i.e., the order in
which a simple in-order processor would execute the instructions of that hart.

Memory-accessing instructions give rise to memory operations. A memory operation can be either a
load operation, a store operation, or both simultaneously. All memory operations are single-copy
atomic: they can never be observed in a partially complete state.

Among instructions in RV32GC and RV64GC, each aligned memory instruction gives rise to exactly
one memory operation, with two exceptions. First, an unsuccessful SC instruction does not give rise to
any memory operations. Second, FLD and FSD instructions may each give rise to multiple memory
operations if XLEN<64, as stated in Section 13.3, “Double-Precision Load and Store Instructions” and
clarified below. An aligned AMO gives rise to a single memory operation that is both a load operation
and a store operation simultaneously.


Instructions in the RV128 base instruction set and in future ISA extensions such as V
(vector) and P (SIMD) may give rise to multiple memory operations. However, the memory
model for these extensions has not yet been formalized.

A misaligned load or store instruction may be decomposed into a set of component memory
operations of any granularity. An FLD or FSD instruction for which XLEN<64 may also be
decomposed into a set of component memory operations of any granularity. The memory operations
generated by such instructions are not ordered with respect to each other in program order, but they
are ordered normally with respect to the memory operations generated by preceding and subsequent
instructions in program order. The atomics extension A does not require execution environments to
support misaligned atomic instructions at all; however, if misaligned atomics are supported via the
Zam extension, LRs, SCs, and AMOs may be decomposed subject to the constraints of the atomicity
axiom for misaligned atomics, which is defined in Chapter 21, Zam Standard Extension for Misaligned
Atomics, v0.1.



The decomposition of misaligned memory operations down to byte granularity facilitates
emulation on implementations that do not natively support misaligned accesses. Such
implementations might, for example, simply iterate over the bytes of a misaligned access
one by one.

An LR instruction and an SC instruction are said to be paired if the LR precedes the SC in program
order and if there are no other LR or SC instructions in between; the corresponding memory
operations are said to be paired as well (except in case of a failed SC, where no store operation is
generated). The complete list of conditions determining whether an SC must succeed, may succeed, or
must fail is defined in Section 9.2, “Load-Reserved/Store-Conditional Instructions”.

Load and store operations may also carry one or more ordering annotations from the following set:
acquire-RCpc, acquire-RCsc, release-RCpc, and release-RCsc. An AMO or LR instruction with aq set has
an acquire-RCsc annotation. An AMO or SC instruction with rl set has a release-RCsc annotation. An
AMO, LR, or SC instruction with both aq and rl set has both acquire-RCsc and release-RCsc
annotations.

For convenience, we use the term acquire annotation to refer to an acquire-RCpc annotation or an
acquire-RCsc annotation. Likewise, a release annotation refers to a release-RCpc annotation or a

15.1. Definition of the RVWMO Memory Model | Page 93

The RISC-V Instruction Set Manual | © RISC-V

release-RCsc annotation. An RCpc annotation refers to an acquire-RCpc annotation or a release-RCpc
annotation. An RCsc annotation refers to an acquire-RCsc annotation or a release-RCsc annotation.



In the memory model literature, the term RCpc stands for release consistency with
processor-consistent synchronization operations, and the term RCsc stands for release
consistency with sequentially consistent synchronization operations.

While there are many different definitions for acquire and release annotations in the
literature, in the context of RVWMO these terms are concisely and completely defined by
Preserved Program Order rules 5-7.

RCpc annotations are currently only used when implicitly assigned to every memory
access per the standard extension Ztso (Chapter 22, Ztso Standard Extension for Total
Store Ordering, v0.1). Furthermore, although the ISA does not currently contain native
load-acquire or store-release instructions, nor RCpc variants thereof, the RVWMO model
itself is designed to be forwards-compatible with the potential addition of any or all of the
above into the ISA in a future extension.

15.1.2. Syntactic Dependencies

The definition of the RVWMO memory model depends in part on the notion of a syntactic
dependency, defined as follows.

In the context of defining dependencies, a register refers either to an entire general-purpose register,
some portion of a CSR, or an entire CSR. The granularity at which dependencies are tracked through
CSRs is specific to each CSR and is defined in Section 15.2, “CSR Dependency Tracking Granularity”.

Syntactic dependencies are defined in terms of instructions’ source registers, instructions’ destination
registers, and the way instructions carry a dependency from their source registers to their destination
registers. This section provides a general definition of all of these terms; however, Section 15.3, “Source
and Destination Register Listings” provides a complete listing of the specifics for each instruction.

In general, a register r other than x0 is a source register for an instruction i if any of the following hold:

• In the opcode of i, rs1, rs2, or rs3 is set to r

• i is a CSR instruction, and in the opcode of i, csr is set to r, unless i is CSRRW or CSRRWI and rd is
set to x0

• r is a CSR and an implicit source register for i, as defined in Section 15.3, “Source and Destination
Register Listings”

• r is a CSR that aliases with another source register for i

Memory instructions also further specify which source registers are address source registers and which
are data source registers.

In general, a register r other than x0 is a destination register for an instruction i if any of the following
hold:

• In the opcode of i, rd is set to r

• i is a CSR instruction, and in the opcode of i, csr is set to r, unless i is CSRRS or CSRRC and rs1 is
set to x0 or i is CSRRSI or CSRRCI and uimm[4:0] is set to zero.

15.1. Definition of the RVWMO Memory Model | Page 94

The RISC-V Instruction Set Manual | © RISC-V

• r is a CSR and an implicit destination register for i, as defined in Section 15.3, “Source and
Destination Register Listings”

• r is a CSR that aliases with another destination register for i

Most non-memory instructions carry a dependency from each of their source registers to each of their
destination registers. However, there are exceptions to this rule; see Section 15.3, “Source and
Destination Register Listings”.

Instruction j has a syntactic dependency on instruction i via destination register s of i and source
register r of j if either of the following hold:

• s is the same as r, and no instruction program-ordered between i and j has r as a destination
register

• There is an instruction m program-ordered between i and j such that all of the following hold:

1. j has a syntactic dependency on m via destination register q and source register r

2. m has a syntactic dependency on i via destination register s and source register p

3. m carries a dependency from p to q

Finally, in the definitions that follow, let a and b be two memory operations, and let i and j be the
instructions that generate a and b, respectively.

b has a syntactic address dependency on a if r is an address source register for j and j has a syntactic
dependency on i via source register r

b has a syntactic data dependency on a if b is a store operation, r is a data source register for j, and j has a
syntactic dependency on i via source register r

b has a syntactic control dependency on a if there is an instruction m program-ordered between i and j
such that m is a branch or indirect jump and m has a syntactic dependency on i.



Generally speaking, non-AMO load instructions do not have data source registers, and
unconditional non-AMO store instructions do not have destination registers. However, a
successful SC instruction is considered to have the register specified in rd as a destination
register, and hence it is possible for an instruction to have a syntactic dependency on a
successful SC instruction that precedes it in program order.

15.1.3. Preserved Program Order

The global memory order for any given execution of a program respects some but not all of each hart’s
program order. The subset of program order that must be respected by the global memory order is
known as preserved program order.

The complete definition of preserved program order is as follows (and note that AMOs are
simultaneously both loads and stores): memory operation a precedes memory operation b in preserved
program order (and hence also in the global memory order) if a precedes b in program order, a and b
both access regular main memory (rather than I/O regions), and any of the following hold:

• Overlapping-Address Orderings:

1. b is a store, and a and b access overlapping memory addresses

15.1. Definition of the RVWMO Memory Model | Page 95

The RISC-V Instruction Set Manual | © RISC-V

2. a and b are loads, x is a byte read by both a and b, there is no store to x between a and b in
program order, and a and b return values for x written by different memory operations

3. a is generated by an AMO or SC instruction, b is a load, and b returns a value written by a

• Explicit Synchronization

4. There is a FENCE instruction that orders a before b

5. a has an acquire annotation

6. b has a release annotation

7. a and b both have RCsc annotations

8. a is paired with b

• Syntactic Dependencies

9. b has a syntactic address dependency on a

10. b has a syntactic data dependency on a

11. b is a store, and b has a syntactic control dependency on a

• Pipeline Dependencies

12. b is a load, and there exists some store m between a and b in program order such that m has an
address or data dependency on a, and b returns a value written by m

13. b is a store, and there exists some instruction m between a and b in program order such that m
has an address dependency on a

15.1.4. Memory Model Axioms

An execution of a RISC-V program obeys the RVWMO memory consistency model only if there exists
a global memory order conforming to preserved program order and satisfying the load value axiom, the
atomicity axiom, and the progress axiom.

Load Value Axiom

Each byte of each load i returns the value written to that byte by the store that is the latest in global
memory order among the following stores:

1. Stores that write that byte and that precede i in the global memory order

2. Stores that write that byte and that precede i in program order

Atomicity Axiom

If r and w are paired load and store operations generated by aligned LR and SC instructions in a hart h,
s is a store to byte x, and r returns a value written by s, then s must precede w in the global memory
order, and there can be no store from a hart other than h to byte x following s and preceding w in the
global memory order.

The theoretically supports LR/SC pairs of different widths and to mismatched addresses, since
implementations are permitted to allow SC operations to succeed in such cases. However, in practice,
we expect such patterns to be rare, and their use is discouraged.

15.1. Definition of the RVWMO Memory Model | Page 96

The RISC-V Instruction Set Manual | © RISC-V

Progress Axiom

No memory operation may be preceded in the global memory order by an infinite sequence of other
memory operations.

15.2. CSR Dependency Tracking Granularity
Table 17. Granularities at which syntactic dependencies are tracked through CSRs

Name Portions Tracked as
Independent Units

Aliases

fflags Bits 4, 3, 2, 1, 0 fcsr

frm entire CSR fcsr

fcsr Bits 7-5, 4, 3, 2, 1, 0 fflags, frm

Note: read-only CSRs are not listed, as they do not participate in the definition of syntactic
dependencies.

15.3. Source and Destination Register Listings
This section provides a concrete listing of the source and destination registers for each instruction.
These listings are used in the definition of syntactic dependencies in Section 15.1.2, “Syntactic
Dependencies”.

The term accumulating CSR is used to describe a CSR that is both a source and a destination register,
but which carries a dependency only from itself to itself.

Instructions carry a dependency from each source register in the Source Registers column to each
destination register in the Destination Registers column, from each source register in the Source
Registers column to each CSR in the Accumulating CSRs column, and from each CSR in the
Accumulating CSRs column to itself, except where annotated otherwise.

Key:

• A: Address source register

• D: Data source register

• : The instruction does not carry a dependency from any source register to any destination
register

• : The instruction carries dependencies from source register(s) to destination register(s) as
specified

Table 18. RV32I Base Integer Instruction Set

Source Registers Destination Registers Accumulating CSRs

LUI rd

AUIPC rd

JAL rd

15.2. CSR Dependency Tracking Granularity | Page 97

The RISC-V Instruction Set Manual | © RISC-V

Source Registers Destination Registers Accumulating CSRs

JALR rs1 rd

BEQ rs1, rs2

BNE rs1, rs2

BLT rs1, rs2

BGE rs1, rs2

BLTU rs1, rs2

BGEU rs1, rs2

LB rs1 A rd

LH rs1 A rd

LW rs1 A rd

LBU rs1 A rd

LHU rs1 A rd

SB rs1 A, rs2 D

SH rs1 A, rs2 D

SW rs1 A, rs2 D

ADDI rs1 rd

SLTI rs1 rd

SLTIU rs1 rd

XORI rs1 rd

ORI rs1 rd

ANDI rs1 rd

SLLI rs1 rd

SRLI rs1 rd

SRAI rs1 rd

ADD rs1, rs2 rd

SUB rs1, rs2 rd

SLL rs1, rs2 rd

SLT rs1, rs2 rd

SLTU rs1, rs2 rd

XOR rs1, rs2 rd

SRL rs1, rs2 rd

SRA rs1, rs2 rd

OR rs1, rs2 rd

AND rs1, rs2 rd

FENCE

15.3. Source and Destination Register Listings | Page 98

The RISC-V Instruction Set Manual | © RISC-V

Source Registers Destination Registers Accumulating CSRs

FENCE.I

ECALL

EBREAK

CSRRW unless
rd=x0

rs1, csr* rd, csr
*

CSRRS rs1, csr unless rs1=x0 rd *, csr
*

CSRRC rs1, csr unless rs1=x0 rd *, csr
*

carries a dependency from rs1 to csr and from csr to rd

CSRRWI csr * rd, csr *unless rd=x0

CSRRSI csr rd, csr* *unless uimm[4:0]=0

CSRRCI csr rd, csr* *unless uimm[4:0]=0

carries a dependency from csr to rd

Table 19. RV64I Base Integer Instruction Set

Source Registers Destination Registers Accumulating CSRs

LWU rs1 A rd

LD rs1 A rd

SD rs1 A, rs2 D

SLLI rs1 rd

SRLI rs1 rd

SRAI rs1 rd

ADDIW rs1 rd

SLLIW rs1 rd

SRLIW rs1 rd

SRAIW rs1 rd

ADDW rs1, rs2 rd

SUBW rs1, rs2 rd

SLLW rs1, rs2 rd

SRLW rs1, rs2 rd

SRAW rs1, rs2 rd

Table 20. RV32M Standard Extension

Source Regisers Destination Registers Accumulating CSRs

MUL rs1, rs2 rd

MULH rs1, rs2 rd

MULHSU rs1, rs2 rd

MULHU rs1, rs2 rd

15.3. Source and Destination Register Listings | Page 99

The RISC-V Instruction Set Manual | © RISC-V

Source Regisers Destination Registers Accumulating CSRs

DIV rs1, rs2 rd

DIVU rs1, rs2 rd

REM rs1, rs2 rd

REMU rs1, rs2 rd

Table 21. RV64M Standard Extension

Source Registers Destination Registers Accumulating CSRs

MULW rs1, rs2 rd

DIVW rs1, rs2 rd

DIVUW rs1, rs2 rd

REMW rs1, rs2 rd

REMUW rs1, rs2 rd

Table 22. RV32A Standard Extension

Source Registers Destination
Registers

Accumulating
CSRs

LR.W rs1 A rd

SC.W rs1 A, rs2 D rd * * if successful

AMOSWAP.W rs1 A, rs2 D rd

AMOADD.W rs1 A, rs2 D rd

AMOXOR.W rs1 A, rs2 D rd

AMOAND.W rs1 A, rs2 D rd

AMOOR.W rs1 A, rs2D rd

AMOMIN.W rs1 A, rs2 D rd

AMOMAX.W rs1 A, rs2 D rd

AMOMINU.W rs1 A, rs2 D rd

AMOMAXU.W rs1 A, rs2 D rd

Table 23. RV64A Standard Extension

Source Registers Destination
Registers

Accumulating
CSRs

LR.D rs1 A rd

SC.D rs1 A, rs2 D rd * *if successful

AMOSWAP.D rs1 A, rs2 D rd

AMOADD.D rs1 A, rs2 D rd

AMOXOR.D rs1 A, rs2 D rd

AMOAND.D rs1 A, rs2D rd

15.3. Source and Destination Register Listings | Page 100

The RISC-V Instruction Set Manual | © RISC-V

Source Registers Destination
Registers

Accumulating
CSRs

AMOOR.D rs1 A, rs2D rd

AMOMIN.D rs1 A, rs2D rd

AMOMAX.D rs1 A, rs2D rd

AMOMINU.D rs1 A, rs2D rd

AMOMAXU.D rs1 A, rs2D rd

Table 24. RV32F Standard Extension

Source Registers Destination
Registers

Accumulating
CSRs

FLW rs1 A rd

FSW rs1 A, rs2D

FMADD.S rs1, rs2, rs3, frm* rd NV, OF, UF, NX *if rm=111

FMSUB.S rs1, rs2, rs3, frm* rd NV, OF, UF, NX *if rm=111

FNMSUB.S rs1, rs2, rs3, frm* rd NV, OF, UF, NX *if rm=111

FNMADD.S rs1, rs2, rs3, frm* rd NV, OF, UF, NX *if rm=111

FADD.S rs1, rs2, frm* rd NV, OF, NX *if rm=111

FSUB.S rs1, rs2, frm* rd NV, OF, NX *if rm=111

FMUL.S rs1, rs2, frm* rd NV, OF, UF, NX *if rm=111

FDIV.S rs1, rs2, frm* rd NV, DZ, OF, UF,
NX

*if rm=111

FSQRT.S rs1, frm* rd NV, NX *if rm=111

FSGNJ.S rs1, rs2 rd

FSGNJN.S rs1, rs2 rd

FSGNJX.S rs1, rs2 rd

FMIN.S rs1, rs2 rd NV

FMAX.S rs1, rs2 rd NV

FCVT.W.S rs1, frm* rd NV, NX *if rm=111

FCVT.WU.S rs1, frm* rd NV, NX *if rm=111

FMV.X.W rs1 rd

FEQ.S rs1, rs2 rd NV

FLT.S rs1, rs2 rd NV

FLE.S rs1, rs2 rd NV

FCLASS.S rs1 rd

FCVT.S.W rs1, frm* rd NX *if rm=111

FCVT.S.WU rs1, frm* rd NX *if rm=111

FMV.W.X rs1 rd

15.3. Source and Destination Register Listings | Page 101

The RISC-V Instruction Set Manual | © RISC-V

Table 25. RV64F Standard Extension

Source Regsiters Destination
Registers

Accumulating
CSRs

FCVT.L.S rs1, frm* rd NV, NX *if rm=111

FCVT.LU.S rs1, frm* rd NV, NX *if rm=111

FCVT.S.L rs1, frm* rd NX *if rm=111

FCVT.S.LU rs1, frm* rd NX *if rm=111

Table 26. RV32D Standard Extension

Source Regsters Destination
Regsiters

Accumulating
CSRs

FLD rs1 A rd

FSD rs1 A, rs2D

FMADD.D rs1, rs2, rs3, frm* rd NV, OF, UF, NX *if rm=111

FMSUB.D rs1, rs2, rs3, frm* rd NV, OF, UF, NX *if rm=111

FNMSUB.D rs1, rs2, rs3, frm* rd NV, OF, UF, NX *if rm=111

FNMADD.D rs1, rs2, rs3, frm* rd NV, OF, UF, NX *if rm=111

FADD.D rs1, rs2, frm* rd NV, OF, NX *if rm=111

FSUB.D rs1, rs2, frm* rd NV, OF, NX *if rm=111

FMUL.D rs1, rs2, frm* rd NV, OF, UF, NX *if rm=111

FDIV.D rs1, rs2, frm* rd NV, DZ, OF, UF,
NX

*if rm=111

FSQRT.D rs1, frm* rd NV, NX *if rm=111

FSGNJ.D rs1, rs2 rd

FSGNJN.D rs1, rs2 rd

FSGNJX.D rs1, rs2 rd

FMIN.D rs1, rs2 rd NV

FMAX.D rs1, rs2 rd NV

FCVT.S.D rs1, frm* rd NV, OF, UF, NX *if rm=111

FCVT.D.S rs1 rd NV

FEQ.D rs1, rs2 rd NV

FLT.D rs1, rs2 rd NV

FLE.D rs1, rs2 rd NV

FCLASS.D rs1 rd

FCVT.W.D rs1,* rd NV, NX *if rm=111

FCVT.WU.D rs1, frm* rd NV, NX *if rm=111

FCVT.D.W rs1 rd

FCVT.D.WU rs1 rd

15.3. Source and Destination Register Listings | Page 102

The RISC-V Instruction Set Manual | © RISC-V

Table 27. RV64D Standard Extension

Source Regsiters Destination
Registers

Accumulating
CSRs

FCVT.L.D rs1, frm* rd NV, NX *if rm=111

FCVT.LU.D rs1, frm* rd NV, NX *if rm=111

FMV.X.D rs1 rd

FCVT.D.L rs1, frm* rd NX *if rm=111

FCVT.D.LU rs1, frm* rd NX *if rm=111

FMV.D.X rs1 rd

15.3. Source and Destination Register Listings | Page 103

The RISC-V Instruction Set Manual | © RISC-V

Chapter 16. C Standard Extension for
Compressed Instructions, Version 2.0
This chapter describes the current proposal for the RISC-V standard compressed instruction-set
extension, named C, which reduces static and dynamic code size by adding short 16-bit instruction
encodings for common operations. The C extension can be added to any of the base ISAs (RV32, RV64,
RV128), and we use the generic term RVC to cover any of these. Typically, 50%–60% of the RISC-V
instructions in a program can be replaced with RVC instructions, resulting in a 25%–30% code-size
reduction.

16.1. Overview
RVC uses a simple compression scheme that offers shorter 16-bit versions of common 32-bit RISC-V
instructions when:

• the immediate or address offset is small, or

• one of the registers is the zero register (x0), the ABI link register (x1), or the ABI stack pointer (x2),
or

• the destination register and the first source register are identical, or

• the registers used are the 8 most popular ones.

The C extension is compatible with all other standard instruction extensions. The C extension allows
16-bit instructions to be freely intermixed with 32-bit instructions, with the latter now able to start on
any 16-bit boundary, i.e., IALIGN=16. With the addition of the C extension, no instructions can raise
instruction-address-misaligned exceptions.


Removing the 32-bit alignment constraint on the original 32-bit instructions allows
significantly greater code density.

The compressed instruction encodings are mostly common across RV32C, RV64C, and RV128C, but as
shown in Table 31, “RVC opcode map instructions.”, a few opcodes are used for different purposes
depending on base ISA. For example, the wider address-space RV64C and RV128C variants require
additional opcodes to compress loads and stores of 64-bit integer values, while RV32C uses the same
opcodes to compress loads and stores of single-precision floating-point values. Similarly, RV128C
requires additional opcodes to capture loads and stores of 128-bit integer values, while these same
opcodes are used for loads and stores of double-precision floating-point values in RV32C and RV64C.
If the C extension is implemented, the appropriate compressed floating-point load and store
instructions must be provided whenever the relevant standard floating-point extension (F and/or D) is
also implemented. In addition, RV32C includes a compressed jump and link instruction to compress
short-range subroutine calls, where the same opcode is used to compress ADDIW for RV64C and
RV128C.

16.1. Overview | Page 104

The RISC-V Instruction Set Manual | © RISC-V



Double-precision loads and stores are a significant fraction of static and dynamic
instructions, hence the motivation to include them in the RV32C and RV64C encoding.

Although single-precision loads and stores are not a significant source of static or
dynamic compression for benchmarks compiled for the currently supported ABIs, for
microcontrollers that only provide hardware single-precision floating-point units and have
an ABI that only supports single-precision floating-point numbers, the single-precision
loads and stores will be used at least as frequently as double-precision loads and stores in
the measured benchmarks. Hence, the motivation to provide compressed support for these
in RV32C.

Short-range subroutine calls are more likely in small binaries for microcontrollers, hence
the motivation to include these in RV32C.

Although reusing opcodes for different purposes for different base ISAs adds some
complexity to documentation, the impact on implementation complexity is small even for
designs that support multiple base ISAs. The compressed floating-point load and store
variants use the same instruction format with the same register specifiers as the wider
integer loads and stores.

RVC was designed under the constraint that each RVC instruction expands into a single 32-bit
instruction in either the base ISA (RV32I/E, RV64I, or RV128I) or the F and D standard extensions
where present. Adopting this constraint has two main benefits:

• Hardware designs can simply expand RVC instructions during decode, simplifying verification
and minimizing modifications to existing microarchitectures.

• Compilers can be unaware of the RVC extension and leave code compression to the assembler and
linker, although a compression-aware compiler will generally be able to produce better results.



We felt the multiple complexity reductions of a simple one-one mapping between C and
base IFD instructions far outweighed the potential gains of a slightly denser encoding that
added additional instructions only supported in the C extension, or that allowed encoding
of multiple IFD instructions in one C instruction.

It is important to note that the C extension is not designed to be a stand-alone ISA, and is meant to be
used alongside a base ISA.



Variable-length instruction sets have long been used to improve code density. For example,
the IBM Stretch (Buchholz, 1962), developed in the late 1950s, had an ISA with 32-bit and
64-bit instructions, where some of the 32-bit instructions were compressed versions of the
full 64-bit instructions. Stretch also employed the concept of limiting the set of registers
that were addressable in some of the shorter instruction formats, with short branch
instructions that could only refer to one of the index registers. The later IBM 360
architecture (Amdahl et al., 1964) supported a simple variable-length instruction encoding
with 16-bit, 32-bit, or 48-bit instruction formats.

In 1963, CDC introduced the Cray-designed CDC 6600 (Thornton, 1965), a precursor to
RISC architectures, that introduced a register-rich load-store architecture with
instructions of two lengths, 15-bits and 30-bits. The later Cray-1 design used a very similar
instruction format, with 16-bit and 32-bit instruction lengths.

16.1. Overview | Page 105

The RISC-V Instruction Set Manual | © RISC-V

The initial RISC ISAs from the 1980s all picked performance over code size, which was
reasonable for a workstation environment, but not for embedded systems. Hence, both
ARM and MIPS subsequently made versions of the ISAs that offered smaller code size by
offering an alternative 16-bit wide instruction set instead of the standard 32-bit wide
instructions. The compressed RISC ISAs reduced code size relative to their starting points
by about 25–30%, yielding code that was significantly smaller than 80x86. This result
surprised some, as their intuition was that the variable-length CISC ISA should be smaller
than RISC ISAs that offered only 16-bit and 32-bit formats.

Since the original RISC ISAs did not leave sufficient opcode space free to include these
unplanned compressed instructions, they were instead developed as complete new ISAs.
This meant compilers needed different code generators for the separate compressed ISAs.
The first compressed RISC ISA extensions (e.g., ARM Thumb and MIPS16) used only a
fixed 16-bit instruction size, which gave good reductions in static code size but caused an
increase in dynamic instruction count, which led to lower performance compared to the
original fixed-width 32-bit instruction size. This led to the development of a second
generation of compressed RISC ISA designs with mixed 16-bit and 32-bit instruction
lengths (e.g., ARM Thumb2, microMIPS, PowerPC VLE), so that performance was similar
to pure 32-bit instructions but with significant code size savings. Unfortunately, these
different generations of compressed ISAs are incompatible with each other and with the
original uncompressed ISA, leading to significant complexity in documentation,
implementations, and software tools support.

Of the commonly used 64-bit ISAs, only PowerPC and microMIPS currently supports a
compressed instruction format. It is surprising that the most popular 64-bit ISA for mobile
platforms (ARM v8) does not include a compressed instruction format given that static
code size and dynamic instruction fetch bandwidth are important metrics. Although static
code size is not a major concern in larger systems, instruction fetch bandwidth can be a
major bottleneck in servers running commercial workloads, which often have a large
instruction working set.

Benefiting from 25 years of hindsight, RISC-V was designed to support compressed
instructions from the outset, leaving enough opcode space for RVC to be added as a simple
extension on top of the base ISA (along with many other extensions). The philosophy of
RVC is to reduce code size for embedded applications and to improve performance and
energy-efficiency for all applications due to fewer misses in the instruction cache.
Waterman shows that RVC fetches 25%-30% fewer instruction bits, which reduces
instruction cache misses by 20%-25%, or roughly the same performance impact as
doubling the instruction cache size.

16.2. Compressed Instruction Formats

Table 31, “RVC opcode map instructions.” shows the nine compressed instruction formats. CR, CI, and
CSS can use any of the 32 RVI registers, but CIW, CL, CS, CA, and CB are limited to just 8 of them.
[registers] lists these popular registers, which correspond to registers x8 to x15. Note that there is a
separate version of load and store instructions that use the stack pointer as the base address register,
since saving to and restoring from the stack are so prevalent, and that they use the CI and CSS formats
to allow access to all 32 data registers. CIW supplies an 8-bit immediate for the ADDI4SPN instruction.

16.2. Compressed Instruction Formats | Page 106

The RISC-V Instruction Set Manual | © RISC-V



The RISC-V ABI was changed to make the frequently used registers map to registers x8
–x15. This simplifies the decompression decoder by having a contiguous naturally aligned
set of register numbers, and is also compatible with the RV32E base ISA, which only has 16
integer registers.

Compressed register-based floating-point loads and stores also use the CL and CS formats
respectively, with the eight registers mapping to f8 to f15.


The standard RISC-V calling convention maps the most frequently used floating-point
registers to registers f8 to f15, which allows the same register decompression decoding as
for integer register numbers.

The formats were designed to keep bits for the two register source specifiers in the same place in all
instructions, while the destination register field can move. When the full 5-bit destination register
specifier is present, it is in the same place as in the 32-bit RISC-V encoding. Where immediates are
sign-extended, the sign-extension is always from bit 12. Immediate fields have been scrambled, as in
the base specification, to reduce the number of immediate muxes required.


The immediate fields are scrambled in the instruction formats instead of in sequential
order so that as many bits as possible are in the same position in every instruction, thereby
simplifying implementations.

For many RVC instructions, zero-valued immediates are disallowed and x0 is not a valid 5-bit register
specifier. These restrictions free up encoding space for other instructions requiring fewer operand bits.

Table 28. Compressed 16-bit RVC instruction formats.

Format Meaning 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CR Register funct4 rd/rs1 rs2 op

CI Immediate funct3 imm rd/rs1 imm op

CSS Stack-
relative

Store

funct3 imm rs2 op

CIW Wide
Immediate

funct3 imm rd l' op

CL Load funct3 imm rs1 l' imm rd ' op

CS Store funct3 imm rs1 l' imm rs2 ' op

CA Arithmetic funct6 rd l'/rs1 l' funct2 rs2 l' op

CB Branch/Ari
thmetic

funct3 offset rd l'/rs1 l' offset op

CJ Jump funct3 jump target op

Table 29. Registers specified by the three-bit rs1 l', rs2 l', and rd l' fields of the CIW, CL, CS, CA, and CB formats.

16.2. Compressed Instruction Formats | Page 107

The RISC-V Instruction Set Manual | © RISC-V

RVC Register
Number

000 001 010 011 100 101 110 111

Integer Register
Number

x8 x9 x10 x11 x12 x13 x14 x15

Integer Register
ABI Name

s0 s1 a0 a1 a2 a3 a4 a5

Floating-Point
Register Number

f8 f9 f10 f11 f12 f13 f14 f15

Floating-Point
Register ABI Name

fs0 fs1 fa0 fa1 fa2 fa3 fa4 fa5

16.3. Load and Store Instructions
To increase the reach of 16-bit instructions, data-transfer instructions use zero-extended immediates
that are scaled by the size of the data in bytes: 4 for words, 8 for double words, and 16 for
quad words.

RVC provides two variants of loads and stores. One uses the ABI stack pointer, x2, as the base address
and can target any data register. The other can reference one of 8 base address registers and one of 8
data registers.

16.3.1. Stack-Pointer-Based Loads and Stores

Figure 51. Stack-Pointer-Based Loads and Stores

These instructions use the CI format.

C.LWSP loads a 32-bit value from memory into register rd. It computes an effective address by adding
the zero-extended offset, scaled by 4, to the stack pointer, x2. It expands to lw rd, offset(x2). C.LWSP is
only valid when ; the code points with are reserved.

C.LDSP is an RV64C/RV128C-only instruction that loads a 64-bit value from memory into register rd.
It computes its effective address by adding the zero-extended offset, scaled by 8, to the stack pointer,
x2. It expands to ld rd, offset(x2). C.LDSP is only valid when ; the code points with are
reserved.

C.LQSP is an RV128C-only instruction that loads a 128-bit value from memory into register rd. It
computes its effective address by adding the zero-extended offset, scaled by 16, to the stack pointer, x2.
It expands to lq rd, offset(x2). C.LQSP is only valid when ; the code points with are
reserved.

C.FLWSP is an RV32FC-only instruction that loads a single-precision floating-point value from

16.3. Load and Store Instructions | Page 108

The RISC-V Instruction Set Manual | © RISC-V

memory into floating-point register rd. It computes its effective address by adding the zero-extended
offset, scaled by 4, to the stack pointer, x2. It expands to flw rd, offset(x2).

C.FLDSP is an RV32DC/RV64DC-only instruction that loads a double-precision floating-point value
from memory into floating-point register rd. It computes its effective address by adding the zero
-extended offset, scaled by 8, to the stack pointer, x2. It expands to fld rd, offset(x2).

Figure 52. Stack-Pointer-Based Loads and Stores, CSS format

These instructions use the CSS format.

C.SWSP stores a 32-bit value in register rs2 to memory. It computes an effective address by adding the
zero-extended offset, scaled by 4, to the stack pointer, x2. It expands to sw rs2, offset(x2).

C.SDSP is an RV64C/RV128C-only instruction that stores a 64-bit value in register rs2 to memory. It
computes an effective address by adding the zero-extended offset, scaled by 8, to the stack pointer, x2.
It expands to sd rs2, offset(x2).

C.SQSP is an RV128C-only instruction that stores a 128-bit value in register rs2 to memory. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the stack pointer, x2.
It expands to sq rs2, offset(x2).

C.FSWSP is an RV32FC-only instruction that stores a single-precision floating-point value in floating-
point register rs2 to memory. It computes an effective address by adding the zero-extended offset,
scaled by 4, to the stack pointer, x2. It expands to fsw rs2, offset(x2).

C.FSDSP is an RV32DC/RV64DC-only instruction that stores a double-precision floating-point value
in floating-point register rs2 to memory. It computes an effective address by adding the zero-extended
offset, scaled by 8, to the stack pointer, x2. It expands to fsd rs2, offset(x2).

16.3. Load and Store Instructions | Page 109

The RISC-V Instruction Set Manual | © RISC-V



Register save/restore code at function entry/exit represents a significant portion of static
code size. The stack-pointer-based compressed loads and stores in RVC are effective at
reducing the save/restore static code size by a factor of 2 while improving performance by
reducing dynamic instruction bandwidth.

A common mechanism used in other ISAs to further reduce save/restore code size is load-
multiple and store-multiple instructions. We considered adopting these for RISC-V but
noted the following drawbacks to these instructions:

• These instructions complicate processor implementations.

• For virtual memory systems, some data accesses could be resident in physical memory
and some could not, which requires a new restart mechanism for partially executed
instructions.

• Unlike the rest of the RVC instructions, there is no IFD equivalent to Load Multiple
and Store Multiple.

• Unlike the rest of the RVC instructions, the compiler would have to be aware of these
instructions to both generate the instructions and to allocate registers in an order to
maximize the chances of the them being saved and stored, since they would be saved
and restored in sequential order.

• Simple microarchitectural implementations will constrain how other instructions can
be scheduled around the load and store multiple instructions, leading to a potential
performance loss.

• The desire for sequential register allocation might conflict with the featured registers
selected for the CIW, CL, CS, CA, and CB formats.

Furthermore, much of the gains can be realized in software by replacing prologue and
epilogue code with subroutine calls to common prologue and epilogue code, a technique
described in Section 5.6 of .

While reasonable architects might come to different conclusions, we decided to omit load
and store multiple and instead use the software-only approach of calling save/restore
millicode routines to attain the greatest code size reduction.

16.3.2. Register-Based Loads and Stores

Figure 53. Compressed, register-based load and stores

These instructions use the CL format.

C.LW loads a 32-bit value from memory into register rd l'. It computes an effective address by adding

16.3. Load and Store Instructions | Page 110

The RISC-V Instruction Set Manual | © RISC-V

the zero-extended offset, scaled by 4, to the base address in register rs1 l'. It expands to lw rd, offset(rs1).

C.LD is an RV64C/RV128C-only instruction that loads a 64-bit value from memory into register rd l'. It
computes an effective address by adding the zero-extended offset, scaled by 8, to the base address in
register rs1 l'. It expands to ld rd', offset(rs1').

C.LQ is an RV128C-only instruction that loads a 128-bit value from memory into register rd l'. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the base address in
register rs1 l'. It expands to lq rd, offset(rs1).

C.FLW is an RV32FC-only instruction that loads a single-precision floating-point value from memory
into floating-point register rd l'. It computes an effective address by adding the zero-extended offset,
scaled by 4, to the base address in register rs1 l'. It expands to flw rd, offset(rs1).

C.FLD is an RV32DC/RV64DC-only instruction that loads a double-precision floating-point value
from memory into floating-point register rd l'. It computes an effective address by adding the zero
-extended offset, scaled by 8, to the base address in register rs1 l'. It expands to fld rd, offset(rs1).

S@S@S@Y@S@Y
& & & & &
& & & & &
& 3 & 3 & 2 & 3 & 2
C.SW & offset[5:3] & base & offset[2 6] & src & C0
C.SD & offset[5:3] & base & offset[7:6] & src & C0
C.SQ & offset[5 4 8] & base & offset[7:6] & src & C0
C.FSW& offset[5:3] & base & offset[2 6] & src & C0
C.FSD& offset[5:3] & base & offset[7:6] & src & C0

Figure 54. Compressed, CS format load and store

These instructions use the CS format.

C.SW stores a 32-bit value in register rs2 l' to memory. It computes an effective address by adding the
zero-extended offset, scaled by 4, to the base address in register rs1 l'. It expands to sw rs2, offset(rs1).

C.SD is an RV64C/RV128C-only instruction that stores a 64-bit value in register rs2 l' to memory. It
computes an effective address by adding the zero-extended offset, scaled by 8, to the base address in
register rs1 l'. It expands to sd rs2, offset(rs1).

C.SQ is an RV128C-only instruction that stores a 128-bit value in register rs2 l' to memory. It computes
an effective address by adding the zero-extended offset, scaled by 16, to the base address in register rs1
l'. It expands to sq rs2, offset(rs1).

C.FSW is an RV32FC-only instruction that stores a single-precision floating-point value in floating-

16.3. Load and Store Instructions | Page 111

The RISC-V Instruction Set Manual | © RISC-V

point register rs2 l' to memory. It computes an effective address by adding the zero-extended offset,
scaled by 4, to the base address in register rs1 l'. It expands to fsw rs2, offset(rs1).

C.FSD is an RV32DC/RV64DC-only instruction that stores a double-precision floating-point value in
floating-point register rs2 l' to memory. It computes an effective address by adding the zero-extended
offset, scaled by 8, to the base address in register rs1 l'. It expands to fsd rs2, offset(rs1).

16.4. Control Transfer Instructions
RVC provides unconditional jump instructions and conditional branch instructions. As with base RVI
instructions, the offsets of all RVC control transfer instruction are in multiples of 2 bytes.

S@L@Y
& &
& &
& 11 & 2
C.J & offset[11 4 9:8 10 6 7 3:1 5] & C1
C.JAL & offset[11 4 9:8 10 6l atexmath:[\vert]7 3:1 5] & C1

Figure 55. Compressed, CJ format load and store

These instructions use the CJ format.

C.J performs an unconditional control transfer. The offset is sign-extended and added to the pc to form
the jump target address. C.J can therefore target a range. C.J expands to jal x0, offset.

C.JAL is an RV32C-only instruction that performs the same operation as C.J, but additionally writes
the address of the instruction following the jump (pc+2) to the link register, x1. C.JAL expands to jal x1,
offset.

E@T@T@Y
& & &
& & &
& 5 & 5 & 2
C.JR & src≠0 & 0 & C2
C.JALR & src≠0 & 0 & C2

These instructions use the CR format.

C.JR (jump register) performs an unconditional control transfer to the address in register rs1. C.JR
expands to jalr x0, 0(rs1). C.JR is only valid when ; the code point with is reserved.

C.JALR (jump and link register) performs the same operation as C.JR, but additionally writes the
address of the instruction following the jump (pc+2) to the link register, x1. C.JALR expands to jalr x1,
0(rs1). C.JALR is only valid when ; the code point with corresponds to the C.EBREAK

16.4. Control Transfer Instructions | Page 112

The RISC-V Instruction Set Manual | © RISC-V

instruction.



Strictly speaking, C.JALR does not expand exactly to a base RVI instruction as the value
added to the PC to form the link address is 2 rather than 4 as in the base ISA, but
supporting both offsets of 2 and 4 bytes is only a very minor change to the base
microarchitecture.

S@S@S@T@Y
& & & &
& & & &
& 3 & 3 & 5 & 2
C.BEQZ & offset[8 4:3] & src & offset[7:6 2:1 5] & C1
C.BNEZ & offset[8 4:3] & src & offset[7:6 2:1 5] & C1

These instructions use the CB format.

C.BEQZ performs conditional control transfers. The offset is sign-extended and added to the pc to
form the branch target address. It can therefore target a range. C.BEQZ takes the branch if the
value in register rs1 l' is zero. It expands to beq rs1, x0, offset.

C.BNEZ is defined analogously, but it takes the branch if rs1 l' contains a nonzero value. It expands to
bne rs1, x0, offset.

16.5. Integer Computational Instructions
RVC provides several instructions for integer arithmetic and constant generation.

16.5.1. Integer Constant-Generation Instructions

The two constant-generation instructions both use the CI instruction format and can target any
integer register.

S@W@T@T@Y
& & & &
& & & &
& 1 & 5 & 5 & 2
C.LI & imm[5] & dest≠0 & imm[4:0] & C1
C.LUI & nzimm[17] & & nzimm[16:12] & C1

C.LI loads the sign-extended 6-bit immediate, imm, into register rd. C.LI expands into addi rd, x0, imm.
C.LI is only valid when rd≠_x0_; the code points with rd=x0 encode HINTs.

C.LUI loads the non-zero 6-bit immediate field into bits 17–12 of the destination register, clears the
bottom 12 bits, and sign-extends bit 17 into all higher bits of the destination. C.LUI expands into lui rd,
nzimm. C.LUI is only valid when rd , and when the immediate is not equal to zero. The code
points with nzimm=0 are reserved; the remaining code points with rd=x0 are HINTs; and the
remaining code points with rd=x2 correspond to the C.ADDI16SP instruction.

16.5. Integer Computational Instructions | Page 113

The RISC-V Instruction Set Manual | © RISC-V

16.5.2. Integer Register-Immediate Operations

These integer register-immediate operations are encoded in the CI format and perform operations on
an integer register and a 6-bit immediate.

S@W@T@T@Y
& & & &
& & & &
& 1 & 5 & 5 & 2
C.ADDI & nzimm[5] & dest≠0 & nzimm[4:0] & C1
C.ADDIW & imm[5] & dest≠0 & imm[4:0] & C1
C.ADDI16SP & nzimm[9] & 2 & nzimm[4 6 8:7 5] & C1

C.ADDI adds the non-zero sign-extended 6-bit immediate to the value in register rd then writes the
result to rd. C.ADDI expands into addi rd, rd, nzimm. C.ADDI is only valid when rd≠_x0_ and
nzimm≠0. The code points with rd=x0 encode the C.NOP instruction; the remaining code points with
nzimm=0 encode HINTs.

C.ADDIW is an RV64C/RV128C-only instruction that performs the same computation but produces a
32-bit result, then sign-extends result to 64 bits. C.ADDIW expands into addiw rd, rd, imm. The
immediate can be zero for C.ADDIW, where this corresponds to sext.w rd. C.ADDIW is only valid when
rd≠_x0_; the code points with rd=x0 are reserved.

C.ADDI16SP shares the opcode with C.LUI, but has a destination field of x2. C.ADDI16SP adds the non-
zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where the immediate is
scaled to represent multiples of 16 in the range (-512,496). C.ADDI16SP is used to adjust the stack
pointer in procedure prologues and epilogues. It expands into addi x2, x2, nzimm. C.ADDI16SP is only
valid when nzimm≠0; the code point with nzimm=0 is reserved.

 In the standard RISC-V calling convention, the stack pointer sp is always 16-byte aligned.

@S@K@S@Y
& & &
& & &
& 8 & 3 & 2
C.ADDI4SPN & nzuimm[5:4 9:6 2 3] & dest & C0

C.ADDI4SPN is a CIW-format instruction that adds a zero-extended non-zero immediate, scaled by 4,
to the stack pointer, x2, and writes the result to rd. This instruction is used to generate pointers to
stack-allocated variables, and expands to addi rd, x2, nzuimm. C.ADDI4SPN is only valid when
nzuimm≠0; the code points with nzuimm=0 are reserved.

S@W@T@T@Y
& & & &
& & & &
& 1 & 5 & 5 & 2
C.SLLI & shamt[5] & dest≠0 & shamt[4:0] & C2

C.SLLI is a CI-format instruction that performs a logical left shift of the value in register rd then writes
the result to rd. The shift amount is encoded in the shamt field. For RV128C, a shift amount of zero is
used to encode a shift of 64. C.SLLI expands into slli rd, rd, shamt, except for RV128C with shamt=0,
which expands to slli rd, rd, 64.

16.5. Integer Computational Instructions | Page 114

The RISC-V Instruction Set Manual | © RISC-V

For RV32C, shamt[5] must be zero; the code points with shamt[5]=1 are designated for custom
extensions. For RV32C and RV64C, the shift amount must be non-zero; the code points with shamt=0
are HINTs. For all base ISAs, the code points with rd=x0 are HINTs, except those with shamt[5]=1 in
RV32C.

S@W@Y@S@T@Y
& & & & &
& & & & &
& 1 & 2 & 3 & 5 & 2
C.SRLI & shamt[5] & C.SRLI & dest & shamt[4:0] & C1
C.SRAI & shamt[5] & C.SRAI & dest & shamt[4:0] & C1

C.SRLI is a CB-format instruction that performs a logical right shift of the value in register rd l' then
writes the result to rd l'. The shift amount is encoded in the shamt field. For RV128C, a shift amount of
zero is used to encode a shift of 64. Furthermore, the shift amount is sign-extended for RV128C, and so
the legal shift amounts are 1–31, 64, and 96–127. C.SRLI expands into srli rd', rd', shamt, except for
RV128C with shamt=0, which expands to srli rd, rd, 64.

For RV32C, shamt[5] must be zero; the code points with shamt[5]=1 are designated for custom
extensions. For RV32C and RV64C, the shift amount must be non-zero; the code points with shamt=0
are HINTs.

C.SRAI is defined analogously to C.SRLI, but instead performs an arithmetic right shift. C.SRAI
expands to srai rd, rd, shamt.



Left shifts are usually more frequent than right shifts, as left shifts are frequently used to
scale address values. Right shifts have therefore been granted less encoding space and are
placed in an encoding quadrant where all other immediates are sign-extended. For RV128,
the decision was made to have the 6-bit shift-amount immediate also be sign-extended.
Apart from reducing the decode complexity, we believe right-shift amounts of 96–127 will
be more useful than 64–95, to allow extraction of tags located in the high portions of 128-
bit address pointers. We note that RV128C will not be frozen at the same point as RV32C
and RV64C, to allow evaluation of typical usage of 128-bit address-space codes.

S@W@Y@S@T@Y
& & & & &
& & & & &
& 1 & 2 & 3 & 5 & 2
C.ANDI & imm[5] & C.ANDI & dest & imm[4:0] & C1

C.ANDI is a CB-format instruction that computes the bitwise AND of the value in register rd l' and the
sign-extended 6-bit immediate, then writes the result to rd l'. C.ANDI expands to andi rd, rd, imm.

16.5.3. Integer Register-Register Operations

E@T@T@Y
& & &
& & &
& 5 & 5 & 2
C.MV & dest≠0 & src≠0 & C2
C.ADD & dest≠0 & src≠0 & C2

16.5. Integer Computational Instructions | Page 115

The RISC-V Instruction Set Manual | © RISC-V

These instructions use the CR format.

C.MV copies the value in register rs2 into register rd. C.MV expands into add rd, x0, rs2. C.MV is only
valid when ; the code points with correspond to the C.JR instruction. The code points
with and are HINTs.



C.MV expands to a different instruction than the canonical MV pseudoinstruction, which
instead uses ADDI. Implementations that handle MV specially, e.g. using register-
renaming hardware, may find it more convenient to expand C.MV to MV instead of ADD,
at slight additional hardware cost.

C.ADD adds the values in registers rd and rs2 and writes the result to register rd. C.ADD expands into
add rd, rd, rs2. C.ADD is only valid when ; the code points with correspond to the C.JALR
and C.EBREAK instructions. The code points with and are HINTs.

M@S@Y@S@Y
& & & &
& & & &
& 3 & 2 & 3 & 2
C.AND & dest & C.AND & src & C1
C.OR & dest & C.OR & src & C1
C.XOR & dest & C.XOR & src & C1
C.SUB & dest & C.SUB & src & C1
C.ADDW & dest & C.ADDW & src & C1
C.SUBW & dest & C.SUBW & src & C1

These instructions use the CA format.

C.AND computes the bitwise AND of the values in registers rd l' and rs2 l', then writes the result to
register rd l'. C.AND expands into and rd, rd, rs2.

C.OR computes the bitwise OR of the values in registers rd l' and rs2 l', then writes the result to register
rd l'. C.OR expands into or rd′, rd′, rs2′.

C.XOR computes the bitwise XOR of the values in registers rd l' and rs2 l', then writes the result to
register rd l'. C.XOR expands into xor rd', rd', rs2'.

C.SUB subtracts the value in register rs2 l' from the value in register rd l', then writes the result to
register rd l'. C.SUB expands into sub rd', rd', rs2'.

C.ADDW is an RV64C/RV128C-only instruction that adds the values in registers rd l' and rs2 l', then
sign-extends the lower 32 bits of the sum before writing the result to register rd l'. C.ADDW expands
into addw rd', rd', rs2'.

C.SUBW is an RV64C/RV128C-only instruction that subtracts the value in register rs2 l' from the value
in register rd l', then sign-extends the lower 32 bits of the difference before writing the result to register
rd l'. C.SUBW expands into subw rd', rd', rs2'.


This group of six instructions do not provide large savings individually, but do not occupy
much encoding space and are straightforward to implement, and as a group provide a
worthwhile improvement in static and dynamic compression.

16.5. Integer Computational Instructions | Page 116

The RISC-V Instruction Set Manual | © RISC-V

16.5.4. Defined Illegal Instruction

SW@T@T@Y
& & & &
& & & &
& 1 & 5 & 5 & 2
0 & 0 & 0 & 0 & 0

A 16-bit instruction with all bits zero is permanently reserved as an illegal instruction.



We reserve all-zero instructions to be illegal instructions to help trap attempts to execute
zero-ed or non-existent portions of the memory space. The all-zero value should not be
redefined in any non-standard extension. Similarly, we reserve instructions with all bits set
to 1 (corresponding to very long instructions in the RISC-V variable-length encoding
scheme) as illegal to capture another common value seen in non-existent memory regions.

16.5.5. NOP Instruction

SW@T@T@Y
& & & &
& & & &
& 1 & 5 & 5 & 2
C.NOP & 0 & 0 & 0 & C1

C.NOP is a CI-format instruction that does not change any user-visible state, except for advancing the
pc and incrementing any applicable performance counters. C.NOP expands to nop. C.NOP is only valid
when imm=0; the code points with imm≠0 encode HINTs.

16.5.6. Breakpoint Instruction

E@U@Y
& &
& &
& 10 & 2
C.EBREAK & 0 & C2

Debuggers can use the C.EBREAK instruction, which expands to ebreak, to cause control to be
transferred back to the debugging environment. C.EBREAK shares the opcode with the C.ADD
instruction, but with rd and rs2 both zero, thus can also use the CR format.

16.6. Usage of C Instructions in LR/SC Sequences
On implementations that support the C extension, compressed forms of the I instructions permitted
inside constrained LR/SC sequences, as described in Section 9.3, “Eventual Success of Store-
Conditional Instructions”, are also permitted inside constrained LR/SC sequences.


The implication is that any implementation that claims to support both the A and C
extensions must ensure that LR/SC sequences containing valid C instructions will
eventually complete.

16.6. Usage of C Instructions in LR/SC Sequences | Page 117

The RISC-V Instruction Set Manual | © RISC-V

16.7. HINT Instructions
A portion of the RVC encoding space is reserved for microarchitectural HINTs. Like the HINTs in the
RV32I base ISA (see [rv32i-hints], these instructions do not modify any architectural state, except for
advancing the pc and any applicable performance counters. HINTs are executed as no-ops on
implementations that ignore them.

RVC HINTs are encoded as computational instructions that do not modify the architectural state,
either because rd=x0 (e.g. C.ADD x0, t0), or because rd is overwritten with a copy of itself (e.g. C.ADDI
t0, 0).


This HINT encoding has been chosen so that simple implementations can ignore HINTs
altogether, and instead execute a HINT as a regular computational instruction that
happens not to mutate the architectural state.

RVC HINTs do not necessarily expand to their RVI HINT counterparts. For example, C.ADD x0, t0
might not encode the same HINT as ADD x0, x0, t0.



The primary reason to not require an RVC HINT to expand to an RVI HINT is that HINTs
are unlikely to be compressible in the same manner as the underlying computational
instruction. Also, decoupling the RVC and RVI HINT mappings allows the scarce RVC
HINT space to be allocated to the most popular HINTs, and in particular, to HINTs that
are amenable to macro-op fusion.

Table 30, “RVC HINT instructions.” lists all RVC HINT code points. For RV32C, 78% of the HINT space
is reserved for standard HINTs, but none are presently defined. The remainder of the HINT space is
designated for custom HINTs; no standard HINTs will ever be defined in this subspace.

Table 30. RVC HINT instructions.

Instruction Constraints Code Points Purpose

C.NOP nzimm≠0 63

Reserved for future
standard use

C.ADDI rd≠_x0_, nzimm=0 31

C.LI rd=x0 64

C.LUI rd=x0, nzimm≠0 63

C.MV rd=x0, rs2≠_x0_ 31

C.ADD rd=x0, rs2≠_x0_ 31

C.SLLI rd=x0, nzimm≠0 31 (RV32), 63
(RV64/128)

Designated for custom
use

C.SLLI64 rd=x0 1

C.SLLI64 rd≠_x0_, RV32 and
RV64 only

31

C.SRLI64 RV32 and RV64 only 8

C.SRAI64 RV32 and RV64 only 8

16.7. HINT Instructions | Page 118

The RISC-V Instruction Set Manual | © RISC-V

16.8. RVC Instruction Set Listings
Table 31, “RVC opcode map instructions.” shows a map of the major opcodes for RVC. Each row of the
table corresponds to one quadrant of the encoding space. The last quadrant, which has the two least-
significant bits set, corresponds to instructions wider than 16 bits, including those in the base ISAs.
Several instructions are only valid for certain operands; when invalid, they are marked either RES to
indicate that the opcode is reserved for future standard extensions; Custom to indicate that the opcode
is designated for custom extensions; or HINT to indicate that the opcode is reserved for
microarchitectural hints Section 16.7, “HINT Instructions”.

Table 31. RVC opcode map instructions.

inst[15:1
3]

000 001 010 011 100 101 110 111inst[1:0]

00 ADDI4S
PN

FLD FLD
LQ

LW FLW LD
LD

Reserved FSD FSD
SQSW

SW FSW SD
SD

RV32
RV64
RV128

01 ADDI JAL
ADDIW
ADDIW

LI LUI/AD
DI16SP

MISC-
ALU

J BEQZ BNEZ RV32
RV64
RV128

10 SLLI FLDSP
FLDSP
LDSP

LWSP FLWSP
LDSP
LDSP

J[AL]R/
MV/AD
D

FSDSP
FSDSP
SQSP

SWSP FSWSP
SDSP
SDSP

RV32
RV6
RV128

11 16b

Table 32, “Instruction listing for RVC, Quadrant 0”, Table 33, “Instruction listing for RVC, Quadrant 1”,
and Table 34, “Instruction listing for RVC, Quadrant 2” list the RVC instructions.

Table 32. Instruction listing for RVC, Quadrant 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 0 0 00 Illegal instruction

000 nzuimm[5:4|9:6|2|3] rd' 00 C.ADDI4SPN (RES,nzuimm=0)

001 uimm[5:3] rs1 l' uimm[7:6] rd' 00 C.FLD (RV32/64)

001 uimm[5:4|
8]

rs1 l' uimm[7:6] rd' 00 C.LQ (RV128)

010 uimm[5:3] rs1 l' uimm[2|6] rd' 00 C.LW

011 uimm[5:3] rs1 l' uimm|6] rd' 00 C.FLW (RV32)

011 uimm[5:3] rs1 l' uimm[7:6] rd' 00 C.LD (RV64/128)

100 — 00 Reserved

101 uimm[5:3] rs1 l' uimm[7:6] rs2' 00 C.FSD (RV32/64)

101 uimm[5:4|
8]

rs1 l' uimm[7:6] rs2' 00 C.SQ (RV128)

110 uimm[5:3] rs1 l' uimm[2|6] rs2' 00 C.SW

16.8. RVC Instruction Set Listings | Page 119

The RISC-V Instruction Set Manual | © RISC-V

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111 uimm[5:3] rs1 l' uimm[2|6] rs2' 00 C.FSW (RV32)

111 uimm[5:3] rs1 l' uimm[7:6] rs2' 00 C.SD (RV64/128)

Table 33. Instruction listing for RVC, Quadrant 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 nzimm[5] 0 nzimm[4:0] 01 C.NOP (HINT,nzimm ≠0)

000 nzimm[5] rs1/rd≠0 nzimm[4:0] 01 C.ADDI (HINT, nzimm=0)

001 imm[11|4|9:8|10|6|7|3:1|5] 01 C.JAL (RV32)

001 imm[5] rs1/rd ≠0 imm[4:0] 01 C.ADDIW (RV64/128; RES,
rd=0)

010 imm[5] rd≠0 imm[4:0] 01 C.LI (HINT, rd=0)

011 nzimm[9] 2 nzimm[4|6|8:7|5] 01 C.ADDI16SP (RES,
nzimm=0)

011 nzimm[17] rd ≠{0,2} nzimm[16:12] 01 C.LUI (RES, nzimm=0; HINT,
rd=0)

100 nzuimm[5] 00 rs1'/rd' nzuimm[4:0] 01 C.SRLI (RV32 Custom,
nzuimm[5]=1)

100 0 00 rs1'/rd l' 0 01 C.SRLI64 (RV128; RV32/64
HINT)

100 nzuimm[5] 01 rs1'/rd' nzuimm[4:0] 01 C.SRAI (RV32 Custom,
nzuimm[5]=1)

100 0 01 rs1'/rd' 0 01 C.SRAI64 (RV128; RV32/64
HINT)

100 imm[5] 10 rs1 l'/rd' imm[4:0] 01 C.ANDI

100 0 11 rs1'/rd' 00 rs2' 01 C.SUB

100 0 11 rs1'/rd' 01 rs2 l' 01 C.XOR

100 0 11 rs1'/rd' 10 rs2 l' 01 C.OR

100 0 11 rs1'/rd' 11 rs2 l' 01 C.AND

100 1 11 rs1'/rd' 00 rs2 l' 01 C.SUBW (RV64/128; RV32
RES)

100 1 11 rs1'/rd' 01 rs2 l' 01 C.ADDW (RV64/128; RV32
RES)

100 1 11 — 10 — 01 Reserved

100 1 11 — 11 — 01 Reserved

101 imm[11 |4|9:8|10|6|7|3:1|5] 01 C.J

110 imm[8|4:3] rs1' imm[7:6 |2:1|5] 01 C.BEQZ

111 imm[8 |4:3] rs1' imm[7:6 |2:1 |5] 01 C.BNEZ

Table 34. Instruction listing for RVC, Quadrant 2

16.8. RVC Instruction Set Listings | Page 120

The RISC-V Instruction Set Manual | © RISC-V

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 nzuimm[5] rs1/rd̸=0 nzuimm[4:0] 10 C.SLLI (HINT, rd=0; RV32 Custom,
nzuimm[5]=1)

000 0 rs1/rd̸=0 0 10 C.SLLI64 (RV128; RV32/64 HINT; HINT,
rd=0)

001 uimm[5] rd uimm[4:3|8:6] 10 C.FLDSP (RV32/64)

001 uimm[5] rd̸=0 uimm[4|9:6] 10 C.LQSP (RV128; RES, rd=0)

010 uimm[5] rd̸=0 uimm[4:2|7:6] 10 C.LWSP (RES, rd=0)

011 uimm[5] rd uimm[4:2|7:6] 10 C.FLWSP (RV32)

011 uimm[5] rd̸=0 uimm[4:3|8:6] 10 C.LDSP (RV64/128; RES, rd=0)

100 0 rs1 ≠ 0 0 10 C.JR (RES, rs1=0)

100 0 rd ≠ 0 rs2 ≠ 0 10 C.MV (HINT, rd=0)

100 1 0 0 10 C.EBREAK

100 1 rs1 ≠ =0 0 10 C.JALR

100 1 rs1/rd̸=0 rs2 ≠ 0 10 C.ADD (HINT, rd=0)

101 uimm[5:3|8:6] rs2 10 C.FSDSP (RV32/64)

101 uimm[5:4|9:6] rs2 10 C.SQSP (RV128)

110 uimm[5:2|7:6] rs2 10 C.SWSP

111 uimm[5:2|7:6] rs2 10 C.FSWSP (RV32)

111 uimm[5:3|8:6] rs2 10 C.SDSP (RV64/128)

16.8. RVC Instruction Set Listings | Page 121

The RISC-V Instruction Set Manual | © RISC-V

Chapter 17. B Standard Extension for Bit
Manipulation, Version 0.0
This chapter is a placeholder for a future standard extension to provide bit manipulation instructions,
including instructions to insert, extract, and test bit fields, and for rotations, funnel shifts, and bit and
byte permutations.

Although bit manipulation instructions are very effective in some application domains, particularly
when dealing with externally packed data structures, we excluded them from the base ISAs as they are
not useful in all domains and can add additional complexity or instruction formats to supply all
needed operands.

We anticipate the B extension will be a brownfield encoding within the base 30-bit instruction space.

Chapter 17. B Standard Extension for Bit Manipulation, Version 0.0 | Page 122

The RISC-V Instruction Set Manual | © RISC-V

Chapter 18. J Standard Extension for
Dynamically Translated Languages,
Version 0.0
This chapter is a placeholder for a future standard extension to support dynamically translated
languages.

Many popular languages are usually implemented via dynamic translation, including Java and
Javascript. These languages can benefit from additional ISA support for dynamic checks and garbage
collection.

Chapter 18. J Standard Extension for Dynamically Translated Languages, Version 0.0 | Page 123

The RISC-V Instruction Set Manual | © RISC-V

Chapter 19. P Standard Extension for
Packed-SIMD Instructions, Version 0.2
Discussions at the 5th RISC-V workshop indicated a desire to drop this packed-SIMD proposal for
floating-point registers in favor of standardizing on the V extension for large floating-point SIMD
operations. However, there was interest in packed-SIMD fixed-point operations for use in the integer
registers of small RISC-V implementations. A task group is working to define the new P extension.

Chapter 19. P Standard Extension for Packed-SIMD Instructions, Version 0.2 | Page 124

The RISC-V Instruction Set Manual | © RISC-V

Chapter 20. V Standard Extension for
Vector Operations, Version 0.7
The current working group draft is hosted at ` github.com/riscv/riscv-v-spec`.

The base vector extension is intended to provide general support for data-parallel execution within the
32-bit instruction encoding space, with later vector extensions supporting richer functionality for
certain domains.

Chapter 20. V Standard Extension for Vector Operations, Version 0.7 | Page 125

The RISC-V Instruction Set Manual | © RISC-V

https://github.com/riscv/riscv-v-spec`

Chapter 21. Zam Standard Extension for
Misaligned Atomics, v0.1
This chapter defines the Zam extension, which extends the A extension by standardizing support for
misaligned atomic memory operations (AMOs). On platforms implementing Zam, misaligned AMOs
need only execute atomically with respect to other accesses (including non-atomic loads and stores) to
the same address and of the same size. More precisely, execution environments implementing Zam are
subject to the following axiom:

21.1. Atomicity Axiom for misaligned atomics
If and are paired misaligned load and store instructions from a hart with the same address and of
the same size, then there can be no store instruction from a hart other than with the same address
and of the same size as and such that a store operation generated by lies in between memory
operations generated by and in the global memory order. Furthermore, there can be no load
instruction from a hart other than with the same address and of the same size as and such that a
load operation generated by lies between two memory operations generated by or by in the global
memory order.

This restricted form of atomicity is intended to balance the needs of applications which require
support for misaligned atomics and the ability of the implementation to actually provide the
necessary degree of atomicity.

Aligned instructions under Zam continue to behave as they normally do under RVWMO.

The intention of Zam is that it can be implemented in one of two ways:

1. On hardware that natively supports atomic misaligned accesses to the address and size in question
(e.g., for misaligned accesses within a single cache line): by simply following the same rules that
would be applied for aligned AMOs.

2. On hardware that does not natively support misaligned accesses to the address and size in
question: by trapping on all instructions (including loads) with that address and size and executing
them (via any number of memory operations) inside a mutex that is a function of the given
memory address and access size. AMOs may be emulated by splitting them into separate load and
store operations, but all preserved program order rules (e.g., incoming and outgoing syntactic
dependencies) must behave as if the AMO is still a single memory operation.

21.1. Atomicity Axiom for misaligned atomics | Page 126

The RISC-V Instruction Set Manual | © RISC-V

Chapter 22. Ztso Standard Extension for
Total Store Ordering, v0.1
This chapter defines the Ztso extension for the RISC-V Total Store Ordering (RVTSO) memory
consistency model. RVTSO is defined as a delta from RVWMO, which is defined in Section 15.1,
“Definition of the RVWMO Memory Model”.

The Ztso extension is meant to facilitate the porting of code originally written for the x86 or SPARC
architectures, both of which use TSO by default. It also supports implementations which inherently
provide RVTSO behavior and want to expose that fact to software.

RVTSO makes the following adjustments to RVWMO:

• All load operations behave as if they have an acquire-RCpc annotation

• All store operations behave as if they have a release-RCpc annotation.

• All AMOs behave as if they have both acquire-RCsc and release-RCsc annotations.

These rules render all PPO rules except Section 2.7, “Memory Ordering Instructions”–[rcsc]
redundant. They also make redundant any non-I/O fences that do not have both PW and SR set.
Finally, they also imply that no memory operation will be reordered past an AMO in either direction.

In the context of RVTSO, as is the case for RVWMO, the storage ordering annotations are concisely
and completely defined by PPO rules [acquire]–[rcsc]. In both of these memory models, it is the that
allows a hart to forward a value from its store buffer to a subsequent (in program order) load—that is
to say that stores can be forwarded locally before they are visible to other harts.

In spite of the fact that Ztso adds no new instructions to the ISA, code written assuming RVTSO will
not run correctly on implementations not supporting Ztso. Binaries compiled to run only under Ztso
should indicate as such via a flag in the binary, so that platforms which do not implement Ztso can
simply refuse to run them.

Chapter 22. Ztso Standard Extension for Total Store Ordering, v0.1 | Page 127

The RISC-V Instruction Set Manual | © RISC-V

Chapter 23. RV32/64G Instruction Set
Listings
One goal of the RISC-V project is that it be used as a stable software development target. For this
purpose, we define a combination of a base ISA (RV32I or RV64I) plus selected standard extensions
(IMAFD, Zicsr, Zifencei) as a general-purpose ISA, and we use the abbreviation G for the
IMAFDZicsr_Zifencei combination of instruction-set extensions. This chapter presents opcode maps
and instruction-set listings for RV32G and RV64G.

Table 35. RISC-V base opcode map, inst[1:0]=11

inst[4:
2]

000 001 010 011 100 101 110 111
(>32b)inst[6:

5]

00 LOAD LOAD-FP custom-
0

MISC-
MEM OP-IMM AUIPC OP-IMM-32 48b

01 STORE STORE-
FP

custom-
1 AMO OP LUI OP-32 64b

10 MADD MSUB NMSUB NMADD OP-FP reserve
d

custom-
2/rv128 48b

11 BRANCH JALR reserve
d JAL SYSTEM reserve

d
custom-
3/rv128 ≥80b

Table 35, “RISC-V base opcode map, inst[1:0]=11” shows a map of the major opcodes for RVG. Major
opcodes with 3 or more lower bits set are reserved for instruction lengths greater than 32 bits. Opcodes
marked as reserved should be avoided for custom instruction-set extensions as they might be used by
future standard extensions. Major opcodes marked as custom-0 and custom-1 will be avoided by future
standard extensions and are recommended for use by custom instruction-set extensions within the
base 32-bit instruction format. The opcodes marked custom-2/rv128 and custom-3/rv128 are reserved
for future use by RV128, but will otherwise be avoided for standard extensions and so can also be used
for custom instruction-set extensions in RV32 and RV64.

We believe RV32G and RV64G provide simple but complete instruction sets for a broad range of
general-purpose computing. The optional compressed instruction set described in Chapter 16, C
Standard Extension for Compressed Instructions, Version 2.0 can be added (forming RV32GC and
RV64GC) to improve performance, code size, and energy efficiency, though with some additional
hardware complexity.

As we move beyond IMAFDC into further instruction-set extensions, the added instructions tend to be
more domain-specific and only provide benefits to a restricted class of applications, e.g., for
multimedia or security. Unlike most commercial ISAs, the RISC-V ISA design clearly separates the
base ISA and broadly applicable standard extensions from these more specialized additions.
[extensions] has a more extensive discussion of ways to add extensions to the RISC-V ISA.

31 27 26 25 24 20 19 15 14 12 11 7 6 0

Chapter 23. RV32/64G Instruction Set Listings | Page 128

The RISC-V Instruction Set Manual | © RISC-V

funt7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

imm[31:12] rd opcode U-type

imm[20|10:1|11|19:12] rd opcode J-type

RV32I Base Instruction Set

imm[31:12] rd 0110111 LUI

imm[31:12] rd 0010111 AUIPC

imm[20|10:1|11|19:12] rd 1101111 JAL

imm[11:0] rs1 000 rd 1100111 JALR

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ

imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE

imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT

imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE

imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU

imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

imm[11:0] rs1 000 rd 0000011 LB

imm[11:0] rs1 001 rd 0000011 LH

imm[11:0] rs1 010 rd 0000011 LW

imm[11:0] rs1 100 rd 0000011 LBU

imm[11:0] rs1 101 rd 0000011 LHU

imm[11:5] rs2 rs1 000 imm[4:0] 0100011 SB

imm[11:5] rs2 rs1 001 imm[4:0] 0100011 SH

imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW

imm[11:0] rs1 000 rd 0010011 ADDI

imm[11:0] rs1 010 rd 0010011 SLTI

imm[11:0] rs1 011 rd 0010011 SLTIU

imm[11:0] rs1 100 rd 0010011 XORI

imm[11:0] rs1 110 rd 0010011 ORI

imm[11:0] rs1 111 rd 0010011 ANDI

Chapter 23. RV32/64G Instruction Set Listings | Page 129

The RISC-V Instruction Set Manual | © RISC-V

0000000 shamt rs1 001 rd 0010011 SLLI

0000000 shamt rs1 101 rd 0010011 SRLI

0100000 shamt rs1 101 rd 0010011 SRAI

0000000 rs2 rs1 000 rd 0110011 ADD

0100000 rs2 rs1 000 rd 0110011 SUB

0000000 rs2 rs1 001 rd 0110011 SLL

0000000 rs2 rs1 010 rd 0110011 SLT

0000000 rs2 rs1 011 rd 0110011 SLTU

0000000 rs2 rs1 100 rd 0110011 XOR

0000000 rs2 rs1 101 rd 0110011 SRL

0100000 rs2 rs1 101 rd 0110011 SRA

0000000 rs2 rs1 110 rd 0110011 OR

0000000 rs2 rs1 111 rd 0110011 AND

fm pred succ rs1 000 rd 0001111 FENCE

1000 0011 0011 00000 000 00000 0001111 FENCE.TS
O

0000 0001 0000 00000 000 00000 0001111 PAUSE

000000000000 00000 000 00000 1110011 ECALL

000000000001 00000 000 00000 1110011 EBREAK

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funt7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

RV64I Base Instruction Set (in addition to RV32I)

imm[11:0] rs1 110 rd 0000011 LWU

imm[11:0] rs1 011 rd 0000011 LD

imm[11:5] rs2 rs1 011 imm[4:0] 0100011 SD

000000 shamt rs1 001 rd 0010011 SLLI

000000 shamt rs1 101 rd 0010011 SRLI

010000 shamt rs1 101 rd 0010011 SRAI

imm[11:0] rs1 000 rd 0011011 ADDIW

Chapter 23. RV32/64G Instruction Set Listings | Page 130

The RISC-V Instruction Set Manual | © RISC-V

0000000 shamt rs1 001 rd 0011011 SLLIW

0000000 shamt rs1 101 rd 0011011 SRLIW

0100000 shamt rs1 101 rd 0011011 SRAIW

0000000 rs2 rs1 000 rd 0111011 ADDW

0100000 rs2 rs1 000 rd 0111011 SUBW

0000000 rs2 rs1 001 rd 0111011 SLLW

0000000 rs2 rs1 101 rd 0111011 SRLW

0100000 rs2 rs1 101 rd 0111011 SRAW

RV32/RV64 Zifencei Standard Extension

imm[11:0] rs1 001 rd 0001111 FENCE.I

RV32/RV64 Zicsr Standard Extension

csr rs1 001 rd 1110011 CSRRW

csr rs1 010 rd 1110011 CSRRS

csr rs1 011 rd 1110011 CSRRC

csr uimm 101 rd 1110011 CSRRWI

csr uimm 110 rd 1110011 CSRRSI

csr uimm 111 rd 1110011 CSRRCI

RV32M Standard Extension

0000001 rs2 rs1 000 rd 0110011 MUL

0000001 rs2 rs1 001 rd 0110011 MULH

0000001 rs2 rs1 010 rd 0110011 MULHSU

0000001 rs2 rs1 011 rd 0110011 MULHU

0000001 rs2 rs1 100 rd 0110011 DIV

0000001 rs2 rs1 101 rd 0110011 DIVU

0000001 rs2 rs1 110 rd 0110011 REM

0000001 rs2 rs1 111 rd 0110011 REMU

RV64M Standard Extension (in addition to RV32M)

0000001 rs2 rs1 000 rd 0111011 MULW

0000001 rs2 rs1 100 rd 0111011 DIVW

0000001 rs2 rs1 101 rd 0111011 DIVUW

Chapter 23. RV32/64G Instruction Set Listings | Page 131

The RISC-V Instruction Set Manual | © RISC-V

0000001 rs2 rs1 110 rd 0111011 REMW

0000001 rs2 rs1 111 rd 0111011 REMUW

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funt7 rs2 rs1 funct3 rd opcode R-type

RV32A Standard Extension

00010 aq rl 00000 rs1 010 rd 0101111 LR.W

00011 aq rl rs2 rs1 010 rd 0101111 SC.W

00001 aq rl rs2 rs1 010 rd 0101111 AMOSWAP.
W

00000 aq rl rs2 rs1 010 rd 0101111 AMOADD.W

00100 aq rl rs2 rs1 010 rd 0101111 AMOXOR.W

01100 aq rl rs2 rs1 010 rd 0101111 AMOAND.W

01000 aq rl rs2 rs1 010 rd 0101111 AMOOR.W

10000 aq rl rs2 rs1 010 rd 0101111 AMOMIN.W

10100 aq rl rs2 rs1 010 rd 0101111 AMOMAX.W

11000 aq rl rs2 rs1 010 rd 0101111 AMOMINU.
W

11100 aq rl rs2 rs1 010 rd 0101111 AMOMAXU.
W

RV64A Standard Extension (in addition to RV32A)

00010 aq rl 00000 rs1 011 rd 0101111 LR.D

00011 aq rl rs2 rs1 011 rd 0101111 SC.D

00001 aq rl rs2 rs1 011 rd 0101111 AMOSWAP.
D

00000 aq rl rs2 rs1 011 rd 0101111 AMOADD.D

00100 aq rl rs2 rs1 011 rd 0101111 AMOXOR.D

01100 aq rl rs2 rs1 011 rd 0101111 AMOAND.D

01000 aq rl rs2 rs1 011 rd 0101111 AMOOR.D

10000 aq rl rs2 rs1 011 rd 0101111 AMOMIN.D

10100 aq rl rs2 rs1 011 rd 0101111 AMOMAX.D

11000 aq rl rs2 rs1 011 rd 0101111 AMOMINU.
D

Chapter 23. RV32/64G Instruction Set Listings | Page 132

The RISC-V Instruction Set Manual | © RISC-V

11100 aq rl rs2 rs1 011 rd 0101111 AMOMAXU.
D

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funt7 rs2 rs1 funct3 rd opcode R-type

rs3 funct
2

rs2 rs1 funct3 rd opcode R4-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

RV32F Standard Extension

imm[11:0] rs1 010 rd 0000111 FLW

imm[11:5] rs2 rs1 010 imm[4:0] 0100111 FSW

rs3 00 rs2 rs1 rm rd 1000011 FMADD.S

rs3 00 rs2 rs1 rm rd 1000111 FMSUB.S

rs3 00 rs2 rs1 rm rd 1001011 FNMSUB.S

rs3 00 rs2 rs1 rm rd 1001111 FNMADD.S

0000000 rs2 rs1 rm rd 1010011 FADD.S

0000100 rs2 rs1 rm rd 1010011 FSUB.S

0001000 rs2 rs1 rm rd 1010011 FMUL.S

0001100 rs2 rs1 rm rd 1010011 FDIV.S

0101100 00000 rs1 rm rd 1010011 FSQRT.S

0010000 rs2 rs1 000 rd 1010011 FSGNJ.S

0010000 rs2 rs1 001 rd 1010011 FSGNJN.S

0010000 rs2 rs1 010 rd 1010011 FSGNJX.S

0010100 rs2 rs1 000 rd 1010011 FMIN.S

0010100 rs2 rs1 001 rd 1010011 FMAX.S

1100000 00000 rs1 rm rd 1010011 FCVT.W.S

1100000 00001 rs1 rm rd 1010011 FCVT.WU.
S

1110000 00000 rs1 000 rd 1010011 FMV.X.W

1010000 rs2 rs1 010 rd 1010011 FEQ.S

1010000 rs2 rs1 001 rd 1010011 FLT.S

1010000 rs2 rs1 000 rd 1010011 FLE.S

Chapter 23. RV32/64G Instruction Set Listings | Page 133

The RISC-V Instruction Set Manual | © RISC-V

1110000 00000 rs1 001 rd 1010011 FCLASS.S

1101000 00000 rs1 rm rd 1010011 FCVT.S.W

1101000 00001 rs1 rm rd 1010011 FCVT.S.W
U

1111000 00000 rs1 000 rd 1010011 FMV.W.X

RV64F Standard Extension (in addition to RV32F)

1100000 00010 rs1 rm rd 1010011 FCVT.L.S

1100000 00011 rs1 rm rd 1010011 FCVT.LU.
S

1101000 00010 rs1 rm rd 1010011 FCVT.S.L

1101000 00011 rs1 rm rd 1010011 FCVT.S.L
U

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funt7 rs2 rs1 funct3 rd opcode R-type

rs3 funct
2

rs2 rs1 funct3 rd opcode R4-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

RV32D Standard Extension

imm[11:0] rs1 011 rd 0000111 FLD

imm[11:5] rs2 rs1 011 imm[4:0] 0100111 FSD

rs3 01 rs2 rs1 rm rd 1000011 FMADD.D

rs3 01 rs2 rs1 rm rd 1000111 FMSUB.D

rs3 01 rs2 rs1 rm rd 1001011 FNMSUB.D

rs3 01 rs2 rs1 rm rd 1001111 FNMADD.D

0000001 rs2 rs1 rm rd 1010011 FADD.D

0000101 rs2 rs1 rm rd 1010011 FSUB.D

0001001 rs2 rs1 rm rd 1010011 FMUL.D

0001101 rs2 rs1 rm rd 1010011 FDIV.D

0101101 00000 rs1 rm rd 1010011 FSQRT.D

0010001 rs2 rs1 000 rd 1010011 FSGNJ.D

Chapter 23. RV32/64G Instruction Set Listings | Page 134

The RISC-V Instruction Set Manual | © RISC-V

0010001 rs2 rs1 001 rd 1010011 FSGNJN.D

0010001 rs2 rs1 010 rd 1010011 FSGNJX.D

0010101 rs2 rs1 000 rd 1010011 FMIN.D

0010101 rs2 rs1 001 rd 1010011 FMAX.D

0100000 00001 rs1 rm rd 1010011 FCVT.S.D

0100001 00000 rs1 rm rd 1010011 FCVT.D.S

1010001 rs2 rs1 010 rd 1010011 FEQ.D

1010001 rs2 rs1 001 rd 1010011 FLT.D

1010001 rs2 rs1 000 rd 1010011 FLE.D

1110001 00000 rs1 001 rd 1010011 FCLASS.D

1100001 00000 rs1 rm rd 1010011 FCVT.W.D

1100001 00001 rs1 rm rd 1010011 FCVT.WU.
D

1101001 00000 rs1 rm rd 1010011 FCVT.D.W

1101001 00001 rs1 rm rd 1010011 FCVT.D.W
U

RV64D Standard Extension (in addition to RV32D)

1100001 00010 rs1 rm rd 1010011 FCVT.L.D

1100001 00011 rs1 rm rd 1010011 FCVT.LU.
D

1110001 00000 rs1 000 rd 1010011 FMV.X.D

1101001 00010 rs1 rm rd 1010011 FCVT.D.L

1101001 00011 rs1 rm rd 1010011 FCVT.D.L
U

1111001 00000 rs1 000 rd 1010011 FMV.D.X

31 27 26 25 24 20 19 15 14 12 11 7 6 0

funt7 rs2 rs1 funct3 rd opcode R-type

rs3 funct
2

rs2 rs1 funct3 rd opcode R4-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[11:0] rs1 100 rd 0000111 FLQ

Chapter 23. RV32/64G Instruction Set Listings | Page 135

The RISC-V Instruction Set Manual | © RISC-V

RV32Q Standard Extension

imm[11:5] rs2 rs1 100 imm[4:0] 0100111 FSQ

rs3 11 rs2 rs1 rm rd 1000011 FMADD.Q

rs3 11 rs2 rs1 rm rd 1000111 FMSUB.Q

rs3 11 rs2 rs1 rm rd 1001011 FNMSUB.Q

rs3 11 rs2 rs1 rm rd 1001111 FNMADD.Q

0000011 rs2 rs1 rm rd 1010011 FADD.Q

0000111 rs2 rs1 rm rd 1010011 FSUB.Q

0001011 rs2 rs1 rm rd 1010011 FMUL.Q

0001111 rs2 rs1 rm rd 1010011 FDIV.Q

0101111 00000 rs1 rm rd 1010011 FSQRT.Q

0010011 rs2 rs1 000 rd 1010011 FSGNJ.Q

0010011 rs2 rs1 001 rd 1010011 FSGNJN.Q

0010011 rs2 rs1 010 rd 1010011 FSGNJX.Q

0010111 rs2 rs1 000 rd 1010011 FMIN.Q

0010111 rs2 rs1 001 rd 1010011 FMAX.Q

0100000 00011 rs1 rm rd 1010011 FCVT.S.Q

0100011 00000 rs1 rm rd 1010011 FCVT.Q.S

0100001 00011 rs1 rm rd 1010011 FCVT.D.Q

0100011 00001 rs1 rm rd 1010011 FCVT.Q.D

1010011 rs2 rs1 010 rd 1010011 FEQ.Q

1010011 rs2 rs1 001 rd 1010011 FLT.Q

1010011 rs2 rs1 000 rd 1010011 FLE.Q

1110011 00000 rs1 001 rd 1010011 FCLASS.Q

1100011 00000 rs1 rm rd 1010011 FCVT.W.Q

1100011 00001 rs1 rm rd 1010011 FCVT.WU.
Q

1101011 00000 rs1 rm rd 1010011 FCVT.Q.W

1101011 00001 rs1 rm rd 1010011 FCVT.Q.W
U

RV64Q Standard Extension (in addition to RV32Q)

1100011 00010 rs1 rm rd 1010011 FCVT.L.Q

Chapter 23. RV32/64G Instruction Set Listings | Page 136

The RISC-V Instruction Set Manual | © RISC-V

1100011 00011 rs1 rm rd 1010011 FCVT.LU.
Q

1101011 00010 rs1 rm rd 1010011 FCVT.Q.L

1101011 00011 rs1 rm rd 1010011 FCVT.Q.L
U

Table 36, “RISC-V control and status register (CSR) address map.” lists the CSRs that have currently
been allocated CSR addresses. The timers, counters, and floating-point CSRs are the only CSRs
defined in this specification.

Table 36. RISC-V control and status register (CSR) address map.

Number Privilege Name Description

Floating-Point Control and Status Registers

0x001 Read/write fflags Floating-Point Accrued Exceptions.

0x002 Read/write frm Floating-Point Dynamic Rounding Mode.

0x003 Read/write fcsr Floating-Point Control and Status Register (frm +
fflags).

Counters and Timers

0xC00 Read-only cycle Cycle counter for RDCYCLE instruction.

0xC01 Read-only time Timer for RDTIME instruction.

0xC02 Read-only instret Instructions-retired counter for RDINSTRET instruction.

0xC80 Read-only cycleh Upper 32 bits of cycle, RV32I only.

0xC81 Read-only timeh Upper 32 bits of time, RV32I only.

0xC82 Read-only instreth Upper 32 bits of instret, RV32I only.

Chapter 23. RV32/64G Instruction Set Listings | Page 137

The RISC-V Instruction Set Manual | © RISC-V

Chapter 24. Extending RISC-V
In addition to supporting standard general-purpose software development, another goal of RISC-V is
to provide a basis for more specialized instruction-set extensions or more customized accelerators.
The instruction encoding spaces and optional variable-length instruction encoding are designed to
make it easier to leverage software development effort for the standard ISA toolchain when building
more customized processors. For example, the intent is to continue to provide full software support for
implementations that only use the standard I base, perhaps together with many non-standard
instruction-set extensions.

This chapter describes various ways in which the base RISC-V ISA can be extended, together with the
scheme for managing instruction-set extensions developed by independent groups. This volume only
deals with the unprivileged ISA, although the same approach and terminology is used for supervisor-
level extensions described in the second volume.

24.1. Extension Terminology
This section defines some standard terminology for describing RISC-V extensions.

24.1.1. Standard versus Non-Standard Extension

Any RISC-V processor implementation must support a base integer ISA (RV32I, RV32E, RV64I, or
RV128I). In addition, an implementation may support one or more extensions. We divide extensions
into two broad categories: standard versus non-standard.

• A standard extension is one that is generally useful and that is designed to not conflict with any
other standard extension. Currently, MAFDQLCBTPV, described in other chapters of this manual, are
either complete or planned standard extensions.

• A non-standard extension may be highly specialized and may conflict with other standard or non-
standard extensions. We anticipate a wide variety of non-standard extensions will be developed
over time, with some eventually being promoted to standard extensions.

24.1.2. Instruction Encoding Spaces and Prefixes

An instruction encoding space is some number of instruction bits within which a base ISA or ISA
extension is encoded. RISC-V supports varying instruction lengths, but even within a single
instruction length, there are various sizes of encoding space available. For example, the base ISAs are
defined within a 30-bit encoding space (bits 31–2 of the 32-bit instruction), while the atomic
extension A fits within a 25-bit encoding space (bits 31–7).

We use the term prefix to refer to the bits to the right of an instruction encoding space (since
instruction fetch in RISC-V is little-endian, the bits to the right are stored at earlier memory addresses,
hence form a prefix in instruction-fetch order). The prefix for the standard base ISA encoding is the
two-bit 11 field held in bits 1–0 of the 32-bit word, while the prefix for the standard atomic extension
A is the seven-bit 0101111 field held in bits 6–0 of the 32-bit word representing the AMO major
opcode. A quirk of the encoding format is that the 3-bit funct3 field used to encode a minor opcode is
not contiguous with the major opcode bits in the 32-bit instruction format, but is considered part of
the prefix for 22-bit instruction spaces.

24.1. Extension Terminology | Page 138

The RISC-V Instruction Set Manual | © RISC-V

Although an instruction encoding space could be of any size, adopting a smaller set of common sizes
simplifies packing independently developed extensions into a single global encoding. Table 37,
“Suggested standard RISC-V instruction encoding space sizes.” gives the suggested sizes for RISC-V.

Table 37. Suggested standard RISC-V instruction encoding space sizes.

Size Usage # Available in standard instruction length

16-bit 32-bit 48-bit 64-bit

14-bit Quadrant of compressed 16-bit encoding 3

22-bit Minor opcode in base 32-bit encoding

25-bit Major opcode in base 32-bit encoding 32

30-bit Quadrant of base 32-bit encoding 1

32-bit Minor opcode in 48-bit encoding

37-bit Major opcode in 48-bit encoding 32

40-bit Quadrant of 48-bit encoding 4

45-bit Sub-minor opcode in 64-bit encoding

48-bit Minor opcode in 64-bit encoding

52-bit Major opcode in 64-bit encoding 32

24.1.3. Greenfield versus Brownfield Extensions

We use the term greenfield extension to describe an extension that begins populating a new instruction
encoding space, and hence can only cause encoding conflicts at the prefix level. We use the term
brownfield extension to describe an extension that fits around existing encodings in a previously
defined instruction space. A brownfield extension is necessarily tied to a particular greenfield parent
encoding, and there may be multiple brownfield extensions to the same greenfield parent encoding.
For example, the base ISAs are greenfield encodings of a 30-bit instruction space, while the FDQ
floating-point extensions are all brownfield extensions adding to the parent base ISA 30-bit encoding
space.

Note that we consider the standard A extension to have a greenfield encoding as it defines a new
previously empty 25-bit encoding space in the leftmost bits of the full 32-bit base instruction
encoding, even though its standard prefix locates it within the 30-bit encoding space of its parent base
ISA. Changing only its single 7-bit prefix could move the A extension to a different 30-bit encoding
space while only worrying about conflicts at the prefix level, not within the encoding space itself.

Table 38. Two-dimensional characterization of
standard instruction-set extensions.

Adds state No new
state

Greenfield RV32I(30), RV64I(30) A(25)

Brownfield F(I), D(F), Q(D) M(I)

Table 38, “Two-dimensional characterization of standard instruction-set extensions.” shows the bases

24.1. Extension Terminology | Page 139

The RISC-V Instruction Set Manual | © RISC-V

and standard extensions placed in a simple two-dimensional taxonomy. One axis is whether the
extension is greenfield or brownfield, while the other axis is whether the extension adds architectural
state. For greenfield extensions, the size of the instruction encoding space is given in parentheses. For
brownfield extensions, the name of the extension (greenfield or brownfield) it builds upon is given in
parentheses. Additional user-level architectural state usually implies changes to the supervisor-level
system or possibly to the standard calling convention.

Note that RV64I is not considered an extension of RV32I, but a different complete base encoding.

24.1.4. Standard-Compatible Global Encodings

A complete or global encoding of an ISA for an actual RISC-V implementation must allocate a unique
non-conflicting prefix for every included instruction encoding space. The bases and every standard
extension have each had a standard prefix allocated to ensure they can all coexist in a global encoding.

A standard-compatible global encoding is one where the base and every included standard extension
have their standard prefixes. A standard-compatible global encoding can include non-standard
extensions that do not conflict with the included standard extensions. A standard-compatible global
encoding can also use standard prefixes for non-standard extensions if the associated standard
extensions are not included in the global encoding. In other words, a standard extension must use its
standard prefix if included in a standard-compatible global encoding, but otherwise its prefix is free to
be reallocated. These constraints allow a common toolchain to target the standard subset of any RISC-
V standard-compatible global encoding.

24.1.5. Guaranteed Non-Standard Encoding Space

To support development of proprietary custom extensions, portions of the encoding space are
guaranteed to never be used by standard extensions.

24.2. RISC-V Extension Design Philosophy
We intend to support a large number of independently developed extensions by encouraging
extension developers to operate within instruction encoding spaces, and by providing tools to pack
these into a standard-compatible global encoding by allocating unique prefixes. Some extensions are
more naturally implemented as brownfield augmentations of existing extensions, and will share
whatever prefix is allocated to their parent greenfield extension. The standard extension prefixes avoid
spurious incompatibilities in the encoding of core functionality, while allowing custom packing of
more esoteric extensions.

This capability of repacking RISC-V extensions into different standard-compatible global encodings
can be used in a number of ways.

One use-case is developing highly specialized custom accelerators, designed to run kernels from
important application domains. These might want to drop all but the base integer ISA and add in only
the extensions that are required for the task in hand. The base ISAs have been designed to place
minimal requirements on a hardware implementation, and has been encoded to use only a small
fraction of a 32-bit instruction encoding space.

Another use-case is to build a research prototype for a new type of instruction-set extension. The
researchers might not want to expend the effort to implement a variable-length instruction-fetch unit,
and so would like to prototype their extension using a simple 32-bit fixed-width instruction encoding.

24.2. RISC-V Extension Design Philosophy | Page 140

The RISC-V Instruction Set Manual | © RISC-V

However, this new extension might be too large to coexist with standard extensions in the 32-bit space.
If the research experiments do not need all of the standard extensions, a standard-compatible global
encoding might drop the unused standard extensions and reuse their prefixes to place the proposed
extension in a non-standard location to simplify engineering of the research prototype. Standard tools
will still be able to target the base and any standard extensions that are present to reduce development
time. Once the instruction-set extension has been evaluated and refined, it could then be made
available for packing into a larger variable-length encoding space to avoid conflicts with all standard
extensions.

The following sections describe increasingly sophisticated strategies for developing implementations
with new instruction-set extensions. These are mostly intended for use in highly customized,
educational, or experimental architectures rather than for the main line of RISC-V ISA development.

24.3. Extensions within fixed-width 32-bit
instruction format
In this section, we discuss adding extensions to implementations that only support the base fixed-
width 32-bit instruction format.

We anticipate the simplest fixed-width 32-bit encoding will be popular for many restricted
accelerators and research prototypes.

24.3.1. Available 30-bit instruction encoding spaces

In the standard encoding, three of the available 30-bit instruction encoding spaces (those with 2-bit
prefixes 00, 01, and 10) are used to enable the optional compressed instruction extension. However, if
the compressed instruction-set extension is not required, then these three further 30-bit encoding
spaces become available. This quadruples the available encoding space within the 32-bit format.

24.3.2. Available 25-bit instruction encoding spaces

A 25-bit instruction encoding space corresponds to a major opcode in the base and standard extension
encodings.

There are four major opcodes expressly designated for custom extensions Table 35, “RISC-V base
opcode map, inst[1:0]=11”, each of which represents a 25-bit encoding space. Two of these are reserved
for eventual use in the RV128 base encoding (will be OP-IMM-64 and OP-64), but can be used for non-
standard extensions for RV32 and RV64.

The two major opcodes reserved for RV64 (OP-IMM-32 and OP-32) can also be used for non-standard
extensions to RV32 only.

If an implementation does not require floating-point, then the seven major opcodes reserved for
standard floating-point extensions (LOAD-FP, STORE-FP, MADD, MSUB, NMSUB, NMADD, OP-FP)
can be reused for non-standard extensions. Similarly, the AMO major opcode can be reused if the
standard atomic extensions are not required.

If an implementation does not require instructions longer than 32-bits, then an additional four major
opcodes are available (those marked in gray in Table 35, “RISC-V base opcode map, inst[1:0]=11”.

24.3. Extensions within fixed-width 32-bit instruction format | Page 141

The RISC-V Instruction Set Manual | © RISC-V

The base RV32I encoding uses only 11 major opcodes plus 3 reserved opcodes, leaving up to 18
available for extensions. The base RV64I encoding uses only 13 major opcodes plus 3 reserved opcodes,
leaving up to 16 available for extensions.

24.3.3. Available 22-bit instruction encoding spaces

A 22-bit encoding space corresponds to a funct3 minor opcode space in the base and standard
extension encodings. Several major opcodes have a funct3 field minor opcode that is not completely
occupied, leaving available several 22-bit encoding spaces.

Usually a major opcode selects the format used to encode operands in the remaining bits of the
instruction, and ideally, an extension should follow the operand format of the major opcode to
simplify hardware decoding.

24.3.4. Other spaces

Smaller spaces are available under certain major opcodes, and not all minor opcodes are entirely
filled.

24.4. Adding aligned 64-bit instruction extensions
The simplest approach to provide space for extensions that are too large for the base 32-bit fixed-
width instruction format is to add naturally aligned 64-bit instructions. The implementation must still
support the 32-bit base instruction format, but can require that 64-bit instructions are aligned on 64-
bit boundaries to simplify instruction fetch, with a 32-bit NOP instruction used as alignment padding
where necessary.

To simplify use of standard tools, the 64-bit instructions should be encoded as described in Table 1,
“RISC-V instruction length encoding. Only the 16-bit and 32-bit encodings are considered frozen at
this time.”. However, an implementation might choose a non-standard instruction-length encoding
for 64-bit instructions, while retaining the standard encoding for 32-bit instructions. For example, if
compressed instructions are not required, then a 64-bit instruction could be encoded using one or
more zero bits in the first two bits of an instruction.

We anticipate processor generators that produce instruction-fetch units capable of automatically
handling any combination of supported variable-length instruction encodings.

24.5. Supporting VLIW encodings
Although RISC-V was not designed as a base for a pure VLIW machine, VLIW encodings can be added
as extensions using several alternative approaches. In all cases, the base 32-bit encoding has to be
supported to allow use of any standard software tools.

24.5.1. Fixed-size instruction group

The simplest approach is to define a single large naturally aligned instruction format (e.g., 128 bits)
within which VLIW operations are encoded. In a conventional VLIW, this approach would tend to
waste instruction memory to hold NOPs, but a RISC-V-compatible implementation would have to also
support the base 32-bit instructions, confining the VLIW code size expansion to VLIW-accelerated
functions.

24.4. Adding aligned 64-bit instruction extensions | Page 142

The RISC-V Instruction Set Manual | © RISC-V

24.5.2. Encoded-Length Groups

Another approach is to use the standard length encoding from Table 1, “RISC-V instruction length
encoding. Only the 16-bit and 32-bit encodings are considered frozen at this time.” to encode parallel
instruction groups, allowing NOPs to be compressed out of the VLIW instruction. For example, a 64-
bit instruction could hold two 28-bit operations, while a 96-bit instruction could hold three 28-bit
operations, and so on. Alternatively, a 48-bit instruction could hold one 42-bit operation, while a 96-
bit instruction could hold two 42-bit operations, and so on.

This approach has the advantage of retaining the base ISA encoding for instructions holding a single
operation, but has the disadvantage of requiring a new 28-bit or 42-bit encoding for operations within
the VLIW instructions, and misaligned instruction fetch for larger groups. One simplification is to not
allow VLIW instructions to straddle certain microarchitecturally significant boundaries (e.g., cache
lines or virtual memory pages).

24.5.3. Fixed-Size Instruction Bundles

Another approach, similar to Itanium, is to use a larger naturally aligned fixed instruction bundle size
(e.g., 128 bits) across which parallel operation groups are encoded. This simplifies instruction fetch,
but shifts the complexity to the group execution engine. To remain RISC-V compatible, the base 32-bit
instruction would still have to be supported.

24.5.4. End-of-Group bits in Prefix

None of the above approaches retains the RISC-V encoding for the individual operations within a
VLIW instruction. Yet another approach is to repurpose the two prefix bits in the fixed-width 32-bit
encoding. One prefix bit can be used to signal end-of-group if set, while the second bit could indicate
execution under a predicate if clear. Standard RISC-V 32-bit instructions generated by tools unaware
of the VLIW extension would have both prefix bits set (11) and thus have the correct semantics, with
each instruction at the end of a group and not predicated.

The main disadvantage of this approach is that the base ISAs lack the complex predication support
usually required in an aggressive VLIW system, and it is difficult to add space to specify more
predicate registers in the standard 30-bit encoding space.

24.5. Supporting VLIW encodings | Page 143

The RISC-V Instruction Set Manual | © RISC-V

Chapter 25. ISA Extension Naming
Conventions
This chapter describes the RISC-V ISA extension naming scheme that is used to concisely describe the
set of instructions present in a hardware implementation, or the set of instructions used by an
application binary interface (ABI).

The RISC-V ISA is designed to support a wide variety of implementations with various experimental
instruction-set extensions. We have found that an organized naming scheme simplifies software tools
and documentation.

25.1. Case Sensitivity
The ISA naming strings are case insensitive.

25.2. Base Integer ISA
RISC-V ISA strings begin with either RV32I, RV32E, RV64I, or RV128I indicating the supported
address space size in bits for the base integer ISA.

25.3. Instruction-Set Extension Names
Standard ISA extensions are given a name consisting of a single letter. For example, the first four
standard extensions to the integer bases are: "M" for integer multiplication and division, "A" for atomic
memory instructions, "F" for single-precision floating-point instructions, and "D" for double-precision
floating-point instructions. Any RISC-V instruction-set variant can be succinctly described by
concatenating the base integer prefix with the names of the included extensions, e.g., "RV64IMAFD".

We have also defined an abbreviation "G" to represent the "IMAFDZicsr_Zifencei" base and extensions,
as this is intended to represent our standard general-purpose ISA.

Standard extensions to the RISC-V ISA are given other reserved letters, e.g., "Q" for quad-precision
floating-point, or "C" for the 16-bit compressed instruction format.

Some ISA extensions depend on the presence of other extensions, e.g., "D" depends on "F" and "F"
depends on "Zicsr". These dependences may be implicit in the ISA name: for example, RV32IF is
equivalent to RV32IFZicsr, and RV32ID is equivalent to RV32IFD and RV32IFDZicsr.

25.4. Version Numbers
Recognizing that instruction sets may expand or alter over time, we encode extension version
numbers following the extension name. Version numbers are divided into major and minor version
numbers, separated by a "p". If the minor version is "0", then "p0" can be omitted from the version
string. Changes in major version numbers imply a loss of backwards compatibility, whereas changes in
only the minor version number must be backwards-compatible. For example, the original 64-bit
standard ISA defined in release 1.0 of this manual can be written in full as

25.1. Case Sensitivity | Page 144

The RISC-V Instruction Set Manual | © RISC-V

"RV64I1p0M1p0A1p0F1p0D1p0", more concisely as "RV64I1M1A1F1D1".

We introduced the version numbering scheme with the second release. Hence, we define the default
version of a standard extension to be the version present at that time, e.g., "RV32I" is equivalent to
"RV32I2".

25.5. Underscores
Underscores "_" may be used to separate ISA extensions to improve readability and to provide
disambiguation, e.g., "RV32I2_M2_A2".

Because the "P" extension for Packed SIMD can be confused for the decimal point in a version number,
it must be preceded by an underscore if it follows a number. For example, "rv32i2p2" means version
2.2 of RV32I, whereas "rv32i2_p2" means version 2.0 of RV32I with version 2.0 of the P extension.

25.6. Additional Standard Extension Names
Standard extensions can also be named using a single "Z" followed by an alphabetical name and an
optional version number. For example, "Zifencei" names the instruction-fetch fence extension
described in Chapter 3, "Zifencei" Instruction-Fetch Fence, Version 2.0; "Zifencei2" and "Zifencei2p0"
name version 2.0 of same.

The first letter following the "Z" conventionally indicates the most closely related alphabetical
extension category, IMAFDQLCBKJTPV. For the "Zam" extension for misaligned atomics, for example,
the letter "a" indicates the extension is related to the "A" standard extension. If multiple "Z" extensions
are named, they should be ordered first by category, then alphabetically within a category—for
example, "Zicsr_Zifencei_Zam".

Extensions with the "Z" prefix must be separated from other multi-letter extensions by an underscore,
e.g., "RV32IMACZicsr_Zifencei".

25.7. Supervisor-level Instruction-Set Extensions
Standard supervisor-level instruction-set extensions are defined in Volume II, but are named using "S"
as a prefix, followed by an alphabetical name and an optional version number. Supervisor-level
extensions must be separated from other multi-letter extensions by an underscore.

Standard supervisor-level extensions should be listed after standard unprivileged extensions. If
multiple supervisor-level extensions are listed, they should be ordered alphabetically.

25.8. Hypervisor-level Instruction-Set Extensions
Standard hypervisor-level instruction-set extensions are named like supervisor-level extensions, but
beginning with the letter "H" instead of the letter "S".

Standard hypervisor-level extensions should be listed after standard lesser-privileged extensions. If
multiple hypervisor-level extensions are listed, they should be ordered alphabetically.

25.5. Underscores | Page 145

The RISC-V Instruction Set Manual | © RISC-V

25.9. Machine-level Instruction-Set Extensions
Standard machine-level instruction-set extensions are prefixed with the three letters "Zxm".

Standard machine-level extensions should be listed after standard lesser-privileged extensions. If
multiple machine-level extensions are listed, they should be ordered alphabetically.

25.10. Non-Standard Extension Names
Non-standard extensions are named using a single "X" followed by an alphabetical name and an
optional version number. For example, "Xhwacha" names the Hwacha vector-fetch ISA extension;
"Xhwacha2" and "Xhwacha2p0" name version 2.0 of same.

Non-standard extensions must be listed after all standard extensions. They must be separated from
other multi-letter extensions by an underscore. For example, an ISA with non-standard extensions
Argle and Bargle may be named "RV64IZifencei_Xargle_Xbargle".

If multiple non-standard extensions are listed, they should be ordered alphabetically.

25.11. Subset Naming Convention
Table 39, “Standard ISA extension names.” summarizes the standardized extension names. The table
also defines the canonical order in which extension names must appear in the name string, with top-
to-bottom in table indicating first-to-last in the name string, e.g., RV32IMACV is legal, whereas
RV32IMAVC is not.

Table 39. Standard ISA extension names.

Subset Name Implies

Base ISA

Integer I

Reduced Integer E

Standard Unprivileged Extensions

Integer Multiplication and
Division

M

Atomics A

Single-Precision Floating-Point F Zicsr

Double-Precision Floating-Point D F

General G IMADZifencei

Quad-Precision Floating-Point Q D

16-bit Compressed Instructions C

Bit Manipulation B

Cryptography Extensions K

Dynamic Languages J

25.9. Machine-level Instruction-Set Extensions | Page 146

The RISC-V Instruction Set Manual | © RISC-V

Subset Name Implies

Packed-SIMD Extensions P

Vector Extensions V

Control and Status Register
Access

Zicsr

Instruction-Fetch Fence Zifencei

Misaligned Atomics Zam A

Total Store Ordering Ztso

Standard Supervisor-Level Extensions

Supervisor-level extension "def" Sdef

Standard Hypervisor-Level
Extensions

Hypervisor-level extension "ghi" Hghi

Standard Machine-Level Extensions

Machine-level extension "jkl" Zxmjkl

Non-Standard Extensions

Non-standard extension "mno" Xmno

25.11. Subset Naming Convention | Page 147

The RISC-V Instruction Set Manual | © RISC-V

Chapter 26. History and
Acknowledgments

26.1. Why Develop a new ISA? Rationale from
Berkeley Group
We developed RISC-V to support our own needs in research and education, where our group is
particularly interested in actual hardware implementations of research ideas (we have completed
eleven different silicon fabrications of RISC-V since the first edition of this specification), and in
providing real implementations for students to explore in classes (RISC-V processor RTL designs have
been used in multiple undergraduate and graduate classes at Berkeley). In our current research, we are
especially interested in the move towards specialized and heterogeneous accelerators, driven by the
power constraints imposed by the end of conventional transistor scaling. We wanted a highly flexible
and extensible base ISA around which to build our research effort.

A question we have been repeatedly asked is Why develop a new ISA? The biggest obvious benefit of
using an existing commercial ISA is the large and widely supported software ecosystem, both
development tools and ported applications, which can be leveraged in research and teaching. Other
benefits include the existence of large amounts of documentation and tutorial examples. However, our
experience of using commercial instruction sets for research and teaching is that these benefits are
smaller in practice, and do not outweigh the disadvantages:

• Commercial ISAs are proprietary. Except for SPARC V8, which is an open IEEE standard (IEEE
Standard for a 32-Bit Microprocessor, 1994) , most owners of commercial ISAs carefully guard their
intellectual property and do not welcome freely available competitive implementations. This is
much less of an issue for academic research and teaching using only software simulators, but has
been a major concern for groups wishing to share actual RTL implementations. It is also a major
concern for entities who do not want to trust the few sources of commercial ISA implementations,
but who are prohibited from creating their own clean room implementations. We cannot
guarantee that all RISC-V implementations will be free of third-party patent infringements, but we
can guarantee we will not attempt to sue a RISC-V implementor.

• Commercial ISAs are only popular in certain market domains. The most obvious examples at
time of writing are that the ARM architecture is not well supported in the server space, and the
Intel x86 architecture (or for that matter, almost every other architecture) is not well supported in
the mobile space, though both Intel and ARM are attempting to enter each other’s market
segments. Another example is ARC and Tensilica, which provide extensible cores but are focused
on the embedded space. This market segmentation dilutes the benefit of supporting a particular
commercial ISA as in practice the software ecosystem only exists for certain domains, and has to
be built for others.

• Commercial ISAs come and go. Previous research infrastructures have been built around
commercial ISAs that are no longer popular (SPARC, MIPS) or even no longer in production
(Alpha). These lose the benefit of an active software ecosystem, and the lingering intellectual
property issues around the ISA and supporting tools interfere with the ability of interested third
parties to continue supporting the ISA. An open ISA might also lose popularity, but any interested
party can continue using and developing the ecosystem.

• Popular commercial ISAs are complex. The dominant commercial ISAs (x86 and ARM) are both

26.1. Why Develop a new ISA? Rationale from Berkeley Group | Page 148

The RISC-V Instruction Set Manual | © RISC-V

very complex to implement in hardware to the level of supporting common software stacks and
operating systems. Worse, nearly all the complexity is due to bad, or at least outdated, ISA design
decisions rather than features that truly improve efficiency.

• Commercial ISAs alone are not enough to bring up applications. Even if we expend the effort to
implement a commercial ISA, this is not enough to run existing applications for that ISA. Most
applications need a complete ABI (application binary interface) to run, not just the user-level ISA.
Most ABIs rely on libraries, which in turn rely on operating system support. To run an existing
operating system requires implementing the supervisor-level ISA and device interfaces expected
by the OS. These are usually much less well-specified and considerably more complex to
implement than the user-level ISA.

• Popular commercial ISAs were not designed for extensibility. The dominant commercial ISAs
were not particularly designed for extensibility, and as a consequence have added considerable
instruction encoding complexity as their instruction sets have grown. Companies such as Tensilica
(acquired by Cadence) and ARC (acquired by Synopsys) have built ISAs and toolchains around
extensibility, but have focused on embedded applications rather than general-purpose computing
systems.

• A modified commercial ISA is a new ISA. One of our main goals is to support architecture
research, including major ISA extensions. Even small extensions diminish the benefit of using a
standard ISA, as compilers have to be modified and applications rebuilt from source code to use
the extension. Larger extensions that introduce new architectural state also require modifications
to the operating system. Ultimately, the modified commercial ISA becomes a new ISA, but carries
along all the legacy baggage of the base ISA.

Our position is that the ISA is perhaps the most important interface in a computing system, and there
is no reason that such an important interface should be proprietary. The dominant commercial ISAs
are based on instruction-set concepts that were already well known over 30 years ago. Software
developers should be able to target an open standard hardware target, and commercial processor
designers should compete on implementation quality.

We are far from the first to contemplate an open ISA design suitable for hardware implementation. We
also considered other existing open ISA designs, of which the closest to our goals was the OpenRISC
architecture (OpenCores, 2012). We decided against adopting the OpenRISC ISA for several technical
reasons:

• OpenRISC has condition codes and branch delay slots, which complicate higher performance
implementations.

• OpenRISC uses a fixed 32-bit encoding and 16-bit immediates, which precludes a denser
instruction encoding and limits space for later expansion of the ISA.

• OpenRISC does not support the 2008 revision to the IEEE 754 floating-point standard.

• The OpenRISC 64-bit design had not been completed when we began.

By starting from a clean slate, we could design an ISA that met all of our goals, though of course, this
took far more effort than we had planned at the outset. We have now invested considerable effort in
building up the RISC-V ISA infrastructure, including documentation, compiler tool chains, operating
system ports, reference ISA simulators, FPGA implementations, efficient ASIC implementations,
architecture test suites, and teaching materials. Since the last edition of this manual, there has been
considerable uptake of the RISC-V ISA in both academia and industry, and we have created the non-
profit RISC-V Foundation to protect and promote the standard. The RISC-V Foundation website at
riscv.org contains the latest information on the Foundation membership and various open-source

26.1. Why Develop a new ISA? Rationale from Berkeley Group | Page 149

The RISC-V Instruction Set Manual | © RISC-V

https://riscv.org

projects using RISC-V.

26.2. History from Revision 1.0 of ISA manual
The RISC-V ISA and instruction-set manual builds upon several earlier projects. Several aspects of the
supervisor-level machine and the overall format of the manual date back to the T0 (Torrent-0) vector
microprocessor project at UC Berkeley and ICSI, begun in 1992. T0 was a vector processor based on
the MIPS-II ISA, with Krste Asanović as main architect and RTL designer, and Brian Kingsbury and
Bertrand Irrisou as principal VLSI implementors. David Johnson at ICSI was a major contributor to
the T0 ISA design, particularly supervisor mode, and to the manual text. John Hauser also provided
considerable feedback on the T0 ISA design.

The Scale (Software-Controlled Architecture for Low Energy) project at MIT, begun in 2000, built
upon the T0 project infrastructure, refined the supervisor-level interface, and moved away from the
MIPS scalar ISA by dropping the branch delay slot. Ronny Krashinsky and Christopher Batten were
the principal architects of the Scale Vector-Thread processor at MIT, while Mark Hampton ported the
GCC-based compiler infrastructure and tools for Scale.

A lightly edited version of the T0 MIPS scalar processor specification (MIPS-6371) was used in
teaching a new version of the MIT 6.371 Introduction to VLSI Systems class in the Fall 2002 semester,
with Chris Terman and Krste Asanović as lecturers. Chris Terman contributed most of the lab material
for the class (there was no TA!). The 6.371 class evolved into the trial 6.884 Complex Digital Design
class at MIT, taught by Arvind and Krste Asanović in Spring 2005, which became a regular Spring
class 6.375. A reduced version of the Scale MIPS-based scalar ISA, named SMIPS, was used in
6.884/6.375. Christopher Batten was the TA for the early offerings of these classes and developed a
considerable amount of documentation and lab material based around the SMIPS ISA. This same
SMIPS lab material was adapted and enhanced by TA Yunsup Lee for the UC Berkeley Fall 2009
CS250 VLSI Systems Design class taught by John Wawrzynek, Krste Asanović, and John Lazzaro.

The Maven (Malleable Array of Vector-thread ENgines) project was a second-generation vector-thread
architecture. Its design was led by Christopher Batten when he was an Exchange Scholar at UC
Berkeley starting in summer 2007. Hidetaka Aoki, a visiting industrial fellow from Hitachi, gave
considerable feedback on the early Maven ISA and microarchitecture design. The Maven
infrastructure was based on the Scale infrastructure but the Maven ISA moved further away from the
MIPS ISA variant defined in Scale, with a unified floating-point and integer register file. Maven was
designed to support experimentation with alternative data-parallel accelerators. Yunsup Lee was the
main implementor of the various Maven vector units, while Rimas Avižienis was the main
implementor of the various Maven scalar units. Yunsup Lee and Christopher Batten ported GCC to
work with the new Maven ISA. Christopher Celio provided the initial definition of a traditional vector
instruction set (Flood) variant of Maven.

Based on experience with all these previous projects, the RISC-V ISA definition was begun in Summer
2010, with Andrew Waterman, Yunsup Lee, Krste Asanović, and David Patterson as principal
designers. An initial version of the RISC-V 32-bit instruction subset was used in the UC Berkeley Fall
2010 CS250 VLSI Systems Design class, with Yunsup Lee as TA. RISC-V is a clean break from the
earlier MIPS-inspired designs. John Hauser contributed to the floating-point ISA definition, including
the sign-injection instructions and a register encoding scheme that permits internal recoding of
floating-point values.

26.2. History from Revision 1.0 of ISA manual | Page 150

The RISC-V Instruction Set Manual | © RISC-V

26.3. History from Revision 2.0 of ISA manual
Multiple implementations of RISC-V processors have been completed, including several silicon
fabrications, as shown in [silicon].

Name Tapeout Date Process ISA

Raven-1 May 29, 2011 ST 28nm FDSOI RV64G1_Xhwacha1

EOS14 April 1, 2012 IBM 45nm SOI RV64G1p1_Xhwacha2

EOS16 August 17, 2012 IBM 45nm SOI RV64G1p1_Xhwacha2

Raven-2 August 22, 2012 ST 28nm FDSOI RV64G1p1_Xhwacha2

EOS18 February 6, 2013 IBM 45nm SOI RV64G1p1_Xhwacha2

EOS20 July 3, 2013 IBM 45nm SOI RV64G1p99_Xhwacha2

Raven-3 September 26, 2013 ST 28nm SOI RV64G1p99_Xhwacha2

EOS22 March 7, 2014 IBM 45nm SOI RV64G1p9999_Xhwach
a3

The first RISC-V processors to be fabricated were written in Verilog and manufactured in a pre-
production FDSOI technology from ST as the Raven-1 testchip in 2011. Two cores were developed by
Yunsup Lee and Andrew Waterman, advised by Krste Asanović, and fabricated together: 1) an RV64
scalar core with error-detecting flip-flops, and 2) an RV64 core with an attached 64-bit floating-point
vector unit. The first microarchitecture was informally known as TrainWreck, due to the short time
available to complete the design with immature design libraries.

Subsequently, a clean microarchitecture for an in-order decoupled RV64 core was developed by
Andrew Waterman, Rimas Avižienis, and Yunsup Lee, advised by Krste Asanović, and, continuing the
railway theme, was codenamed Rocket after George Stephenson’s successful steam locomotive design.
Rocket was written in Chisel, a new hardware design language developed at UC Berkeley. The IEEE
floating-point units used in Rocket were developed by John Hauser, Andrew Waterman, and Brian
Richards. Rocket has since been refined and developed further, and has been fabricated two more
times in FDSOI (Raven-2, Raven-3), and five times in IBM SOI technology (EOS14, EOS16, EOS18,
EOS20, EOS22) for a photonics project. Work is ongoing to make the Rocket design available as a
parameterized RISC-V processor generator.

EOS14–EOS22 chips include early versions of Hwacha, a 64-bit IEEE floating-point vector unit,
developed by Yunsup Lee, Andrew Waterman, Huy Vo, Albert Ou, Quan Nguyen, and Stephen Twigg,
advised by Krste Asanović. EOS16–EOS22 chips include dual cores with a cache-coherence protocol
developed by Henry Cook and Andrew Waterman, advised by Krste Asanović. EOS14 silicon has
successfully run at 1.25 GHz. EOS16 silicon suffered from a bug in the IBM pad libraries. EOS18 and
EOS20 have successfully run at 1.35 GHz.

Contributors to the Raven testchips include Yunsup Lee, Andrew Waterman, Rimas Avižienis, Brian
Zimmer, Jaehwa Kwak, Ruzica Jevtić, Milovan Blagojević, Alberto Puggelli, Steven Bailey, Ben Keller,
Pi-Feng Chiu, Brian Richards, Borivoje Nikolić, and Krste Asanović.

Contributors to the EOS testchips include Yunsup Lee, Rimas Avižienis, Andrew Waterman, Henry
Cook, Huy Vo, Daiwei Li, Chen Sun, Albert Ou, Quan Nguyen, Stephen Twigg, Vladimir Stojanović,
and Krste Asanović.

26.3. History from Revision 2.0 of ISA manual | Page 151

The RISC-V Instruction Set Manual | © RISC-V

Andrew Waterman and Yunsup Lee developed the C++ ISA simulator Spike, used as a golden model
in development and named after the golden spike used to celebrate completion of the US
transcontinental railway. Spike has been made available as a BSD open-source project.

Andrew Waterman completed a Master’s thesis with a preliminary design of the RISC-V compressed
instruction set (Waterman, 2011).

Various FPGA implementations of the RISC-V have been completed, primarily as part of integrated
demos for the Par Lab project research retreats. The largest FPGA design has 3 cache-coherent
RV64IMA processors running a research operating system. Contributors to the FPGA implementations
include Andrew Waterman, Yunsup Lee, Rimas Avižienis, and Krste Asanović.

RISC-V processors have been used in several classes at UC Berkeley. Rocket was used in the Fall 2011
offering of CS250 as a basis for class projects, with Brian Zimmer as TA. For the undergraduate CS152
class in Spring 2012, Christopher Celio used Chisel to write a suite of educational RV32 processors,
named Sodor after the island on which Thomas the Tank Engine and friends live. The suite includes
a microcoded core, an unpipelined core, and 2, 3, and 5-stage pipelined cores, and is publicly available
under a BSD license. The suite was subsequently updated and used again in CS152 in Spring 2013,
with Yunsup Lee as TA, and in Spring 2014, with Eric Love as TA. Christopher Celio also developed an
out-of-order RV64 design known as BOOM (Berkeley Out-of-Order Machine), with accompanying
pipeline visualizations, that was used in the CS152 classes. The CS152 classes also used cache-coherent
versions of the Rocket core developed by Andrew Waterman and Henry Cook.

Over the summer of 2013, the RoCC (Rocket Custom Coprocessor) interface was defined to simplify
adding custom accelerators to the Rocket core. Rocket and the RoCC interface were used extensively in
the Fall 2013 CS250 VLSI class taught by Jonathan Bachrach, with several student accelerator projects
built to the RoCC interface. The Hwacha vector unit has been rewritten as a RoCC coprocessor.

Two Berkeley undergraduates, Quan Nguyen and Albert Ou, have successfully ported Linux to run on
RISC-V in Spring 2013.

Colin Schmidt successfully completed an LLVM backend for RISC-V 2.0 in January 2014.

Darius Rad at Bluespec contributed soft-float ABI support to the GCC port in March 2014.

John Hauser contributed the definition of the floating-point classification instructions.

We are aware of several other RISC-V core implementations, including one in Verilog by Tommy
Thorn, and one in Bluespec by Rishiyur Nikhil.

26.4. Acknowledgments
Thanks to Christopher F. Batten, Preston Briggs, Christopher Celio, David Chisnall, Stefan
Freudenberger, John Hauser, Ben Keller, Rishiyur Nikhil, Michael Taylor, Tommy Thorn, and Robert
Watson for comments on the draft ISA version 2.0 specification.

26.5. History from Revision 2.1
Uptake of the RISC-V ISA has been very rapid since the introduction of the frozen version 2.0 in May
2014, with too much activity to record in a short history section such as this. Perhaps the most
important single event was the formation of the non-profit RISC-V Foundation in August 2015. The

26.4. Acknowledgments | Page 152

The RISC-V Instruction Set Manual | © RISC-V

Foundation will now take over stewardship of the official RISC-V ISA standard, and the official website
riscv.org is the best place to obtain news and updates on the RISC-V standard.

26.6. Acknowledgments
Thanks to Scott Beamer, Allen J. Baum, Christopher Celio, David Chisnall, Paul Clayton, Palmer
Dabbelt, Jan Gray, Michael Hamburg, and John Hauser for comments on the version 2.0 specification.

26.7. History from Revision 2.2

26.8. Acknowledgments
Thanks to Jacob Bachmeyer, Alex Bradbury, David Horner, Stefan O’Rear, and Joseph Myers for
comments on the version 2.1 specification.

26.9. History for Revision 2.3
Uptake of RISC-V continues at breakneck pace.

John Hauser and Andrew Waterman contributed a hypervisor ISA extension based upon a proposal
from Paolo Bonzini.

Daniel Lustig, Arvind, Krste Asanović, Shaked Flur, Paul Loewenstein, Yatin Manerkar, Luc Maranget,
Margaret Martonosi, Vijayanand Nagarajan, Rishiyur Nikhil, Jonas Oberhauser, Christopher Pulte,
Jose Renau, Peter Sewell, Susmit Sarkar, Caroline Trippel, Muralidaran Vijayaraghavan, Andrew
Waterman, Derek Williams, Andrew Wright, and Sizhuo Zhang contributed the memory consistency
model.

26.10. Funding
Development of the RISC-V architecture and implementations has been partially funded by the
following sponsors.

• Par Lab: Research supported by Microsoft (Award # 024263) and Intel (Award # 024894) funding
and by matching funding by U.C. Discovery (Award # DIG07-10227). Additional support came
from Par Lab affiliates Nokia, NVIDIA, Oracle, and Samsung.

• Project Isis: DoE Award DE-SC0003624.

• ASPIRE Lab: DARPA PERFECT program, Award HR0011-12-2-0016. DARPA POEM program
Award HR0011-11-C-0100. The Center for Future Architectures Research (C-FAR), a STARnet
center funded by the Semiconductor Research Corporation. Additional support from ASPIRE
industrial sponsor, Intel, and ASPIRE affiliates, Google, Hewlett Packard Enterprise, Huawei,
Nokia, NVIDIA, Oracle, and Samsung.

The content of this paper does not necessarily reflect the position or the policy of the US government
and no official endorsement should be inferred.

26.6. Acknowledgments | Page 153

The RISC-V Instruction Set Manual | © RISC-V

Appendix A: RVWMO Explanatory
Material, Version 0.1
This section provides more explanation for RVWMO Chapter 15, RVWMO Memory Consistency Model,
Version 2.0, using more informal language and concrete examples. These are intended to clarify the
meaning and intent of the axioms and preserved program order rules. This appendix should be treated
as commentary; all normative material is provided in Chapter 15, RVWMO Memory Consistency Model,
Version 2.0 and in the rest of the main body of the ISA specification. All currently known discrepancies
are listed in Section A.7, “Known Issues”. Any other discrepancies are unintentional.

A.1. Why RVWMO?
Memory consistency models fall along a loose spectrum from weak to strong. Weak memory models
allow more hardware implementation flexibility and deliver arguably better performance,
performance per watt, power, scalability, and hardware verification overheads than strong models, at
the expense of a more complex programming model. Strong models provide simpler programming
models, but at the cost of imposing more restrictions on the kinds of (non-speculative) hardware
optimizations that can be performed in the pipeline and in the memory system, and in turn imposing
some cost in terms of power, area overhead, and verification burden.

RISC-V has chosen the RVWMO memory model, a variant of release consistency. This places it in
between the two extremes of the memory model spectrum. The RVWMO memory model enables
architects to build simple implementations, aggressive implementations, implementations embedded
deeply inside a much larger system and subject to complex memory system interactions, or any
number of other possibilities, all while simultaneously being strong enough to support programming
language memory models at high performance.

To facilitate the porting of code from other architectures, some hardware implementations may
choose to implement the Ztso extension, which provides stricter RVTSO ordering semantics by
default. Code written for RVWMO is automatically and inherently compatible with RVTSO, but code
written assuming RVTSO is not guaranteed to run correctly on RVWMO implementations. In fact,
most RVWMO implementations will (and should) simply refuse to run RVTSO-only binaries. Each
implementation must therefore choose whether to prioritize compatibility with RVTSO code (e.g., to
facilitate porting from x86) or whether to instead prioritize compatibility with other RISC-V cores
implementing RVWMO.

Some fences and/or memory ordering annotations in code written for RVWMO may become
redundant under RVTSO; the cost that the default of RVWMO imposes on Ztso implementations is the
incremental overhead of fetching those fences (e.g., FENCE R,RW and FENCE RW,W) which become
no-ops on that implementation. However, these fences must remain present in the code if
compatibility with non-Ztso implementations is desired.

A.2. Litmus Tests
The explanations in this chapter make use of litmus tests, or small programs designed to test or
highlight one particular aspect of a memory model.Figure 56, “Sample litmus test” shows an example
of a litmus test with two harts. As a convention for this figure and for all figures that follow in this
chapter, we assume that s0–s2 are pre-set to the same value in all harts and that s0 holds the address

A.1. Why RVWMO? | Page 154

The RISC-V Instruction Set Manual | © RISC-V

labeled x, s1 holds y, and s2 holds z, where x, y, and z are disjoint memory locations aligned to 8 byte
boundaries. Each figure shows the litmus test code on the left, and a visualization of one particular
valid or invalid execution on the right.

Figure 56. Sample litmus test

Table 40. Key for sample litmus test

Hart 0 Hart 1

⋮ ⋮
li t1,1 li t4,4

(a) sw t1,0(s0) (e) sw t4,0(s0)

⋮ ⋮
li t2,2

(b) sw t2,0(s0)

⋮ ⋮
(c) lw a0,0(s0)

⋮ ⋮
li t3,3 li t5,5

(d) sw t3,0(s0) (f) sw t5,0(s0)

⋮ ⋮

Litmus tests are used to understand the implications of the memory model in specific concrete
situations. For example, in the litmus test of Figure 56, “Sample litmus test”, the final value of a0 in
the first hart can be either 2, 4, or 5, depending on the dynamic interleaving of the instruction stream
from each hart at runtime. However, in this example, the final value of a0 in Hart 0 will never be 1 or
3; intuitively, the value 1 will no longer be visible at the time the load executes, and the value 3 will not
yet be visible by the time the load executes. We analyze this test and many others below.

Table 41. A key for the litmus test diagrams drawn in this appendix

Edge Full Name (and explanation)

rf Reads From (from each store to the loads that
return a value written by that store)

co Coherence (a total order on the stores to each
address)

A.2. Litmus Tests | Page 155

The RISC-V Instruction Set Manual | © RISC-V

Edge Full Name (and explanation)

fr From-Reads (from each load to co-successors of
the store from which the load returned a value)

ppo Preserved Program Order

fence Orderings enforced by a FENCE instruction

addr Address Dependency

ctrl Control Dependency

data Data Dependency

The diagram shown to the right of each litmus test shows a visual representation of the particular
execution candidate being considered. These diagrams use a notation that is common in the memory
model literature for constraining the set of possible global memory orders that could produce the
execution in question. It is also the basis for the herd models presented in [herd]. This notation is
explained in Table 41, “A key for the litmus test diagrams drawn in this appendix”. Of the listed
relations, rf edges between harts, co edges, fr edges, and ppo edges directly constrain the global
memory order (as do fence, addr, data, and some ctrl edges, via ppo). Other edges (such as intra-hart rf
edges) are informative but do not constrain the global memory order.

For example, in Figure 56, “Sample litmus test”, a0=1 could occur only if one of the following were
true:

• (b) appears before (a) in global memory order (and in the coherence order co). However, this
violates RVWMO PPO rule ppo:→st. The co edge from (b) to (a) highlights this contradiction.

• (a) appears before (b) in global memory order (and in the coherence order co). However, in this
case, the Load Value Axiom would be violated, because (a) is not the latest matching store prior to
(c) in program order. The fr edge from (c) to (b) highlights this contradiction.

Since neither of these scenarios satisfies the RVWMO axioms, the outcome a0=1 is forbidden.

Beyond what is described in this appendix, a suite of more than seven thousand litmus tests is
available at github.com/litmus-tests/litmus-tests-riscv.

The litmus tests repository also provides instructions on how to run the litmus tests on RISC-V
hardware and how to compare the results with the operational and axiomatic models.

In the future, we expect to adapt these memory model litmus tests for use as part of the RISC-V
compliance test suite as well.

A.3. Explaining the RVWMO Rules
In this section, we provide explanation and examples for all of the RVWMO rules and axioms.

A.3.1. Preserved Program Order and Global Memory Order

Preserved program order represents the subset of program order that must be respected within the
global memory order. Conceptually, events from the same hart that are ordered by preserved program
order must appear in that order from the perspective of other harts and/or observers. Events from the
same hart that are not ordered by preserved program order, on the other hand, may appear reordered

A.3. Explaining the RVWMO Rules | Page 156

The RISC-V Instruction Set Manual | © RISC-V

https://github.com/litmus-tests/litmus-tests-riscv

from the perspective of other harts and/or observers.

Informally, the global memory order represents the order in which loads and stores perform. The
formal memory model literature has moved away from specifications built around the concept of
performing, but the idea is still useful for building up informal intuition. A load is said to have
performed when its return value is determined. A store is said to have performed not when it has
executed inside the pipeline, but rather only when its value has been propagated to globally visible
memory. In this sense, the global memory order also represents the contribution of the coherence
protocol and/or the rest of the memory system to interleave the (possibly reordered) memory accesses
being issued by each hart into a single total order agreed upon by all harts.

The order in which loads perform does not always directly correspond to the relative age of the values
those two loads return. In particular, a load b may perform before another load a to the same address
(i.e., b may execute before a, and b may appear before a in the global memory order), but a may
nevertheless return an older value than b. This discrepancy captures (among other things) the
reordering effects of buffering placed between the core and memory. For example, b may have
returned a value from a store in the store buffer, while a may have ignored that younger store and read
an older value from memory instead. To account for this, at the time each load performs, the value it
returns is determined by the load value axiom, not just strictly by determining the most recent store to
the same address in the global memory order, as described below.

A.3.2. Load value axiom



Load Value Axiom: Each byte of each load i returns the value written to that byte by the
store that is the latest in global memory order among the following stores: . Stores that
write that byte and that precede i in the global memory order . Stores that write that byte
and that precede i in program order

Preserved program order is not required to respect the ordering of a store followed by a load to an
overlapping address. This complexity arises due to the ubiquity of store buffers in nearly all
implementations. Informally, the load may perform (return a value) by forwarding from the store
while the store is still in the store buffer, and hence before the store itself performs (writes back to
globally visible memory). Any other hart will therefore observe the load as performing before the store.

Consider the litmus test of Figure A.2. When running this program on an implementation with store
buffers, it is possible to arrive at the final outcome a0=1, a1=0, a2=1, a3=0 as follows:

A.3. Explaining the RVWMO Rules | Page 157

The RISC-V Instruction Set Manual | © RISC-V

Figure 57. A store buffer forwarding litmus test (outcome permitted)

A store buffer forwarding litmus test (outcome permitted)

Hart 0 Hart 1

li t1, 1 li t1, 1

(a) sw t1,0(s0) (e) sw t1,0(s1)

(b) lw a0,0(s0) (f) lw a2,0(s1)

(c) fence r,r (g) fence r,r

(d) lw a1,0(s1) (h) lw a3,0(s0)

Outcome: a0=1, a1=0,
a2=1, a3=0

Consider the litmus test of [storebuffer]. When running this program on an implementation with store
buffers, it is possible to arrive at the final outcome a0=1, a1=0, a2=1, a3=0 as follows:

• (a) executes and enters the first hart’s private store buffer

• (b) executes and forwards its return value 1 from (a) in the store buffer

• (c) executes since all previous loads (i.e., (b)) have completed

• (d) executes and reads the value 0 from memory

• (e) executes and enters the second hart’s private store buffer

• (f) executes and forwards its return value 1 from (e) in the store buffer

• (g) executes since all previous loads (i.e., (f)) have completed

• (h) executes and reads the value 0 from memory

• (a) drains from the first hart’s store buffer to memory

• (e) drains from the second hart’s store buffer to memory

Therefore, the memory model must be able to account for this behavior.

A.3. Explaining the RVWMO Rules | Page 158

The RISC-V Instruction Set Manual | © RISC-V

To put it another way, suppose the definition of preserved program order did include the following
hypothetical rule: memory access a precedes memory access b in preserved program order (and hence
also in the global memory order) if a precedes b in program order and a and b are accesses to the same
memory location, a is a write, and b is a read. Call this Rule X. Then we get the following:

• (a) precedes (b): by rule X

• (b) precedes (d): by rule ppo:fence

• (d) precedes (e): by the load value axiom. Otherwise, if (e) preceded (d), then (d) would be required
to return the value 1. (This is a perfectly legal execution; it’s just not the one in question)

• (e) precedes (f): by rule X

• (f) precedes (h): by rule ppo:fence

• (h) precedes (a): by the load value axiom, as above.

The global memory order must be a total order and cannot be cyclic, because a cycle would imply that
every event in the cycle happens before itself, which is impossible. Therefore, the execution proposed
above would be forbidden, and hence the addition of rule X would forbid implementations with store
buffer forwarding, which would clearly be undesirable.

Nevertheless, even if (b) precedes (a) and/or (f) precedes (e) in the global memory order, the only
sensible possibility in this example is for (b) to return the value written by (a), and likewise for (f) and
(e). This combination of circumstances is what leads to the second option in the definition of the load
value axiom. Even though (b) precedes (a) in the global memory order, (a) will still be visible to (b) by
virtue of sitting in the store buffer at the time (b) executes. Therefore, even if (b) precedes (a) in the
global memory order, (b) should return the value written by (a) because (a) precedes (b) in program
order. Likewise for (e) and (f).

Figure 58. The “PPOCA” store buffer forwarding litmus test (outcome permitted)

Table 42. Key for test that highlights the behavior of store buffers

Hart 0 Hart 1

li t1, 1 li t1, 1

(a) sw t1,0(s0) LOOP:

(b) fence w,w (d) lw a0,0(s1)

(c) sw t1,0(s1) beqz a0, LOOP

A.3. Explaining the RVWMO Rules | Page 159

The RISC-V Instruction Set Manual | © RISC-V

Hart 0 Hart 1

(e) sw t1,0(s2)

(f) lw a1,0(s2)

xor a2,a1,a1

add s0,s0,a2

(g) lw a2,0(s0)

Outcome: a0=1, a1=1,
a2=0

Another test that highlights the behavior of store buffers is shown in Table 42, “Key for test that
highlights the behavior of store buffers”. In this example, (d) is ordered before (e) because of the
control dependency, and (f) is ordered before (g) because of the address dependency. However, (e) is
not necessarily ordered before (f), even though (f) returns the value written by (e). This could
correspond to the following sequence of events:

• (e) executes speculatively and enters the second hart’s private store buffer (but does not drain to
memory)

• (f) executes speculatively and forwards its return value 1 from (e) in the store buffer

• (g) executes speculatively and reads the value 0 from memory

• (a) executes, enters the first hart’s private store buffer, and drains to memory

• (b) executes and retires

• (c) executes, enters the first hart’s private store buffer, and drains to memory

• (d) executes and reads the value 1 from memory

• (e), (f), and (g) commit, since the speculation turned out to be correct

• (e) drains from the store buffer to memory

A.3.3. Atomicity axiom



Atomicity Axiom (for Aligned Atomics): If r and w are paired load and store operations
generated by aligned LR and SC instructions in a hart h, s is a store to byte x, and r
returns a value written by s, then s must precede w in the global memory order, and there
can be no store from a hart other than h to byte x following s and preceding w in the global
memory order.

The RISC-V architecture decouples the notion of atomicity from the notion of ordering. Unlike
architectures such as TSO, RISC-V atomics under RVWMO do not impose any ordering requirements
by default. Ordering semantics are only guaranteed by the PPO rules that otherwise apply.

RISC-V contains two types of atomics: AMOs and LR/SC pairs. These conceptually behave differently,
in the following way. LR/SC behave as if the old value is brought up to the core, modified, and written
back to memory, all while a reservation is held on that memory location. AMOs on the other hand
conceptually behave as if they are performed directly in memory. AMOs are therefore inherently
atomic, while LR/SC pairs are atomic in the slightly different sense that the memory location in
question will not be modified by another hart during the time the original hart holds the reservation.

A.3. Explaining the RVWMO Rules | Page 160

The RISC-V Instruction Set Manual | © RISC-V

(a) lr.d a0, 0(s0) (a) lr.d a0, 0(s0) (a) lr.w a0, 0(s0) (a) lr.w a0, 0(s0)

(b) sd t1, 0(s0) (b) sw t1, 4(s0) (b) sw t1, 4(s0) (b) sw t1, 4(s0)

(c) sc.d t2, 0(s0) (c) sc.d t2, 0(s0) (c) sc.w t2, 0(s0) (c) sc.w t2, 8(s0)

[litmus_lrsdsc]: In all four (independent) instances, the store-conditional (c) is permitted but not
guaranteed to succeed.

The atomicity axiom forbids stores from other harts from being interleaved in global memory order
between an LR and the SC paired with that LR. The atomicity axiom does not forbid loads from being
interleaved between the paired operations in program order or in the global memory order, nor does it
forbid stores from the same hart or stores to non-overlapping locations from appearing between the
paired operations in either program order or in the global memory order. For example, the SC
instructions in [litmus_lrsdsc] may (but are not guaranteed to) succeed. None of those successes
would violate the atomicity axiom, because the intervening non-conditional stores are from the same
hart as the paired load-reserved and store-conditional instructions. This way, a memory system that
tracks memory accesses at cache line granularity (and which therefore will see the four snippets of
[litmus_lrsdsc] as identical) will not be forced to fail a store-conditional instruction that happens to
(falsely) share another portion of the same cache line as the memory location being held by the
reservation.

The atomicity axiom also technically supports cases in which the LR and SC touch different addresses
and/or use different access sizes; however, use cases for such behaviors are expected to be rare in
practice. Likewise, scenarios in which stores from the same hart between an LR/SC pair actually
overlap the memory location(s) referenced by the LR or SC are expected to be rare compared to
scenarios where the intervening store may simply fall onto the same cache line.

A.3.4. Progress axiom


Progress Axiom: No memory operation may be preceded in the global memory order by an
infinite sequence of other memory operations.

The progress axiom ensures a minimal forward progress guarantee. It ensures that stores from one
hart will eventually be made visible to other harts in the system in a finite amount of time, and that
loads from other harts will eventually be able to read those values (or successors thereof). Without this
rule, it would be legal, for example, for a spinlock to spin infinitely on a value, even with a store from
another hart waiting to unlock the spinlock.

The progress axiom is intended not to impose any other notion of fairness, latency, or quality of
service onto the harts in a RISC-V implementation. Any stronger notions of fairness are up to the rest
of the ISA and/or up to the platform and/or device to define and implement.

The forward progress axiom will in almost all cases be naturally satisfied by any standard cache
coherence protocol. Implementations with non-coherent caches may have to provide some other
mechanism to ensure the eventual visibility of all stores (or successors thereof) to all harts.

A.3.5. Overlapping-Address Orderings (Rules 1–3)

A.3. Explaining the RVWMO Rules | Page 161

The RISC-V Instruction Set Manual | © RISC-V



Rule 1: b is a store, and a and b access overlapping memory addresses Rule 2: a and b are
loads, x is a byte read by both a and b, there is no store to x between a and b in program
order, and a and b return values for x written by different memory operations Rule 3: a is
generated by an AMO or SC instruction, b is a load, and b returns a value written by a

Same-address orderings where the latter is a store are straightforward: a load or store can never be
reordered with a later store to an overlapping memory location. From a microarchitecture perspective,
generally speaking, it is difficult or impossible to undo a speculatively reordered store if the
speculation turns out to be invalid, so such behavior is simply disallowed by the model. Same-address
orderings from a store to a later load, on the other hand, do not need to be enforced. As discussed in
Section A.3.2, “Load value axiom”, this reflects the observable behavior of implementations that
forward values from buffered stores to later loads.

Same-address load-load ordering requirements are far more subtle. The basic requirement is that a
younger load must not return a value that is older than a value returned by an older load in the same
hart to the same address. This is often known as CoRR (Coherence for Read-Read pairs), or as part of a
broader coherence or sequential consistency per location requirement. Some architectures in
the past have relaxed same-address load-load ordering, but in hindsight this is generally considered to
complicate the programming model too much, and so RVWMO requires CoRR ordering to be
enforced. However, because the global memory order corresponds to the order in which loads perform
rather than the ordering of the values being returned, capturing CoRR requirements in terms of the
global memory order requires a bit of indirection.

Figure 59. A sample litmus test and one forbidden execution (a0=1)

Hart 0 Hart 1

li t1, 1 li t2, 2

(a) sw t1,0(s0) (d) lw a0,0(s1)

(b) fence w, w (e) sw t2,0(s1)

(c) sw t1,0(s1) (f) lw a1,0(s1)

(g) xor t3,a1,a1

(h) add s0,s0,t3

(i) lw a2,0(s0)

A.3. Explaining the RVWMO Rules | Page 162

The RISC-V Instruction Set Manual | © RISC-V

Hart 0 Hart 1

Outcome: a0=1, a1=2,
a2=0

Consider the litmus test of [frirfi], which is one particular instance of the more general fri-rfi
pattern. The term fri-rfi refers to the sequence (d), (e), (f): (d) from-reads (i.e., reads from an earlier
write than) (e) which is the same hart, and (f) reads from (e) which is in the same hart.

From a microarchitectural perspective, outcome a0=1, a1=2, a2=0 is legal (as are various other less
subtle outcomes). Intuitively, the following would produce the outcome in question:

• (d) stalls (for whatever reason; perhaps it’s stalled waiting for some other preceding instruction)

• (e) executes and enters the store buffer (but does not yet drain to memory)

• (f) executes and forwards from (e) in the store buffer

• (g), (h), and (i) execute

• (a) executes and drains to memory, (b) executes, and (c) executes and drains to memory

• (d) unstalls and executes

• (e) drains from the store buffer to memory

This corresponds to a global memory order of (f), (i), (a), (c), (d), (e). Note that even though (f) performs
before (d), the value returned by (f) is newer than the value returned by (d). Therefore, this execution is
legal and does not violate the CoRR requirements.

Likewise, if two back-to-back loads return the values written by the same store, then they may also
appear out-of-order in the global memory order without violating CoRR. Note that this is not the same
as saying that the two loads return the same value, since two different stores may write the same value.

Figure 60. Litmus test RSW (outcome permitted)

Hart 0 Hart 1

li t1, 1 (d) lw a0,0(s1)

(a) sw t1,0(s0) (e) xor t2,a0,a0

A.3. Explaining the RVWMO Rules | Page 163

The RISC-V Instruction Set Manual | © RISC-V

Hart 0 Hart 1

(b) fence w, w (f) add s4,s2,t2

(c) sw t1,0(s1) (g) lw a1,0(s4)

(h) lw a2,0(s2)

(i) xor t3,a2,a2

(j) add s0,s0,t3

(k) lw a3,0(s0)

Outcome: a0=1, a1=v,
a2=v, a3=0

Consider the litmus test of Figure 60, “Litmus test RSW (outcome permitted)”. The outcome a0=1,
a1=v, a2=v, a3=0 (where v is some value written by another hart) can be observed by allowing (g) and
(h) to be reordered. This might be done speculatively, and the speculation can be justified by the
microarchitecture (e.g., by snooping for cache invalidations and finding none) because replaying (h)
after (g) would return the value written by the same store anyway. Hence assuming a1 and a2 would
end up with the same value written by the same store anyway, (g) and (h) can be legally reordered. The
global memory order corresponding to this execution would be (h),(k),(a),(c),(d),(g).

Executions of the test in Figure 60, “Litmus test RSW (outcome permitted)” in which a1 does not equal
a2 do in fact require that (g) appears before (h) in the global memory order. Allowing (h) to appear
before (g) in the global memory order would in that case result in a violation of CoRR, because then (h)
would return an older value than that returned by (g). Therefore, PPO rule 2 forbids this CoRR
violation from occurring. As such, PPO rule 2 strikes a careful balance between enforcing CoRR in all
cases while simultaneously being weak enough to permit RSW and fri-rfi patterns that commonly
appear in real microarchitectures.

There is one more overlapping-address rule: PPO rule 3 simply states that a value cannot be returned
from an AMO or SC to a subsequent load until the AMO or SC has (in the case of the SC, successfully)
performed globally. This follows somewhat naturally from the conceptual view that both AMOs and
SC instructions are meant to be performed atomically in memory. However, notably, PPO rule 3 states
that hardware may not even non-speculatively forward the value being stored by an AMOSWAP to a
subsequent load, even though for AMOSWAP that store value is not actually semantically dependent
on the previous value in memory, as is the case for the other AMOs. The same holds true even when
forwarding from SC store values that are not semantically dependent on the value returned by the
paired LR.

The three PPO rules above also apply when the memory accesses in question only overlap partially.
This can occur, for example, when accesses of different sizes are used to access the same object. Note
also that the base addresses of two overlapping memory operations need not necessarily be the same
for two memory accesses to overlap. When misaligned memory accesses are being used, the
overlapping-address PPO rules apply to each of the component memory accesses independently.

A.3.6. Fences

 Rule 4: There is a FENCE instruction that orders a before b

By default, the FENCE instruction ensures that all memory accesses from instructions preceding the
fence in program order (the predecessor set) appear earlier in the global memory order than

A.3. Explaining the RVWMO Rules | Page 164

The RISC-V Instruction Set Manual | © RISC-V

memory accesses from instructions appearing after the fence in program order (the successor set).
However, fences can optionally further restrict the predecessor set and/or the successor set to a
smaller set of memory accesses in order to provide some speedup. Specifically, fences have PR, PW,
SR, and SW bits which restrict the predecessor and/or successor sets. The predecessor set includes
loads (resp.stores) if and only if PR (resp.PW) is set. Similarly, the successor set includes loads
(resp.stores) if and only if SR (resp.SW) is set.

The FENCE encoding currently has nine non-trivial combinations of the four bits PR, PW, SR, and
SW, plus one extra encoding FENCE.TSO which facilitates mapping of acquire+release or RVTSO
semantics. The remaining seven combinations have empty predecessor and/or successor sets and
hence are no-ops. Of the ten non-trivial options, only six are commonly used in practice:

• FENCE RW,RW

• FENCE.TSO

• FENCE RW,W

• FENCE R,RW

• FENCE R,R

• FENCE W,W

FENCE instructions using any other combination of PR, PW, SR, and SW are reserved. We strongly
recommend that programmers stick to these six. Other combinations may have unknown or
unexpected interactions with the memory model.

Finally, we note that since RISC-V uses a multi-copy atomic memory model, programmers can reason
about fences bits in a thread-local manner. There is no complex notion of fence cumulativity as
found in memory models that are not multi-copy atomic.

A.3.7. Explicit Synchronization (Rules 5–8)


Rule 5: a has an acquire annotation Rule 6: b has a release annotation Rule 7: a and b
both have RCsc annotations Rule 8: a is paired with b

An acquire operation, as would be used at the start of a critical section, requires all memory operations
following the acquire in program order to also follow the acquire in the global memory order. This
ensures, for example, that all loads and stores inside the critical section are up to date with respect to
the synchronization variable being used to protect it. Acquire ordering can be enforced in one of two
ways: with an acquire annotation, which enforces ordering with respect to just the synchronization
variable itself, or with a FENCE R,RW, which enforces ordering with respect to all previous loads.

A.3. Explaining the RVWMO Rules | Page 165

The RISC-V Instruction Set Manual | © RISC-V

Example 2. A spinlock with atomics

 1 sd x1, (a1) # Arbitrary unrelated store
 2 ld x2, (a2) # Arbitrary unrelated load
 3 li t0, 1 # Initialize swap value.
 4 again:
 5 amoswap.w.aq t0, t0, (a0) # Attempt to acquire lock.
 6 bnez t0, again # Retry if held.
 7 # ...
 8 # Critical section.
 9 # ...
10 amoswap.w.rl x0, x0, (a0) # Release lock by storing 0.
11 sd x3, (a3) # Arbitrary unrelated store
12 ld x4, (a4) # Arbitrary unrelated load

Consider Example 2, “A spinlock with atomics”. Because this example uses aq, the loads and stores in
the critical section are guaranteed to appear in the global memory order after the AMOSWAP used to
acquire the lock. However, assuming a0, a1, and a2 point to different memory locations, the loads and
stores in the critical section may or may not appear after the Arbitrary unrelated load at the
beginning of the example in the global memory order.

Example 3. A spinlock with fences

 1 sd x1, (a1) # Arbitrary unrelated store
 2 ld x2, (a2) # Arbitrary unrelated load
 3 li t0, 1 # Initialize swap value.
 4 again:
 5 amoswap.w t0, t0, (a0) # Attempt to acquire lock.
 6 fence r, rw # Enforce "acquire" memory ordering
 7 bnez t0, again # Retry if held.
 8 # ...
 9 # Critical section.
10 # ...
11 fence rw, w # Enforce "release" memory ordering
12 amoswap.w x0, x0, (a0) # Release lock by storing 0.
13 sd x3, (a3) # Arbitrary unrelated store
14 ld x4, (a4) # Arbitrary unrelated load

Now, consider the alternative in Example 3, “A spinlock with fences”. In this case, even though the
AMOSWAP does not enforce ordering with an aq bit, the fence nevertheless enforces that the acquire
AMOSWAP appears earlier in the global memory order than all loads and stores in the critical section.
Note, however, that in this case, the fence also enforces additional orderings: it also requires that the
Arbitrary unrelated load at the start of the program appears earlier in the global memory order
than the loads and stores of the critical section. (This particular fence does not, however, enforce any
ordering with respect to the Arbitrary unrelated store at the start of the snippet.) In this way,
fence-enforced orderings are slightly coarser than orderings enforced by .aq.

Release orderings work exactly the same as acquire orderings, just in the opposite direction. Release
semantics require all loads and stores preceding the release operation in program order to also precede
the release operation in the global memory order. This ensures, for example, that memory accesses in

A.3. Explaining the RVWMO Rules | Page 166

The RISC-V Instruction Set Manual | © RISC-V

a critical section appear before the lock-releasing store in the global memory order. Just as for acquire
semantics, release semantics can be enforced using release annotations or with a FENCE RW,W
operation. Using the same examples, the ordering between the loads and stores in the critical section
and the Arbitrary unrelated store at the end of the code snippet is enforced only by the FENCE
RW,W in Example 3, “A spinlock with fences”, not by the rl in Example 2, “A spinlock with atomics”.

With RCpc annotations alone, store-release-to-load-acquire ordering is not enforced. This facilitates
the porting of code written under the TSO and/or RCpc memory models. To enforce store-release-to-
load-acquire ordering, the code must use store-release-RCsc and load-acquire-RCsc operations so that
PPO rule 7 applies. RCpc alone is sufficient for many use cases in C/C but is insufficient for many
other use cases in C/C, Java, and Linux, to name just a few examples; see [memory-porting] for details.

PPO rule 8 indicates that an SC must appear after its paired LR in the global memory order. This will
follow naturally from the common use of LR/SC to perform an atomic read-modify-write operation
due to the inherent data dependency. However, PPO rule 8 also applies even when the value being
stored does not syntactically depend on the value returned by the paired LR.

Lastly, we note that just as with fences, programmers need not worry about cumulativity when
analyzing ordering annotations.

A.3.8. Syntactic Dependencies (Rules ppo:addr–11)


Rule 9: b has a syntactic address dependency on a Rule 10: b has a syntactic data
dependency on a Rule 11: b is a store, and b has a syntactic control dependency on a

Dependencies from a load to a later memory operation in the same hart are respected by the RVWMO
memory model. The Alpha memory model was notable for choosing not to enforce the ordering of
such dependencies, but most modern hardware and software memory models consider allowing
dependent instructions to be reordered too confusing and counterintuitive. Furthermore, modern
code sometimes intentionally uses such dependencies as a particularly lightweight ordering
enforcement mechanism.

The terms in Section 15.1.2, “Syntactic Dependencies” work as follows. Instructions are said to carry
dependencies from their source register(s) to their destination register(s) whenever the value written
into each destination register is a function of the source register(s). For most instructions, this means
that the destination register(s) carry a dependency from all source register(s). However, there are a few
notable exceptions. In the case of memory instructions, the value written into the destination register
ultimately comes from the memory system rather than from the source register(s) directly, and so this
breaks the chain of dependencies carried from the source register(s). In the case of unconditional
jumps, the value written into the destination register comes from the current pc (which is never
considered a source register by the memory model), and so likewise, JALR (the only jump with a source
register) does not carry a dependency from rs1 to rd.

Example 4. (c) has a syntactic dependency on both (a) and (b) via fflags, a destination register that both (a) and (b)
implicitly accumulate into

1 (a) fadd f3,f1,f2
2 (b) fadd f6,f4,f5
3 (c) csrrs a0,fflags,x0

The notion of accumulating into a destination register rather than writing into it reflects the behavior

A.3. Explaining the RVWMO Rules | Page 167

The RISC-V Instruction Set Manual | © RISC-V

of CSRs such as fflags. In particular, an accumulation into a register does not clobber any previous
writes or accumulations into the same register. For example, in Example 4, “(c) has a syntactic
dependency on both (a) and (b) via fflags, a destination register that both (a) and (b) implicitly
accumulate into”, (c) has a syntactic dependency on both (a) and (b).

Like other modern memory models, the RVWMO memory model uses syntactic rather than semantic
dependencies. In other words, this definition depends on the identities of the registers being accessed
by different instructions, not the actual contents of those registers. This means that an address,
control, or data dependency must be enforced even if the calculation could seemingly be optimized
away. This choice ensures that RVWMO remains compatible with code that uses these false syntactic
dependencies as a lightweight ordering mechanism.

Example 5. A syntactic address dependency

1 ld a1,0(s0)
2 xor a2,a1,a1
3 add s1,s1,a2
4 ld a5,0(s1)

For example, there is a syntactic address dependency from the memory operation generated by the
first instruction to the memory operation generated by the last instruction in Example 5, “A syntactic
address dependency”, even though a1 XOR a1 is zero and hence has no effect on the address accessed
by the second load.

The benefit of using dependencies as a lightweight synchronization mechanism is that the ordering
enforcement requirement is limited only to the specific two instructions in question. Other non-
dependent instructions may be freely reordered by aggressive implementations. One alternative would
be to use a load-acquire, but this would enforce ordering for the first load with respect to all
subsequent instructions. Another would be to use a FENCE R,R, but this would include all previous
and all subsequent loads, making this option more expensive.

Example 6. A syntactic control dependency

1 lw x1,0(x2)
2 bne x1,x0,next
3 sw x3,0(x4)
4 next: sw x5,0(x6)

Control dependencies behave differently from address and data dependencies in the sense that a
control dependency always extends to all instructions following the original target in program order.
Consider Example 6, “A syntactic control dependency” the instruction at next will always execute, but
the memory operation generated by that last instruction nevertheless still has a control dependency
from the memory operation generated by the first instruction.

Example 7. Another syntactic control dependency

1 lw x1,0(x2)
2 bne x1,x0,next
3 next: sw x3,0(x4)

A.3. Explaining the RVWMO Rules | Page 168

The RISC-V Instruction Set Manual | © RISC-V

Likewise, consider Example 7, “Another syntactic control dependency”. Even though both branch
outcomes have the same target, there is still a control dependency from the memory operation
generated by the first instruction in this snippet to the memory operation generated by the last
instruction. This definition of control dependency is subtly stronger than what might be seen in other
contexts (e.g., C++), but it conforms with standard definitions of control dependencies in the
literature.

Notably, PPO rules ppo:addr –11 are also intentionally designed to respect dependencies that
originate from the output of a successful store-conditional instruction. Typically, an SC instruction
will be followed by a conditional branch checking whether the outcome was successful; this implies
that there will be a control dependency from the store operation generated by the SC instruction to
any memory operations following the branch. PPO rule ppo:ctrl in turn implies that any subsequent
store operations will appear later in the global memory order than the store operation generated by the
SC. However, since control, address, and data dependencies are defined over memory operations, and
since an unsuccessful SC does not generate a memory operation, no order is enforced between
unsuccessful SC and its dependent instructions. Moreover, since SC is defined to carry dependencies
from its source registers to rd only when the SC is successful, an unsuccessful SC has no effect on the
global memory order.

Figure 61. A variant of the LB litmus test (outcome forbidden)

Initial values: 0(s0)=1;
0(s1)=1

Hart 0 Hart 1

(a) ld a0,0(s0) (e) ld a3,0(s2)

(b) lr a1,0(s1) (f) sd a3,0(s0)

(c) sc a2,a0,0(s1)

(d) sd a2,0(s2)

Outcome: a0=0, a3=0

In addition, the choice to respect dependencies originating at store-conditional instructions ensures
that certain out-of-thin-air-like behaviors will be prevented. Consider [successdeps]. Suppose a
hypothetical implementation could occasionally make some early guarantee that a store-conditional
operation will succeed. In this case, (c) could return 0 to a2 early (before actually executing), allowing

A.3. Explaining the RVWMO Rules | Page 169

The RISC-V Instruction Set Manual | © RISC-V

the sequence (d), (e), (f), (a), and then (b) to execute, and then (c) might execute (successfully) only at
that point. This would imply that (c) writes its own success value to 0(s1)! Fortunately, this situation
and others like it are prevented by the fact that RVWMO respects dependencies originating at the
stores generated by successful SC instructions.

We also note that syntactic dependencies between instructions only have any force when they take the
form of a syntactic address, control, and/or data dependency. For example: a syntactic dependency
between two F instructions via one of the accumulating CSRs in Section 15.3, “Source and
Destination Register Listings” does not imply that the two F instructions must be executed in order.
Such a dependency would only serve to ultimately set up later a dependency from both F instructions
to a later CSR instruction accessing the CSR flag in question.

A.3.9. Pipeline Dependencies



Rule 12: b is a load, and there exists some store m between a and b in program order such
that m has an address or data dependency on a, and b returns a value written by m Rule
13: b is a store, and there exists some instruction m between a and b in program order
such that m has an address dependency on a

Figure 62. Because of PPO rule 12 and the data dependency from (d) to (e), (d) must also precede (f) in the global
memory order (outcome forbidden)

Hart 0 Hart 1

li t1, 1 (d) lw a0, 0(s1)

(a) sw t1,0(s0) (e) sw a0, 0(s2)

(b) fence w, w (f) lw a1, 0(s2)

(c) sw t1,0(s1) xor a2,a1,a1

add s0,s0,a2

(g) lw a3,0(s0)

Outcome: a0=1, a3=0

A.3. Explaining the RVWMO Rules | Page 170

The RISC-V Instruction Set Manual | © RISC-V

PPO rules 12 and 13 reflect behaviors of almost all real processor pipeline implementations. Rule
ppo:addrdatarfi states that a load cannot forward from a store until the address and data for that store
are known. Consider [addrdatarfi] (f) cannot be executed until the data for (e) has been resolved,
because (f) must return the value written by (e) (or by something even later in the global memory
order), and the old value must not be clobbered by the writeback of (e) before (d) has had a chance to
perform. Therefore, (f) will never perform before (d) has performed.

Figure 63. Because of the extra store between (e) and (g), (d) no longer necessarily precedes (g) (outcome
permitted)

Hart 0 Hart 1

li t1, 1 li t1, 1

(a) sw t1,0(s0) (d) lw a0, 0(s1)

(b) fence w, w (e) sw a0, 0(s2)

(c) sw t1,0(s1) (f) sw t1, 0(s2)

(g) lw a1, 0(s2)

xor a2,a1,a1

add s0,s0,a2

(h) lw a3,0(s0)

Outcome: a0=1, a3=0

If there were another store to the same address in between (e) and (f), as in [litmus:addrdatarfi_no],
then (f) would no longer be dependent on the data of (e) being resolved, and hence the dependency of
(f) on (d), which produces the data for (e), would be broken.

Rule 13 makes a similar observation to the previous rule: a store cannot be performed at memory until
all previous loads that might access the same address have themselves been performed. Such a load

A.3. Explaining the RVWMO Rules | Page 171

The RISC-V Instruction Set Manual | © RISC-V

must appear to execute before the store, but it cannot do so if the store were to overwrite the value in
memory before the load had a chance to read the old value. Likewise, a store generally cannot be
performed until it is known that preceding instructions will not cause an exception due to failed
address resolution, and in this sense, rule 13 can be seen as somewhat of a special case of rule 11.

Figure 64. Because of the address dependency from (d) to (e), (d) also precedes (f) (outcome forbidden)

Hart 0 Hart 1

li t1, 1

(a) lw a0,0(s0) (d) lw a1, 0(s1)

(b) fence rw,rw (e) lw a2, 0(a1)

(c) sw s2,0(s1) (f) sw t1, 0(s0)

Outcome: a0=1, a1=t

Consider [addrpo] (f) cannot be executed until the address for (e) is resolved, because it may turn out
that the addresses match; i.e., that a1=s0. Therefore, (f) cannot be sent to memory before (d) has
executed and confirmed whether the addresses do indeed overlap.

A.4. Beyond Main Memory
RVWMO does not currently attempt to formally describe how FENCE.I, SFENCE.VMA, I/O fences, and
PMAs behave. All of these behaviors will be described by future formalizations. In the meantime, the
behavior of FENCE.I is described in Chapter 3, "Zifencei" Instruction-Fetch Fence, Version 2.0, the
behavior of SFENCE.VMA is described in the RISC-V Instruction Set Privileged Architecture Manual,
and the behavior of I/O fences and the effects of PMAs are described below.

A.4.1. Coherence and Cacheability

The RISC-V Privileged ISA defines Physical Memory Attributes (PMAs) which specify, among other
things, whether portions of the address space are coherent and/or cacheable. See the RISC-V
Privileged ISA Specification for the complete details. Here, we simply discuss how the various details

A.4. Beyond Main Memory | Page 172

The RISC-V Instruction Set Manual | © RISC-V

in each PMA relate to the memory model:

• Main memory vs.I/O, and I/O memory ordering PMAs: the memory model as defined applies to
main memory regions. I/O ordering is discussed below.

• Supported access types and atomicity PMAs: the memory model is simply applied on top of
whatever primitives each region supports.

• Cacheability PMAs: the cacheability PMAs in general do not affect the memory model. Non-
cacheable regions may have more restrictive behavior than cacheable regions, but the set of
allowed behaviors does not change regardless. However, some platform-specific and/or device-
specific cacheability settings may differ.

• Coherence PMAs: The memory consistency model for memory regions marked as non-coherent in
PMAs is currently platform-specific and/or device-specific: the load-value axiom, the atomicity
axiom, and the progress axiom all may be violated with non-coherent memory. Note however that
coherent memory does not require a hardware cache coherence protocol. The RISC-V Privileged
ISA Specification suggests that hardware-incoherent regions of main memory are discouraged, but
the memory model is compatible with hardware coherence, software coherence, implicit
coherence due to read-only memory, implicit coherence due to only one agent having access, or
otherwise.

• Idempotency PMAs: Idempotency PMAs are used to specify memory regions for which loads
and/or stores may have side effects, and this in turn is used by the microarchitecture to determine,
e.g., whether prefetches are legal. This distinction does not affect the memory model.

A.4.2. I/O Ordering

For I/O, the load value axiom and atomicity axiom in general do not apply, as both reads and writes
might have device-specific side effects and may return values other than the value written by the
most recent store to the same address. Nevertheless, the following preserved program order rules still
generally apply for accesses to I/O memory: memory access a precedes memory access b in global
memory order if a precedes b in program order and one or more of the following holds:

1. a precedes b in preserved program order as defined in Chapter 15, RVWMO Memory Consistency
Model, Version 2.0, with the exception that acquire and release ordering annotations apply only
from one memory operation to another memory operation and from one I/O operation to another
I/O operation, but not from a memory operation to an I/O nor vice versa

2. a and b are accesses to overlapping addresses in an I/O region

3. a and b are accesses to the same strongly ordered I/O region

4. a and b are accesses to I/O regions, and the channel associated with the I/O region accessed by
either a or b is channel 1

5. a and b are accesses to I/O regions associated with the same channel (except for channel 0)

Note that the FENCE instruction distinguishes between main memory operations and I/O operations
in its predecessor and successor sets. To enforce ordering between I/O operations and main memory
operations, code must use a FENCE with PI, PO, SI, and/or SO, plus PR, PW, SR, and/or SW. For
example, to enforce ordering between a write to main memory and an I/O write to a device register, a
FENCE W,O or stronger is needed.

sd t0, 0(a0) fence w,o sd a0, 0(a1)

When a fence is in fact used, implementations must assume that the device may attempt to access

A.4. Beyond Main Memory | Page 173

The RISC-V Instruction Set Manual | © RISC-V

memory immediately after receiving the MMIO signal, and subsequent memory accesses from that
device to memory must observe the effects of all accesses ordered prior to that MMIO operation. In
other words, in [wo], suppose 0(a0) is in main memory and 0(a1) is the address of a device register in
I/O memory. If the device accesses 0(a0) upon receiving the MMIO write, then that load must
conceptually appear after the first store to 0(a0) according to the rules of the RVWMO memory
model. In some implementations, the only way to ensure this will be to require that the first store does
in fact complete before the MMIO write is issued. Other implementations may find ways to be more
aggressive, while others still may not need to do anything different at all for I/O and main memory
accesses. Nevertheless, the RVWMO memory model does not distinguish between these options; it
simply provides an implementation-agnostic mechanism to specify the orderings that must be
enforced.

Many architectures include separate notions of ordering and completion fences, especially as it
relates to I/O (as opposed to regular main memory). Ordering fences simply ensure that memory
operations stay in order, while completion fences ensure that predecessor accesses have all completed
before any successors are made visible. RISC-V does not explicitly distinguish between ordering and
completion fences. Instead, this distinction is simply inferred from different uses of the FENCE bits.

For implementations that conform to the RISC-V Unix Platform Specification, I/O devices and DMA
operations are required to access memory coherently and via strongly ordered I/O channels.
Therefore, accesses to regular main memory regions that are concurrently accessed by external
devices can also use the standard synchronization mechanisms. Implementations that do not conform
to the Unix Platform Specification and/or in which devices do not access memory coherently will
need to use mechanisms (which are currently platform-specific or device-specific) to enforce
coherency.

I/O regions in the address space should be considered non-cacheable regions in the PMAs for those
regions. Such regions can be considered coherent by the PMA if they are not cached by any agent.

The ordering guarantees in this section may not apply beyond a platform-specific boundary between
the RISC-V cores and the device. In particular, I/O accesses sent across an external bus (e.g., PCIe) may
be reordered before they reach their ultimate destination. Ordering must be enforced in such
situations according to the platform-specific rules of those external devices and buses.

A.5. Code Porting and Mapping Guidelines
Table 43. Mappings from TSO operations to RISC-V operations

x86/TSO Operation RVWMO Mapping

Load l{b|h|w|d}; fence r,rw

Store fence rw,w; s{b|h|w|d}

Atomic RMW amo<op>.{w|d}.aqrl OR

loop:lr.{w|d}.aq; <op>; sc.{w|d}.aqrl;
bnez loop

Fence fence rw,rw

[somappings] provides a mapping from TSO memory operations onto RISC-V memory instructions.
Normal x86 loads and stores are all inherently acquire-RCpc and release-RCpc operations: TSO
enforces all load-load, load-store, and store-store ordering by default. Therefore, under RVWMO, all

A.5. Code Porting and Mapping Guidelines | Page 174

The RISC-V Instruction Set Manual | © RISC-V

TSO loads must be mapped onto a load followed by FENCE R,RW, and all TSO stores must be mapped
onto FENCE RW,W followed by a store. TSO atomic read-modify-writes and x86 instructions using
the LOCK prefix are fully ordered and can be implemented either via an AMO with both aq and rl set,
or via an LR with aq set, the arithmetic operation in question, an SC with both aq and rl set, and a
conditional branch checking the success condition. In the latter case, the rl annotation on the LR turns
out (for non-obvious reasons) to be redundant and can be omitted.

Alternatives to [somappings] are also possible. A TSO store can be mapped onto AMOSWAP with rl set.
However, since RVWMO PPO Rule ppo:amoforward forbids forwarding of values from AMOs to
subsequent loads, the use of AMOSWAP for stores may negatively affect performance. A TSO load can
be mapped using LR with aq set: all such LR instructions will be unpaired, but that fact in and of itself
does not preclude the use of LR for loads. However, again, this mapping may also negatively affect
performance if it puts more pressure on the reservation mechanism than was originally intended.

Table 44. Mappings from Power operations to RISC-V operations

Power Operation RVWMO Mapping

Load l{b|h|w|d}

Load-Reserve lr.{w|d}

Store s{b|h|w|d}

Store-Conditional sc.{w|d}

lwsync fence.tso

sync fence rw,rw

isync fence.i; fence r,r

Table 44, “Mappings from Power operations to RISC-V operations” provides a mapping from Power
memory operations onto RISC-V memory instructions. Power ISYNC maps on RISC-V to a FENCE.I
followed by a FENCE R,R; the latter fence is needed because ISYNC is used to define a
control+control fence dependency that is not present in RVWMO.

Table 45. Mappings from ARM operations to RISC-V operations

ARM Operation RVWMO Mapping

Load l{b|h|w|d}

Load-Acquire fence rw, rw; l{b|h|w|d}; fence r,rw

Load-Exclusive lr.{w|d}

Load-Acquire-Exclusive lr.{w|d}.aqrl

Store s{b|h|w|d}

Store-Release fence rw,w; s{b|h|w|d}

Store-Exclusive sc.{w|d}

Store-Release-Exclusive sc.{w|d}.rl

dmb fence rw,rw

dmb.ld fence r,rw

dmb.st fence w,w

A.5. Code Porting and Mapping Guidelines | Page 175

The RISC-V Instruction Set Manual | © RISC-V

ARM Operation RVWMO Mapping

isb fence.i; fence r,r

Table 45, “Mappings from ARM operations to RISC-V operations” provides a mapping from ARM
memory operations onto RISC-V memory instructions. Since RISC-V does not currently have plain
load and store opcodes with aq or rl annotations, ARM load-acquire and store-release operations
should be mapped using fences instead. Furthermore, in order to enforce store-release-to-load-acquire
ordering, there must be a FENCE RW,RW between the store-release and load-acquire; Table 45,
“Mappings from ARM operations to RISC-V operations” enforces this by always placing the fence in
front of each acquire operation. ARM load-exclusive and store-exclusive instructions can likewise map
onto their RISC-V LR and SC equivalents, but instead of placing a FENCE RW,RW in front of an LR
with aq set, we simply also set rl instead. ARM ISB maps on RISC-V to FENCE.I followed by FENCE R,R
similarly to how ISYNC maps for Power.

Table 46. Mappings from Linux memory primitives to RISC-V primitives.

Linux Operation RVWMO Mapping

smp_mb() fence rw,rw

smp_rmb() fence r,r

smp_wmb() fence w,w

dma_rmb() fence r,r

dma_wmb() fence w,w

mb() fence iorw,iorw

rmb() fence ri,ri

wmb() fence wo,wo

smp_load_acquire() l{b|h|w|d}; fence r,rw

smp_store_release() fence.tso; s{b|h|w|d}

Linux Construct RVWMO AMO Mapping

atomic <op> relaxed amo <op>.{w|d}

atomic <op> acquire amo <op>.{w|d}.aq

atomic <op> release amo <op>.{w|d}.rl

atomic <op> amo <op>.{w|d}.aqrl

Linux Construct RVWMO LR/SC Mapping

atomic <op> relaxed loop:lr.{w|d}; <op>; sc.{w|d}; bnez loop

atomic <op> acquire loop:lr.{w|d}.aq; <op>; sc.{w|d}; bnez
loop

atomic <op> release loop:lr.{w|d}; <op>; sc.{w|d}.aqrl^*;
bnez loop OR

fence.tso; loop:lr.{w|d}; <op >;
sc.{w|d}^*; bnez loop

A.5. Code Porting and Mapping Guidelines | Page 176

The RISC-V Instruction Set Manual | © RISC-V

Linux Operation RVWMO Mapping

atomic <op> loop:lr.{w|d}.aq; <op>; sc.{w|d}.aqrl;
bnez loop

With regards to Table 46, “Mappings from Linux memory primitives to RISC-V primitives.”, other
constructs (such as spinlocks) should follow accordingly. Platforms or devices with non-coherent
DMA may need additional synchronization (such as cache flush or invalidate mechanisms); currently
any such extra synchronization will be device-specific.

Table 46, “Mappings from Linux memory primitives to RISC-V primitives.” provides a mapping of
Linux memory ordering macros onto RISC-V memory instructions. The Linux fences dma_rmb() and
dma_wmb() map onto FENCE R,R and FENCE W,W, respectively, since the RISC-V Unix Platform
requires coherent DMA, but would be mapped onto FENCE RI,RI and FENCE WO,WO, respectively,
on a platform with non-coherent DMA. Platforms with non-coherent DMA may also require a
mechanism by which cache lines can be flushed and/or invalidated. Such mechanisms will be device-
specific and/or standardized in a future extension to the ISA.

The Linux mappings for release operations may seem stronger than necessary, but these mappings are
needed to cover some cases in which Linux requires stronger orderings than the more intuitive
mappings would provide. In particular, as of the time this text is being written, Linux is actively
debating whether to require load-load, load-store, and store-store orderings between accesses in one
critical section and accesses in a subsequent critical section in the same hart and protected by the
same synchronization object. Not all combinations of FENCE RW,W/FENCE R,RW mappings with aq
/rl mappings combine to provide such orderings. There are a few ways around this problem, including:

1. Always use FENCE RW,W/FENCE R,RW, and never use aq/rl. This suffices but is undesirable, as it
defeats the purpose of the aq/rl modifiers.

2. Always use aq/rl, and never use FENCE RW,W/FENCE R,RW. This does not currently work due to
the lack of load and store opcodes with aq and rl modifiers.

3. Strengthen the mappings of release operations such that they would enforce sufficient orderings
in the presence of either type of acquire mapping. This is the currently recommended solution,
and the one shown in Table 46, “Mappings from Linux memory primitives to RISC-V primitives.”.

RVWMO Mapping: (a) lw a0, 0(s0) (b) fence.tso // vs. fence rw,w (c) sd x0,0(s1) … loop: (d)
amoswap.d.aq a1,t1,0(s1) bnez a1,loop (e) lw a2,0(s2)

For example, the critical section ordering rule currently being debated by the Linux community would
require (a) to be ordered before (e) in Example 8, “Orderings between critical sections in Linux”. If that
will indeed be required, then it would be insufficient for (b) to map as FENCE RW,W. That said, these
mappings are subject to change as the Linux Kernel Memory Model evolves.

A.5. Code Porting and Mapping Guidelines | Page 177

The RISC-V Instruction Set Manual | © RISC-V

Example 8. Orderings between critical sections in Linux

 1 (a) int r0 = *x;
 2 (bc) spin_unlock(y, 0);
 3 #&2026;
 4 (d) spin_lock(y);
 5 (e) int r1 = *z;
 6 RVWMO Mapping:
 7 (a) lw a0, 0(s0)
 8 (b) fence.tso // vs. fence rw,w
 9 (c) sd x0,0(s1)
10 #&2026;
11 loop:
12 (d) amoswap.d.aq a1,t1,0(s1)
13 bnez a1,loop
14 (e) lw a2,0(s2)

Table 47, “Mappings from C/C++ primitives to RISC-V primitives.” provides a mapping of C11/C++11
atomic operations onto RISC-V memory instructions. If load and store opcodes with aq and rl
modifiers are introduced, then the mappings in Table 48, “Hypothetical mappings from C/C++
primitives to RISC-V primitives, if native load-acquire and store-release opcodes are introduced.” will
suffice. Note however that the two mappings only interoperate correctly if
atomic_<op>(memory_order_seq_cst) is mapped using an LR that has both aq and rl set.

Table 47. Mappings from C/C++ primitives to RISC-V primitives.

C/C++ Construct RVWMO Mapping

Non-atomic load l{b|h|w|d}

atomic_load(memory_order_relaxed) l{b|h|w|d}

atomic_load(memory_order_acquire) l{b|h|w|d}; fence r,rw

atomic_load(memory_order_seq_cst) fence rw,rw; l{b|h|w|d}; fence r,rw

Non-atomic store s{b|h|w|d}

atomic_store(memory_order_relaxed) s{b|h|w|d}

atomic_store(memory_order_release) fence rw,w; s{b|h|w|d}

atomic_store(memory_order_seq_cst) fence rw,w; s{b|h|w|d}

atomic_thread_fence(memory_order_acquire
)

fence r,rw

atomic_thread_fence(memory_order_release
)

fence rw,w

atomic_thread_fence(memory_order_acq_rel
)

fence.tso

atomic_thread_fence(memory_order_seq_cst
)

fence rw,rw

C/C++ Construct RVWMO AMO Mapping

A.5. Code Porting and Mapping Guidelines | Page 178

The RISC-V Instruction Set Manual | © RISC-V

C/C++ Construct RVWMO Mapping

atomic_<op>(memory_order_relaxed) amo<op>.{w|d}

atomic_<op>(memory_order_acquire) amo<op>.{w|d}.aq

atomic_<op>(memory_order_release) amo<op>.{w|d}.rl

atomic_<op>(memory_order_acq_rel) amo<op>.{w|d}.aqrl

atomic_<op>(memory_order_seq_cst) amo<op>.{w|d}.aqrl

C/C++ Construct RVWMO LR/SC Mapping

atomic_<op>(memory_order_relaxed) loop:lr.{w|d}; <op>; sc.{w|d};

bnez loop

atomic_<op>(memory_order_acquire) loop:lr.{w|d}.aq; <op>; sc.{w|d};

bnez loop

atomic_<op>(memory_order_release) loop:lr.{w|d}; <op>; sc.{w|d}.rl;

bnez loop

atomic_<op>(memory_order_acq_rel) loop:lr.{w|d}.aq; <op>; sc.{w|d}.rl;

bnez loop

atomic_<op>(memory_order_seq_cst) loop:lr.{w|d}.aqrl; <op>;

sc.{w|d}.rl; bnez loop

Table 48. Hypothetical mappings from C/C++ primitives to RISC-V primitives, if native load-acquire and store-
release opcodes are introduced.

C/C++ Construct RVWMO Mapping

Non-atomic load l{b|h|w|d}

atomic_load(memory_order_relaxed) l{b|h|w|d}

atomic_load(memory_order_acquire) l{b|h|w|d}.aq

atomic_load(memory_order_seq_cst) l{b|h|w|d}.aq

Non-atomic store s{b|h|w|d}

atomic_store(memory_order_relaxed) s{b|h|w|d}

atomic_store(memory_order_release) s{b|h|w|d}.rl

atomic_store(memory_order_seq_cst) s{b|h|w|d}.rl

atomic_thread_fence(memory_order_acquire
)

fence r,rw

atomic_thread_fence(memory_order_release
)

fence rw,w

atomic_thread_fence(memory_order_acq_rel
)

fence.tso

atomic_thread_fence(memory_order_seq_cst
)

fence rw,rw

A.5. Code Porting and Mapping Guidelines | Page 179

The RISC-V Instruction Set Manual | © RISC-V

C/C++ Construct RVWMO Mapping

C/C++ Construct RVWMO AMO Mapping

atomic_<op>(memory_order_relaxed) amo<op>.{w|d}

atomic_<op>(memory_order_acquire) amo<op>.{w|d}.aq

atomic_<op>(memory_order_release) amo<op>.{w|d}.rl

atomic_<op>(memory_order_acq_rel) amo<op>.{w|d}.aqrl

atomic_<op>(memory_order_seq_cst) amo<op>.{w|d}.aqrl

C/C++ Construct RVWMO LR/SC Mapping

atomic_<op>(memory_order_relaxed) lr.{w|d}; <op>; sc.{w|d}

atomic_<op>(memory_order_acquire) lr.{w|d}.aq; <op>; sc.{w|d}

atomic_<op>(memory_order_release) lr.{w|d}; <op>; sc.{w|d}.rl

atomic_<op>(memory_order_acq_rel) lr.{w|d}.aq; <op>; sc.{w|d}.rl

atomic_<op>(memory_order_seq_cst) lr.{w|d}.aq^ફ <op>; sc.{w|d}.rl

^ફ must be lr.{w|d}.aqrl in order to
interoperate with code mapped per Table 47,
“Mappings from C/C++ primitives to RISC-V
primitives.”

Any AMO can be emulated by an LR/SC pair, but care must be taken to ensure that any PPO orderings
that originate from the LR are also made to originate from the SC, and that any PPO orderings that
terminate at the SC are also made to terminate at the LR. For example, the LR must also be made to
respect any data dependencies that the AMO has, given that load operations do not otherwise have any
notion of a data dependency. Likewise, the effect a FENCE R,R elsewhere in the same hart must also be
made to apply to the SC, which would not otherwise respect that fence. The emulator may achieve this
effect by simply mapping AMOs onto lr.aq; <op>; sc.aqrl, matching the mapping used elsewhere
for fully ordered atomics.

These C11/C++11 mappings require the platform to provide the following Physical Memory Attributes
(as defined in the RISC-V Privileged ISA) for all memory:

• main memory

• coherent

• AMOArithmetic

• RsrvEventual

Platforms with different attributes may require different mappings, or require platform-specific SW
(e.g., memory-mapped I/O).

A.6. Implementation Guidelines
The RVWMO and RVTSO memory models by no means preclude microarchitectures from employing
sophisticated speculation techniques or other forms of optimization in order to deliver higher
performance. The models also do not impose any requirement to use any one particular cache
hierarchy, nor even to use a cache coherence protocol at all. Instead, these models only specify the

A.6. Implementation Guidelines | Page 180

The RISC-V Instruction Set Manual | © RISC-V

behaviors that can be exposed to software. Microarchitectures are free to use any pipeline design, any
coherent or non-coherent cache hierarchy, any on-chip interconnect, etc., as long as the design only
admits executions that satisfy the memory model rules. That said, to help people understand the
actual implementations of the memory model, in this section we provide some guidelines on how
architects and programmers should interpret the models’ rules.

Both RVWMO and RVTSO are multi-copy atomic (or other-multi-copy-atomic): any store value that is
visible to a hart other than the one that originally issued it must also be conceptually visible to all
other harts in the system. In other words, harts may forward from their own previous stores before
those stores have become globally visible to all harts, but no early inter-hart forwarding is permitted.
Multi-copy atomicity may be enforced in a number of ways. It might hold inherently due to the
physical design of the caches and store buffers, it may be enforced via a single-writer/multiple-reader
cache coherence protocol, or it might hold due to some other mechanism.

Although multi-copy atomicity does impose some restrictions on the microarchitecture, it is one of the
key properties keeping the memory model from becoming extremely complicated. For example, a hart
may not legally forward a value from a neighbor hart’s private store buffer (unless of course it is done
in such a way that no new illegal behaviors become architecturally visible). Nor may a cache
coherence protocol forward a value from one hart to another until the coherence protocol has
invalidated all older copies from other caches. Of course, microarchitectures may (and high-
performance implementations likely will) violate these rules under the covers through speculation or
other optimizations, as long as any non-compliant behaviors are not exposed to the programmer.

As a rough guideline for interpreting the PPO rules in RVWMO, we expect the following from the
software perspective:

• programmers will use PPO rules 1 and 4–8 regularly and actively.

• expert programmers will use PPO rules 9–11 to speed up critical paths of important data
structures.

• even expert programmers will rarely if ever use PPO rules 2–3 and 12–13 directly. These are
included to facilitate common microarchitectural optimizations (rule 2) and the operational
formal modeling approach (rules 3 and 12–13) described in Section B.3, “An Operational Memory
Model”. They also facilitate the process of porting code from other architectures that have similar
rules.

We also expect the following from the hardware perspective:

• PPO rules 1 and 3–6 reflect well-understood rules that should pose few surprises to architects.

• PPO rule 2 reflects a natural and common hardware optimization, but one that is very subtle and
hence is worth double checking carefully.

• PPO rule 7 may not be immediately obvious to architects, but it is a standard memory model
requirement

• The load value axiom, the atomicity axiom, and PPO rules 8–13 reflect rules that most hardware
implementations will enforce naturally, unless they contain extreme optimizations. Of course,
implementations should make sure to double check these rules nevertheless. Hardware must also
ensure that syntactic dependencies are not optimized away.

Architectures are free to implement any of the memory model rules as conservatively as they choose.
For example, a hardware implementation may choose to do any or all of the following:

A.6. Implementation Guidelines | Page 181

The RISC-V Instruction Set Manual | © RISC-V

• interpret all fences as if they were FENCE RW,RW (or FENCE IORW,IORW, if I/O is involved),
regardless of the bits actually set

• implement all fences with PW and SR as if they were FENCE RW,RW (or FENCE IORW,IORW, if
I/O is involved), as PW with SR is the most expensive of the four possible main memory ordering
components anyway

• emulate aq and rl as described in [porting]

• enforcing all same-address load-load ordering, even in the presence of patterns such as fri-rfi
and RSW

• forbid any forwarding of a value from a store in the store buffer to a subsequent AMO or LR to the
same address

• forbid any forwarding of a value from an AMO or SC in the store buffer to a subsequent load to the
same address

• implement TSO on all memory accesses, and ignore any main memory fences that do not include
PW and SR ordering (e.g., as Ztso implementations will do)

• implement all atomics to be RCsc or even fully ordered, regardless of annotation

Architectures that implement RVTSO can safely do the following:

• Ignore all fences that do not have both PW and SR (unless the fence also orders I/O)

• Ignore all PPO rules except for rules 4 through 7, since the rest are redundant with other PPO rules
under RVTSO assumptions

Other general notes:

• Silent stores (i.e., stores that write the same value that already exists at a memory location) behave
like any other store from a memory model point of view. Likewise, AMOs which do not actually
change the value in memory (e.g., an AMOMAX for which the value in rs2 is smaller than the value
currently in memory) are still semantically considered store operations. Microarchitectures that
attempt to implement silent stores must take care to ensure that the memory model is still obeyed,
particularly in cases such as RSW [overlap] which tend to be incompatible with silent stores.

• Writes may be merged (i.e., two consecutive writes to the same address may be merged) or
subsumed (i.e., the earlier of two back-to-back writes to the same address may be elided) as long as
the resulting behavior does not otherwise violate the memory model semantics.

The question of write subsumption can be understood from the following example:

A.6. Implementation Guidelines | Page 182

The RISC-V Instruction Set Manual | © RISC-V

Figure 65. Write subsumption litmus test, allowed execution

Hart 0 Hart 1

li t1, 3 li t3, 2

li t2, 1

(a) sw t1,0(s0) (d) lw a0,0(s1)

(b) fence w, w (e) sw a0,0(s0)

(c) sw t2,0(s1) (f) sw t3,0(s0)

As written, if the load (d) reads value 1, then (a) must precede (f) in the global memory order:

• (a) precedes (c) in the global memory order because of rule 2

• (c) precedes (d) in the global memory order because of the Load Value axiom

• (d) precedes (e) in the global memory order because of rule 7

• (e) precedes (f) in the global memory order because of rule 1

In other words the final value of the memory location whose address is in s0 must be 2 (the value
written by the store (f)) and cannot be 3 (the value written by the store (a)).

A very aggressive microarchitecture might erroneously decide to discard (e), as (f) supersedes it, and
this may in turn lead the microarchitecture to break the now-eliminated dependency between (d) and
(f) (and hence also between (a) and (f)). This would violate the memory model rules, and hence it is
forbidden. Write subsumption may in other cases be legal, if for example there were no data
dependency between (d) and (e).

A.6.1. Possible Future Extensions

We expect that any or all of the following possible future extensions would be compatible with the
RVWMO memory model:

• "V" vector ISA extensions

• "J" JIT extension

• Native encodings for load and store opcodes with aq and rl set

A.6. Implementation Guidelines | Page 183

The RISC-V Instruction Set Manual | © RISC-V

• Fences limited to certain addresses

• Cache writeback/flush/invalidate/etc.instructions

A.7. Known Issues

A.7.1. Mixed-size RSW

Table 49. Mixed-size discrepancy (permitted by axiomatic models, forbidden by operational model)

Hart 0 Hart 1

li t1, 1 li t1, 1

(a) lw a0,0(s0) (d) lw a1,0(s1)

(b) fence rw,rw (e) amoswap.w.rl a2,t1,0(s2)

(c) sw t1,0(s1) (f) ld a3,0(s2)

(g) lw a4,4(s2)

xor a5,a4,a4

add s0,s0,a5

(h) sw a2,0(s0)

Outcome: a0=1, a1=1,
a2=0, a3=1, a4=0

Table 50. Mixed-size discrepancy (permitted by axiomatic models, forbidden by operational model)

Hart 0 Hart 1

li t1, 1 li t1, 1

(a) lw a0,0(s0) (d) ld a1,0(s1)

(b) fence rw,rw (e) lw a2,4(s1)

(c) sw t1,0(s1) xor a3,a2,a2

add s0,s0,a3

(f) sw a2,0(s0)

Outcome: a0=0, a1=1,
a2=0

Table 51. Mixed-size discrepancy (permitted by axiomatic models, forbidden by operational model)

Hart 0 Hart 1

li t1, 1 li t1, 1

(a) lw a0,0(s0) (d) sw t1,4(s1)

(b) fence rw,rw (e) ld a1,0(s1)

(c) sw t1,0(s1) (f) lw a2,4(s1)

xor a3,a2,a2

add s0,s0,a3

A.7. Known Issues | Page 184

The RISC-V Instruction Set Manual | © RISC-V

Hart 0 Hart 1

(g) sw a2,0(s0)

Outcome: a0=1,
a1=0x100000001, a1=1

There is a known discrepancy between the operational and axiomatic specifications within the family
of mixed-size RSW variants shown in [discrepancy-rsw1]–[discrepancy-rsw3]. To address this, we may
choose to add something like the following new PPO rule: Memory operation a precedes memory
operation b in preserved program order (and hence also in the global memory order) if a precedes b in
program order, a and b both access regular main memory (rather than I/O regions), a is a load, b is a
store, there is a load m between a and b, there is a byte x that both a and m read, there is no store
between a and m that writes to x, and m precedes b in PPO. In other words, in herd syntax, we may
choose to add (po-loc & rsw);ppo;[W] to PPO. Many implementations will already enforce this
ordering naturally. As such, even though this rule is not official, we recommend that implementers
enforce it nevertheless in order to ensure forwards compatibility with the possible future addition of
this rule to RVWMO.

A.7. Known Issues | Page 185

The RISC-V Instruction Set Manual | © RISC-V

Appendix B: Formal Memory Model
Specifications, Version 0.1
To facilitate formal analysis of RVWMO, this chapter presents a set of formalizations using different
tools and modeling approaches. Any discrepancies are unintended; the expectation is that the models
describe exactly the same sets of legal behaviors.

This appendix should be treated as commentary; all normative material is provided in Chapter 15,
RVWMO Memory Consistency Model, Version 2.0 and in the rest of the main body of the ISA
specification. All currently known discrepancies are listed in Section A.7, “Known Issues”. Any other
discrepancies are unintentional.

B.1. Formal Axiomatic Specification in Alloy
We present a formal specification of the RVWMO memory model in Alloy (alloy.mit.edu). This model
is available online at github.com/daniellustig/riscv-memory-model.

The online material also contains some litmus tests and some examples of how Alloy can be used to
model check some of the mappings in Section A.5, “Code Porting and Mapping Guidelines”.

B.1. Formal Axiomatic Specification in Alloy | Page 186

The RISC-V Instruction Set Manual | © RISC-V

http://alloy.mit.edu
https://github.com/daniellustig/riscv-memory-model

Example 9. The RVWMO memory model formalized in Alloy (1/5: PPO)

 1 // =RVWMO PPO=
 2
 3 // Preserved Program Order
 4 fun ppo : Event->Event {
 5 // same-address ordering
 6 po_loc :> Store
 7 + rdw
 8 + (AMO + StoreConditional) <: rfi
 9
10 // explicit synchronization
11 + ppo_fence
12 + Acquire <: ^po :> MemoryEvent
13 + MemoryEvent <: ^po :> Release
14 + RCsc <: ^po :> RCsc
15 + pair
16
17 // syntactic dependencies
18 + addrdep
19 + datadep
20 + ctrldep :> Store
21
22 // pipeline dependencies
23 + (addrdep+datadep).rfi
24 + addrdep.^po :> Store
25 }
26
27 / the global memory order respects preserved program order
28 fact { ppo in ^gmo }

B.1. Formal Axiomatic Specification in Alloy | Page 187

The RISC-V Instruction Set Manual | © RISC-V

Example 10. The RVWMO memory model formalized in Alloy (2/5: Axioms)

 1 // =RVWMO axioms=
 2
 3 // Load Value Axiom
 4 fun candidates[r: MemoryEvent] : set MemoryEvent {
 5 (r.~^gmo & Store & same_addr[r]) // writes preceding r in gmo
 6 + (r.^~po & Store & same_addr[r]) // writes preceding r in po
 7 }
 8
 9 fun latest_among[s: set Event] : Event { s - s.~^gmo }
10
11 pred LoadValue {
12 all w: Store | all r: Load |
13 w->r in rf <=> w = latest_among[candidates[r]]
14 }
15
16 // Atomicity Axiom
17 pred Atomicity {
18 all r: Store.~pair | // starting from the lr,
19 no x: Store & same_addr[r] | // there is no store x to the same addr
20 x not in same_hart[r] // such that x is from a different hart,
21 and x in r.~rf.^gmo // x follows (the store r reads from) in gmo,
22 and r.pair in x.^gmo // and r follows x in gmo
23 }
24
25 // Progress Axiom implicit: Alloy only considers finite executions
26
27 pred RISCV_mm { LoadValue and Atomicity /* and Progress */ }

Example 11. The RVWMO memory model formalized in Alloy (3/5: model of memory)

 1 //Basic model of memory
 2
 3 sig Hart { // hardware thread
 4 start : one Event
 5 }
 6 sig Address {}
 7 abstract sig Event {
 8 po: lone Event // program order
 9 }
10
11 abstract sig MemoryEvent extends Event {
12 address: one Address,
13 acquireRCpc: lone MemoryEvent,
14 acquireRCsc: lone MemoryEvent,
15 releaseRCpc: lone MemoryEvent,
16 releaseRCsc: lone MemoryEvent,
17 addrdep: set MemoryEvent,
18 ctrldep: set Event,

B.1. Formal Axiomatic Specification in Alloy | Page 188

The RISC-V Instruction Set Manual | © RISC-V

19 datadep: set MemoryEvent,
20 gmo: set MemoryEvent, // global memory order
21 rf: set MemoryEvent
22 }
23 sig LoadNormal extends MemoryEvent {} // l{b|h|w|d}
24 sig LoadReserve extends MemoryEvent { // lr
25 pair: lone StoreConditional
26 }
27 sig StoreNormal extends MemoryEvent {} // s{b|h|w|d}
28 // all StoreConditionals in the model are assumed to be successful
29 sig StoreConditional extends MemoryEvent {} // sc
30 sig AMO extends MemoryEvent {} // amo
31 sig NOP extends Event {}
32
33 fun Load : Event { LoadNormal + LoadReserve + AMO }
34 fun Store : Event { StoreNormal + StoreConditional + AMO }
35
36 sig Fence extends Event {
37 pr: lone Fence, // opcode bit
38 pw: lone Fence, // opcode bit
39 sr: lone Fence, // opcode bit
40 sw: lone Fence // opcode bit
41 }
42 sig FenceTSO extends Fence {}
43
44 /* Alloy encoding detail: opcode bits are either set (encoded, e.g.,
45 * as f.pr in iden) or unset (f.pr not in iden). The bits cannot be used for
46 * anything else */
47 fact { pr + pw + sr + sw in iden }
48 // likewise for ordering annotations
49 fact { acquireRCpc + acquireRCsc + releaseRCpc + releaseRCsc in iden }
50 // don't try to encode FenceTSO via pr/pw/sr/sw; just use it as-is
51 fact { no FenceTSO.(pr + pw + sr + sw) }

B.1. Formal Axiomatic Specification in Alloy | Page 189

The RISC-V Instruction Set Manual | © RISC-V

Example 12. The RVWMO memory model formalized in Alloy (4/5: Basic model rules)

 1 // =Basic model rules=
 2
 3 // Ordering annotation groups
 4 fun Acquire : MemoryEvent { MemoryEvent.acquireRCpc + MemoryEvent.acquireRCsc }
 5 fun Release : MemoryEvent { MemoryEvent.releaseRCpc + MemoryEvent.releaseRCsc }
 6 fun RCpc : MemoryEvent { MemoryEvent.acquireRCpc + MemoryEvent.releaseRCpc }
 7 fun RCsc : MemoryEvent { MemoryEvent.acquireRCsc + MemoryEvent.releaseRCsc }
 8
 9 // There is no such thing as store-acquire or load-release, unless it's both
10 fact { Load & Release in Acquire }
11 fact { Store & Acquire in Release }
12
13 // FENCE PPO
14 fun FencePRSR : Fence { Fence.(pr & sr) }
15 fun FencePRSW : Fence { Fence.(pr & sw) }
16 fun FencePWSR : Fence { Fence.(pw & sr) }
17 fun FencePWSW : Fence { Fence.(pw & sw) }
18
19 fun ppo_fence : MemoryEvent->MemoryEvent {
20 (Load <: ^po :> FencePRSR).(^po :> Load)
21 + (Load <: ^po :> FencePRSW).(^po :> Store)
22 + (Store <: ^po :> FencePWSR).(^po :> Load)
23 + (Store <: ^po :> FencePWSW).(^po :> Store)
24 + (Load <: ^po :> FenceTSO) .(^po :> MemoryEvent)
25 + (Store <: ^po :> FenceTSO) .(^po :> Store)
26 }
27
28 // auxiliary definitions
29 fun po_loc : Event->Event { ^po & address.~address }
30 fun same_hart[e: Event] : set Event { e + e.^~po + e.^po }
31 fun same_addr[e: Event] : set Event { e.address.~address }
32
33 // initial stores
34 fun NonInit : set Event { Hart.start.*po }
35 fun Init : set Event { Event - NonInit }
36 fact { Init in StoreNormal }
37 fact { Init->(MemoryEvent & NonInit) in ^gmo }
38 fact { all e: NonInit | one e.*~po.~start } // each event is in exactly one
 hart
39 fact { all a: Address | one Init & a.~address } // one init store per address
40 fact { no Init <: po and no po :> Init }

Example 13. The RVWMO memory model formalized in Alloy (5/5: Auxiliaries)

 1 // po
 2 fact { acyclic[po] }
 3
 4 // gmo

B.1. Formal Axiomatic Specification in Alloy | Page 190

The RISC-V Instruction Set Manual | © RISC-V

 5 fact { total[^gmo, MemoryEvent] } // gmo is a total order over all MemoryEvents
 6
 7 //rf
 8 fact { rf.~rf in iden } // each read returns the value of only one write
 9 fact { rf in Store <: address.~address :> Load }
10 fun rfi : MemoryEvent->MemoryEvent { rf & (*po + *~po) }
11
12 //dep
13 fact { no StoreNormal <: (addrdep + ctrldep + datadep) }
14 fact { addrdep + ctrldep + datadep + pair in ^po }
15 fact { datadep in datadep :> Store }
16 fact { ctrldep.*po in ctrldep }
17 fact { no pair & (^po :> (LoadReserve + StoreConditional)).^po }
18 fact { StoreConditional in LoadReserve.pair } // assume all SCs succeed
19
20 // rdw
21 fun rdw : Event->Event {
22 (Load <: po_loc :> Load) // start with all same_address load-load pairs,
23 - (~rf.rf) // subtract pairs that read from the same store,
24 - (po_loc.rfi) // and subtract out "fri-rfi" patterns
25 }
26
27 // filter out redundant instances and/or visualizations
28 fact { no gmo & gmo.gmo } // keep the visualization uncluttered
29 fact { all a: Address | some a.~address }
30
31 // =Optional: opcode encoding restrictions=
32
33 // the list of blessed fences
34 fact { Fence in
35 Fence.pr.sr
36 + Fence.pw.sw
37 + Fence.pr.pw.sw
38 + Fence.pr.sr.sw
39 + FenceTSO
40 + Fence.pr.pw.sr.sw
41 }
42
43 pred restrict_to_current_encodings {
44 no (LoadNormal + StoreNormal) & (Acquire + Release)
45 }
46
47 // =Alloy shortcuts=
48 pred acyclic[rel: Event->Event] { no iden & ^rel }
49 pred total[rel: Event->Event, bag: Event] {
50 all disj e, e': bag | e->e' in rel + ~rel
51 acyclic[rel]
52 }

B.1. Formal Axiomatic Specification in Alloy | Page 191

The RISC-V Instruction Set Manual | © RISC-V

B.2. Formal Axiomatic Specification in Herd
The tool herd takes a memory model and a litmus test as input and simulates the execution of the test
on top of the memory model. Memory models are written in the domain specific language Cat. This
section provides two Cat memory model of RVWMO. The first model, Figure #fig:herd2 , follows the
global memory order, Chapter #ch:memorymodel , definition of RVWMO, as much as is possible for a
Cat model. The second model, Figure #fig:herd3 , is an equivalent, more efficient, partial order based
RVWMO model.

The simulator herd is part of the diy tool suite — see diy.inria.fr for software and documentation. The
models and more are available online at diy.inria.fr/cats7/riscv/.

Example 14. riscv-defs.cat, a herd definition of preserved program order (1/3)

 1 (*************)
 2 (* Utilities *)
 3 (*************)
 4
 5 (* All fence relations *)
 6 let fence.r.r = [R];fencerel(Fence.r.r);[R]
 7 let fence.r.w = [R];fencerel(Fence.r.w);[W]
 8 let fence.r.rw = [R];fencerel(Fence.r.rw);[M]
 9 let fence.w.r = [W];fencerel(Fence.w.r);[R]
10 let fence.w.w = [W];fencerel(Fence.w.w);[W]
11 let fence.w.rw = [W];fencerel(Fence.w.rw);[M]
12 let fence.rw.r = [M];fencerel(Fence.rw.r);[R]
13 let fence.rw.w = [M];fencerel(Fence.rw.w);[W]
14 let fence.rw.rw = [M];fencerel(Fence.rw.rw);[M]
15 let fence.tso =
16 let f = fencerel(Fence.tso) in
17 ([W];f;[W]) | ([R];f;[M])
18
19 let fence =
20 fence.r.r | fence.r.w | fence.r.rw |
21 fence.w.r | fence.w.w | fence.w.rw |
22 fence.rw.r | fence.rw.w | fence.rw.rw |
23 fence.tso
24
25 (* Same address, no W to the same address in-between *)
26 let po-loc-no-w = po-loc \ (po-loc?;[W];po-loc)
27 (* Read same write *)
28 let rsw = rf^-1;rf
29 (* Acquire, or stronger *)
30 let AQ = Acq|AcqRel
31 (* Release or stronger *)
32 and RL = RelAcqRel
33 (* All RCsc *)
34 let RCsc = Acq|Rel|AcqRel
35 (* Amo events are both R and W, relation rmw relates paired lr/sc *)
36 let AMO = R & W

B.2. Formal Axiomatic Specification in Herd | Page 192

The RISC-V Instruction Set Manual | © RISC-V

http://diy.inria.fr
http://diy.inria.fr/cats7/riscv/

37 let StCond = range(rmw)
38
39 (*************)
40 (* ppo rules *)
41 (*************)
42
43 (* Overlapping-Address Orderings *)
44 let r1 = [M];po-loc;[W]
45 and r2 = ([R];po-loc-no-w;[R]) \ rsw
46 and r3 = [AMO|StCond];rfi;[R]
47 (* Explicit Synchronization *)
48 and r4 = fence
49 and r5 = [AQ];po;[M]
50 and r6 = [M];po;[RL]
51 and r7 = [RCsc];po;[RCsc]
52 and r8 = rmw
53 (* Syntactic Dependencies *)
54 and r9 = [M];addr;[M]
55 and r10 = [M];data;[W]
56 and r11 = [M];ctrl;[W]
57 (* Pipeline Dependencies *)
58 and r12 = [R];(addr|data);[W];rfi;[R]
59 and r13 = [R];addr;[M];po;[W]
60
61 let ppo = r1 | r2 | r3 | r4 | r5 | r6 | r7 | r8 | r9 | r10 | r11 | r12 | r13

B.2. Formal Axiomatic Specification in Herd | Page 193

The RISC-V Instruction Set Manual | © RISC-V

Example 15. riscv.cat, a herd version of the RVWMO memory model (2/3)

 1 Total
 2
 3 (* Notice that herd has defined its own rf relation *)
 4
 5 (* Define ppo *)
 6 include "riscv-defs.cat"
 7
 8 (********************************)
 9 (* Generate global memory order *)
10 (********************************)
11
12 let gmo0 = (* precursor: ie build gmo as an total order that include gmo0 *)
13 loc & (W\FW) * FW | # Final write after any write to the same location
14 ppo | # ppo compatible
15 rfe # includes herd external rf (optimization)
16
17 (* Walk over all linear extensions of gmo0 *)
18 with gmo from linearizations(M\IW,gmo0)
19
20 (* Add initial writes upfront -- convenient for computing rfGMO *)
21 let gmo = gmo | loc & IW * (M\IW)
22
23 (**********)
24 (* Axioms *)
25 (**********)
26
27 (* Compute rf according to the load value axiom, aka rfGMO *)
28 let WR = loc & ([W];(gmo|po);[R])
29 let rfGMO = WR \ (loc&([W];gmo);WR)
30
31 (* Check equality of herd rf and of rfGMO *)
32 empty (rf\rfGMO)|(rfGMO\rf) as RfCons
33
34 (* Atomicity axiom *)
35 let infloc = (gmo & loc)^-1
36 let inflocext = infloc & ext
37 let winside = (infloc;rmw;inflocext) & (infloc;rf;rmw;inflocext) & [W]
38 empty winside as Atomic

B.2. Formal Axiomatic Specification in Herd | Page 194

The RISC-V Instruction Set Manual | © RISC-V

Example 16. riscv.cat, an alternative herd presentation of the RVWMO memory model (3/3)

 1 Partial
 2
 3 (***************)
 4 (* Definitions *)
 5 (***************)
 6
 7 (* Define ppo *)
 8 include "riscv-defs.cat"
 9
10 (* Compute coherence relation *)
11 include "cos-opt.cat"
12
13 (**********)
14 (* Axioms *)
15 (**********)
16
17 (* Sc per location *)
18 acyclic co|rf|fr|po-loc as Coherence
19
20 (* Main model axiom *)
21 acyclic co|rfe|fr|ppo as Model
22
23 (* Atomicity axiom *)
24 empty rmw & (fre;coe) as Atomic

B.3. An Operational Memory Model
This is an alternative presentation of the RVWMO memory model in operational style. It aims to
admit exactly the same extensional behavior as the axiomatic presentation: for any given program,
admitting an execution if and only if the axiomatic presentation allows it.

The axiomatic presentation is defined as a predicate on complete candidate executions. In contrast,
this operational presentation has an abstract microarchitectural flavor: it is expressed as a state
machine, with states that are an abstract representation of hardware machine states, and with explicit
out-of-order and speculative execution (but abstracting from more implementation-specific
microarchitectural details such as register renaming, store buffers, cache hierarchies, cache protocols,
etc.). As such, it can provide useful intuition. It can also construct executions incrementally, making it
possible to interactively and randomly explore the behavior of larger examples, while the axiomatic
model requires complete candidate executions over which the axioms can be checked.

The operational presentation covers mixed-size execution, with potentially overlapping memory
accesses of different power-of-two byte sizes. Misaligned accesses are broken up into single-byte
accesses.

The operational model, together with a fragment of the RISC-V ISA semantics (RV64I and A), are
integrated into the rmem exploration tool (github.com/rems-project/rmem). rmem can explore litmus
tests (see Section A.2, “Litmus Tests”) and small ELF binaries exhaustively, pseudo-randomly and
interactively. In rmem, the ISA semantics is expressed explicitly in Sail (see github.com/rems-project/

B.3. An Operational Memory Model | Page 195

The RISC-V Instruction Set Manual | © RISC-V

https://github.com/rems-project/rmem
https://github.com/rems-project/sail

sail for the Sail language, and github.com/rems-project/sail-riscv for the RISC-V ISA model), and the
concurrency semantics is expressed in Lem (see github.com/rems-project/lem for the Lem language).

rmem has a command-line interface and a web-interface. The web-interface runs entirely on the client
side, and is provided online together with a library of litmus tests: www.cl.cam.ac.uk/. The command-
line interface is faster than the web-interface, specially in exhaustive mode.

Below is an informal introduction of the model states and transitions. The description of the formal
model starts in the next subsection.

Terminology: In contrast to the axiomatic presentation, here every memory operation is either a load
or a store. Hence, AMOs give rise to two distinct memory operations, a load and a store. When used in
conjunction with instruction, the terms load and store refer to instructions that give rise to such
memory operations. As such, both include AMO instructions. The term acquire refers to an
instruction (or its memory operation) with the acquire-RCpc or acquire-RCsc annotation. The term
release refers to an instruction (or its memory operation) with the release-RCpc or release-RCsc
annotation.

B.3.1. Model states

A model state consists of a shared memory and a tuple of hart states.

… Hart

Shared Memory

The shared memory state records all the memory store operations that have propagated so far, in the
order they propagated (this can be made more efficient, but for simplicity of the presentation we keep
it this way).

Each hart state consists principally of a tree of instruction instances, some of which have been finished,
and some of which have not. Non-finished instruction instances can be subject to restart, e.g. if they
depend on an out-of-order or speculative load that turns out to be unsound.

Conditional branch and indirect jump instructions may have multiple successors in the instruction
tree. When such instruction is finished, any un-taken alternative paths are discarded.

Each instruction instance in the instruction tree has a state that includes an execution state of the
intra-instruction semantics (the ISA pseudocode for this instruction). The model uses a formalization
of the intra-instruction semantics in Sail. One can think of the execution state of an instruction as a
representation of the pseudocode control state, pseudocode call stack, and local variable values. An
instruction instance state also includes information about the instance’s memory and register
footprints, its register reads and writes, its memory operations, whether it is finished, etc.

B.3.2. Model transitions

The model defines, for any model state, the set of allowed transitions, each of which is a single atomic
step to a new abstract machine state. Execution of a single instruction will typically involve many
transitions, and they may be interleaved in operational-model execution with transitions arising from
other instructions. Each transition arises from a single instruction instance; it will change the state of
that instance, and it may depend on or change the rest of its hart state and the shared memory state,

B.3. An Operational Memory Model | Page 196

The RISC-V Instruction Set Manual | © RISC-V

https://github.com/rems-project/sail
https://github.com/rems-project/sail-riscv
https://github.com/rems-project/lem
http://www.cl.cam.ac.uk/

but it does not depend on other hart states, and it will not change them. The transitions are introduced
below and defined in [transitions], with a precondition and a construction of the post-transition model
state for each.

Transitions for all instructions:

• : This transition represents a fetch and decode of a new instruction instance, as a program order
successor of a previously fetched instruction instance (or the initial fetch address).

The model assumes the instruction memory is fixed; it does not describe the behavior of self-
modifying code. In particular, the transition does not generate memory load operations, and the
shared memory is not involved in the transition. Instead, the model depends on an external oracle
that provides an opcode when given a memory location.

• : This is a write of a register value.

• : This is a read of a register value from the most recent program-order-predecessor instruction
instance that writes to that register.

• : This covers pseudocode internal computation: arithmetic, function calls, etc.

• : At this point the instruction pseudocode is done, the instruction cannot be restarted, memory
accesses cannot be discarded, and all memory effects have taken place. For conditional branch and
indirect jump instructions, any program order successors that were fetched from an address that is
not the one that was written to the pc register are discarded, together with the sub-tree of
instruction instances below them.

Transitions specific to load instructions:

• : At this point the memory footprint of the load instruction is provisionally known (it could change
if earlier instructions are restarted) and its individual memory load operations can start being
satisfied.

• : This partially or entirely satisfies a single memory load operation by forwarding, from program-
order-previous memory store operations.

• : This entirely satisfies the outstanding slices of a single memory load operation, from memory.

• : At this point all the memory load operations of the instruction have been entirely satisfied and
the instruction pseudocode can continue executing. A load instruction can be subject to being
restarted until the transition. But, under some conditions, the model might treat a load instruction
as non-restartable even before it is finished (e.g. see).

Transitions specific to store instructions:

• : At this point the memory footprint of the store is provisionally known.

• : At this point the memory store operations have their values and program-order-successor
memory load operations can be satisfied by forwarding from them.

• : At this point the store operations are guaranteed to happen (the instruction can no longer be
restarted or discarded), and they can start being propagated to memory.

• : This propagates a single memory store operation to memory.

• : At this point all the memory store operations of the instruction have been propagated to memory,
and the instruction pseudocode can continue executing.

Transitions specific to sc instructions:

B.3. An Operational Memory Model | Page 197

The RISC-V Instruction Set Manual | © RISC-V

• : This causes the sc to fail, either a spontaneous fail or because it is not paired with a program-
order-previous lr.

• : This transition indicates the sc is paired with an lr and might succeed.

• : This is an atomic execution of the transitions and , it is enabled only if the stores from which the
lr read from have not been overwritten.

• : This causes the sc to fail, either a spontaneous fail or because the stores from which the lr read
from have been overwritten.

Transitions specific to AMO instructions:

• : This is an atomic execution of all the transitions needed to satisfy the load operation, do the
required arithmetic, and propagate the store operation.

Transitions specific to fence instructions:

•

The transitions labeled can always be taken eagerly, as soon as their precondition is satisfied,
without excluding other behavior; the cannot. Although is marked with a , it can be taken
eagerly as long as it is not taken infinitely many times.

An instance of a non-AMO load instruction, after being fetched, will typically experience the following
transitions in this order:

1.

2.

3. and/or (as many as needed to satisfy all the load operations of the instance)

4.

5.

6.

Before, between and after the transitions above, any number of transitions may appear. In addition, a
transition for fetching the instruction in the next program location will be available until it is taken.

This concludes the informal description of the operational model. The following sections describe the
formal operational model.

B.3.3. Intra-instruction Pseudocode Execution

The intra-instruction semantics for each instruction instance is expressed as a state machine,
essentially running the instruction pseudocode. Given a pseudocode execution state, it computes the
next state. Most states identify a pending memory or register operation, requested by the pseudocode,
which the memory model has to do. The states are (this is a tagged union; tags in small-caps):

Load_mem(kind, address, size, load_continuation) memory load operation

Early_sc_fail(res_continuation) allow sc to fail early

Store_ea(kind, address, size, next_state) memory store effective address

Store_memv(mem_value, store_continuation) memory store value

B.3. An Operational Memory Model | Page 198

The RISC-V Instruction Set Manual | © RISC-V

Fence(kind, next_state) fence

Read_reg(reg_name, read_continuation) register read

Write_reg(reg_name, reg_value, next_state) register write

Internal(next_state) pseudocode internal step

Done end of pseudocode

Here:

mem_value and reg_value are lists of bytes;

address is an integer of XLEN bits;

for load/store, kind identifies whether it is lr/sc, acquire-RCpc/release-RCpc, acquire-RCsc/release-
RCsc, acquire-release-RCsc;

for fence, kind identifies whether it is a normal or TSO, and (for normal fences) the predecessor and
successor ordering bits;

reg_name identifies a register and a slice thereof (start and end bit indices); and

the continuations describe how the instruction instance will continue for each value that might be
provided by the surrounding memory model (the load_continuation and read_continuation take the
value loaded from memory and read from the previous register write, the store_continuation takes false
for an sc that failed and true in all other cases, and res_continuation takes false if the sc fails and true
otherwise).

For example, given the load instruction lw x1,0(x2), an execution will typically go as follows. The
initial execution state will be computed from the pseudocode for the given opcode. This can be
expected to be Read_reg(x2, read_continuation). Feeding the most recently written value of register x2
(the instruction semantics will be blocked if necessary until the register value is available), say 0x4000,
to read_continuation returns Load_mem(plain_load, 0x4000, 4, load_continuation). Feeding the 4-
byte value loaded from memory location 0x4000, say 0x42, to load_continuation returns Write_reg(x1,
0x42, Done). Many Internal(next_state) states may appear before and between the states above.

Notice that writing to memory is split into two steps, Store_ea and Store_memv: the first one makes
the memory footprint of the store provisionally known, and the second one adds the value to be stored.
We ensure these are paired in the pseudocode (Store_ea followed by Store_memv), but there may be
other steps between them.

It is observable that the Store_ea can occur before the value to be stored is determined. For example,
for the litmus test LB+fence.r.rw+data-po to be allowed by the operational model (as it is by RVWMO),
the first store in Hart 1 has to take the Store_ea step before its value is determined, so that the second
store can see it is to a non-overlapping memory footprint, allowing the second store to be committed
out of order without violating coherence.

The pseudocode of each instruction performs at most one store or one load, except for AMOs that
perform exactly one load and one store. Those memory accesses are then split apart into the
architecturally atomic units by the hart semantics (see and below).

Informally, each bit of a register read should be satisfied from a register write by the most recent (in
program order) instruction instance that can write that bit (or from the hart’s initial register state if

B.3. An Operational Memory Model | Page 199

The RISC-V Instruction Set Manual | © RISC-V

there is no such write). Hence, it is essential to know the register write footprint of each instruction
instance, which we calculate when the instruction instance is created (see the action of below). We
ensure in the pseudocode that each instruction does at most one register write to each register bit, and
also that it does not try to read a register value it just wrote.

Data-flow dependencies (address and data) in the model emerge from the fact that each register read
has to wait for the appropriate register write to be executed (as described above).

B.3.4. Instruction Instance State

Each instruction instance _i has a state comprising:

• program_loc, the memory address from which the instruction was fetched;

• instruction_kind, identifying whether this is a load, store, AMO, fence, branch/jump or a simple
instruction (this also includes a kind similar to the one described for the pseudocode execution
states);

• src_regs, the set of source _reg_name_s (including system registers), as statically determined
from the pseudocode of the instruction;

• dst_regs, the destination _reg_name_s (including system registers), as statically determined from
the pseudocode of the instruction;

• pseudocode_state (or sometimes just state for short), one of (this is a tagged union; tags in small-
caps):

Plain(isa_state) ready to make a pseudocode transition

Pending_mem_loads(load_continuation) requesting memory load operation(s)

Pending_mem_stores(store_continuation) requesting memory store operation(s)

• reg_reads, the register reads the instance has performed, including, for each one, the register write
slices it read from;

• reg_writes, the register writes the instance has performed;

• mem_loads, a set of memory load operations, and for each one the as-yet-unsatisfied slices (the
byte indices that have not been satisfied yet), and, for the satisfied slices, the store slices (each
consisting of a memory store operation and subset of its byte indices) that satisfied it.

• mem_stores, a set of memory store operations, and for each one a flag that indicates whether it has
been propagated (passed to the shared memory) or not.

• information recording whether the instance is committed, finished, etc.

Each memory load operation includes a memory footprint (address and size). Each memory store
operations includes a memory footprint, and, when available, a value.

A load instruction instance with a non-empty mem_loads, for which all the load operations are
satisfied (i.e. there are no unsatisfied load slices) is said to be entirely satisfied.

Informally, an instruction instance is said to have fully determined data if the load (and sc) instructions
feeding its source registers are finished. Similarly, it is said to have a fully determined memory footprint
if the load (and sc) instructions feeding its memory operation address register are finished. Formally,
we first define the notion of fully determined register write: a register write from reg_writes of
instruction instance is said to be fully determined if one of the following conditions hold:

B.3. An Operational Memory Model | Page 200

The RISC-V Instruction Set Manual | © RISC-V

1. is finished; or

2. the value written by is not affected by a memory operation that has made (i.e. a value loaded
from memory or the result of sc), and, for every register read that has made, that affects , the
register write from which read is fully determined (or read from the initial register state).

Now, an instruction instance is said to have fully determined data if for every register read from
reg_reads, the register writes that reads from are fully determined. An instruction instance is said to
have a fully determined memory footprint if for every register read from reg_reads that feeds into ’s
memory operation address, the register writes that reads from are fully determined.

The rmem tool records, for every register write, the set of register writes from other instructions that
have been read by this instruction at the point of performing the write. By carefully arranging the
pseudocode of the instructions covered by the tool we were able to make it so that this is exactly the set
of register writes on which the write depends on.

B.3.5. Hart State

The model state of a single hart comprises:

• hart_id, a unique identifier of the hart;

• initial_register_state, the initial register value for each register;

• initial_fetch_address, the initial instruction fetch address;

• instruction_tree, a tree of the instruction instances that have been fetched (and not discarded), in
program order.

B.3.6. Shared Memory State

The model state of the shared memory comprises a list of memory store operations, in the order they
propagated to the shared memory.

When a store operation is propagated to the shared memory it is simply added to the end of the list.
When a load operation is satisfied from memory, for each byte of the load operation, the most recent
corresponding store slice is returned.

For most purposes, it is simpler to think of the shared memory as an array, i.e., a map from memory
locations to memory store operation slices, where each memory location is mapped to a one-byte slice
of the most recent memory store operation to that location. However, this abstraction is not detailed
enough to properly handle the sc instruction. The RVWMO allows store operations from the same
hart as the sc to intervene between the store operation of the sc and the store operations the paired lr
read from. To allow such store operations to intervene, and forbid others, the array abstraction must
be extended to record more information. Here, we use a list as it is very simple, but a more efficient
and scalable implementations should probably use something better.

B.3.7. Transitions

Each of the paragraphs below describes a single kind of system transition. The description starts with
a condition over the current system state. The transition can be taken in the current state only if the
condition is satisfied. The condition is followed by an action that is applied to that state when the
transition is taken, in order to generate the new system state.

B.3. An Operational Memory Model | Page 201

The RISC-V Instruction Set Manual | © RISC-V

Fetch instruction

A possible program-order-successor of instruction instance can be fetched from address loc if:

1. it has not already been fetched, i.e., none of the immediate successors of in the hart’s
instruction_tree are from loc; and

2. if ’s pseudocode has already written an address to pc, then loc must be that address, otherwise loc
is:

◦ for a conditional branch, the successor address or the branch target address;

◦ for a (direct) jump and link instruction (jal), the target address;

◦ for an indirect jump instruction (jalr), any address; and

◦ for any other instruction, .

Action: construct a freshly initialized instruction instance for the instruction in the program
memory at loc, with state Plain(isa_state), computed from the instruction pseudocode, including the
static information available from the pseudocode such as its instruction_kind, src_regs, and dst_regs,
and add to the hart’s instruction_tree as a successor of .

The possible next fetch addresses (loc) are available immediately after fetching and the model does
not need to wait for the pseudocode to write to pc; this allows out-of-order execution, and speculation
past conditional branches and jumps. For most instructions these addresses are easily obtained from
the instruction pseudocode. The only exception to that is the indirect jump instruction (jalr), where
the address depends on the value held in a register. In principle the mathematical model should allow
speculation to arbitrary addresses here. The exhaustive search in the rmem tool handles this by
running the exhaustive search multiple times with a growing set of possible next fetch addresses for
each indirect jump. The initial search uses empty sets, hence there is no fetch after indirect jump
instruction until the pseudocode of the instruction writes to pc, and then we use that value for fetching
the next instruction. Before starting the next iteration of exhaustive search, we collect for each indirect
jump (grouped by code location) the set of values it wrote to pc in all the executions in the previous
search iteration, and use that as possible next fetch addresses of the instruction. This process
terminates when no new fetch addresses are detected.

Initiate memory load operations

An instruction instance in state Plain(Load_mem(kind, address, size, load_continuation)) can always
initiate the corresponding memory load operations. Action:

1. Construct the appropriate memory load operations :

◦ if address is aligned to size then is a single memory load operation of size bytes from
address;

◦ otherwise, is a set of size memory load operations, each of one byte, from the addresses
.

2. set mem_loads of to ; and

3. update the state of to Pending_mem_loads(load_continuation).

In [primitives] it is said that misaligned memory accesses may be decomposed at any granularity. Here
we decompose them to one-byte accesses as this granularity subsumes all others.

B.3. An Operational Memory Model | Page 202

The RISC-V Instruction Set Manual | © RISC-V

Satisfy memory load operation by forwarding from unpropagated stores

For a non-AMO load instruction instance in state Pending_mem_loads(load_continuation), and a
memory load operation in that has unsatisfied slices, the memory load operation can be
partially or entirely satisfied by forwarding from unpropagated memory store operations by store
instruction instances that are program-order-before if:

1. all program-order-previous fence instructions with .sr and .pw set are finished;

2. for every program-order-previous fence instruction, , with .sr and .pr set, and .pw not set, if
is not finished then all load instructions that are program-order-before are entirely satisfied;

3. for every program-order-previous fence.tso instruction, , that is not finished, all load
instructions that are program-order-before are entirely satisfied;

4. if is a load-acquire-RCsc, all program-order-previous store-releases-RCsc are finished;

5. if is a load-acquire-release, all program-order-previous instructions are finished;

6. all non-finished program-order-previous load-acquire instructions are entirely satisfied; and

7. all program-order-previous store-acquire-release instructions are finished;

Let be the set of all unpropagated memory store operation slices from non-sc store instruction
instances that are program-order-before and have already calculated the value to be stored, that
overlap with the unsatisfied slices of , and which are not superseded by intervening store
operations or store operations that are read from by an intervening load. The last condition requires,
for each memory store operation slice in from instruction :

that there is no store instruction program-order-between and with a memory store operation
overlapping ; and

that there is no load instruction program-order-between and that was satisfied from an
overlapping memory store operation slice from a different hart.

Action:

1. update to indicate that was satisfied by ; and

2. restart any speculative instructions which have violated coherence as a result of this, i.e., for every
non-finished instruction that is a program-order-successor of , and every memory load
operation of that was satisfied from , if there exists a memory store operation
slice in , and an overlapping memory store operation slice from a different
memory store operation in , and is not from an instruction that is a program-order-
successor of , restart and its restart-dependents.

Where, the restart-dependents of instruction are:

program-order-successors of that have data-flow dependency on a register write of ;

program-order-successors of that have a memory load operation that reads from a memory store
operation of (by forwarding);

if is a load-acquire, all the program-order-successors of ;

if is a load, for every fence, , with .sr and .pr set, and .pw not set, that is a program-order-
successor of , all the load instructions that are program-order-successors of ;

B.3. An Operational Memory Model | Page 203

The RISC-V Instruction Set Manual | © RISC-V

if is a load, for every fence.tso, , that is a program-order-successor of , all the load instructions
that are program-order-successors of ; and

(recursively) all the restart-dependents of all the instruction instances above.

Forwarding memory store operations to a memory load might satisfy only some slices of the load,
leaving other slices unsatisfied.

A program-order-previous store operation that was not available when taking the transition above
might make provisionally unsound (violating coherence) when it becomes available. That store
will prevent the load from being finished (see), and will cause it to restart when that store operation is
propagated (see).

A consequence of the transition condition above is that store-release-RCsc memory store operations
cannot be forwarded to load-acquire-RCsc instructions: does not include memory store
operations from finished stores (as those must be propagated memory store operations), and the
condition above requires all program-order-previous store-releases-RCsc to be finished when the load
is acquire-RCsc.

Satisfy memory load operation from memory

For an instruction instance of a non-AMO load instruction or an AMO instruction in the context of
the `` transition, any memory load operation in that has unsatisfied slices, can be
satisfied from memory if all the conditions of are satisfied. Action: let be the memory store
operation slices from memory covering the unsatisfied slices of , and apply the action of .

Note that might leave some slices of the memory load operation unsatisfied, those will have to be
satisfied by taking the transition again, or taking . , on the other hand, will always satisfy all the
unsatisfied slices of the memory load operation.

Complete load operations

A load instruction instance in state Pending_mem_loads(load_continuation) can be completed (not
to be confused with finished) if all the memory load operations are entirely satisfied
(i.e. there are no unsatisfied slices). Action: update the state of to Plain(
load_continuation(mem_value)), where mem_value is assembled from all the memory store operation
slices that satisfied .

Early sc fail

An sc instruction instance in state Plain(Early_sc_fail(res_continuation)) can always be made to fail.
Action: update the state of to Plain(res_continuation(false)).

Paired sc

An sc instruction instance in state Plain(Early_sc_fail(res_continuation)) can continue its
(potentially successful) execution if is paired with an lr. Action: update the state of to
Plain(res_continuation(true)).

Initiate memory store operation footprints

An instruction instance in state Plain(Store_ea(kind, address, size, next_state)) can always announce

B.3. An Operational Memory Model | Page 204

The RISC-V Instruction Set Manual | © RISC-V

its pending memory store operation footprint. Action:

1. construct the appropriate memory store operations (without the store value):

◦ if address is aligned to size then is a single memory store operation of size bytes to address;

◦ otherwise, is a set of size memory store operations, each of one-byte size, to the addresses
.

2. set to ; and

3. update the state of to Plain(next_state).

Note that after taking the transition above the memory store operations do not yet have their values.
The importance of splitting this transition from the transition below is that it allows other program-
order-successor store instructions to observe the memory footprint of this instruction, and if they
don’t overlap, propagate out of order as early as possible (i.e. before the data register value becomes
available).

Instantiate memory store operation values

An instruction instance in state Plain(Store_memv(mem_value, store_continuation)) can always
instantiate the values of the memory store operations . Action:

1. split mem_value between the memory store operations ; and

2. update the state of to Pending_mem_stores(store_continuation).

Commit store instruction

An uncommitted instruction instance of a non-sc store instruction or an sc instruction in the
context of the `` transition, in state Pending_mem_stores(store_continuation), can be committed (not
to be confused with propagated) if:

1. has fully determined data;

2. all program-order-previous conditional branch and indirect jump instructions are finished;

3. all program-order-previous fence instructions with .sw set are finished;

4. all program-order-previous fence.tso instructions are finished;

5. all program-order-previous load-acquire instructions are finished;

6. all program-order-previous store-acquire-release instructions are finished;

7. if is a store-release, all program-order-previous instructions are finished;

8. [omm:commit_store:prev_addrs] all program-order-previous memory access instructions have a
fully determined memory footprint;

9. [omm:commit_store:prev_stores] all program-order-previous store instructions, except for sc
that failed, have initiated and so have non-empty mem_stores; and

10. [omm:commit_store:prev_loads] all program-order-previous load instructions have initiated
and so have non-empty mem_loads.

Action: record that i is committed.

Notice that if condition #omm:commit_store:prev_addrs is satisfied the conditions
#omm:commit_store:prev_stores and #omm:commit_store:prev_loads are also satisfied, or will be

B.3. An Operational Memory Model | Page 205

The RISC-V Instruction Set Manual | © RISC-V

satisfied after taking some eager transitions. Hence, requiring them does not strengthen the model. By
requiring them, we guarantee that previous memory access instructions have taken enough
transitions to make their memory operations visible for the condition check of , which is the next
transition the instruction will take, making that condition simpler.

Propagate store operation

For a committed instruction instance in state Pending_mem_stores(store_continuation), and an
unpropagated memory store operation in , can be propagated if:

1. all memory store operations of program-order-previous store instructions that overlap with
have already propagated;

2. all memory load operations of program-order-previous load instructions that overlap with
have already been satisfied, and (the load instructions) are non-restartable (see definition below);
and

3. all memory load operations that were satisfied by forwarding are entirely satisfied.

Where a non-finished instruction instance is non-restartable if:

1. there does not exist a store instruction and an unpropagated memory store operation of
such that applying the action of the `` transition to will result in the restart of ; and

2. there does not exist a non-finished load instruction and a memory load operation of such
that applying the action of the `/` transition (even if is already satisfied) to will result in
the restart of .

Action:

1. update the shared memory state with ;

2. update to indicate that was propagated; and

3. restart any speculative instructions which have violated coherence as a result of this, i.e., for every
non-finished instruction program-order-after and every memory load operation of

 that was satisfied from , if there exists a memory store operation slice in
 that overlaps with and is not from , and is not from a program-order-

successor of , restart and its restart-dependents (see).

Commit and propagate store operation of an sc

An uncommitted sc instruction instance , from hart , in state
Pending_mem_stores(store_continuation), with a paired lr that has been satisfied by some store
slices , can be committed and propagated at the same time if:

1. is finished;

2. every memory store operation that has been forwarded to is propagated;

3. the conditions of is satisfied;

4. the conditions of is satisfied (notice that an sc instruction can only have one memory store
operation); and

5. for every store slice from , has not been overwritten, in the shared memory, by a
store that is from a hart that is not , at any point since was propagated to memory.

B.3. An Operational Memory Model | Page 206

The RISC-V Instruction Set Manual | © RISC-V

Action:

1. apply the actions of ; and

2. apply the action of .

Late sc fail

An sc instruction instance in state Pending_mem_stores(store_continuation), that has not
propagated its memory store operation, can always be made to fail. Action:

1. clear ; and

2. update the state of to Plain(store_continuation(false)).

For efficiency, the rmem tool allows this transition only when it is not possible to take the transition.
This does not affect the set of allowed final states, but when explored interactively, if the sc should fail
one should use the transition instead of waiting for this transition.

Complete store operations

A store instruction instance in state Pending_mem_stores(store_continuation), for which all the
memory store operations in have been propagated, can always be completed (not to be
confused with finished). Action: update the state of to Plain(store_continuation(true)).

Satisfy, commit and propagate operations of an AMO

An AMO instruction instance in state Pending_mem_loads(load_continuation) can perform its
memory access if it is possible to perform the following sequence of transitions with no intervening
transitions:

1.

2.

3. (zero or more times)

4.

5.

6.

7.

and in addition, the condition of , with the exception of not requiring to be in state Plain(Done), holds
after those transitions. Action: perform the above sequence of transitions (this does not include), one
after the other, with no intervening transitions.

Notice that program-order-previous stores cannot be forwarded to the load of an AMO. This is simply
because the sequence of transitions above does not include the forwarding transition. But even if it did
include it, the sequence will fail when trying to do the transition, as this transition requires all
program-order-previous store operations to overlapping memory footprints to be propagated, and
forwarding requires the store operation to be unpropagated.

In addition, the store of an AMO cannot be forwarded to a program-order-successor load. Before
taking the transition above, the store operation of the AMO does not have its value and therefore

B.3. An Operational Memory Model | Page 207

The RISC-V Instruction Set Manual | © RISC-V

cannot be forwarded; after taking the transition above the store operation is propagated and therefore
cannot be forwarded.

Commit fence

A fence instruction instance in state Plain(Fence(kind, next_state)) can be committed if:

1. if is a normal fence and it has .pr set, all program-order-previous load instructions are finished;

2. if is a normal fence and it has .pw set, all program-order-previous store instructions are finished;
and

3. if is a fence.tso, all program-order-previous load and store instructions are finished.

Action:

1. record that is committed; and

2. update the state of to Plain(next_state).

Register read

An instruction instance in state Plain(Read_reg(reg_name, read_cont)) can do a register read of
reg_name if every instruction instance that it needs to read from has already performed the expected
reg_name register write.

Let read_sources include, for each bit of reg_name, the write to that bit by the most recent (in program
order) instruction instance that can write to that bit, if any. If there is no such instruction, the source is
the initial register value from initial_register_state. Let reg_value be the value assembled from
read_sources. Action:

1. add reg_name to with read_sources and reg_value; and

2. update the state of to Plain(read_cont(reg_value)).

Register write

An instruction instance in state Plain(Write_reg(reg_name, reg_value, next_state)) can always do a
reg_name register write. Action:

1. add reg_name to with and reg_value; and

2. update the state of to Plain(next_state).

where is a pair of the set of all read_sources from , and a flag that is true iff is a load
instruction instance that has already been entirely satisfied.

Pseudocode internal step

An instruction instance in state Plain(Internal(next_state)) can always do that pseudocode-internal
step. Action: update the state of to Plain(next_state).

Finish instruction

A non-finished instruction instance in state Plain(Done) can be finished if:

B.3. An Operational Memory Model | Page 208

The RISC-V Instruction Set Manual | © RISC-V

1. if is a load instruction:

a. all program-order-previous load-acquire instructions are finished;

b. all program-order-previous fence instructions with .sr set are finished;

c. for every program-order-previous fence.tso instruction, , that is not finished, all load
instructions that are program-order-before are finished; and

d. it is guaranteed that the values read by the memory load operations of will not cause
coherence violations, i.e., for any program-order-previous instruction instance , let be
the combined footprint of propagated memory store operations from store instructions
program-order-between and , and fixed memory store operations that were forwarded to
from store instructions program-order-between and including , and let be the
complement of in the memory footprint of . If is not empty:

i. has a fully determined memory footprint;

ii. has no unpropagated memory store operations that overlap with ; and

iii. if is a load with a memory footprint that overlaps with , then all the memory load
operations of that overlap with are satisfied and is non-restartable (see the
transition for how to determined if an instruction is non-restartable).

Here, a memory store operation is called fixed if the store instruction has fully determined
data.

2. has a fully determined data; and

3. if is not a fence, all program-order-previous conditional branch and indirect jump instructions
are finished.

Action:

1. if is a conditional branch or indirect jump instruction, discard any untaken paths of execution,
i.e., remove all instruction instances that are not reachable by the branch/jump taken in
instruction_tree; and

2. record the instruction as finished, i.e., set finished to true.

B.3.8. Limitations

• The model covers user-level RV64I and RV64A. In particular, it does not support the misaligned
atomics extension Zam or the total store ordering extension Ztso. It should be trivial to adapt the
model to RV32I/A and to the G, Q and C extensions, but we have never tried it. This will involve,
mostly, writing Sail code for the instructions, with minimal, if any, changes to the concurrency
model.

• The model covers only normal memory accesses (it does not handle I/O accesses).

• The model does not cover TLB-related effects.

• The model assumes the instruction memory is fixed. In particular, the transition does not generate
memory load operations, and the shared memory is not involved in the transition. Instead, the
model depends on an external oracle that provides an opcode when given a memory location.

• The model does not cover exceptions, traps and interrupts.

B.3. An Operational Memory Model | Page 209

The RISC-V Instruction Set Manual | © RISC-V

Index
A
alignment

misaligned, 58
reservation set, 59

atomics
misaligned, 92

B
bi-endian, 19

C
calling convention

standard, 107
compressed

cj-format load and store, 112
cs-format load and store, 111
formats, 106
loads and stores, 107
register-based load and store, 110

core
accelerator, 11
cluster

multiprocessors, 11
component, 11
extensions

coprocessor, 11
counters

handling multithredaing, 70
handling sleep cycles, 70
performance, 71
pseudoinstruction, 69
pseudoinstructions, 71
read-only, 69
user-level, 69

CSR
access effects, 67
access ordering, 67
CSRRC, 65
CSRRCI, 66
CSRRWI, 66
CSSRS, 65
CSSRW, 65
defects, 66
instructions, 65
side effects, 66

D
decomposition, 93

design
high performace, 92
scalable, 92

double-precision
floating point, 83
to single-precision, 86

E
endian

bi-, 19
little and big, 19

exceptions, 20

F
FENCE, 92
FENCE.I

finer-grained, 43
forward compatibility, 43
synchronization, 43

floating point
convert and move, 85
double precision, 83
fused multiply-add, 78

floating point, load and store, 84
floating-point

classification, 82
classify, 87
compare, 87
conversion, 79
excpetion flag, 76
requirements, 83
supported precisions, 83

H
hart

exectution environment, 12
HINT

PAUSE, 44

I
ILEN, 17
IMAFED, 18
instruction length encoding, 17
interrupts, 20
ISA

definition, 10

Index | Page 210

The RISC-V Instruction Set Manual | © RISC-V

M
memory access

implicit and explicit, 16, 16
MUL

DIV, 55
div by zero, 55
DIVU, 55
MULH, 54
MULHSU, 54
MULHU, 54
Zmmul, 56

N
NaN

generation, 76
propagation, 76

O
operations

memory, 108, 93
subnormal, 77

P
PAUSE

duration, 44
encoding, 44
energy consumption, 44
HINT, 44
LR/RC sequences, 44

R
register source specifiers

c-ext, 107
RV128

design, 52
evolution, 52

RV128I
as relates to RV64I, 52
compatibility with RV64, 52
LOU, 53

RV32E
design, 45
difference from RV32I, 45

RV64I
compares, 46
HINT, 49
LD, 48
LUI, 47
RV64I-only, 47
shifts, 46
SLLI, 47

SRKIW, 47
SRLIW, 47

RV64I-only
ADDW, 48
SLLW, 48
SRAW, 48
SRLW, 48
SUBW, 48

RVWMO, 92

S
SFENCE, 92
single-precision

to double-precision, 86
store instruction word

not included, 42

T
tininess

handling, 77
traps, 20

U
unspecified

behaviors, 22
values, 22

Index | Page 211

The RISC-V Instruction Set Manual | © RISC-V

Bibliography
RISC-V ELF psABI Specification. github.com/riscv/riscv-elf-psabi-doc/ .

RISC-V Assembly Programmer’s Manual. github.com/riscv/riscv-asm-manual .

IEEE Standard for a 32-bit microprocessor. (1994). IEEE Std. 1754-1994.

ANSI/IEEE Std 754-2008, IEEE standard for floating-point arithmetic. (2008). "Institute of Electrical
and Electronic Engineers".

Amdahl, G. M., Blaauw, G. A., & F. P. Brooks, J. (1964). Architecture of the IBM System/360. IBM
Journal of R. & D., 8(2).

Buchholz, W. (Ed.). (1962). Planning a computer system: Project Stretch. McGraw-Hill Book Company.

Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., & Hennessy, J. (1990). Memory
Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors. In Proceedings of the
17th Annual International Symposium on Computer Architecture, 15–26.

Heil, T. H., & Smith, J. E. (1996). Selective Dual Path Execution. University of Wisconsin - Madison.

Katevenis, M. G. H., Sherburne, R. W., Jr., Patterson, D. A., & Séquin, C. H. (1983, August). The RISC II
micro-architecture. Proceedings VLSI 83 Conference.

Kim, H., Mutlu, O., Stark, J., & Patt, Y. N. (2005). Wish Branches: Combining Conditional Branching
and Predication for Adaptive Predicated Execution. Proceedings of the 38th Annual IEEE/ACM
International Symposium on Microarchitecture, 43–54.

Klauser, A., Austin, T., Grunwald, D., & Calder, B. (1998). Dynamic Hammock Predication for Non-
Predicated Instruction Set Architectures. Proceedings of the 1998 International Conference on Parallel
Architectures and Compilation Techniques.

Lee, D. D., Kong, S. I., Hill, M. D., Taylor, G. S., Hodges, D. A., Katz, R. H., & Patterson, D. A. (1989). A
VLSI Chip Set for a Multiprocessor Workstation–Part I: An RISC Microprocessor with Coprocessor
Interface and Support for Symbolic Processing. IEEE JSSC, 24(6), 1688–1698.

OpenCores. (2012). OpenRISC 1000 Architecture Manual, Architecture Version 1.0.

Pan, H., Hindman, B., & Asanović, K. (2009, March). Lithe: Enabling Efficient Composition of
Parallel Libraries. Proceedings of the 1st USENIX Workshop on Hot Topics in Parallelism (HotPar ’09).

Pan, H., Hindman, B., & Asanović, K. (2010, June). Composing Parallel Software Efficiently with
Lithe. 31st Conference on Programming Language Design and Implementation.

Patterson, D. A., & Séquin, C. H. (1981). RISC I: A Reduced Instruction Set VLSI Computer. ISCA,
443–458.

Rajwar, R., & Goodman, J. R. (2001). Speculative lock elision: enabling highly concurrent
multithreaded execution. Proceedings of the 34th Annual ACM/IEEE International Symposium on
Microarchitecture, 294–305.

Sinharoy, B., Kalla, R., Starke, W. J., Le, H. Q., Cargnoni, R., Van Norstrand, J. A., Ronchetti, B. J.,

Bibliography | Page 212

The RISC-V Instruction Set Manual | © RISC-V

https://github.com/riscv/riscv-elf-psabi-doc/
https://github.com/riscv/riscv-asm-manual

Stuecheli, J., Leenstra, J., Guthrie, G. L., Nguyen, D. Q., Blaner, B., Marino, C. F., Retter, E., & Williams, P.
(2011). IBM POWER7 multicore server processor. IBM Journal of Research and Development, 55(3), 1–1.

Thornton, J. E. (1965). Parallel Operation in the Control Data 6600. Proceedings of the October 27-29,
1964, Fall Joint Computer Conference, Part II: Very High Speed Computer Systems, 33–40.

Tremblay, M., Chan, J., Chaudhry, S., Conigliaro, A. W., & Tse, S. S. (2000). The MAJC Architecture: A
Synthesis of Parallelism and Scalability. IEEE Micro, 20(6), 12–25.

Ungar, D., Blau, R., Foley, P., Samples, D., & Patterson, D. (1984). Architecture of SOAR: Smalltalk on a
RISC. ISCA, 188–197.

Waterman, A. (2011). Improving Energy Efficiency and Reducing Code Size with RISC-V Compressed
(Issue UCB/EECS-2011-63) [Master’s thesis]. University of California, Berkeley.

Waterman, A., Lee, Y., Patterson, D. A., & Asanović, K. (2014). The RISC-V Instruction Set Manual,
Volume I: Base User-Level ISA Version 2.0 (UCB/EECS-2014-54; Issue UCB/EECS-2014-54). EECS
Department, University of California, Berkeley.

Bibliography | Page 213

The RISC-V Instruction Set Manual | © RISC-V

	The RISC-V Instruction Set Manual
	Table of Contents
	Preamble
	Preface
	Chapter 1. Introduction
	1.1. RISC-V Hardware Platform Terminology
	1.2. RISC-V Software Execution Environments and Harts
	1.3. RISC-V ISA Overview
	1.4. Memory
	1.5. Base Instruction-Length Encoding
	1.5.1. Expanded Instruction-Length Encoding

	1.6. Exceptions, Traps, and Interrupts
	1.7. UNSPECIFIED Behaviors and Values

	Chapter 2. RV32I Base Integer Instruction Set, Version 2.1
	2.1. Programmers’ Model for Base Integer ISA
	2.2. Base Instruction Formats
	2.3. Immediate Encoding Variants
	2.4. Integer Computational Instructions
	2.4.1. Integer Register-Immediate Instructions
	2.4.2. Integer Register-Register Operations
	2.4.3. NOP Instruction

	2.5. Control Transfer Instructions
	2.5.1. Unconditional Jumps
	2.5.2. Conditional Branches

	2.6. Load and Store Instructions
	2.7. Memory Ordering Instructions
	2.8. Environment Call and Breakpoints
	2.9. HINT Instructions

	Chapter 3. "Zifencei" Instruction-Fetch Fence, Version 2.0
	Chapter 4. "Zihintpause" Pause Hint, Version 2.0
	Chapter 5. RV32E Base Integer Instruction Set, Version 1.9
	5.1. RV32E Programmers’ Model
	5.2. RV32E Instruction Set

	Chapter 6. RV64I Base Integer Instruction Set, Version 2.1
	6.1. Register State
	6.2. Integer Computational Instructions
	6.2.1. Integer Register-Immediate Instructions
	6.2.2. Integer Register-Register Operations

	6.3. Load and Store Instructions
	6.4. HINT Instructions

	Chapter 7. RV128I Base Integer Instruction Set, Version 1.7
	Chapter 8. M Standard Extension for Integer Multiplication and Division, Version 2.0
	8.1. Multiplication Operations
	8.2. Division Operations
	8.3. Zmmul Extension, Version 0.1

	Chapter 9. A Standard Extension for Atomic Instructions, Version 2.1
	9.1. Specifying Ordering of Atomic Instructions
	9.2. Load-Reserved/Store-Conditional Instructions
	9.3. Eventual Success of Store-Conditional Instructions
	9.4. Atomic Memory Operations

	Chapter 10. "Zicsr" Control and Status Register (CSR) Instructions, Version 2.0
	10.1. CSR Instructions
	10.1.1. CSR Access Ordering

	Chapter 11. Counters
	11.1. Base Counters and Timers
	11.2. Hardware Performance Counters

	Chapter 12. F Standard Extension for Single-Precision Floating-Point, Version 2.2
	12.1. F Register State
	12.2. Floating-Point Control and Status Register
	12.3. NaN Generation and Propagation
	12.4. Subnormal Arithmetic
	12.5. Single-Precision Load and Store Instructions
	12.6. Single-Precision Floating-Point Computational Instructions
	12.7. Single-Precision Floating-Point Conversion and Move Instructions
	12.8. Single-Precision Floating-Point Compare Instructions
	12.9. Single-Precision Floating-Point Classify Instruction

	Chapter 13. D Standard Extension for Double-Precision Floating-Point, Version 2.2
	13.1. D Register State
	13.2. NaN Boxing of Narrower Values
	13.3. Double-Precision Load and Store Instructions
	13.4. Double-Precision Floating-Point Computational Instructions
	13.5. Double-Precision Floating-Point Conversion and Move Instructions
	13.6. Double-Precision Floating-Point Compare Instructions
	13.7. Double-Precision Floating-Point Classify Instruction

	Chapter 14. Q Standard Extension for Quad-Precision Floating-Point, Version 2.2
	14.1. Quad-Precision Load and Store Instructions
	14.2. Quad-Precision Computational Instructions
	14.3. Quad-Precision Convert and Move Instructions
	14.4. Quad-precision floating-Point compare insturctions
	14.5. Quad-Precision Floating-Point Classify Instruction

	Chapter 15. RVWMO Memory Consistency Model, Version 2.0
	15.1. Definition of the RVWMO Memory Model
	15.1.1. Memory Model Primitives
	15.1.2. Syntactic Dependencies
	15.1.3. Preserved Program Order
	15.1.4. Memory Model Axioms
	Load Value Axiom
	Atomicity Axiom
	Progress Axiom

	15.2. CSR Dependency Tracking Granularity
	15.3. Source and Destination Register Listings

	Chapter 16. C Standard Extension for Compressed Instructions, Version 2.0
	16.1. Overview
	16.2. Compressed Instruction Formats
	16.3. Load and Store Instructions
	16.3.1. Stack-Pointer-Based Loads and Stores
	16.3.2. Register-Based Loads and Stores

	16.4. Control Transfer Instructions
	16.5. Integer Computational Instructions
	16.5.1. Integer Constant-Generation Instructions
	16.5.2. Integer Register-Immediate Operations
	16.5.3. Integer Register-Register Operations
	16.5.4. Defined Illegal Instruction
	16.5.5. NOP Instruction
	16.5.6. Breakpoint Instruction

	16.6. Usage of C Instructions in LR/SC Sequences
	16.7. HINT Instructions
	16.8. RVC Instruction Set Listings

	Chapter 17. B Standard Extension for Bit Manipulation, Version 0.0
	Chapter 18. J Standard Extension for Dynamically Translated Languages, Version 0.0
	Chapter 19. P Standard Extension for Packed-SIMD Instructions, Version 0.2
	Chapter 20. V Standard Extension for Vector Operations, Version 0.7
	Chapter 21. Zam Standard Extension for Misaligned Atomics, v0.1
	21.1. Atomicity Axiom for misaligned atomics

	Chapter 22. Ztso Standard Extension for Total Store Ordering, v0.1
	Chapter 23. RV32/64G Instruction Set Listings
	Chapter 24. Extending RISC-V
	24.1. Extension Terminology
	24.1.1. Standard versus Non-Standard Extension
	24.1.2. Instruction Encoding Spaces and Prefixes
	24.1.3. Greenfield versus Brownfield Extensions
	24.1.4. Standard-Compatible Global Encodings
	24.1.5. Guaranteed Non-Standard Encoding Space

	24.2. RISC-V Extension Design Philosophy
	24.3. Extensions within fixed-width 32-bit instruction format
	24.3.1. Available 30-bit instruction encoding spaces
	24.3.2. Available 25-bit instruction encoding spaces
	24.3.3. Available 22-bit instruction encoding spaces
	24.3.4. Other spaces

	24.4. Adding aligned 64-bit instruction extensions
	24.5. Supporting VLIW encodings
	24.5.1. Fixed-size instruction group
	24.5.2. Encoded-Length Groups
	24.5.3. Fixed-Size Instruction Bundles
	24.5.4. End-of-Group bits in Prefix

	Chapter 25. ISA Extension Naming Conventions
	25.1. Case Sensitivity
	25.2. Base Integer ISA
	25.3. Instruction-Set Extension Names
	25.4. Version Numbers
	25.5. Underscores
	25.6. Additional Standard Extension Names
	25.7. Supervisor-level Instruction-Set Extensions
	25.8. Hypervisor-level Instruction-Set Extensions
	25.9. Machine-level Instruction-Set Extensions
	25.10. Non-Standard Extension Names
	25.11. Subset Naming Convention

	Chapter 26. History and Acknowledgments
	26.1. Why Develop a new ISA? Rationale from Berkeley Group
	26.2. History from Revision 1.0 of ISA manual
	26.3. History from Revision 2.0 of ISA manual
	26.4. Acknowledgments
	26.5. History from Revision 2.1
	26.6. Acknowledgments
	26.7. History from Revision 2.2
	26.8. Acknowledgments
	26.9. History for Revision 2.3
	26.10. Funding

	Appendix A: RVWMO Explanatory Material, Version 0.1
	A.1. Why RVWMO?
	A.2. Litmus Tests
	A.3. Explaining the RVWMO Rules
	A.3.1. Preserved Program Order and Global Memory Order
	A.3.2. Load value axiom
	A.3.3. Atomicity axiom
	A.3.4. Progress axiom
	A.3.5. Overlapping-Address Orderings (Rules 1–3)
	A.3.6. Fences
	A.3.7. Explicit Synchronization (Rules 5–8)
	A.3.8. Syntactic Dependencies (Rules ppo:addr�–11)
	A.3.9. Pipeline Dependencies

	A.4. Beyond Main Memory
	A.4.1. Coherence and Cacheability
	A.4.2. I/O Ordering

	A.5. Code Porting and Mapping Guidelines
	A.6. Implementation Guidelines
	A.6.1. Possible Future Extensions

	A.7. Known Issues
	A.7.1. Mixed-size RSW

	Appendix B: Formal Memory Model Specifications, Version 0.1
	B.1. Formal Axiomatic Specification in Alloy
	B.2. Formal Axiomatic Specification in Herd
	B.3. An Operational Memory Model
	B.3.1. Model states
	B.3.2. Model transitions
	B.3.3. Intra-instruction Pseudocode Execution
	B.3.4. Instruction Instance State
	B.3.5. Hart State
	B.3.6. Shared Memory State
	B.3.7. Transitions
	Fetch instruction
	Initiate memory load operations
	Satisfy memory load operation by forwarding from unpropagated stores
	Satisfy memory load operation from memory
	Complete load operations
	Early sc fail
	Paired sc
	Initiate memory store operation footprints
	Instantiate memory store operation values
	Commit store instruction
	Propagate store operation
	Commit and propagate store operation of an sc
	Late sc fail
	Complete store operations
	Satisfy, commit and propagate operations of an AMO
	Commit fence
	Register read
	Register write
	Pseudocode internal step
	Finish instruction

	B.3.8. Limitations

	Index
	Bibliography

