// SPDX-License-Identifier: GPL-2.0-or-later #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "batch.h" #include "debug_defines.h" #include "riscv.h" #include "field_helpers.h" #define DTM_DMI_MAX_ADDRESS_LENGTH ((1<target = target; out->allocated_scans = scans; out->idle_count = idle; out->last_scan = RISCV_SCAN_TYPE_INVALID; out->data_out = NULL; out->data_in = NULL; out->fields = NULL; out->bscan_ctxt = NULL; out->read_keys = NULL; /* FIXME: There is potential for memory usage reduction. We could allocate * smaller buffers than DMI_SCAN_BUF_SIZE (that is, buffers that correspond to * the real DR scan length on the given target) */ out->data_out = malloc(sizeof(*out->data_out) * scans * DMI_SCAN_BUF_SIZE); if (!out->data_out) { LOG_ERROR("Failed to allocate data_out in RISC-V batch."); goto alloc_error; }; out->data_in = malloc(sizeof(*out->data_in) * scans * DMI_SCAN_BUF_SIZE); if (!out->data_in) { LOG_ERROR("Failed to allocate data_in in RISC-V batch."); goto alloc_error; } out->fields = malloc(sizeof(*out->fields) * scans); if (!out->fields) { LOG_ERROR("Failed to allocate fields in RISC-V batch."); goto alloc_error; } if (bscan_tunnel_ir_width != 0) { out->bscan_ctxt = malloc(sizeof(*out->bscan_ctxt) * scans); if (!out->bscan_ctxt) { LOG_ERROR("Failed to allocate bscan_ctxt in RISC-V batch."); goto alloc_error; } } out->read_keys = malloc(sizeof(*out->read_keys) * scans); if (!out->read_keys) { LOG_ERROR("Failed to allocate read_keys in RISC-V batch."); goto alloc_error; } return out; alloc_error: riscv_batch_free(out); return NULL; } void riscv_batch_free(struct riscv_batch *batch) { free(batch->data_in); free(batch->data_out); free(batch->fields); free(batch->bscan_ctxt); free(batch->read_keys); free(batch); } bool riscv_batch_full(struct riscv_batch *batch) { return riscv_batch_available_scans(batch) == 0; } int riscv_batch_run(struct riscv_batch *batch) { if (batch->used_scans == 0) { LOG_TARGET_DEBUG(batch->target, "Ignoring empty batch."); return ERROR_OK; } riscv_batch_add_nop(batch); for (size_t i = 0; i < batch->used_scans; ++i) { if (bscan_tunnel_ir_width != 0) riscv_add_bscan_tunneled_scan(batch->target, batch->fields + i, batch->bscan_ctxt + i); else jtag_add_dr_scan(batch->target->tap, 1, batch->fields + i, TAP_IDLE); if (batch->idle_count > 0) jtag_add_runtest(batch->idle_count, TAP_IDLE); } keep_alive(); if (jtag_execute_queue() != ERROR_OK) { LOG_TARGET_ERROR(batch->target, "Unable to execute JTAG queue"); return ERROR_FAIL; } keep_alive(); if (bscan_tunnel_ir_width != 0) { /* need to right-shift "in" by one bit, because of clock skew between BSCAN TAP and DM TAP */ for (size_t i = 0; i < batch->used_scans; ++i) { if ((batch->fields + i)->in_value) buffer_shr((batch->fields + i)->in_value, DMI_SCAN_BUF_SIZE, 1); } } for (size_t i = 0; i < batch->used_scans; ++i) dump_field(batch->idle_count, batch->fields + i); return ERROR_OK; } void riscv_batch_add_dm_write(struct riscv_batch *batch, uint64_t address, uint32_t data, bool read_back) { assert(batch->used_scans < batch->allocated_scans); struct scan_field *field = batch->fields + batch->used_scans; field->num_bits = riscv_get_dmi_scan_length(batch->target); field->out_value = (void *)(batch->data_out + batch->used_scans * DMI_SCAN_BUF_SIZE); riscv_fill_dm_write(batch->target, (char *)field->out_value, address, data); if (read_back) { field->in_value = (void *)(batch->data_in + batch->used_scans * DMI_SCAN_BUF_SIZE); riscv_fill_dm_nop(batch->target, (char *)field->in_value); } else { field->in_value = NULL; } batch->last_scan = RISCV_SCAN_TYPE_WRITE; batch->used_scans++; } size_t riscv_batch_add_dm_read(struct riscv_batch *batch, uint64_t address) { assert(batch->used_scans < batch->allocated_scans); struct scan_field *field = batch->fields + batch->used_scans; field->num_bits = riscv_get_dmi_scan_length(batch->target); field->out_value = (void *)(batch->data_out + batch->used_scans * DMI_SCAN_BUF_SIZE); field->in_value = (void *)(batch->data_in + batch->used_scans * DMI_SCAN_BUF_SIZE); riscv_fill_dm_read(batch->target, (char *)field->out_value, address); riscv_fill_dm_nop(batch->target, (char *)field->in_value); batch->last_scan = RISCV_SCAN_TYPE_READ; batch->used_scans++; batch->read_keys[batch->read_keys_used] = batch->used_scans; return batch->read_keys_used++; } unsigned int riscv_batch_get_dmi_read_op(const struct riscv_batch *batch, size_t key) { assert(key < batch->read_keys_used); size_t index = batch->read_keys[key]; assert(index < batch->used_scans); uint8_t *base = batch->data_in + DMI_SCAN_BUF_SIZE * index; /* extract "op" field from the DMI read result */ return (unsigned int)buf_get_u32(base, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH); } uint32_t riscv_batch_get_dmi_read_data(const struct riscv_batch *batch, size_t key) { assert(key < batch->read_keys_used); size_t index = batch->read_keys[key]; assert(index < batch->used_scans); uint8_t *base = batch->data_in + DMI_SCAN_BUF_SIZE * index; /* extract "data" field from the DMI read result */ return buf_get_u32(base, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH); } void riscv_batch_add_nop(struct riscv_batch *batch) { assert(batch->used_scans < batch->allocated_scans); struct scan_field *field = batch->fields + batch->used_scans; field->num_bits = riscv_get_dmi_scan_length(batch->target); field->out_value = (void *)(batch->data_out + batch->used_scans * DMI_SCAN_BUF_SIZE); field->in_value = (void *)(batch->data_in + batch->used_scans * DMI_SCAN_BUF_SIZE); riscv_fill_dm_nop(batch->target, (char *)field->out_value); riscv_fill_dm_nop(batch->target, (char *)field->in_value); batch->last_scan = RISCV_SCAN_TYPE_NOP; batch->used_scans++; } static void dump_field(int idle, const struct scan_field *field) { static const char * const op_string[] = {"-", "r", "w", "?"}; static const char * const status_string[] = {"+", "?", "F", "b"}; if (debug_level < LOG_LVL_DEBUG) return; assert(field->out_value); uint64_t out = buf_get_u64(field->out_value, 0, field->num_bits); unsigned int out_op = get_field(out, DTM_DMI_OP); unsigned int out_data = get_field(out, DTM_DMI_DATA); unsigned int out_address = out >> DTM_DMI_ADDRESS_OFFSET; if (field->in_value) { uint64_t in = buf_get_u64(field->in_value, 0, field->num_bits); unsigned int in_op = get_field(in, DTM_DMI_OP); unsigned int in_data = get_field(in, DTM_DMI_DATA); unsigned int in_address = in >> DTM_DMI_ADDRESS_OFFSET; log_printf_lf(LOG_LVL_DEBUG, __FILE__, __LINE__, __func__, "%db %s %08x @%02x -> %s %08x @%02x; %di", field->num_bits, op_string[out_op], out_data, out_address, status_string[in_op], in_data, in_address, idle); } else { log_printf_lf(LOG_LVL_DEBUG, __FILE__, __LINE__, __func__, "%db %s %08x @%02x -> ?; %di", field->num_bits, op_string[out_op], out_data, out_address, idle); } } size_t riscv_batch_available_scans(struct riscv_batch *batch) { assert(batch->allocated_scans >= (batch->used_scans + BATCH_RESERVED_SCANS)); return batch->allocated_scans - batch->used_scans - BATCH_RESERVED_SCANS; } bool riscv_batch_dmi_busy_encountered(const struct riscv_batch *batch) { if (batch->used_scans == 0) /* Empty batch */ return false; assert(batch->last_scan == RISCV_SCAN_TYPE_NOP); const struct scan_field *field = batch->fields + batch->used_scans - 1; const uint64_t in = buf_get_u64(field->in_value, 0, field->num_bits); return get_field(in, DTM_DMI_OP) == DTM_DMI_OP_BUSY; }