\chapter{Control and Status Registers (CSRs)} The SYSTEM major opcode is used to encode all privileged instructions in the RISC-V ISA. These can be divided into two main classes: those that atomically read-modify-write control and status registers (CSRs), and all other privileged instructions. In addition to the user-level state described in Volume I of this manual, an implementation may contain additional CSRs, accessible by some subset of the privilege levels using the CSR instructions described in the user-level manual. In this chapter, we map out the CSR address space. The following chapters describe the function of each of the CSRs according to privilege level, as well as the other privileged instructions which are generally closely associated with a particular privilege level. Note that although CSRs and instructions are associated with one privilege level, they are also accessible at all higher privilege levels. \section{CSR Address Mapping Conventions} The standard RISC-V ISA sets aside a 12-bit encoding space (csr[11:0]) for up to 4,096 CSRs. By convention, the upper 4 bits of the CSR address (csr[11:8]) are used to encode the read and write accessibility of the CSRs according to privilege level as shown in Table~\ref{csrrwpriv}. The top two bits (csr[11:10]) indicate whether the register is read/write ({\tt 00}, {\tt 01}, or {\tt 10}) or read-only ({\tt 11}). The next two bits (csr[9:8]) encode the lowest privilege level that can access the CSR. \begin{commentary} The CSR address convention uses the upper bits of the CSR address to encode default access privileges. This simplifies error checking in the hardware and provides a larger CSR space, but does constrain the mapping of CSRs into the address space. Implementations might allow a more-privileged level to trap otherwise permitted CSR accesses by a less-privileged level to allow these accesses to be intercepted. This change should be transparent to the less-privileged software. \end{commentary} \vspace{0.2in} \begin{table*}[h!] \begin{center} \begin{tabular}{|c|c|c|c|l|} \hline \multicolumn{3}{|c|}{CSR Address} & Hex & \multicolumn{1}{c|}{Use and Accessibility}\\ \cline{1-3} [11:10] & [9:8] & [7:6] & & \\ \hline \multicolumn{5}{|c|}{User CSRs} \\ \hline \tt 00 &\tt 00 &\tt XX & \tt 0x000-0x0FF & Standard read/write \\ \tt 01 &\tt 00 &\tt XX & \tt 0x400-0x4FF & Standard read/write \\ \tt 10 &\tt 00 &\tt XX & \tt 0x800-0x8FF & Custom read/write \\ \tt 11 &\tt 00 &\tt 00-10 & \tt 0xC00-0xCBF & Standard read-only \\ \tt 11 &\tt 00 &\tt 11 & \tt 0xCC0-0xCFF & Custom read-only \\ \hline \multicolumn{5}{|c|}{Supervisor CSRs} \\ \hline \tt 00 &\tt 01 &\tt XX & \tt 0x100-0x1FF & Standard read/write \\ \tt 01 &\tt 01 &\tt 00-10 & \tt 0x500-0x5BF & Standard read/write \\ \tt 01 &\tt 01 &\tt 11 & \tt 0x5C0-0x5FF & Custom read/write \\ \tt 10 &\tt 01 &\tt 00-10 & \tt 0x900-0x9BF & Standard read/write \\ \tt 10 &\tt 01 &\tt 11 & \tt 0x9C0-0x9FF & Custom read/write \\ \tt 11 &\tt 01 &\tt 00-10 & \tt 0xD00-0xDBF & Standard read-only \\ \tt 11 &\tt 01 &\tt 11 & \tt 0xDC0-0xDFF & Custom read-only \\ \hline \multicolumn{5}{|c|}{Reserved CSRs} \\ \hline \tt XX &\tt 10 &\tt XX & Reserved & \\ %% \multicolumn{5}{|c|}{Hypervisor CSRs} \\ %% \hline %% \tt 00 &\tt 10 &\tt XX & \tt 0x200-0x2FF & Standard read/write \\ %% \tt 01 &\tt 10 &\tt 00-10 & \tt 0x600-0x6BF & Standard read/write \\ %% \tt 01 &\tt 10 &\tt 11 & \tt 0x6C0-0x6FF & Custom read/write \\ %% \tt 10 &\tt 10 &\tt 00-10 & \tt 0xA00-0xABF & Standard read/write \\ %% \tt 10 &\tt 10 &\tt 11 & \tt 0xAC0-0xAFF & Custom read/write \\ %% \tt 11 &\tt 10 &\tt 00-10 & \tt 0xE00-0xEBF & Standard read-only \\ %% \tt 11 &\tt 10 &\tt 11 & \tt 0xEC0-0xEFF & Custom read-only \\ \hline \multicolumn{5}{|c|}{Machine CSRs} \\ \hline \tt 00 &\tt 11 &\tt XX & \tt 0x300-0x3FF & Standard read/write \\ \tt 01 &\tt 11 &\tt 00-10 & \tt 0x700-0x79F & Standard read/write \\ \tt 01 &\tt 11 &\tt 10 & \tt 0x7A0-0x7AF & Standard read/write debug CSRs \\ \tt 01 &\tt 11 &\tt 10 & \tt 0x7B0-0x7BF & Debug-mode-only CSRs \\ \tt 01 &\tt 11 &\tt 11 & \tt 0x7C0-0x7FF & Custom read/write \\ \tt 10 &\tt 11 &\tt 00-10 & \tt 0xB00-0xBBF & Standard read/write \\ \tt 10 &\tt 11 &\tt 11 & \tt 0xBC0-0xBFF & Custom read/write \\ \tt 11 &\tt 11 &\tt 00-10 & \tt 0xF00-0xFBF & Standard read-only \\ \tt 11 &\tt 11 &\tt 11 & \tt 0xFC0-0xFFF & Custom read-only \\ \hline \end{tabular} \end{center} \caption{Allocation of RISC-V CSR address ranges.} \label{csrrwpriv} \end{table*} Attempts to access a non-existent CSR raise an illegal instruction exception. Attempts to access a CSR without appropriate privilege level or to write a read-only register also raise illegal instruction exceptions. A read/write register might also contain some bits that are read-only, in which case writes to the read-only bits are ignored. Table~\ref{csrrwpriv} also indicates the convention to allocate CSR addresses between standard and custom uses. The CSR addresses reserved for custom uses will not be redefined by future standard extensions. Machine-mode standard read-write CSRs {\tt 0x7A0}--{\tt 0x7BF} are reserved for use by the debug system. Of these CSRs, {\tt 0x7A0}--{\tt 0x7AF} are accessible to machine mode, whereas {\tt 0x7B0}--{\tt 0x7BF} are only visible to debug mode. Implementations should raise illegal instruction exceptions on machine-mode access to the latter set of registers. \begin{commentary} Effective virtualization requires that as many instructions run natively as possible inside a virtualized environment, while any privileged accesses trap to the virtual machine monitor~\cite{goldbergvm}. CSRs that are read-only at some lower privilege level are shadowed into separate CSR addresses if they are made read-write at a higher privilege level. This avoids trapping permitted lower-privilege accesses while still causing traps on illegal accesses. Currently, the counters are the only shadowed CSRs. \end{commentary} \section{CSR Listing} Tables~\ref{ucsrnames}--\ref{mcsrnames1} list the CSRs that have currently been allocated CSR addresses. The timers, counters, and floating-point CSRs are standard user-level CSRs, as well as the additional user trap registers added by the N extension. The other registers are used by privileged code, as described in the following chapters. Note that not all registers are required on all implementations. \begin{table}[htb!] \begin{center} \begin{tabular}{|l|l|l|l|} \hline Number & Privilege & Name & Description \\ \hline \multicolumn{4}{|c|}{User Trap Setup} \\ \hline \tt 0x000 & URW &\tt ustatus & User status register. \\ \tt 0x004 & URW &\tt uie & User interrupt-enable register. \\ \tt 0x005 & URW &\tt utvec & User trap handler base address. \\ \hline \multicolumn{4}{|c|}{User Trap Handling} \\ \hline \tt 0x040 & URW &\tt uscratch & Scratch register for user trap handlers. \\ \tt 0x041 & URW &\tt uepc & User exception program counter. \\ \tt 0x042 & URW &\tt ucause & User trap cause. \\ \tt 0x043 & URW &\tt utval & User bad address or instruction. \\ \tt 0x044 & URW &\tt uip & User interrupt pending. \\ \hline \multicolumn{4}{|c|}{User Floating-Point CSRs} \\ \hline \tt 0x001 & URW &\tt fflags & Floating-Point Accrued Exceptions. \\ \tt 0x002 & URW &\tt frm & Floating-Point Dynamic Rounding Mode. \\ \tt 0x003 & URW &\tt fcsr & Floating-Point Control and Status Register ({\tt frm} + {\tt fflags}). \\ \hline \multicolumn{4}{|c|}{User Counter/Timers} \\ \hline \tt 0xC00 & URO &\tt cycle & Cycle counter for RDCYCLE instruction. \\ \tt 0xC01 & URO &\tt time & Timer for RDTIME instruction. \\ \tt 0xC02 & URO &\tt instret & Instructions-retired counter for RDINSTRET instruction. \\ \tt 0xC03 & URO &\tt hpmcounter3 & Performance-monitoring counter. \\ \tt 0xC04 & URO &\tt hpmcounter4 & Performance-monitoring counter. \\ & & \multicolumn{1}{c|}{\vdots} & \ \\ \tt 0xC1F & URO &\tt hpmcounter31 & Performance-monitoring counter. \\ \tt 0xC80 & URO &\tt cycleh & Upper 32 bits of {\tt cycle}, RV32I only. \\ \tt 0xC81 & URO &\tt timeh & Upper 32 bits of {\tt time}, RV32I only. \\ \tt 0xC82 & URO &\tt instreth & Upper 32 bits of {\tt instret}, RV32I only. \\ \tt 0xC83 & URO &\tt hpmcounter3h & Upper 32 bits of {\tt hpmcounter3}, RV32I only. \\ \tt 0xC84 & URO &\tt hpmcounter4h & Upper 32 bits of {\tt hpmcounter4}, RV32I only. \\ & & \multicolumn{1}{c|}{\vdots} & \ \\ \tt 0xC9F & URO &\tt hpmcounter31h & Upper 32 bits of {\tt hpmcounter31}, RV32I only. \\ \hline \end{tabular} \end{center} \caption{Currently allocated RISC-V user-level CSR addresses.} \label{ucsrnames} \end{table} \begin{table}[htb!] \begin{center} \begin{tabular}{|l|l|l|l|} \hline Number & Privilege & Name & Description \\ \hline \multicolumn{4}{|c|}{Supervisor Trap Setup} \\ \hline \tt 0x100 & SRW &\tt sstatus & Supervisor status register. \\ \tt 0x102 & SRW &\tt sedeleg & Supervisor exception delegation register. \\ \tt 0x103 & SRW &\tt sideleg & Supervisor interrupt delegation register. \\ \tt 0x104 & SRW &\tt sie & Supervisor interrupt-enable register. \\ \tt 0x105 & SRW &\tt stvec & Supervisor trap handler base address. \\ \tt 0x106 & SRW &\tt scounteren & Supervisor counter enable. \\ \hline \multicolumn{4}{|c|}{Supervisor Trap Handling} \\ \hline \tt 0x140 & SRW &\tt sscratch & Scratch register for supervisor trap handlers. \\ \tt 0x141 & SRW &\tt sepc & Supervisor exception program counter. \\ \tt 0x142 & SRW &\tt scause & Supervisor trap cause. \\ \tt 0x143 & SRW &\tt stval & Supervisor bad address or instruction. \\ \tt 0x144 & SRW &\tt sip & Supervisor interrupt pending. \\ \hline \multicolumn{4}{|c|}{Supervisor Protection and Translation} \\ \hline \tt 0x180 & SRW &\tt satp & Supervisor address translation and protection. \\ \hline \end{tabular} \end{center} \caption{Currently allocated RISC-V supervisor-level CSR addresses.} \label{scsrnames} \end{table} %% \begin{table}[htb!] %% \begin{center} %% \begin{tabular}{|l|l|l|l|} %% \hline %% Number & Privilege & Name & Description \\ %% \hline %% \multicolumn{4}{|c|}{Hypervisor Trap Setup} \\ %% \hline %% \tt 0x200 & HRW &\tt hstatus & Hypervisor status register. \\ %% \tt 0x202 & HRW &\tt hedeleg & Hypervisor exception delegation register. \\ %% \tt 0x203 & HRW &\tt hideleg & Hypervisor interrupt delegation register. \\ %% \tt 0x204 & HRW &\tt hie & Hypervisor interrupt-enable register. \\ %% \tt 0x205 & HRW &\tt htvec & Hypervisor trap handler base address. \\ %% \tt 0x206 & HRW &\tt hcounteren & Hypervisor counter enable. \\ %% \hline %% \multicolumn{4}{|c|}{Hypervisor Trap Handling} \\ %% \hline %% \tt 0x240 & HRW &\tt hscratch & Scratch register for hypervisor trap handlers. \\ %% \tt 0x241 & HRW &\tt hepc & Hypervisor exception program counter. \\ %% \tt 0x242 & HRW &\tt hcause & Hypervisor trap cause. \\ %% \tt 0x243 & HRW &\tt htval & Hypervisor bad address or instruction. \\ %% \tt 0x244 & HRW &\tt hip & Hypervisor interrupt pending. \\ %% \hline %% \multicolumn{4}{|c|}{Hypervisor Protection and Translation} \\ %% \hline %% \tt 0x28X & TBD & TBD & TBD. \\ %% \hline %% \end{tabular} %% \end{center} %% \caption{Currently allocated RISC-V hypervisor-level CSR addresses.} %% \label{hcsrnames} %% \end{table} \begin{table}[htb!] \begin{center} \begin{tabular}{|l|l|l|l|} \hline Number & Privilege & Name & Description \\ \hline \multicolumn{4}{|c|}{Machine Information Registers} \\ \hline \tt 0xF11 & MRO &\tt mvendorid & Vendor ID. \\ \tt 0xF12 & MRO &\tt marchid & Architecture ID. \\ \tt 0xF13 & MRO &\tt mimpid & Implementation ID. \\ \tt 0xF14 & MRO &\tt mhartid & Hardware thread ID. \\ \hline \multicolumn{4}{|c|}{Machine Trap Setup} \\ \hline \tt 0x300 & MRW &\tt mstatus & Machine status register. \\ \tt 0x301 & MRW &\tt misa & ISA and extensions \\ \tt 0x302 & MRW &\tt medeleg & Machine exception delegation register. \\ \tt 0x303 & MRW &\tt mideleg & Machine interrupt delegation register. \\ \tt 0x304 & MRW &\tt mie & Machine interrupt-enable register. \\ \tt 0x305 & MRW &\tt mtvec & Machine trap-handler base address. \\ \tt 0x306 & MRW &\tt mcounteren & Machine counter enable. \\ \hline \multicolumn{4}{|c|}{Machine Trap Handling} \\ \hline \tt 0x340 & MRW &\tt mscratch & Scratch register for machine trap handlers. \\ \tt 0x341 & MRW &\tt mepc & Machine exception program counter. \\ \tt 0x342 & MRW &\tt mcause & Machine trap cause. \\ \tt 0x343 & MRW &\tt mtval & Machine bad address or instruction. \\ \tt 0x344 & MRW &\tt mip & Machine interrupt pending. \\ \hline \multicolumn{4}{|c|}{Machine Memory Protection} \\ \hline %\tt 0x380 & MRW &\tt mbase & Base register. \\ %\tt 0x381 & MRW &\tt mbound & Bound register. \\ %\tt 0x382 & MRW &\tt mibase & Instruction base register. \\ %\tt 0x383 & MRW &\tt mibound & Instruction bound register. \\ %\tt 0x384 & MRW &\tt mdbase & Data base register. \\ %\tt 0x385 & MRW &\tt mdbound & Data bound register. \\ \tt 0x3A0 & MRW &\tt pmpcfg0 & Physical memory protection configuration. \\ \tt 0x3A1 & MRW &\tt pmpcfg1 & Physical memory protection configuration, RV32 only. \\ \tt 0x3A2 & MRW &\tt pmpcfg2 & Physical memory protection configuration. \\ \tt 0x3A3 & MRW &\tt pmpcfg3 & Physical memory protection configuration, RV32 only. \\ \tt 0x3B0 & MRW &\tt pmpaddr0 & Physical memory protection address register. \\ \tt 0x3B1 & MRW &\tt pmpaddr1 & Physical memory protection address register. \\ & & \multicolumn{1}{c|}{\vdots} & \ \\ \tt 0x3BF & MRW &\tt pmpaddr15 & Physical memory protection address register. \\ \hline \end{tabular} \end{center} \caption{Currently allocated RISC-V machine-level CSR addresses.} \label{mcsrnames0} \end{table} \begin{table}[htb!] \begin{center} \begin{tabular}{|l|l|l|l|} \hline Number & Privilege & Name & Description \\ \hline \multicolumn{4}{|c|}{Machine Counter/Timers} \\ \hline \tt 0xB00 & MRW &\tt mcycle & Machine cycle counter. \\ \tt 0xB02 & MRW &\tt minstret & Machine instructions-retired counter. \\ \tt 0xB03 & MRW &\tt mhpmcounter3 & Machine performance-monitoring counter. \\ \tt 0xB04 & MRW &\tt mhpmcounter4 & Machine performance-monitoring counter. \\ & & \multicolumn{1}{c|}{\vdots} & \ \\ \tt 0xB1F & MRW &\tt mhpmcounter31 & Machine performance-monitoring counter. \\ \tt 0xB80 & MRW &\tt mcycleh & Upper 32 bits of {\tt mcycle}, RV32I only. \\ \tt 0xB82 & MRW &\tt minstreth & Upper 32 bits of {\tt minstret}, RV32I only. \\ \tt 0xB83 & MRW &\tt mhpmcounter3h & Upper 32 bits of {\tt mhpmcounter3}, RV32I only. \\ \tt 0xB84 & MRW &\tt mhpmcounter4h & Upper 32 bits of {\tt mhpmcounter4}, RV32I only. \\ & & \multicolumn{1}{c|}{\vdots} & \ \\ \tt 0xB9F & MRW &\tt mhpmcounter31h & Upper 32 bits of {\tt mhpmcounter31}, RV32I only. \\ \hline \multicolumn{4}{|c|}{Machine Counter Setup} \\ \hline \tt 0x320 & MRW &\tt mcountinhibit & Machine counter-inhibit register. \\ \tt 0x323 & MRW &\tt mhpmevent3 & Machine performance-monitoring event selector. \\ \tt 0x324 & MRW &\tt mhpmevent4 & Machine performance-monitoring event selector. \\ & & \multicolumn{1}{c|}{\vdots} & \ \\ \tt 0x33F & MRW &\tt mhpmevent31 & Machine performance-monitoring event selector. \\ \hline \multicolumn{4}{|c|}{Debug/Trace Registers (shared with Debug Mode)} \\ \hline \tt 0x7A0 & MRW &\tt tselect & Debug/Trace trigger register select. \\ \tt 0x7A1 & MRW &\tt tdata1 & First Debug/Trace trigger data register. \\ \tt 0x7A2 & MRW &\tt tdata2 & Second Debug/Trace trigger data register. \\ \tt 0x7A3 & MRW &\tt tdata3 & Third Debug/Trace trigger data register. \\ \hline \multicolumn{4}{|c|}{Debug Mode Registers } \\ \hline \tt 0x7B0 & DRW &\tt dcsr & Debug control and status register. \\ \tt 0x7B1 & DRW &\tt dpc & Debug PC. \\ \tt 0x7B2 & DRW &\tt dscratch & Debug scratch register. \\ \hline \end{tabular} \end{center} \caption{Currently allocated RISC-V machine-level CSR addresses.} \label{mcsrnames1} \end{table} \clearpage \section{CSR Field Specifications} The following definitions and abbreviations are used in specifying the behavior of fields within the CSRs. \subsection*{Reserved Writes Preserve Values, Reads Ignore Values (WPRI)} Some whole read/write fields are reserved for future use. Software should ignore the values read from these fields, and should preserve the values held in these fields when writing values to other fields of the same register. For forward compatibility, implementations that do not furnish these fields must hardwire them to zero. These fields are labeled \wpri\ in the register descriptions. \begin{commentary} To simplify the software model, any backward-compatible future definition of previously reserved fields within a CSR must cope with the possibility that a non-atomic read/modify/write sequence is used to update other fields in the CSR. Alternatively, the original CSR definition must specify that subfields can only be updated atomically, which may require a two-instruction clear bit/set bit sequence in general that can be problematic if intermediate values are not legal. \end{commentary} \subsection*{Write/Read Only Legal Values (WLRL)} Some read/write CSR fields specify behavior for only a subset of possible bit encodings, with other bit encodings reserved. Software should not write anything other than legal values to such a field, and should not assume a read will return a legal value unless the last write was of a legal value, or the register has not been written since another operation (e.g., reset) set the register to a legal value. These fields are labeled \wlrl\ in the register descriptions. \begin{commentary} Hardware implementations need only implement enough state bits to differentiate between the supported values, but must always return the complete specified bit-encoding of any supported value when read. \end{commentary} Implementations are permitted but not required to raise an illegal instruction exception if an instruction attempts to write a non-supported value to a \wlrl\ field. Implementations can return arbitrary bit patterns on the read of a \wlrl\ field when the last write was of an illegal value, but the value returned should deterministically depend on the illegal written value and the value of the field prior to the write. \subsection*{Write Any Values, Reads Legal Values (WARL)} Some read/write CSR fields are only defined for a subset of bit encodings, but allow any value to be written while guaranteeing to return a legal value whenever read. Assuming that writing the CSR has no other side effects, the range of supported values can be determined by attempting to write a desired setting then reading to see if the value was retained. These fields are labeled \warl\ in the register descriptions. Implementations will not raise an exception on writes of unsupported values to a \warl\ field. Implementations can return any legal value on the read of a \warl\ field when the last write was of an illegal value, but the legal value returned should deterministically depend on the illegal written value and the value of the field prior to the write. \section{CSR Width Modulation} \label{sec:csrwidthmodulation} If the width of a CSR is changed (for example, by changing MXLEN or UXLEN, as described in Section~\ref{xlen-control}), the values of the {\em writable} fields and bits of the new-width CSR are, unless specified otherwise, determined from the previous-width CSR as though by this algorithm: \begin{enumerate} \item The value of the previous-width CSR is copied to a temporary register of the same width. \item For the read-only bits of the previous-width CSR, the bits at the same positions in the temporary register are set to zeros. \item The width of the temporary register is changed to the new width. If the new width $W$ is narrower than the previous width, the least-significant $W$ bits of the temporary register are retained and the more-significant bits are discarded. If the new width is wider than the previous width, the temporary register is zero-extended to the wider width. \item Each writable field of the new-width CSR takes the value of the bits at the same positions in the temporary register. \end{enumerate} Changing the width of a CSR is not a read or write of the CSR and thus does not trigger any side effects.