# SPDX-License-Identifier: GPL-2.0-or-later # # Source the ESP common configuration file. source [find target/esp_common.cfg] # Target specific global variables set _CHIPNAME "riscv" set _CPUTAPID 0x0000cc25 set _ESP_ARCH "riscv" set _ONLYCPU 1 set _ESP_SMP_TARGET 0 set _ESP_SMP_BREAK 0 set _ESP_EFUSE_MAC_ADDR_REG 0x60008840 # Target specific functions should be implemented for each riscv chips. proc riscv_wdt_disable { } { # Halt event can occur during config phase (before "init" is done). # Ignore it since mww commands don't work at that time. if { [string compare [command mode] config] == 0 } { return } # Timer Group 0 WDT mww 0x6001f064 0x50D83AA1 mww 0x6001F048 0 # RTC WDT mww 0x6000809C 0x50D83AA1 mww 0x60008084 0 # SWD mww 0x600080A4 0x8F1D312A mww 0x600080A0 0x84B00000 } proc riscv_soc_reset { } { global _RISCV_DMCONTROL # This procedure does "digital system reset", i.e. resets # all the peripherals except for the RTC block. # It is called from reset-assert-post target event callback, # after assert_reset procedure was called. # Since we need the hart to to execute a write to RTC_CNTL_SW_SYS_RST, # temporarily take it out of reset. Save the dmcontrol state before # doing so. riscv dmi_write $_RISCV_DMCONTROL 0x80000001 # Trigger the reset mww 0x60008000 0x9c00a000 # Workaround for stuck in cpu start during calibration. # By writing zero to TIMG_RTCCALICFG_REG, we are disabling calibration mww 0x6001F068 0 # Wait for the reset to happen sleep 10 poll # Disable the watchdogs again riscv_wdt_disable # Here debugger reads allresumeack and allhalted bits as set (0x330a2) # We will clean allhalted state by resuming the core. riscv dmi_write $_RISCV_DMCONTROL 0x40000001 # Put the hart back into reset state. Note that we need to keep haltreq set. riscv dmi_write $_RISCV_DMCONTROL 0x80000003 } proc riscv_memprot_is_enabled { } { global _RISCV_ABS_CMD _RISCV_ABS_DATA0 # PMPADDR 0-1 covers entire valid IRAM range and PMPADDR 2-3 covers entire DRAM region # pmpcfg0 holds the configuration for the PMP 0-3 address registers # read pmpcfg0 and extract into 8-bit variables. riscv dmi_write $_RISCV_ABS_CMD 0x2203a0 set pmpcfg0 [riscv dmi_read $_RISCV_ABS_DATA0] set pmp0cfg [expr {($pmpcfg0 >> (8 * 0)) & 0xFF}] set pmp1cfg [expr {($pmpcfg0 >> (8 * 1)) & 0xFF}] set pmp2cfg [expr {($pmpcfg0 >> (8 * 2)) & 0xFF}] set pmp3cfg [expr {($pmpcfg0 >> (8 * 3)) & 0xFF}] # read PMPADDR 0-3 riscv dmi_write $_RISCV_ABS_CMD 0x2203b0 set pmpaddr0 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] riscv dmi_write $_RISCV_ABS_CMD 0x2203b1 set pmpaddr1 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] riscv dmi_write $_RISCV_ABS_CMD 0x2203b2 set pmpaddr2 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] riscv dmi_write $_RISCV_ABS_CMD 0x2203b3 set pmpaddr3 [expr {[riscv dmi_read $_RISCV_ABS_DATA0] << 2}] set IRAM_LOW 0x40380000 set IRAM_HIGH 0x403C0000 set DRAM_LOW 0x3FCA0000 set DRAM_HIGH 0x3FCE0000 set PMP_RWX 0x07 set PMP_RW 0x03 # The lock bit remains unset during the execution of the 2nd stage bootloader. # Thus we do not perform a lock bit check for IRAM and DRAM regions. # Check OpenOCD can write and execute from IRAM. if {$pmpaddr0 >= $IRAM_LOW && $pmpaddr1 <= $IRAM_HIGH} { if {($pmp0cfg & $PMP_RWX) != 0 || ($pmp1cfg & $PMP_RWX) != $PMP_RWX} { return 1 } } # Check OpenOCD can read/write entire DRAM region. if {$pmpaddr2 >= $DRAM_LOW && $pmpaddr3 <= $DRAM_HIGH} { if {($pmp2cfg & $PMP_RW) != 0 && ($pmp3cfg & $PMP_RW) != $PMP_RW} { return 1 } } return 0 } create_esp_target $_ESP_ARCH