/***************************************************************************
* Copyright (C) 2009 by Simon Qian *
* SimonQian@SimonQian.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
***************************************************************************/
/* The specification for SVF is available here:
* http://www.asset-intertech.com/support/svf.pdf
* Below, this document is referred to as the "SVF spec".
*
* The specification for XSVF is available here:
* http://www.xilinx.com/support/documentation/application_notes/xapp503.pdf
* Below, this document is referred to as the "XSVF spec".
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include
#include "svf.h"
#include "helper/system.h"
#include
/* SVF command */
enum svf_command {
ENDDR,
ENDIR,
FREQUENCY,
HDR,
HIR,
PIO,
PIOMAP,
RUNTEST,
SDR,
SIR,
STATE,
TDR,
TIR,
TRST,
};
static const char *svf_command_name[14] = {
"ENDDR",
"ENDIR",
"FREQUENCY",
"HDR",
"HIR",
"PIO",
"PIOMAP",
"RUNTEST",
"SDR",
"SIR",
"STATE",
"TDR",
"TIR",
"TRST"
};
enum trst_mode {
TRST_ON,
TRST_OFF,
TRST_Z,
TRST_ABSENT
};
static const char *svf_trst_mode_name[4] = {
"ON",
"OFF",
"Z",
"ABSENT"
};
struct svf_statemove {
tap_state_t from;
tap_state_t to;
uint32_t num_of_moves;
tap_state_t paths[8];
};
/*
* These paths are from the SVF specification for the STATE command, to be
* used when the STATE command only includes the final state. The first
* element of the path is the "from" (current) state, and the last one is
* the "to" (target) state.
*
* All specified paths are the shortest ones in the JTAG spec, and are thus
* not (!!) exact matches for the paths used elsewhere in OpenOCD. Note
* that PAUSE-to-PAUSE transitions all go through UPDATE and then CAPTURE,
* which has specific effects on the various registers; they are not NOPs.
*
* Paths to RESET are disabled here. As elsewhere in OpenOCD, and in XSVF
* and many SVF implementations, we don't want to risk missing that state.
* To get to RESET, always we ignore the current state.
*/
static const struct svf_statemove svf_statemoves[] = {
/* from to num_of_moves, paths[8] */
/* {TAP_RESET, TAP_RESET, 1, {TAP_RESET}}, */
{TAP_RESET, TAP_IDLE, 2, {TAP_RESET, TAP_IDLE} },
{TAP_RESET, TAP_DRPAUSE, 6, {TAP_RESET, TAP_IDLE, TAP_DRSELECT,
TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE} },
{TAP_RESET, TAP_IRPAUSE, 7, {TAP_RESET, TAP_IDLE, TAP_DRSELECT,
TAP_IRSELECT, TAP_IRCAPTURE,
TAP_IREXIT1, TAP_IRPAUSE} },
/* {TAP_IDLE, TAP_RESET, 4, {TAP_IDLE,
* TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}}, */
{TAP_IDLE, TAP_IDLE, 1, {TAP_IDLE} },
{TAP_IDLE, TAP_DRPAUSE, 5, {TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE,
TAP_DREXIT1, TAP_DRPAUSE} },
{TAP_IDLE, TAP_IRPAUSE, 6, {TAP_IDLE, TAP_DRSELECT, TAP_IRSELECT,
TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE} },
/* {TAP_DRPAUSE, TAP_RESET, 6, {TAP_DRPAUSE,
* TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}}, */
{TAP_DRPAUSE, TAP_IDLE, 4, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE,
TAP_IDLE} },
{TAP_DRPAUSE, TAP_DRPAUSE, 7, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE,
TAP_DRSELECT, TAP_DRCAPTURE,
TAP_DREXIT1, TAP_DRPAUSE} },
{TAP_DRPAUSE, TAP_IRPAUSE, 8, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE,
TAP_DRSELECT, TAP_IRSELECT,
TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE} },
/* {TAP_IRPAUSE, TAP_RESET, 6, {TAP_IRPAUSE,
* TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}}, */
{TAP_IRPAUSE, TAP_IDLE, 4, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE,
TAP_IDLE} },
{TAP_IRPAUSE, TAP_DRPAUSE, 7, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE,
TAP_DRSELECT, TAP_DRCAPTURE,
TAP_DREXIT1, TAP_DRPAUSE} },
{TAP_IRPAUSE, TAP_IRPAUSE, 8, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE,
TAP_DRSELECT, TAP_IRSELECT,
TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE} }
};
#define XXR_TDI (1 << 0)
#define XXR_TDO (1 << 1)
#define XXR_MASK (1 << 2)
#define XXR_SMASK (1 << 3)
struct svf_xxr_para {
int len;
int data_mask;
uint8_t *tdi;
uint8_t *tdo;
uint8_t *mask;
uint8_t *smask;
};
struct svf_para {
float frequency;
tap_state_t ir_end_state;
tap_state_t dr_end_state;
tap_state_t runtest_run_state;
tap_state_t runtest_end_state;
enum trst_mode trst_mode;
struct svf_xxr_para hir_para;
struct svf_xxr_para hdr_para;
struct svf_xxr_para tir_para;
struct svf_xxr_para tdr_para;
struct svf_xxr_para sir_para;
struct svf_xxr_para sdr_para;
};
static struct svf_para svf_para;
static const struct svf_para svf_para_init = {
/* frequency, ir_end_state, dr_end_state, runtest_run_state, runtest_end_state, trst_mode */
0, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TRST_Z,
/* hir_para */
/* {len, data_mask, tdi, tdo, mask, smask}, */
{0, 0, NULL, NULL, NULL, NULL},
/* hdr_para */
/* {len, data_mask, tdi, tdo, mask, smask}, */
{0, 0, NULL, NULL, NULL, NULL},
/* tir_para */
/* {len, data_mask, tdi, tdo, mask, smask}, */
{0, 0, NULL, NULL, NULL, NULL},
/* tdr_para */
/* {len, data_mask, tdi, tdo, mask, smask}, */
{0, 0, NULL, NULL, NULL, NULL},
/* sir_para */
/* {len, data_mask, tdi, tdo, mask, smask}, */
{0, 0, NULL, NULL, NULL, NULL},
/* sdr_para */
/* {len, data_mask, tdi, tdo, mask, smask}, */
{0, 0, NULL, NULL, NULL, NULL},
};
struct svf_check_tdo_para {
int line_num; /* used to record line number of the check operation */
/* so more information could be printed */
int enabled; /* check is enabled or not */
int buffer_offset; /* buffer_offset to buffers */
int bit_len; /* bit length to check */
};
#define SVF_CHECK_TDO_PARA_SIZE 1024
static struct svf_check_tdo_para *svf_check_tdo_para;
static int svf_check_tdo_para_index;
static int svf_read_command_from_file(FILE *fd);
static int svf_check_tdo(void);
static int svf_add_check_para(uint8_t enabled, int buffer_offset, int bit_len);
static int svf_run_command(struct command_context *cmd_ctx, char *cmd_str);
static int svf_execute_tap(void);
static FILE *svf_fd;
static char *svf_read_line;
static size_t svf_read_line_size;
static char *svf_command_buffer;
static size_t svf_command_buffer_size;
static int svf_line_number;
static int svf_getline(char **lineptr, size_t *n, FILE *stream);
#define SVF_MAX_BUFFER_SIZE_TO_COMMIT (1024 * 1024)
static uint8_t *svf_tdi_buffer, *svf_tdo_buffer, *svf_mask_buffer;
static int svf_buffer_index, svf_buffer_size;
static int svf_quiet;
static int svf_nil;
static int svf_ignore_error;
/* Targeting particular tap */
static int svf_tap_is_specified;
static int svf_set_padding(struct svf_xxr_para *para, int len, unsigned char tdi);
/* Progress Indicator */
static int svf_progress_enabled;
static long svf_total_lines;
static int svf_percentage;
static int svf_last_printed_percentage = -1;
/*
* macro is used to print the svf hex buffer at desired debug level
* DEBUG, INFO, ERROR, USER
*/
#define SVF_BUF_LOG(_lvl, _buf, _nbits, _desc) \
svf_hexbuf_print(LOG_LVL_##_lvl, __FILE__, __LINE__, __func__, _buf, _nbits, _desc)
static void svf_hexbuf_print(int dbg_lvl, const char *file, unsigned line,
const char *function, const uint8_t *buf,
int bit_len, const char *desc)
{
int j, len = 0;
int byte_len = DIV_ROUND_UP(bit_len, 8);
int msbits = bit_len % 8;
/* allocate 2 bytes per hex digit */
char *prbuf = malloc((byte_len * 2) + 2 + 1);
if (!prbuf)
return;
/* print correct number of bytes, mask excess bits where applicable */
uint8_t msb = buf[byte_len - 1] & (msbits ? (1 << msbits) - 1 : 0xff);
len = sprintf(prbuf, msbits <= 4 ? "0x%01"PRIx8 : "0x%02"PRIx8, msb);
for (j = byte_len - 2; j >= 0; j--)
len += sprintf(prbuf + len, "%02"PRIx8, buf[j]);
log_printf_lf(dbg_lvl, file, line, function, "%8s = %s", desc ? desc : " ", prbuf);
free(prbuf);
}
static int svf_realloc_buffers(size_t len)
{
void *ptr;
if (svf_execute_tap() != ERROR_OK)
return ERROR_FAIL;
ptr = realloc(svf_tdi_buffer, len);
if (!ptr)
return ERROR_FAIL;
svf_tdi_buffer = ptr;
ptr = realloc(svf_tdo_buffer, len);
if (!ptr)
return ERROR_FAIL;
svf_tdo_buffer = ptr;
ptr = realloc(svf_mask_buffer, len);
if (!ptr)
return ERROR_FAIL;
svf_mask_buffer = ptr;
svf_buffer_size = len;
return ERROR_OK;
}
static void svf_free_xxd_para(struct svf_xxr_para *para)
{
if (para) {
free(para->tdi);
para->tdi = NULL;
free(para->tdo);
para->tdo = NULL;
free(para->mask);
para->mask = NULL;
free(para->smask);
para->smask = NULL;
}
}
int svf_add_statemove(tap_state_t state_to)
{
tap_state_t state_from = cmd_queue_cur_state;
unsigned index_var;
/* when resetting, be paranoid and ignore current state */
if (state_to == TAP_RESET) {
if (svf_nil)
return ERROR_OK;
jtag_add_tlr();
return ERROR_OK;
}
for (index_var = 0; index_var < ARRAY_SIZE(svf_statemoves); index_var++) {
if ((svf_statemoves[index_var].from == state_from)
&& (svf_statemoves[index_var].to == state_to)) {
if (svf_nil)
continue;
/* recorded path includes current state ... avoid
*extra TCKs! */
if (svf_statemoves[index_var].num_of_moves > 1)
jtag_add_pathmove(svf_statemoves[index_var].num_of_moves - 1,
svf_statemoves[index_var].paths + 1);
else
jtag_add_pathmove(svf_statemoves[index_var].num_of_moves,
svf_statemoves[index_var].paths);
return ERROR_OK;
}
}
LOG_ERROR("SVF: can not move to %s", tap_state_name(state_to));
return ERROR_FAIL;
}
COMMAND_HANDLER(handle_svf_command)
{
#define SVF_MIN_NUM_OF_OPTIONS 1
#define SVF_MAX_NUM_OF_OPTIONS 5
int command_num = 0;
int ret = ERROR_OK;
int64_t time_measure_ms;
int time_measure_s, time_measure_m;
/* use NULL to indicate a "plain" svf file which accounts for
* any additional devices in the scan chain, otherwise the device
* that should be affected
*/
struct jtag_tap *tap = NULL;
if ((CMD_ARGC < SVF_MIN_NUM_OF_OPTIONS) || (CMD_ARGC > SVF_MAX_NUM_OF_OPTIONS))
return ERROR_COMMAND_SYNTAX_ERROR;
/* parse command line */
svf_quiet = 0;
svf_nil = 0;
svf_progress_enabled = 0;
svf_ignore_error = 0;
for (unsigned int i = 0; i < CMD_ARGC; i++) {
if (strcmp(CMD_ARGV[i], "-tap") == 0) {
tap = jtag_tap_by_string(CMD_ARGV[i+1]);
if (!tap) {
command_print(CMD, "Tap: %s unknown", CMD_ARGV[i+1]);
return ERROR_FAIL;
}
i++;
} else if ((strcmp(CMD_ARGV[i],
"quiet") == 0) || (strcmp(CMD_ARGV[i], "-quiet") == 0))
svf_quiet = 1;
else if ((strcmp(CMD_ARGV[i], "nil") == 0) || (strcmp(CMD_ARGV[i], "-nil") == 0))
svf_nil = 1;
else if ((strcmp(CMD_ARGV[i],
"progress") == 0) || (strcmp(CMD_ARGV[i], "-progress") == 0))
svf_progress_enabled = 1;
else if ((strcmp(CMD_ARGV[i],
"ignore_error") == 0) || (strcmp(CMD_ARGV[i], "-ignore_error") == 0))
svf_ignore_error = 1;
else {
svf_fd = fopen(CMD_ARGV[i], "r");
if (!svf_fd) {
int err = errno;
command_print(CMD, "open(\"%s\"): %s", CMD_ARGV[i], strerror(err));
/* no need to free anything now */
return ERROR_COMMAND_SYNTAX_ERROR;
} else
LOG_USER("svf processing file: \"%s\"", CMD_ARGV[i]);
}
}
if (!svf_fd)
return ERROR_COMMAND_SYNTAX_ERROR;
/* get time */
time_measure_ms = timeval_ms();
/* init */
svf_line_number = 0;
svf_command_buffer_size = 0;
svf_check_tdo_para_index = 0;
svf_check_tdo_para = malloc(sizeof(struct svf_check_tdo_para) * SVF_CHECK_TDO_PARA_SIZE);
if (!svf_check_tdo_para) {
LOG_ERROR("not enough memory");
ret = ERROR_FAIL;
goto free_all;
}
svf_buffer_index = 0;
/* double the buffer size */
/* in case current command cannot be committed, and next command is a bit scan command */
/* here is 32K bits for this big scan command, it should be enough */
/* buffer will be reallocated if buffer size is not enough */
if (svf_realloc_buffers(2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT) != ERROR_OK) {
ret = ERROR_FAIL;
goto free_all;
}
memcpy(&svf_para, &svf_para_init, sizeof(svf_para));
if (!svf_nil) {
/* TAP_RESET */
jtag_add_tlr();
}
if (tap) {
/* Tap is specified, set header/trailer paddings */
int header_ir_len = 0, header_dr_len = 0, trailer_ir_len = 0, trailer_dr_len = 0;
struct jtag_tap *check_tap;
svf_tap_is_specified = 1;
for (check_tap = jtag_all_taps(); check_tap; check_tap = check_tap->next_tap) {
if (check_tap->abs_chain_position < tap->abs_chain_position) {
/* Header */
header_ir_len += check_tap->ir_length;
header_dr_len++;
} else if (check_tap->abs_chain_position > tap->abs_chain_position) {
/* Trailer */
trailer_ir_len += check_tap->ir_length;
trailer_dr_len++;
}
}
/* HDR %d TDI (0) */
if (svf_set_padding(&svf_para.hdr_para, header_dr_len, 0) != ERROR_OK) {
LOG_ERROR("failed to set data header");
return ERROR_FAIL;
}
/* HIR %d TDI (0xFF) */
if (svf_set_padding(&svf_para.hir_para, header_ir_len, 0xFF) != ERROR_OK) {
LOG_ERROR("failed to set instruction header");
return ERROR_FAIL;
}
/* TDR %d TDI (0) */
if (svf_set_padding(&svf_para.tdr_para, trailer_dr_len, 0) != ERROR_OK) {
LOG_ERROR("failed to set data trailer");
return ERROR_FAIL;
}
/* TIR %d TDI (0xFF) */
if (svf_set_padding(&svf_para.tir_para, trailer_ir_len, 0xFF) != ERROR_OK) {
LOG_ERROR("failed to set instruction trailer");
return ERROR_FAIL;
}
}
if (svf_progress_enabled) {
/* Count total lines in file. */
while (!feof(svf_fd)) {
svf_getline(&svf_command_buffer, &svf_command_buffer_size, svf_fd);
svf_total_lines++;
}
rewind(svf_fd);
}
while (svf_read_command_from_file(svf_fd) == ERROR_OK) {
/* Log Output */
if (svf_quiet) {
if (svf_progress_enabled) {
svf_percentage = ((svf_line_number * 20) / svf_total_lines) * 5;
if (svf_last_printed_percentage != svf_percentage) {
LOG_USER_N("\r%d%% ", svf_percentage);
svf_last_printed_percentage = svf_percentage;
}
}
} else {
if (svf_progress_enabled) {
svf_percentage = ((svf_line_number * 20) / svf_total_lines) * 5;
LOG_USER_N("%3d%% %s", svf_percentage, svf_read_line);
} else
LOG_USER_N("%s", svf_read_line);
}
/* Run Command */
if (svf_run_command(CMD_CTX, svf_command_buffer) != ERROR_OK) {
LOG_ERROR("fail to run command at line %d", svf_line_number);
ret = ERROR_FAIL;
break;
}
command_num++;
}
if ((!svf_nil) && (jtag_execute_queue() != ERROR_OK))
ret = ERROR_FAIL;
else if (svf_check_tdo() != ERROR_OK)
ret = ERROR_FAIL;
/* print time */
time_measure_ms = timeval_ms() - time_measure_ms;
time_measure_s = time_measure_ms / 1000;
time_measure_ms %= 1000;
time_measure_m = time_measure_s / 60;
time_measure_s %= 60;
if (time_measure_ms < 1000)
command_print(CMD,
"\r\nTime used: %dm%ds%" PRId64 "ms ",
time_measure_m,
time_measure_s,
time_measure_ms);
free_all:
fclose(svf_fd);
svf_fd = 0;
/* free buffers */
free(svf_command_buffer);
svf_command_buffer = NULL;
svf_command_buffer_size = 0;
free(svf_check_tdo_para);
svf_check_tdo_para = NULL;
svf_check_tdo_para_index = 0;
free(svf_tdi_buffer);
svf_tdi_buffer = NULL;
free(svf_tdo_buffer);
svf_tdo_buffer = NULL;
free(svf_mask_buffer);
svf_mask_buffer = NULL;
svf_buffer_index = 0;
svf_buffer_size = 0;
svf_free_xxd_para(&svf_para.hdr_para);
svf_free_xxd_para(&svf_para.hir_para);
svf_free_xxd_para(&svf_para.tdr_para);
svf_free_xxd_para(&svf_para.tir_para);
svf_free_xxd_para(&svf_para.sdr_para);
svf_free_xxd_para(&svf_para.sir_para);
if (ret == ERROR_OK)
command_print(CMD,
"svf file programmed %s for %d commands with %d errors",
(svf_ignore_error > 1) ? "unsuccessfully" : "successfully",
command_num,
(svf_ignore_error > 1) ? (svf_ignore_error - 1) : 0);
else
command_print(CMD, "svf file programmed failed");
svf_ignore_error = 0;
return ret;
}
static int svf_getline(char **lineptr, size_t *n, FILE *stream)
{
#define MIN_CHUNK 16 /* Buffer is increased by this size each time as required */
size_t i = 0;
if (!*lineptr) {
*n = MIN_CHUNK;
*lineptr = malloc(*n);
if (!*lineptr)
return -1;
}
(*lineptr)[0] = fgetc(stream);
while ((*lineptr)[i] != '\n') {
(*lineptr)[++i] = fgetc(stream);
if (feof(stream)) {
(*lineptr)[0] = 0;
return -1;
}
if ((i + 2) > *n) {
*n += MIN_CHUNK;
*lineptr = realloc(*lineptr, *n);
}
}
(*lineptr)[++i] = 0;
return sizeof(*lineptr);
}
#define SVFP_CMD_INC_CNT 1024
static int svf_read_command_from_file(FILE *fd)
{
unsigned char ch;
int i = 0;
size_t cmd_pos = 0;
int cmd_ok = 0, slash = 0;
if (svf_getline(&svf_read_line, &svf_read_line_size, svf_fd) <= 0)
return ERROR_FAIL;
svf_line_number++;
ch = svf_read_line[0];
while (!cmd_ok && (ch != 0)) {
switch (ch) {
case '!':
slash = 0;
if (svf_getline(&svf_read_line, &svf_read_line_size, svf_fd) <= 0)
return ERROR_FAIL;
svf_line_number++;
i = -1;
break;
case '/':
if (++slash == 2) {
slash = 0;
if (svf_getline(&svf_read_line, &svf_read_line_size,
svf_fd) <= 0)
return ERROR_FAIL;
svf_line_number++;
i = -1;
}
break;
case ';':
slash = 0;
cmd_ok = 1;
break;
case '\n':
svf_line_number++;
if (svf_getline(&svf_read_line, &svf_read_line_size, svf_fd) <= 0)
return ERROR_FAIL;
i = -1;
/* fallthrough */
case '\r':
slash = 0;
/* Don't save '\r' and '\n' if no data is parsed */
if (!cmd_pos)
break;
/* fallthrough */
default:
/* The parsing code currently expects a space
* before parentheses -- "TDI (123)". Also a
* space afterwards -- "TDI (123) TDO(456)".
* But such spaces are optional... instead of
* parser updates, cope with that by adding the
* spaces as needed.
*
* Ensure there are 3 bytes available, for:
* - current character
* - added space.
* - terminating NUL ('\0')
*/
if (cmd_pos + 3 > svf_command_buffer_size) {
svf_command_buffer = realloc(svf_command_buffer, cmd_pos + 3);
svf_command_buffer_size = cmd_pos + 3;
if (!svf_command_buffer) {
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
}
/* insert a space before '(' */
if ('(' == ch)
svf_command_buffer[cmd_pos++] = ' ';
svf_command_buffer[cmd_pos++] = (char)toupper(ch);
/* insert a space after ')' */
if (')' == ch)
svf_command_buffer[cmd_pos++] = ' ';
break;
}
ch = svf_read_line[++i];
}
if (cmd_ok) {
svf_command_buffer[cmd_pos] = '\0';
return ERROR_OK;
} else
return ERROR_FAIL;
}
static int svf_parse_cmd_string(char *str, int len, char **argus, int *num_of_argu)
{
int pos = 0, num = 0, space_found = 1, in_bracket = 0;
while (pos < len) {
switch (str[pos]) {
case '!':
case '/':
LOG_ERROR("fail to parse svf command");
return ERROR_FAIL;
case '(':
in_bracket = 1;
goto parse_char;
case ')':
in_bracket = 0;
goto parse_char;
default:
parse_char:
if (!in_bracket && isspace((int) str[pos])) {
space_found = 1;
str[pos] = '\0';
} else if (space_found) {
argus[num++] = &str[pos];
space_found = 0;
}
break;
}
pos++;
}
if (num == 0)
return ERROR_FAIL;
*num_of_argu = num;
return ERROR_OK;
}
bool svf_tap_state_is_stable(tap_state_t state)
{
return (state == TAP_RESET) || (state == TAP_IDLE)
|| (state == TAP_DRPAUSE) || (state == TAP_IRPAUSE);
}
static int svf_find_string_in_array(char *str, char **strs, int num_of_element)
{
int i;
for (i = 0; i < num_of_element; i++) {
if (!strcmp(str, strs[i]))
return i;
}
return 0xFF;
}
static int svf_adjust_array_length(uint8_t **arr, int orig_bit_len, int new_bit_len)
{
int new_byte_len = (new_bit_len + 7) >> 3;
if ((!*arr) || (((orig_bit_len + 7) >> 3) < ((new_bit_len + 7) >> 3))) {
free(*arr);
*arr = calloc(1, new_byte_len);
if (!*arr) {
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int svf_set_padding(struct svf_xxr_para *para, int len, unsigned char tdi)
{
int error = ERROR_OK;
error |= svf_adjust_array_length(¶->tdi, para->len, len);
memset(para->tdi, tdi, (len + 7) >> 3);
error |= svf_adjust_array_length(¶->tdo, para->len, len);
error |= svf_adjust_array_length(¶->mask, para->len, len);
para->len = len;
para->data_mask = XXR_TDI;
return error;
}
static int svf_copy_hexstring_to_binary(char *str, uint8_t **bin, int orig_bit_len, int bit_len)
{
int i, str_len = strlen(str), str_hbyte_len = (bit_len + 3) >> 2;
uint8_t ch = 0;
if (svf_adjust_array_length(bin, orig_bit_len, bit_len) != ERROR_OK) {
LOG_ERROR("fail to adjust length of array");
return ERROR_FAIL;
}
/* fill from LSB (end of str) to MSB (beginning of str) */
for (i = 0; i < str_hbyte_len; i++) {
ch = 0;
while (str_len > 0) {
ch = str[--str_len];
/* Skip whitespace. The SVF specification (rev E) is
* deficient in terms of basic lexical issues like
* where whitespace is allowed. Long bitstrings may
* require line ends for correctness, since there is
* a hard limit on line length.
*/
if (!isspace(ch)) {
if ((ch >= '0') && (ch <= '9')) {
ch = ch - '0';
break;
} else if ((ch >= 'A') && (ch <= 'F')) {
ch = ch - 'A' + 10;
break;
} else {
LOG_ERROR("invalid hex string");
return ERROR_FAIL;
}
}
ch = 0;
}
/* write bin */
if (i % 2) {
/* MSB */
(*bin)[i / 2] |= ch << 4;
} else {
/* LSB */
(*bin)[i / 2] = 0;
(*bin)[i / 2] |= ch;
}
}
/* consume optional leading '0' MSBs or whitespace */
while (str_len > 0 && ((str[str_len - 1] == '0')
|| isspace((int) str[str_len - 1])))
str_len--;
/* check validity: we must have consumed everything */
if (str_len > 0 || (ch & ~((2 << ((bit_len - 1) % 4)) - 1)) != 0) {
LOG_ERROR("value exceeds length");
return ERROR_FAIL;
}
return ERROR_OK;
}
static int svf_check_tdo(void)
{
int i, len, index_var;
for (i = 0; i < svf_check_tdo_para_index; i++) {
index_var = svf_check_tdo_para[i].buffer_offset;
len = svf_check_tdo_para[i].bit_len;
if ((svf_check_tdo_para[i].enabled)
&& buf_cmp_mask(&svf_tdi_buffer[index_var], &svf_tdo_buffer[index_var],
&svf_mask_buffer[index_var], len)) {
LOG_ERROR("tdo check error at line %d",
svf_check_tdo_para[i].line_num);
SVF_BUF_LOG(ERROR, &svf_tdi_buffer[index_var], len, "READ");
SVF_BUF_LOG(ERROR, &svf_tdo_buffer[index_var], len, "WANT");
SVF_BUF_LOG(ERROR, &svf_mask_buffer[index_var], len, "MASK");
if (svf_ignore_error == 0)
return ERROR_FAIL;
else
svf_ignore_error++;
}
}
svf_check_tdo_para_index = 0;
return ERROR_OK;
}
static int svf_add_check_para(uint8_t enabled, int buffer_offset, int bit_len)
{
if (svf_check_tdo_para_index >= SVF_CHECK_TDO_PARA_SIZE) {
LOG_ERROR("toooooo many operation undone");
return ERROR_FAIL;
}
svf_check_tdo_para[svf_check_tdo_para_index].line_num = svf_line_number;
svf_check_tdo_para[svf_check_tdo_para_index].bit_len = bit_len;
svf_check_tdo_para[svf_check_tdo_para_index].enabled = enabled;
svf_check_tdo_para[svf_check_tdo_para_index].buffer_offset = buffer_offset;
svf_check_tdo_para_index++;
return ERROR_OK;
}
static int svf_execute_tap(void)
{
if ((!svf_nil) && (jtag_execute_queue() != ERROR_OK))
return ERROR_FAIL;
else if (svf_check_tdo() != ERROR_OK)
return ERROR_FAIL;
svf_buffer_index = 0;
return ERROR_OK;
}
static int svf_run_command(struct command_context *cmd_ctx, char *cmd_str)
{
char *argus[256], command;
int num_of_argu = 0, i;
/* tmp variable */
int i_tmp;
/* for RUNTEST */
int run_count;
float min_time;
/* for XXR */
struct svf_xxr_para *xxr_para_tmp;
uint8_t **pbuffer_tmp;
struct scan_field field;
/* for STATE */
tap_state_t *path = NULL, state;
/* flag padding commands skipped due to -tap command */
int padding_command_skipped = 0;
if (svf_parse_cmd_string(cmd_str, strlen(cmd_str), argus, &num_of_argu) != ERROR_OK)
return ERROR_FAIL;
/* NOTE: we're a bit loose here, because we ignore case in
* TAP state names (instead of insisting on uppercase).
*/
command = svf_find_string_in_array(argus[0],
(char **)svf_command_name, ARRAY_SIZE(svf_command_name));
switch (command) {
case ENDDR:
case ENDIR:
if (num_of_argu != 2) {
LOG_ERROR("invalid parameter of %s", argus[0]);
return ERROR_FAIL;
}
i_tmp = tap_state_by_name(argus[1]);
if (svf_tap_state_is_stable(i_tmp)) {
if (command == ENDIR) {
svf_para.ir_end_state = i_tmp;
LOG_DEBUG("\tIR end_state = %s",
tap_state_name(i_tmp));
} else {
svf_para.dr_end_state = i_tmp;
LOG_DEBUG("\tDR end_state = %s",
tap_state_name(i_tmp));
}
} else {
LOG_ERROR("%s: %s is not a stable state",
argus[0], argus[1]);
return ERROR_FAIL;
}
break;
case FREQUENCY:
if ((num_of_argu != 1) && (num_of_argu != 3)) {
LOG_ERROR("invalid parameter of %s", argus[0]);
return ERROR_FAIL;
}
if (num_of_argu == 1) {
/* TODO: set jtag speed to full speed */
svf_para.frequency = 0;
} else {
if (strcmp(argus[2], "HZ")) {
LOG_ERROR("HZ not found in FREQUENCY command");
return ERROR_FAIL;
}
if (svf_execute_tap() != ERROR_OK)
return ERROR_FAIL;
svf_para.frequency = atof(argus[1]);
/* TODO: set jtag speed to */
if (svf_para.frequency > 0) {
command_run_linef(cmd_ctx,
"adapter speed %d",
(int)svf_para.frequency / 1000);
LOG_DEBUG("\tfrequency = %f", svf_para.frequency);
}
}
break;
case HDR:
if (svf_tap_is_specified) {
padding_command_skipped = 1;
break;
}
xxr_para_tmp = &svf_para.hdr_para;
goto xxr_common;
case HIR:
if (svf_tap_is_specified) {
padding_command_skipped = 1;
break;
}
xxr_para_tmp = &svf_para.hir_para;
goto xxr_common;
case TDR:
if (svf_tap_is_specified) {
padding_command_skipped = 1;
break;
}
xxr_para_tmp = &svf_para.tdr_para;
goto xxr_common;
case TIR:
if (svf_tap_is_specified) {
padding_command_skipped = 1;
break;
}
xxr_para_tmp = &svf_para.tir_para;
goto xxr_common;
case SDR:
xxr_para_tmp = &svf_para.sdr_para;
goto xxr_common;
case SIR:
xxr_para_tmp = &svf_para.sir_para;
goto xxr_common;
xxr_common:
/* XXR length [TDI (tdi)] [TDO (tdo)][MASK (mask)] [SMASK (smask)] */
if ((num_of_argu > 10) || (num_of_argu % 2)) {
LOG_ERROR("invalid parameter of %s", argus[0]);
return ERROR_FAIL;
}
i_tmp = xxr_para_tmp->len;
xxr_para_tmp->len = atoi(argus[1]);
/* If we are to enlarge the buffers, all parts of xxr_para_tmp
* need to be freed */
if (i_tmp < xxr_para_tmp->len) {
free(xxr_para_tmp->tdi);
xxr_para_tmp->tdi = NULL;
free(xxr_para_tmp->tdo);
xxr_para_tmp->tdo = NULL;
free(xxr_para_tmp->mask);
xxr_para_tmp->mask = NULL;
free(xxr_para_tmp->smask);
xxr_para_tmp->smask = NULL;
}
LOG_DEBUG("\tlength = %d", xxr_para_tmp->len);
xxr_para_tmp->data_mask = 0;
for (i = 2; i < num_of_argu; i += 2) {
if ((strlen(argus[i + 1]) < 3) || (argus[i + 1][0] != '(') ||
(argus[i + 1][strlen(argus[i + 1]) - 1] != ')')) {
LOG_ERROR("data section error");
return ERROR_FAIL;
}
argus[i + 1][strlen(argus[i + 1]) - 1] = '\0';
/* TDI, TDO, MASK, SMASK */
if (!strcmp(argus[i], "TDI")) {
/* TDI */
pbuffer_tmp = &xxr_para_tmp->tdi;
xxr_para_tmp->data_mask |= XXR_TDI;
} else if (!strcmp(argus[i], "TDO")) {
/* TDO */
pbuffer_tmp = &xxr_para_tmp->tdo;
xxr_para_tmp->data_mask |= XXR_TDO;
} else if (!strcmp(argus[i], "MASK")) {
/* MASK */
pbuffer_tmp = &xxr_para_tmp->mask;
xxr_para_tmp->data_mask |= XXR_MASK;
} else if (!strcmp(argus[i], "SMASK")) {
/* SMASK */
pbuffer_tmp = &xxr_para_tmp->smask;
xxr_para_tmp->data_mask |= XXR_SMASK;
} else {
LOG_ERROR("unknown parameter: %s", argus[i]);
return ERROR_FAIL;
}
if (ERROR_OK !=
svf_copy_hexstring_to_binary(&argus[i + 1][1], pbuffer_tmp, i_tmp,
xxr_para_tmp->len)) {
LOG_ERROR("fail to parse hex value");
return ERROR_FAIL;
}
SVF_BUF_LOG(DEBUG, *pbuffer_tmp, xxr_para_tmp->len, argus[i]);
}
/* If a command changes the length of the last scan of the same type and the
* MASK parameter is absent, */
/* the mask pattern used is all cares */
if (!(xxr_para_tmp->data_mask & XXR_MASK) && (i_tmp != xxr_para_tmp->len)) {
/* MASK not defined and length changed */
if (ERROR_OK !=
svf_adjust_array_length(&xxr_para_tmp->mask, i_tmp,
xxr_para_tmp->len)) {
LOG_ERROR("fail to adjust length of array");
return ERROR_FAIL;
}
buf_set_ones(xxr_para_tmp->mask, xxr_para_tmp->len);
}
/* If TDO is absent, no comparison is needed, set the mask to 0 */
if (!(xxr_para_tmp->data_mask & XXR_TDO)) {
if (!xxr_para_tmp->tdo) {
if (ERROR_OK !=
svf_adjust_array_length(&xxr_para_tmp->tdo, i_tmp,
xxr_para_tmp->len)) {
LOG_ERROR("fail to adjust length of array");
return ERROR_FAIL;
}
}
if (!xxr_para_tmp->mask) {
if (ERROR_OK !=
svf_adjust_array_length(&xxr_para_tmp->mask, i_tmp,
xxr_para_tmp->len)) {
LOG_ERROR("fail to adjust length of array");
return ERROR_FAIL;
}
}
memset(xxr_para_tmp->mask, 0, (xxr_para_tmp->len + 7) >> 3);
}
/* do scan if necessary */
if (command == SDR) {
/* check buffer size first, reallocate if necessary */
i = svf_para.hdr_para.len + svf_para.sdr_para.len +
svf_para.tdr_para.len;
if ((svf_buffer_size - svf_buffer_index) < ((i + 7) >> 3)) {
/* reallocate buffer */
if (svf_realloc_buffers(svf_buffer_index + ((i + 7) >> 3)) != ERROR_OK) {
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
}
/* assemble dr data */
i = 0;
buf_set_buf(svf_para.hdr_para.tdi,
0,
&svf_tdi_buffer[svf_buffer_index],
i,
svf_para.hdr_para.len);
i += svf_para.hdr_para.len;
buf_set_buf(svf_para.sdr_para.tdi,
0,
&svf_tdi_buffer[svf_buffer_index],
i,
svf_para.sdr_para.len);
i += svf_para.sdr_para.len;
buf_set_buf(svf_para.tdr_para.tdi,
0,
&svf_tdi_buffer[svf_buffer_index],
i,
svf_para.tdr_para.len);
i += svf_para.tdr_para.len;
/* add check data */
if (svf_para.sdr_para.data_mask & XXR_TDO) {
/* assemble dr mask data */
i = 0;
buf_set_buf(svf_para.hdr_para.mask,
0,
&svf_mask_buffer[svf_buffer_index],
i,
svf_para.hdr_para.len);
i += svf_para.hdr_para.len;
buf_set_buf(svf_para.sdr_para.mask,
0,
&svf_mask_buffer[svf_buffer_index],
i,
svf_para.sdr_para.len);
i += svf_para.sdr_para.len;
buf_set_buf(svf_para.tdr_para.mask,
0,
&svf_mask_buffer[svf_buffer_index],
i,
svf_para.tdr_para.len);
/* assemble dr check data */
i = 0;
buf_set_buf(svf_para.hdr_para.tdo,
0,
&svf_tdo_buffer[svf_buffer_index],
i,
svf_para.hdr_para.len);
i += svf_para.hdr_para.len;
buf_set_buf(svf_para.sdr_para.tdo,
0,
&svf_tdo_buffer[svf_buffer_index],
i,
svf_para.sdr_para.len);
i += svf_para.sdr_para.len;
buf_set_buf(svf_para.tdr_para.tdo,
0,
&svf_tdo_buffer[svf_buffer_index],
i,
svf_para.tdr_para.len);
i += svf_para.tdr_para.len;
svf_add_check_para(1, svf_buffer_index, i);
} else
svf_add_check_para(0, svf_buffer_index, i);
field.num_bits = i;
field.out_value = &svf_tdi_buffer[svf_buffer_index];
field.in_value = (xxr_para_tmp->data_mask & XXR_TDO) ? &svf_tdi_buffer[svf_buffer_index] : NULL;
if (!svf_nil) {
/* NOTE: doesn't use SVF-specified state paths */
jtag_add_plain_dr_scan(field.num_bits,
field.out_value,
field.in_value,
svf_para.dr_end_state);
}
svf_buffer_index += (i + 7) >> 3;
} else if (command == SIR) {
/* check buffer size first, reallocate if necessary */
i = svf_para.hir_para.len + svf_para.sir_para.len +
svf_para.tir_para.len;
if ((svf_buffer_size - svf_buffer_index) < ((i + 7) >> 3)) {
if (svf_realloc_buffers(svf_buffer_index + ((i + 7) >> 3)) != ERROR_OK) {
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
}
/* assemble ir data */
i = 0;
buf_set_buf(svf_para.hir_para.tdi,
0,
&svf_tdi_buffer[svf_buffer_index],
i,
svf_para.hir_para.len);
i += svf_para.hir_para.len;
buf_set_buf(svf_para.sir_para.tdi,
0,
&svf_tdi_buffer[svf_buffer_index],
i,
svf_para.sir_para.len);
i += svf_para.sir_para.len;
buf_set_buf(svf_para.tir_para.tdi,
0,
&svf_tdi_buffer[svf_buffer_index],
i,
svf_para.tir_para.len);
i += svf_para.tir_para.len;
/* add check data */
if (svf_para.sir_para.data_mask & XXR_TDO) {
/* assemble dr mask data */
i = 0;
buf_set_buf(svf_para.hir_para.mask,
0,
&svf_mask_buffer[svf_buffer_index],
i,
svf_para.hir_para.len);
i += svf_para.hir_para.len;
buf_set_buf(svf_para.sir_para.mask,
0,
&svf_mask_buffer[svf_buffer_index],
i,
svf_para.sir_para.len);
i += svf_para.sir_para.len;
buf_set_buf(svf_para.tir_para.mask,
0,
&svf_mask_buffer[svf_buffer_index],
i,
svf_para.tir_para.len);
/* assemble dr check data */
i = 0;
buf_set_buf(svf_para.hir_para.tdo,
0,
&svf_tdo_buffer[svf_buffer_index],
i,
svf_para.hir_para.len);
i += svf_para.hir_para.len;
buf_set_buf(svf_para.sir_para.tdo,
0,
&svf_tdo_buffer[svf_buffer_index],
i,
svf_para.sir_para.len);
i += svf_para.sir_para.len;
buf_set_buf(svf_para.tir_para.tdo,
0,
&svf_tdo_buffer[svf_buffer_index],
i,
svf_para.tir_para.len);
i += svf_para.tir_para.len;
svf_add_check_para(1, svf_buffer_index, i);
} else
svf_add_check_para(0, svf_buffer_index, i);
field.num_bits = i;
field.out_value = &svf_tdi_buffer[svf_buffer_index];
field.in_value = (xxr_para_tmp->data_mask & XXR_TDO) ? &svf_tdi_buffer[svf_buffer_index] : NULL;
if (!svf_nil) {
/* NOTE: doesn't use SVF-specified state paths */
jtag_add_plain_ir_scan(field.num_bits,
field.out_value,
field.in_value,
svf_para.ir_end_state);
}
svf_buffer_index += (i + 7) >> 3;
}
break;
case PIO:
case PIOMAP:
LOG_ERROR("PIO and PIOMAP are not supported");
return ERROR_FAIL;
case RUNTEST:
/* RUNTEST [run_state] run_count run_clk [min_time SEC [MAXIMUM max_time
* SEC]] [ENDSTATE end_state] */
/* RUNTEST [run_state] min_time SEC [MAXIMUM max_time SEC] [ENDSTATE
* end_state] */
if ((num_of_argu < 3) || (num_of_argu > 11)) {
LOG_ERROR("invalid parameter of %s", argus[0]);
return ERROR_FAIL;
}
/* init */
run_count = 0;
min_time = 0;
i = 1;
/* run_state */
i_tmp = tap_state_by_name(argus[i]);
if (i_tmp != TAP_INVALID) {
if (svf_tap_state_is_stable(i_tmp)) {
svf_para.runtest_run_state = i_tmp;
/* When a run_state is specified, the new
* run_state becomes the default end_state.
*/
svf_para.runtest_end_state = i_tmp;
LOG_DEBUG("\trun_state = %s", tap_state_name(i_tmp));
i++;
} else {
LOG_ERROR("%s: %s is not a stable state", argus[0], tap_state_name(i_tmp));
return ERROR_FAIL;
}
}
/* run_count run_clk */
if (((i + 2) <= num_of_argu) && strcmp(argus[i + 1], "SEC")) {
if (!strcmp(argus[i + 1], "TCK")) {
/* clock source is TCK */
run_count = atoi(argus[i]);
LOG_DEBUG("\trun_count@TCK = %d", run_count);
} else {
LOG_ERROR("%s not supported for clock", argus[i + 1]);
return ERROR_FAIL;
}
i += 2;
}
/* min_time SEC */
if (((i + 2) <= num_of_argu) && !strcmp(argus[i + 1], "SEC")) {
min_time = atof(argus[i]);
LOG_DEBUG("\tmin_time = %fs", min_time);
i += 2;
}
/* MAXIMUM max_time SEC */
if (((i + 3) <= num_of_argu) &&
!strcmp(argus[i], "MAXIMUM") && !strcmp(argus[i + 2], "SEC")) {
float max_time = 0;
max_time = atof(argus[i + 1]);
LOG_DEBUG("\tmax_time = %fs", max_time);
i += 3;
}
/* ENDSTATE end_state */
if (((i + 2) <= num_of_argu) && !strcmp(argus[i], "ENDSTATE")) {
i_tmp = tap_state_by_name(argus[i + 1]);
if (svf_tap_state_is_stable(i_tmp)) {
svf_para.runtest_end_state = i_tmp;
LOG_DEBUG("\tend_state = %s", tap_state_name(i_tmp));
} else {
LOG_ERROR("%s: %s is not a stable state", argus[0], tap_state_name(i_tmp));
return ERROR_FAIL;
}
i += 2;
}
/* all parameter should be parsed */
if (i == num_of_argu) {
#if 1
/* FIXME handle statemove failures */
uint32_t min_usec = 1000000 * min_time;
/* enter into run_state if necessary */
if (cmd_queue_cur_state != svf_para.runtest_run_state)
svf_add_statemove(svf_para.runtest_run_state);
/* add clocks and/or min wait */
if (run_count > 0) {
if (!svf_nil)
jtag_add_clocks(run_count);
}
if (min_usec > 0) {
if (!svf_nil)
jtag_add_sleep(min_usec);
}
/* move to end_state if necessary */
if (svf_para.runtest_end_state != svf_para.runtest_run_state)
svf_add_statemove(svf_para.runtest_end_state);
#else
if (svf_para.runtest_run_state != TAP_IDLE) {
LOG_ERROR("cannot runtest in %s state",
tap_state_name(svf_para.runtest_run_state));
return ERROR_FAIL;
}
if (!svf_nil)
jtag_add_runtest(run_count, svf_para.runtest_end_state);
#endif
} else {
LOG_ERROR("fail to parse parameter of RUNTEST, %d out of %d is parsed",
i,
num_of_argu);
return ERROR_FAIL;
}
break;
case STATE:
/* STATE [pathstate1 [pathstate2 ...[pathstaten]]] stable_state */
if (num_of_argu < 2) {
LOG_ERROR("invalid parameter of %s", argus[0]);
return ERROR_FAIL;
}
if (num_of_argu > 2) {
/* STATE pathstate1 ... stable_state */
path = malloc((num_of_argu - 1) * sizeof(tap_state_t));
if (!path) {
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
num_of_argu--; /* num of path */
i_tmp = 1; /* path is from parameter 1 */
for (i = 0; i < num_of_argu; i++, i_tmp++) {
path[i] = tap_state_by_name(argus[i_tmp]);
if (path[i] == TAP_INVALID) {
LOG_ERROR("%s: %s is not a valid state", argus[0], argus[i_tmp]);
free(path);
return ERROR_FAIL;
}
/* OpenOCD refuses paths containing TAP_RESET */
if (path[i] == TAP_RESET) {
/* FIXME last state MUST be stable! */
if (i > 0) {
if (!svf_nil)
jtag_add_pathmove(i, path);
}
if (!svf_nil)
jtag_add_tlr();
num_of_argu -= i + 1;
i = -1;
}
}
if (num_of_argu > 0) {
/* execute last path if necessary */
if (svf_tap_state_is_stable(path[num_of_argu - 1])) {
/* last state MUST be stable state */
if (!svf_nil)
jtag_add_pathmove(num_of_argu, path);
LOG_DEBUG("\tmove to %s by path_move",
tap_state_name(path[num_of_argu - 1]));
} else {
LOG_ERROR("%s: %s is not a stable state",
argus[0],
tap_state_name(path[num_of_argu - 1]));
free(path);
return ERROR_FAIL;
}
}
free(path);
path = NULL;
} else {
/* STATE stable_state */
state = tap_state_by_name(argus[1]);
if (svf_tap_state_is_stable(state)) {
LOG_DEBUG("\tmove to %s by svf_add_statemove",
tap_state_name(state));
/* FIXME handle statemove failures */
svf_add_statemove(state);
} else {
LOG_ERROR("%s: %s is not a stable state",
argus[0], tap_state_name(state));
return ERROR_FAIL;
}
}
break;
case TRST:
/* TRST trst_mode */
if (num_of_argu != 2) {
LOG_ERROR("invalid parameter of %s", argus[0]);
return ERROR_FAIL;
}
if (svf_para.trst_mode != TRST_ABSENT) {
if (svf_execute_tap() != ERROR_OK)
return ERROR_FAIL;
i_tmp = svf_find_string_in_array(argus[1],
(char **)svf_trst_mode_name,
ARRAY_SIZE(svf_trst_mode_name));
switch (i_tmp) {
case TRST_ON:
if (!svf_nil)
jtag_add_reset(1, 0);
break;
case TRST_Z:
case TRST_OFF:
if (!svf_nil)
jtag_add_reset(0, 0);
break;
case TRST_ABSENT:
break;
default:
LOG_ERROR("unknown TRST mode: %s", argus[1]);
return ERROR_FAIL;
}
svf_para.trst_mode = i_tmp;
LOG_DEBUG("\ttrst_mode = %s", svf_trst_mode_name[svf_para.trst_mode]);
} else {
LOG_ERROR("can not accept TRST command if trst_mode is ABSENT");
return ERROR_FAIL;
}
break;
default:
LOG_ERROR("invalid svf command: %s", argus[0]);
return ERROR_FAIL;
}
if (!svf_quiet) {
if (padding_command_skipped)
LOG_USER("(Above Padding command skipped, as per -tap argument)");
}
if (debug_level >= LOG_LVL_DEBUG) {
/* for convenient debugging, execute tap if possible */
if ((svf_buffer_index > 0) &&
(((command != STATE) && (command != RUNTEST)) ||
((command == STATE) && (num_of_argu == 2)))) {
if (svf_execute_tap() != ERROR_OK)
return ERROR_FAIL;
/* output debug info */
if ((command == SIR) || (command == SDR))
SVF_BUF_LOG(DEBUG, svf_tdi_buffer, svf_check_tdo_para[0].bit_len, "TDO read");
}
} else {
/* for fast executing, execute tap if necessary */
/* half of the buffer is for the next command */
if (((svf_buffer_index >= SVF_MAX_BUFFER_SIZE_TO_COMMIT) ||
(svf_check_tdo_para_index >= SVF_CHECK_TDO_PARA_SIZE / 2)) &&
(((command != STATE) && (command != RUNTEST)) ||
((command == STATE) && (num_of_argu == 2))))
return svf_execute_tap();
}
return ERROR_OK;
}
static const struct command_registration svf_command_handlers[] = {
{
.name = "svf",
.handler = handle_svf_command,
.mode = COMMAND_EXEC,
.help = "Runs a SVF file.",
.usage = "[-tap device.tap] [quiet] [nil] [progress] [ignore_error]",
},
COMMAND_REGISTRATION_DONE
};
int svf_register_commands(struct command_context *cmd_ctx)
{
return register_commands(cmd_ctx, NULL, svf_command_handlers);
}