/***************************************************************************
* Copyright (C) 2016 by Matthias Welwarsky *
* matthias.welwarsky@sysgo.com *
* *
* Copyright (C) ST-Ericsson SA 2011 michel.jaouen@stericsson.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include
#include
#include "jtag/interface.h"
#include "arm.h"
#include "armv7a.h"
#include "armv7a_mmu.h"
#include "arm_opcodes.h"
#include "cortex_a.h"
#define SCTLR_BIT_AFE (1 << 29)
/* V7 method VA TO PA */
int armv7a_mmu_translate_va_pa(struct target *target, uint32_t va,
target_addr_t *val, int meminfo)
{
int retval = ERROR_FAIL;
struct armv7a_common *armv7a = target_to_armv7a(target);
struct arm_dpm *dpm = armv7a->arm.dpm;
uint32_t virt = va & ~0xfff, value;
uint32_t NOS, NS, INNER, OUTER, SS;
*val = 0xdeadbeef;
retval = dpm->prepare(dpm);
if (retval != ERROR_OK)
goto done;
/* mmu must be enable in order to get a correct translation
* use VA to PA CP15 register for conversion */
retval = dpm->instr_write_data_r0(dpm,
ARMV4_5_MCR(15, 0, 0, 7, 8, 0),
virt);
if (retval != ERROR_OK)
goto done;
retval = dpm->instr_read_data_r0(dpm,
ARMV4_5_MRC(15, 0, 0, 7, 4, 0),
&value);
if (retval != ERROR_OK)
goto done;
/* decode memory attribute */
SS = (value >> 1) & 1;
NOS = (value >> 10) & 1; /* Not Outer shareable */
NS = (value >> 9) & 1; /* Non secure */
INNER = (value >> 4) & 0x7;
OUTER = (value >> 2) & 0x3;
if (SS) {
/* PAR[31:24] contains PA[31:24] */
*val = value & 0xff000000;
/* PAR [23:16] contains PA[39:32] */
*val |= (target_addr_t)(value & 0x00ff0000) << 16;
/* PA[23:12] is the same as VA[23:12] */
*val |= (va & 0xffffff);
} else {
*val = (value & ~0xfff) + (va & 0xfff);
}
if (meminfo) {
LOG_INFO("%" PRIx32 " : %" TARGET_PRIxADDR " %s outer shareable %s secured %s super section",
va, *val,
NOS == 1 ? "not" : " ",
NS == 1 ? "not" : "",
SS == 0 ? "not" : "");
switch (OUTER) {
case 0:
LOG_INFO("outer: Non-Cacheable");
break;
case 1:
LOG_INFO("outer: Write-Back, Write-Allocate");
break;
case 2:
LOG_INFO("outer: Write-Through, No Write-Allocate");
break;
case 3:
LOG_INFO("outer: Write-Back, no Write-Allocate");
break;
}
switch (INNER) {
case 0:
LOG_INFO("inner: Non-Cacheable");
break;
case 1:
LOG_INFO("inner: Strongly-ordered");
break;
case 3:
LOG_INFO("inner: Device");
break;
case 5:
LOG_INFO("inner: Write-Back, Write-Allocate");
break;
case 6:
LOG_INFO("inner: Write-Through");
break;
case 7:
LOG_INFO("inner: Write-Back, no Write-Allocate");
break;
default:
LOG_INFO("inner: %" PRIx32 " ???", INNER);
}
}
done:
dpm->finish(dpm);
return retval;
}
static const char *desc_bits_to_string(bool c_bit, bool b_bit, bool s_bit, bool ap2, int ap10, bool afe)
{
static char bits_string[64];
unsigned int len;
if (afe) {
bool acc_r = true;
bool acc_w = !ap2;
bool priv = !(ap10 & 2);
len = snprintf(bits_string, sizeof(bits_string), "%s%s%s access%s: %s%s",
s_bit ? "S " : "", c_bit ? "C " : "", b_bit ? "B " : "",
priv ? "(priv)" : "", acc_r ? "R" : "N", acc_w ? "W " : "O ");
} else {
bool priv_acc_w = !ap2;
bool priv_acc_r = true;
bool unpriv_acc_w = priv_acc_w;
bool unpriv_acc_r = priv_acc_r;
switch (ap10) {
case 0:
priv_acc_r = priv_acc_w = false;
unpriv_acc_r = unpriv_acc_w = false;
break;
case 1:
unpriv_acc_r = unpriv_acc_w = false;
break;
case 2:
unpriv_acc_w = false;
break;
default:
break;
}
len = snprintf(bits_string, sizeof(bits_string), "%s%s%s access(priv): %s%s access(unpriv): %s%s",
s_bit ? "S " : "", c_bit ? "C " : "", b_bit ? "B " : "", priv_acc_r ? "R" : "N", priv_acc_w ? "W" : "O",
unpriv_acc_r ? "R" : "N", unpriv_acc_w ? "W" : "O");
}
if (len >= sizeof(bits_string))
bits_string[63] = 0;
return bits_string;
}
static const char *l2_desc_bits_to_string(uint32_t l2_desc, bool afe)
{
bool c_bit = !!(l2_desc & (1 << 3));
bool b_bit = !!(l2_desc & (1 << 2));
bool s_bit = !!(l2_desc & (1 << 10));
bool ap2 = !!(l2_desc & (1 << 9));
int ap10 = (l2_desc >> 4) & 3;
return desc_bits_to_string(c_bit, b_bit, s_bit, ap2, ap10, afe);
}
static const char *l1_desc_bits_to_string(uint32_t l1_desc, bool afe)
{
bool c_bit = !!(l1_desc & (1 << 3));
bool b_bit = !!(l1_desc & (1 << 2));
bool s_bit = !!(l1_desc & (1 << 16));
bool ap2 = !!(l1_desc & (1 << 15));
int ap10 = (l1_desc >> 10) & 3;
return desc_bits_to_string(c_bit, b_bit, s_bit, ap2, ap10, afe);
}
COMMAND_HANDLER(armv7a_mmu_dump_table)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_a_common *cortex_a = target_to_cortex_a(target);
struct armv7a_common *armv7a = target_to_armv7a(target);
struct armv7a_mmu_common *mmu = &armv7a->armv7a_mmu;
struct armv7a_cache_common *cache = &mmu->armv7a_cache;
uint32_t *first_lvl_ptbl;
target_addr_t ttb;
int ttbidx = 0;
int retval;
int pt_idx;
int max_pt_idx = 4095;
bool afe;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
if (!strcmp(CMD_ARGV[0], "addr")) {
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_NUMBER(target_addr, CMD_ARGV[1], ttb);
if (CMD_ARGC > 2) {
COMMAND_PARSE_NUMBER(int, CMD_ARGV[2], max_pt_idx);
if (max_pt_idx < 1 || max_pt_idx > 4096)
return ERROR_COMMAND_ARGUMENT_INVALID;
max_pt_idx -= 1;
}
} else {
if (mmu->cached != 1) {
LOG_ERROR("TTB not cached!");
return ERROR_FAIL;
}
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], ttbidx);
if (ttbidx < 0 || ttbidx > 1)
return ERROR_COMMAND_ARGUMENT_INVALID;
ttb = mmu->ttbr[ttbidx] & mmu->ttbr_mask[ttbidx];
if (ttbidx == 0) {
int ttbcr_n = mmu->ttbcr & 0x7;
max_pt_idx = 0x0fff >> ttbcr_n;
}
}
LOG_USER("Page Directory at (phys): %8.8" TARGET_PRIxADDR, ttb);
first_lvl_ptbl = malloc(sizeof(uint32_t)*(max_pt_idx+1));
if (first_lvl_ptbl == NULL)
return ERROR_FAIL;
/*
* this may or may not be necessary depending on whether
* the table walker is configured to use the cache or not.
*/
cache->flush_all_data_cache(target);
retval = mmu->read_physical_memory(target, ttb, 4, max_pt_idx+1, (uint8_t *)first_lvl_ptbl);
if (retval != ERROR_OK) {
LOG_ERROR("Failed to read first-level page table!");
return retval;
}
afe = !!(cortex_a->cp15_control_reg & SCTLR_BIT_AFE);
for (pt_idx = 0; pt_idx <= max_pt_idx;) {
uint32_t first_lvl_descriptor = target_buffer_get_u32(target,
(uint8_t *)&first_lvl_ptbl[pt_idx]);
LOG_DEBUG("L1 desc[%8.8x]: %8.8"PRIx32, pt_idx << 20, first_lvl_descriptor);
/* skip empty entries in the first level table */
if ((first_lvl_descriptor & 3) == 0) {
pt_idx++;
} else
if ((first_lvl_descriptor & 0x40002) == 2) {
/* section descriptor */
uint32_t va_range = 1024*1024-1; /* 1MB range */
uint32_t va_start = pt_idx << 20;
uint32_t va_end = va_start + va_range;
uint32_t pa_start = (first_lvl_descriptor & 0xfff00000);
uint32_t pa_end = pa_start + va_range;
LOG_USER("SECT: VA[%8.8"PRIx32" -- %8.8"PRIx32"]: PA[%8.8"PRIx32" -- %8.8"PRIx32"] %s",
va_start, va_end, pa_start, pa_end, l1_desc_bits_to_string(first_lvl_descriptor, afe));
pt_idx++;
} else
if ((first_lvl_descriptor & 0x40002) == 0x40002) {
/* supersection descriptor */
uint32_t va_range = 16*1024*1024-1; /* 16MB range */
uint32_t va_start = pt_idx << 20;
uint32_t va_end = va_start + va_range;
uint32_t pa_start = (first_lvl_descriptor & 0xff000000);
uint32_t pa_end = pa_start + va_range;
LOG_USER("SSCT: VA[%8.8"PRIx32" -- %8.8"PRIx32"]: PA[%8.8"PRIx32" -- %8.8"PRIx32"] %s",
va_start, va_end, pa_start, pa_end, l1_desc_bits_to_string(first_lvl_descriptor, afe));
/* skip next 15 entries, they're duplicating the first entry */
pt_idx += 16;
} else {
target_addr_t second_lvl_ptbl = first_lvl_descriptor & 0xfffffc00;
uint32_t second_lvl_descriptor;
uint32_t *pt2;
int pt2_idx;
/* page table, always 1KB long */
pt2 = malloc(1024);
retval = mmu->read_physical_memory(target, second_lvl_ptbl,
4, 256, (uint8_t *)pt2);
if (retval != ERROR_OK) {
LOG_ERROR("Failed to read second-level page table!");
return ERROR_FAIL;
}
for (pt2_idx = 0; pt2_idx < 256; ) {
second_lvl_descriptor = target_buffer_get_u32(target,
(uint8_t *)&pt2[pt2_idx]);
if ((second_lvl_descriptor & 3) == 0) {
/* skip entry */
pt2_idx++;
} else
if ((second_lvl_descriptor & 3) == 1) {
/* large page */
uint32_t va_range = 64*1024-1; /* 64KB range */
uint32_t va_start = (pt_idx << 20) + (pt2_idx << 12);
uint32_t va_end = va_start + va_range;
uint32_t pa_start = (second_lvl_descriptor & 0xffff0000);
uint32_t pa_end = pa_start + va_range;
LOG_USER("LPGE: VA[%8.8"PRIx32" -- %8.8"PRIx32"]: PA[%8.8"PRIx32" -- %8.8"PRIx32"] %s",
va_start, va_end, pa_start, pa_end, l2_desc_bits_to_string(second_lvl_descriptor, afe));
pt2_idx += 16;
} else {
/* small page */
uint32_t va_range = 4*1024-1; /* 4KB range */
uint32_t va_start = (pt_idx << 20) + (pt2_idx << 12);
uint32_t va_end = va_start + va_range;
uint32_t pa_start = (second_lvl_descriptor & 0xfffff000);
uint32_t pa_end = pa_start + va_range;
LOG_USER("SPGE: VA[%8.8"PRIx32" -- %8.8"PRIx32"]: PA[%8.8"PRIx32" -- %8.8"PRIx32"] %s",
va_start, va_end, pa_start, pa_end, l2_desc_bits_to_string(second_lvl_descriptor, afe));
pt2_idx++;
}
}
free(pt2);
pt_idx++;
}
}
free(first_lvl_ptbl);
return ERROR_OK;
}
static const struct command_registration armv7a_mmu_group_handlers[] = {
{
.name = "dump",
.handler = armv7a_mmu_dump_table,
.mode = COMMAND_ANY,
.help = "dump translation table 0, 1 or from ",
.usage = "(0|1|addr [num_entries])",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration armv7a_mmu_command_handlers[] = {
{
.name = "mmu",
.mode = COMMAND_ANY,
.help = "mmu command group",
.usage = "",
.chain = armv7a_mmu_group_handlers,
},
COMMAND_REGISTRATION_DONE
};