/***************************************************************************
* Copyright (C) 2011 by STEricsson *
* Heythem Bouhaja heythem.bouhaja@stericsson.com : creation *
* Michel JAOUEN michel.jaouen@stericsson.com : adaptation to rtos *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include
#include
#include "target/target.h"
#include "target/target_type.h"
#include "helper/log.h"
#include "helper/types.h"
#include "rtos.h"
#include "rtos_standard_stackings.h"
#include
#include "server/gdb_server.h"
#define LINUX_USER_KERNEL_BORDER 0xc0000000
#include "linux_header.h"
#define PHYS
#define MAX_THREADS 200
/* specific task */
struct linux_os {
const char *name;
uint32_t init_task_addr;
int thread_count;
int threadid_count;
int preupdtate_threadid_count;
int nr_cpus;
int threads_lookup;
int threads_needs_update;
struct current_thread *current_threads;
struct threads *thread_list;
/* virt2phys parameter */
uint32_t phys_mask;
uint32_t phys_base;
};
struct current_thread {
int64_t threadid;
int32_t core_id;
#ifdef PID_CHECK
uint32_t pid;
#endif
uint32_t TS;
struct current_thread *next;
};
struct threads {
char name[17];
uint32_t base_addr; /* address to read magic */
uint32_t state; /* magic value : filled only at creation */
uint32_t pid; /* linux pid : id for identifying a thread */
uint32_t oncpu; /* content cpu number in current thread */
uint32_t asid; /* filled only at creation */
int64_t threadid;
int status; /* dead = 1 alive = 2 current = 3 alive and current */
/* value that should not change during the live of a thread ? */
uint32_t thread_info_addr; /* contain latest thread_info_addr computed */
/* retrieve from thread_info */
struct cpu_context *context;
struct threads *next;
};
struct cpu_context {
uint32_t R4;
uint32_t R5;
uint32_t R6;
uint32_t R7;
uint32_t R8;
uint32_t R9;
uint32_t IP;
uint32_t FP;
uint32_t SP;
uint32_t PC;
uint32_t preempt_count;
};
struct cpu_context *cpu_context_read(struct target *target, uint32_t base_addr,
uint32_t *info_addr);
static int insert_into_threadlist(struct target *target, struct threads *t);
static int linux_os_create(struct target *target);
static int linux_os_dummy_update(struct rtos *rtos)
{
/* update is done only when thread request come
* too many thread to do it on each stop */
return 0;
}
static int linux_compute_virt2phys(struct target *target, target_addr_t address)
{
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
target_addr_t pa = 0;
int retval = target->type->virt2phys(target, address, &pa);
if (retval != ERROR_OK) {
LOG_ERROR("Cannot compute linux virt2phys translation");
/* fixes default address */
linux_os->phys_base = 0;
return ERROR_FAIL;
}
linux_os->init_task_addr = address;
address = address & linux_os->phys_mask;
linux_os->phys_base = pa - address;
return ERROR_OK;
}
static int linux_read_memory(struct target *target,
uint32_t address, uint32_t size, uint32_t count,
uint8_t *buffer)
{
#ifdef PHYS
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
uint32_t pa = (address & linux_os->phys_mask) + linux_os->phys_base;
#endif
if (address < 0xc000000) {
LOG_ERROR("linux awareness : address in user space");
return ERROR_FAIL;
}
#ifdef PHYS
target_read_phys_memory(target, pa, size, count, buffer);
#endif
target_read_memory(target, address, size, count, buffer);
return ERROR_OK;
}
int fill_buffer(struct target *target, uint32_t addr, uint8_t *buffer)
{
if ((addr & 0xfffffffc) != addr)
LOG_INFO("unaligned address %" PRIx32 "!!", addr);
int retval = linux_read_memory(target, addr, 4, 1, buffer);
return retval;
}
uint32_t get_buffer(struct target *target, const uint8_t *buffer)
{
uint32_t value = 0;
const uint8_t *value_ptr = buffer;
value = target_buffer_get_u32(target, value_ptr);
return value;
}
static int linux_os_thread_reg_list(struct rtos *rtos,
int64_t thread_id, struct rtos_reg **reg_list, int *num_regs)
{
struct target *target = rtos->target;
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
struct current_thread *tmp = linux_os->current_threads;
struct current_thread *next;
int found = 0;
int retval;
/* check if a current thread is requested */
next = tmp;
do {
if (next->threadid == thread_id)
found = 1;
else
next = next->next;
} while ((found == 0) && (next != tmp) && (next != NULL));
if (found == 0) {
LOG_ERROR("could not find thread: %" PRIx64, thread_id);
return ERROR_FAIL;
}
/* search target to perfom the access */
struct reg **gdb_reg_list;
struct target_list *head;
head = target->head;
found = 0;
do {
if (head->target->coreid == next->core_id) {
target = head->target;
found = 1;
} else
head = head->next;
} while ((head != (struct target_list *)NULL) && (found == 0));
if (found == 0) {
LOG_ERROR
(
"current thread %" PRIx64 ": no target to perform access of core id %" PRIx32,
thread_id,
next->core_id);
return ERROR_FAIL;
}
/*LOG_INFO("thread %lx current on core %x",thread_id, target->coreid);*/
retval = target_get_gdb_reg_list(target, &gdb_reg_list, num_regs, REG_CLASS_GENERAL);
if (retval != ERROR_OK)
return retval;
*reg_list = calloc(*num_regs, sizeof(struct rtos_reg));
for (int i = 0; i < *num_regs; ++i) {
if (!gdb_reg_list[i]->valid)
gdb_reg_list[i]->type->get(gdb_reg_list[i]);
(*reg_list)[i].number = gdb_reg_list[i]->number;
(*reg_list)[i].size = gdb_reg_list[i]->size;
buf_cpy(gdb_reg_list[i]->value, (*reg_list)[i].value, (*reg_list)[i].size);
}
return ERROR_OK;
}
static bool linux_os_detect(struct target *target)
{
LOG_INFO("should no be called");
return false;
}
static int linux_os_smp_init(struct target *target);
static int linux_os_clean(struct target *target);
#define INIT_TASK 0
static const char * const linux_symbol_list[] = {
"init_task",
NULL
};
static int linux_get_symbol_list_to_lookup(symbol_table_elem_t *symbol_list[])
{
unsigned int i;
*symbol_list = (symbol_table_elem_t *)
calloc(ARRAY_SIZE(linux_symbol_list), sizeof(symbol_table_elem_t));
for (i = 0; i < ARRAY_SIZE(linux_symbol_list); i++)
(*symbol_list)[i].symbol_name = linux_symbol_list[i];
return 0;
}
static char *linux_ps_command(struct target *target);
const struct rtos_type Linux_os = {
.name = "linux",
.detect_rtos = linux_os_detect,
.create = linux_os_create,
.smp_init = linux_os_smp_init,
.update_threads = linux_os_dummy_update,
.get_thread_reg_list = linux_os_thread_reg_list,
.get_symbol_list_to_lookup = linux_get_symbol_list_to_lookup,
.clean = linux_os_clean,
.ps_command = linux_ps_command,
};
static int linux_thread_packet(struct connection *connection, char const *packet,
int packet_size);
static void linux_identify_current_threads(struct target *target);
#ifdef PID_CHECK
int fill_task_pid(struct target *target, struct threads *t)
{
uint32_t pid_addr = t->base_addr + PID;
uint8_t buffer[4];
int retval = fill_buffer(target, pid_addr, buffer);
if (retval == ERROR_OK) {
uint32_t val = get_buffer(target, buffer);
t->pid = val;
} else
LOG_ERROR("fill_task_pid: unable to read memory");
return retval;
}
#endif
int fill_task(struct target *target, struct threads *t)
{
int retval;
uint32_t pid_addr = t->base_addr + PID;
uint32_t mem_addr = t->base_addr + MEM;
uint32_t on_cpu = t->base_addr + ONCPU;
uint8_t *buffer = calloc(1, 4);
retval = fill_buffer(target, t->base_addr, buffer);
if (retval == ERROR_OK) {
uint32_t val = get_buffer(target, buffer);
t->state = val;
} else
LOG_ERROR("fill_task: unable to read memory");
retval = fill_buffer(target, pid_addr, buffer);
if (retval == ERROR_OK) {
uint32_t val = get_buffer(target, buffer);
t->pid = val;
} else
LOG_ERROR("fill task: unable to read memory");
retval = fill_buffer(target, on_cpu, buffer);
if (retval == ERROR_OK) {
uint32_t val = get_buffer(target, buffer);
t->oncpu = val;
} else
LOG_ERROR("fill task: unable to read memory");
retval = fill_buffer(target, mem_addr, buffer);
if (retval == ERROR_OK) {
uint32_t val = get_buffer(target, buffer);
if (val != 0) {
uint32_t asid_addr = val + MM_CTX;
retval = fill_buffer(target, asid_addr, buffer);
if (retval == ERROR_OK) {
val = get_buffer(target, buffer);
t->asid = val;
} else
LOG_ERROR
("fill task: unable to read memory -- ASID");
} else
t->asid = 0;
} else
LOG_ERROR("fill task: unable to read memory");
free(buffer);
return retval;
}
int get_name(struct target *target, struct threads *t)
{
int retval;
uint32_t full_name[4];
uint32_t comm = t->base_addr + COMM;
int i;
for (i = 0; i < 17; i++)
t->name[i] = 0;
retval = linux_read_memory(target, comm, 4, 4, (uint8_t *) full_name);
if (retval != ERROR_OK) {
LOG_ERROR("get_name: unable to read memory\n");
return ERROR_FAIL;
}
uint32_t raw_name = target_buffer_get_u32(target,
(const uint8_t *)
&full_name[0]);
t->name[3] = raw_name >> 24;
t->name[2] = raw_name >> 16;
t->name[1] = raw_name >> 8;
t->name[0] = raw_name;
raw_name =
target_buffer_get_u32(target, (const uint8_t *)&full_name[1]);
t->name[7] = raw_name >> 24;
t->name[6] = raw_name >> 16;
t->name[5] = raw_name >> 8;
t->name[4] = raw_name;
raw_name =
target_buffer_get_u32(target, (const uint8_t *)&full_name[2]);
t->name[11] = raw_name >> 24;
t->name[10] = raw_name >> 16;
t->name[9] = raw_name >> 8;
t->name[8] = raw_name;
raw_name =
target_buffer_get_u32(target, (const uint8_t *)&full_name[3]);
t->name[15] = raw_name >> 24;
t->name[14] = raw_name >> 16;
t->name[13] = raw_name >> 8;
t->name[12] = raw_name;
return ERROR_OK;
}
int get_current(struct target *target, int create)
{
struct target_list *head;
head = target->head;
uint8_t *buf;
uint32_t val;
uint32_t ti_addr;
uint8_t *buffer = calloc(1, 4);
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
struct current_thread *ctt = linux_os->current_threads;
/* invalid current threads content */
while (ctt != NULL) {
ctt->threadid = -1;
ctt->TS = 0xdeadbeef;
ctt = ctt->next;
}
while (head != (struct target_list *)NULL) {
struct reg **reg_list;
int reg_list_size;
int retval;
if (target_get_gdb_reg_list(head->target, ®_list,
®_list_size, REG_CLASS_GENERAL) != ERROR_OK) {
free(buffer);
return ERROR_TARGET_FAILURE;
}
if (!reg_list[13]->valid)
reg_list[13]->type->get(reg_list[13]);
buf = reg_list[13]->value;
val = get_buffer(target, buf);
ti_addr = (val & 0xffffe000);
uint32_t TS_addr = ti_addr + 0xc;
retval = fill_buffer(target, TS_addr, buffer);
if (retval == ERROR_OK) {
uint32_t TS = get_buffer(target, buffer);
uint32_t cpu, on_cpu = TS + ONCPU;
retval = fill_buffer(target, on_cpu, buffer);
if (retval == ERROR_OK) {
/*uint32_t cpu = get_buffer(target, buffer);*/
struct current_thread *ct =
linux_os->current_threads;
cpu = head->target->coreid;
while ((ct != NULL) && (ct->core_id != (int32_t) cpu))
ct = ct->next;
if ((ct != NULL) && (ct->TS == 0xdeadbeef))
ct->TS = TS;
else
LOG_ERROR
("error in linux current thread update");
if (create && ct) {
struct threads *t;
t = calloc(1, sizeof(struct threads));
t->base_addr = ct->TS;
fill_task(target, t);
get_name(target, t);
t->oncpu = cpu;
insert_into_threadlist(target, t);
t->status = 3;
t->thread_info_addr = 0xdeadbeef;
ct->threadid = t->threadid;
linux_os->thread_count++;
#ifdef PID_CHECK
ct->pid = t->pid;
#endif
/*LOG_INFO("Creation of current thread %s",t->name);*/
}
}
}
free(reg_list);
head = head->next;
}
free(buffer);
return ERROR_OK;
}
struct cpu_context *cpu_context_read(struct target *target, uint32_t base_addr,
uint32_t *thread_info_addr_old)
{
struct cpu_context *context = calloc(1, sizeof(struct cpu_context));
uint32_t preempt_count_addr = 0;
uint32_t registers[10];
uint8_t *buffer = calloc(1, 4);
uint32_t stack = base_addr + QAT;
uint32_t thread_info_addr = 0;
uint32_t thread_info_addr_update = 0;
int retval = ERROR_FAIL;
context->R4 = 0xdeadbeef;
context->R5 = 0xdeadbeef;
context->R6 = 0xdeadbeef;
context->R7 = 0xdeadbeef;
context->R8 = 0xdeadbeef;
context->R9 = 0xdeadbeef;
context->IP = 0xdeadbeef;
context->FP = 0xdeadbeef;
context->SP = 0xdeadbeef;
context->PC = 0xdeadbeef;
retry:
if (*thread_info_addr_old == 0xdeadbeef) {
retval = fill_buffer(target, stack, buffer);
if (retval == ERROR_OK)
thread_info_addr = get_buffer(target, buffer);
else
LOG_ERROR("cpu_context: unable to read memory");
thread_info_addr_update = thread_info_addr;
} else
thread_info_addr = *thread_info_addr_old;
preempt_count_addr = thread_info_addr + PREEMPT;
retval = fill_buffer(target, preempt_count_addr, buffer);
if (retval == ERROR_OK)
context->preempt_count = get_buffer(target, buffer);
else {
if (*thread_info_addr_old != 0xdeadbeef) {
LOG_ERROR
("cpu_context: cannot read at thread_info_addr");
if (*thread_info_addr_old < LINUX_USER_KERNEL_BORDER)
LOG_INFO
("cpu_context : thread_info_addr in userspace!!!");
*thread_info_addr_old = 0xdeadbeef;
goto retry;
}
LOG_ERROR("cpu_context: unable to read memory");
}
thread_info_addr += CPU_CONT;
retval = linux_read_memory(target, thread_info_addr, 4, 10,
(uint8_t *) registers);
if (retval != ERROR_OK) {
free(buffer);
LOG_ERROR("cpu_context: unable to read memory\n");
return context;
}
context->R4 =
target_buffer_get_u32(target, (const uint8_t *)®isters[0]);
context->R5 =
target_buffer_get_u32(target, (const uint8_t *)®isters[1]);
context->R6 =
target_buffer_get_u32(target, (const uint8_t *)®isters[2]);
context->R7 =
target_buffer_get_u32(target, (const uint8_t *)®isters[3]);
context->R8 =
target_buffer_get_u32(target, (const uint8_t *)®isters[4]);
context->R9 =
target_buffer_get_u32(target, (const uint8_t *)®isters[5]);
context->IP =
target_buffer_get_u32(target, (const uint8_t *)®isters[6]);
context->FP =
target_buffer_get_u32(target, (const uint8_t *)®isters[7]);
context->SP =
target_buffer_get_u32(target, (const uint8_t *)®isters[8]);
context->PC =
target_buffer_get_u32(target, (const uint8_t *)®isters[9]);
if (*thread_info_addr_old == 0xdeadbeef)
*thread_info_addr_old = thread_info_addr_update;
free(buffer);
return context;
}
uint32_t next_task(struct target *target, struct threads *t)
{
uint8_t *buffer = calloc(1, 4);
uint32_t next_addr = t->base_addr + NEXT;
int retval = fill_buffer(target, next_addr, buffer);
if (retval == ERROR_OK) {
uint32_t val = get_buffer(target, buffer);
val = val - NEXT;
free(buffer);
return val;
} else
LOG_ERROR("next task: unable to read memory");
free(buffer);
return 0;
}
struct current_thread *add_current_thread(struct current_thread *currents,
struct current_thread *ct)
{
ct->next = NULL;
if (currents == NULL) {
currents = ct;
return currents;
} else {
struct current_thread *temp = currents;
while (temp->next != NULL)
temp = temp->next;
temp->next = ct;
return currents;
}
}
struct threads *liste_del_task(struct threads *task_list, struct threads **t,
struct threads *prev)
{
LOG_INFO("del task %" PRId64, (*t)->threadid);
prev->next = (*t)->next;
if (prev == task_list)
task_list = prev;
/* free content of threads */
if ((*t)->context)
free((*t)->context);
free(*t);
*t = prev;
return task_list;
}
struct threads *liste_add_task(struct threads *task_list, struct threads *t,
struct threads **last)
{
t->next = NULL;
if (*last == NULL)
if (task_list == NULL) {
task_list = t;
return task_list;
} else {
struct threads *temp = task_list;
while (temp->next != NULL)
temp = temp->next;
temp->next = t;
*last = t;
return task_list;
} else {
(*last)->next = t;
*last = t;
return task_list;
}
}
#ifdef PID_CHECK
static int current_pid(struct linux_os *linux_os, uint32_t pid)
#else
static int current_base_addr(struct linux_os *linux_os, uint32_t base_addr)
#endif
{
struct current_thread *ct = linux_os->current_threads;
#ifdef PID_CHECK
while ((ct != NULL) && (ct->pid != pid))
#else
while ((ct != NULL) && (ct->TS != base_addr))
#endif
ct = ct->next;
#ifdef PID_CHECK
if ((ct != NULL) && (ct->pid == pid))
#else
if ((ct != NULL) && (ct->TS == base_addr))
#endif
return 1;
return 0;
}
int linux_get_tasks(struct target *target, int context)
{
int loop = 0;
int retval = 0;
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
linux_os->thread_list = NULL;
linux_os->thread_count = 0;
if (linux_os->init_task_addr == 0xdeadbeef) {
LOG_INFO("no init symbol\n");
return ERROR_FAIL;
}
int64_t start = timeval_ms();
struct threads *t = calloc(1, sizeof(struct threads));
struct threads *last = NULL;
t->base_addr = linux_os->init_task_addr;
/* retrieve the thread id , currently running in the different smp core */
get_current(target, 1);
while (((t->base_addr != linux_os->init_task_addr) &&
(t->base_addr != 0)) || (loop == 0)) {
loop++;
fill_task(target, t);
retval = get_name(target, t);
if (loop > MAX_THREADS) {
free(t);
LOG_INFO("more than %d threads !!", MAX_THREADS);
return ERROR_FAIL;
}
if (retval != ERROR_OK) {
free(t);
return ERROR_FAIL;
}
/* check that this thread is not one the current threads already
* created */
#ifdef PID_CHECK
if (!current_pid(linux_os, t->pid)) {
#else
if (!current_base_addr(linux_os, t->base_addr)) {
#endif
t->threadid = linux_os->threadid_count;
t->status = 1;
linux_os->threadid_count++;
linux_os->thread_list =
liste_add_task(linux_os->thread_list, t, &last);
/* no interest to fill the context if it is a current thread. */
linux_os->thread_count++;
t->thread_info_addr = 0xdeadbeef;
if (context)
t->context =
cpu_context_read(target, t->base_addr,
&t->thread_info_addr);
} else {
/*LOG_INFO("thread %s is a current thread already created",t->name); */
free(t);
}
uint32_t base_addr = next_task(target, t);
t = calloc(1, sizeof(struct threads));
t->base_addr = base_addr;
}
linux_os->threads_lookup = 1;
linux_os->threads_needs_update = 0;
linux_os->preupdtate_threadid_count = linux_os->threadid_count - 1;
/* check that all current threads have been identified */
LOG_INFO("complete time %" PRId64 ", thread mean %" PRId64 "\n",
(timeval_ms() - start),
(timeval_ms() - start) / linux_os->threadid_count);
LOG_INFO("threadid count %d", linux_os->threadid_count);
free(t);
return ERROR_OK;
}
static int clean_threadlist(struct target *target)
{
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
struct threads *old, *temp = linux_os->thread_list;
while (temp != NULL) {
old = temp;
if (temp->context)
free(temp->context);
temp = temp->next;
free(old);
}
return ERROR_OK;
}
static int linux_os_clean(struct target *target)
{
struct linux_os *os_linux = (struct linux_os *)
target->rtos->rtos_specific_params;
clean_threadlist(target);
os_linux->init_task_addr = 0xdeadbeef;
os_linux->name = "linux";
os_linux->thread_list = NULL;
os_linux->thread_count = 0;
os_linux->nr_cpus = 0;
os_linux->threads_lookup = 0;
os_linux->threads_needs_update = 0;
os_linux->threadid_count = 1;
return ERROR_OK;
}
static int insert_into_threadlist(struct target *target, struct threads *t)
{
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
struct threads *temp = linux_os->thread_list;
t->threadid = linux_os->threadid_count;
linux_os->threadid_count++;
t->status = 1;
t->next = NULL;
if (temp == NULL)
linux_os->thread_list = t;
else {
while (temp->next != NULL)
temp = temp->next;
t->next = NULL;
temp->next = t;
}
return ERROR_OK;
}
static void linux_identify_current_threads(struct target *target)
{
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
struct threads *thread_list = linux_os->thread_list;
struct current_thread *ct = linux_os->current_threads;
struct threads *t = NULL;
while ((ct != NULL)) {
if (ct->threadid == -1) {
/* un-identified thread */
int found = 0;
t = calloc(1, sizeof(struct threads));
t->base_addr = ct->TS;
#ifdef PID_CHECK
if (fill_task_pid(target, t) != ERROR_OK) {
error_handling:
free(t);
LOG_ERROR
("linux identify_current_threads: unable to read pid");
return;
}
#endif
/* search in the list of threads if pid
already present */
while ((thread_list != NULL) && (found == 0)) {
#ifdef PID_CHECK
if (thread_list->pid == t->pid) {
#else
if (thread_list->base_addr == t->base_addr) {
#endif
free(t);
t = thread_list;
found = 1;
}
thread_list = thread_list->next;
}
if (!found) {
/* it is a new thread */
if (fill_task(target, t) != ERROR_OK)
goto error_handling;
get_name(target, t);
insert_into_threadlist(target, t);
t->thread_info_addr = 0xdeadbeef;
}
t->status = 3;
ct->threadid = t->threadid;
#ifdef PID_CHECK
ct->pid = t->pid;
#endif
linux_os->thread_count++;
#if 0
if (found == 0)
LOG_INFO("current thread core %x identified %s",
ct->core_id, t->name);
else
LOG_INFO("current thread core %x, reused %s",
ct->core_id, t->name);
#endif
}
#if 0
else {
struct threads tmp;
tmp.base_addr = ct->TS;
get_name(target, &tmp);
LOG_INFO("current thread core %x , already identified %s !!!",
ct->core_id, tmp.name);
}
#endif
ct = ct->next;
}
return;
#ifndef PID_CHECK
error_handling:
free(t);
LOG_ERROR("unable to read pid");
return;
#endif
}
static int linux_task_update(struct target *target, int context)
{
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
struct threads *thread_list = linux_os->thread_list;
int retval;
int loop = 0;
linux_os->thread_count = 0;
/*thread_list = thread_list->next; skip init_task*/
while (thread_list != NULL) {
thread_list->status = 0; /*setting all tasks to dead state*/
if (thread_list->context) {
free(thread_list->context);
thread_list->context = NULL;
}
thread_list = thread_list->next;
}
int found = 0;
if (linux_os->init_task_addr == 0xdeadbeef) {
LOG_INFO("no init symbol\n");
return ERROR_FAIL;
}
int64_t start = timeval_ms();
struct threads *t = calloc(1, sizeof(struct threads));
uint32_t previous = 0xdeadbeef;
t->base_addr = linux_os->init_task_addr;
retval = get_current(target, 0);
/*check that all current threads have been identified */
linux_identify_current_threads(target);
while (((t->base_addr != linux_os->init_task_addr) &&
(t->base_addr != previous)) || (loop == 0)) {
/* for avoiding any permanent loop for any reason possibly due to
* target */
loop++;
previous = t->base_addr;
/* read only pid */
#ifdef PID_CHECK
retval = fill_task_pid(target, t);
#endif
if (retval != ERROR_OK) {
free(t);
return ERROR_FAIL;
}
thread_list = linux_os->thread_list;
while (thread_list != NULL) {
#ifdef PID_CHECK
if (t->pid == thread_list->pid) {
#else
if (t->base_addr == thread_list->base_addr) {
#endif
if (!thread_list->status) {
#ifdef PID_CHECK
if (t->base_addr != thread_list->base_addr)
LOG_INFO("thread base_addr has changed !!");
#endif
/* this is not a current thread */
thread_list->base_addr = t->base_addr;
thread_list->status = 1;
/* we don 't update this field any more */
/*thread_list->state = t->state;
thread_list->oncpu = t->oncpu;
thread_list->asid = t->asid;
*/
if (context)
thread_list->context =
cpu_context_read(target,
thread_list->
base_addr,
&thread_list->
thread_info_addr);
} else {
/* it is a current thread no need to read context */
}
linux_os->thread_count++;
found = 1;
break;
} else {
found = 0;
thread_list = thread_list->next;
}
}
if (found == 0) {
uint32_t base_addr;
fill_task(target, t);
get_name(target, t);
retval = insert_into_threadlist(target, t);
t->thread_info_addr = 0xdeadbeef;
if (context)
t->context =
cpu_context_read(target, t->base_addr,
&t->thread_info_addr);
base_addr = next_task(target, t);
t = calloc(1, sizeof(struct threads));
t->base_addr = base_addr;
linux_os->thread_count++;
} else
t->base_addr = next_task(target, t);
}
LOG_INFO("update thread done %" PRId64 ", mean%" PRId64 "\n",
(timeval_ms() - start), (timeval_ms() - start) / loop);
free(t);
linux_os->threads_needs_update = 0;
return ERROR_OK;
}
int linux_gdb_thread_packet(struct target *target,
struct connection *connection, char const *packet,
int packet_size)
{
int retval;
struct linux_os *linux_os =
(struct linux_os *)target->rtos->rtos_specific_params;
if (linux_os->init_task_addr == 0xdeadbeef) {
/* it has not been initialized */
LOG_INFO("received thread request without init task address");
gdb_put_packet(connection, "l", 1);
return ERROR_OK;
}
retval = linux_get_tasks(target, 1);
if (retval != ERROR_OK)
return ERROR_TARGET_FAILURE;
char *out_str = calloc(MAX_THREADS * 17 + 10, 1);
char *tmp_str = out_str;
tmp_str += sprintf(tmp_str, "m");
struct threads *temp = linux_os->thread_list;
while (temp != NULL) {
tmp_str += sprintf(tmp_str, "%016" PRIx64, temp->threadid);
temp = temp->next;
if (temp)
tmp_str += sprintf(tmp_str, ",");
}
gdb_put_packet(connection, out_str, strlen(out_str));
free(out_str);
return ERROR_OK;
}
int linux_gdb_thread_update(struct target *target,
struct connection *connection, char const *packet,
int packet_size)
{
int found = 0;
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
struct threads *temp = linux_os->thread_list;
while (temp != NULL) {
if (temp->threadid == linux_os->preupdtate_threadid_count + 1) {
/*LOG_INFO("FOUND");*/
found = 1;
break;
} else
temp = temp->next;
}
if (found == 1) {
/*LOG_INFO("INTO GDB THREAD UPDATE FOUNDING START TASK");*/
char *out_strr = calloc(MAX_THREADS * 17 + 10, 1);
char *tmp_strr = out_strr;
tmp_strr += sprintf(tmp_strr, "m");
/*LOG_INFO("CHAR MALLOC & M DONE");*/
tmp_strr += sprintf(tmp_strr, "%016" PRIx64, temp->threadid);
temp = temp->next;
while (temp != NULL) {
/*LOG_INFO("INTO GDB THREAD UPDATE WHILE");*/
tmp_strr += sprintf(tmp_strr, ",");
tmp_strr +=
sprintf(tmp_strr, "%016" PRIx64, temp->threadid);
temp = temp->next;
}
/*tmp_str[0] = 0;*/
gdb_put_packet(connection, out_strr, strlen(out_strr));
linux_os->preupdtate_threadid_count =
linux_os->threadid_count - 1;
free(out_strr);
} else
gdb_put_packet(connection, "l", 1);
return ERROR_OK;
}
int linux_thread_extra_info(struct target *target,
struct connection *connection, char const *packet,
int packet_size)
{
int64_t threadid = 0;
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
sscanf(packet, "qThreadExtraInfo,%" SCNx64, &threadid);
/*LOG_INFO("lookup extra info for thread %" SCNx64, threadid);*/
struct threads *temp = linux_os->thread_list;
while (temp != NULL) {
if (temp->threadid == threadid) {
char *pid = " PID: ";
char *pid_current = "*PID: ";
char *name = "Name: ";
int str_size = strlen(pid) + strlen(name);
char *tmp_str = calloc(1, str_size + 50);
char *tmp_str_ptr = tmp_str;
/* discriminate current task */
if (temp->status == 3)
tmp_str_ptr += sprintf(tmp_str_ptr, "%s",
pid_current);
else
tmp_str_ptr += sprintf(tmp_str_ptr, "%s", pid);
tmp_str_ptr += sprintf(tmp_str_ptr, "%d, ", (int)temp->pid);
sprintf(tmp_str_ptr, "%s", name);
sprintf(tmp_str_ptr, "%s", temp->name);
char *hex_str = calloc(1, strlen(tmp_str) * 2 + 1);
size_t pkt_len = hexify(hex_str, (const uint8_t *)tmp_str,
strlen(tmp_str), strlen(tmp_str) * 2 + 1);
gdb_put_packet(connection, hex_str, pkt_len);
free(hex_str);
free(tmp_str);
return ERROR_OK;
}
temp = temp->next;
}
LOG_INFO("thread not found");
return ERROR_OK;
}
int linux_gdb_T_packet(struct connection *connection,
struct target *target, char const *packet, int packet_size)
{
int64_t threadid;
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
int retval = ERROR_OK;
sscanf(packet, "T%" SCNx64, &threadid);
if (linux_os->threads_needs_update == 0) {
struct threads *temp = linux_os->thread_list;
struct threads *prev = linux_os->thread_list;
while (temp != NULL) {
if (temp->threadid == threadid) {
if (temp->status != 0) {
gdb_put_packet(connection, "OK", 2);
return ERROR_OK;
} else {
/* delete item in the list */
linux_os->thread_list =
liste_del_task(linux_os->
thread_list, &temp,
prev);
linux_os->thread_count--;
gdb_put_packet(connection, "E01", 3);
return ERROR_OK;
}
}
/* for deletion */
prev = temp;
temp = temp->next;
}
LOG_INFO("gdb requested status on non existing thread");
gdb_put_packet(connection, "E01", 3);
return ERROR_OK;
} else {
retval = linux_task_update(target, 1);
struct threads *temp = linux_os->thread_list;
while (temp != NULL) {
if (temp->threadid == threadid) {
if (temp->status == 1) {
gdb_put_packet(connection, "OK", 2);
return ERROR_OK;
} else {
gdb_put_packet(connection, "E01", 3);
return ERROR_OK;
}
}
temp = temp->next;
}
}
return retval;
}
int linux_gdb_h_packet(struct connection *connection,
struct target *target, char const *packet, int packet_size)
{
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
struct current_thread *ct = linux_os->current_threads;
/* select to display the current thread of the selected target */
while ((ct != NULL) && (ct->core_id != target->coreid))
ct = ct->next;
int64_t current_gdb_thread_rq;
if (linux_os->threads_lookup == 1) {
if ((ct != NULL) && (ct->threadid == -1)) {
ct = linux_os->current_threads;
while ((ct != NULL) && (ct->threadid == -1))
ct = ct->next;
}
if (ct == NULL) {
/* no current thread can be identified
* any way with smp */
LOG_INFO("no current thread identified");
/* attempt to display the name of the 2 threads identified with
* get_current */
struct threads t;
ct = linux_os->current_threads;
while ((ct != NULL) && (ct->threadid == -1)) {
t.base_addr = ct->TS;
get_name(target, &t);
LOG_INFO("name of unidentified thread %s",
t.name);
ct = ct->next;
}
gdb_put_packet(connection, "OK", 2);
return ERROR_OK;
}
if (packet[1] == 'g') {
sscanf(packet, "Hg%16" SCNx64, ¤t_gdb_thread_rq);
if (current_gdb_thread_rq == 0) {
target->rtos->current_threadid = ct->threadid;
gdb_put_packet(connection, "OK", 2);
} else {
target->rtos->current_threadid =
current_gdb_thread_rq;
gdb_put_packet(connection, "OK", 2);
}
} else if (packet[1] == 'c') {
sscanf(packet, "Hc%16" SCNx64, ¤t_gdb_thread_rq);
if ((current_gdb_thread_rq == 0) ||
(current_gdb_thread_rq == ct->threadid)) {
target->rtos->current_threadid = ct->threadid;
gdb_put_packet(connection, "OK", 2);
} else
gdb_put_packet(connection, "E01", 3);
}
} else
gdb_put_packet(connection, "OK", 2);
return ERROR_OK;
}
static int linux_thread_packet(struct connection *connection, char const *packet,
int packet_size)
{
int retval = ERROR_OK;
struct current_thread *ct;
struct target *target = get_target_from_connection(connection);
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
switch (packet[0]) {
case 'T': /* Is thread alive?*/
linux_gdb_T_packet(connection, target, packet, packet_size);
break;
case 'H': /* Set current thread */
/* ( 'c' for step and continue, 'g' for all other operations )*/
/*LOG_INFO(" H packet received '%s'", packet);*/
linux_gdb_h_packet(connection, target, packet, packet_size);
break;
case 'q':
if (strncmp(packet, "qSymbol", 7) == 0) {
if (rtos_qsymbol(connection, packet, packet_size) == 1) {
linux_compute_virt2phys(target,
target->rtos->
symbols[INIT_TASK].
address);
}
break;
} else if (strncmp(packet, "qfThreadInfo", 12) == 0) {
if (linux_os->thread_list == NULL) {
retval = linux_gdb_thread_packet(target,
connection,
packet,
packet_size);
break;
} else {
retval = linux_gdb_thread_update(target,
connection,
packet,
packet_size);
break;
}
} else if (strncmp(packet, "qsThreadInfo", 12) == 0) {
gdb_put_packet(connection, "l", 1);
break;
} else if (strncmp(packet, "qThreadExtraInfo,", 17) == 0) {
linux_thread_extra_info(target, connection, packet,
packet_size);
break;
} else {
retval = GDB_THREAD_PACKET_NOT_CONSUMED;
break;
}
case 'Q':
/* previously response was : thread not found
* gdb_put_packet(connection, "E01", 3); */
retval = GDB_THREAD_PACKET_NOT_CONSUMED;
break;
case 'c':
case 's': {
if (linux_os->threads_lookup == 1) {
ct = linux_os->current_threads;
while ((ct != NULL) && (ct->core_id) != target->coreid)
ct = ct->next;
if ((ct != NULL) && (ct->threadid == -1)) {
ct = linux_os->current_threads;
while ((ct != NULL) && (ct->threadid == -1))
ct = ct->next;
}
if ((ct != NULL) && (ct->threadid !=
target->rtos->
current_threadid)
&& (target->rtos->current_threadid != -1))
LOG_WARNING("WARNING! current GDB thread do not match" \
"current thread running." \
"Switch thread in GDB to threadid %d",
(int)ct->threadid);
LOG_INFO("threads_needs_update = 1");
linux_os->threads_needs_update = 1;
}
}
/* if a packet handler returned an error, exit input loop */
if (retval != ERROR_OK)
return retval;
}
return retval;
}
static int linux_os_smp_init(struct target *target)
{
struct target_list *head;
/* keep only target->rtos */
struct rtos *rtos = target->rtos;
struct linux_os *os_linux =
(struct linux_os *)rtos->rtos_specific_params;
struct current_thread *ct;
head = target->head;
while (head != (struct target_list *)NULL) {
if (head->target->rtos != rtos) {
struct linux_os *smp_os_linux =
(struct linux_os *)head->target->rtos->
rtos_specific_params;
/* remap smp target on rtos */
free(head->target->rtos);
head->target->rtos = rtos;
/* reuse allocated ct */
ct = smp_os_linux->current_threads;
ct->threadid = -1;
ct->TS = 0xdeadbeef;
ct->core_id = head->target->coreid;
os_linux->current_threads =
add_current_thread(os_linux->current_threads, ct);
os_linux->nr_cpus++;
free(smp_os_linux);
}
head = head->next;
}
return ERROR_OK;
}
static int linux_os_create(struct target *target)
{
struct linux_os *os_linux = calloc(1, sizeof(struct linux_os));
struct current_thread *ct = calloc(1, sizeof(struct current_thread));
LOG_INFO("linux os creation\n");
os_linux->init_task_addr = 0xdeadbeef;
os_linux->name = "linux";
os_linux->thread_list = NULL;
os_linux->thread_count = 0;
target->rtos->current_threadid = -1;
os_linux->nr_cpus = 1;
os_linux->threads_lookup = 0;
os_linux->threads_needs_update = 0;
os_linux->threadid_count = 1;
os_linux->current_threads = NULL;
target->rtos->rtos_specific_params = os_linux;
ct->core_id = target->coreid;
ct->threadid = -1;
ct->TS = 0xdeadbeef;
os_linux->current_threads =
add_current_thread(os_linux->current_threads, ct);
/* overload rtos thread default handler */
target->rtos->gdb_thread_packet = linux_thread_packet;
/* initialize a default virt 2 phys translation */
os_linux->phys_mask = ~0xc0000000;
os_linux->phys_base = 0x0;
return JIM_OK;
}
static char *linux_ps_command(struct target *target)
{
struct linux_os *linux_os = (struct linux_os *)
target->rtos->rtos_specific_params;
int retval = ERROR_OK;
char *display;
if (linux_os->threads_lookup == 0)
retval = linux_get_tasks(target, 1);
else {
if (linux_os->threads_needs_update != 0)
retval = linux_task_update(target, 0);
}
if (retval == ERROR_OK) {
struct threads *temp = linux_os->thread_list;
char *tmp;
LOG_INFO("allocation for %d threads line",
linux_os->thread_count);
display = calloc((linux_os->thread_count + 2) * 80, 1);
if (!display)
goto error;
tmp = display;
tmp += sprintf(tmp, "PID\t\tCPU\t\tASID\t\tNAME\n");
tmp += sprintf(tmp, "---\t\t---\t\t----\t\t----\n");
while (temp != NULL) {
if (temp->status) {
if (temp->context)
tmp +=
sprintf(tmp,
"%" PRId32 "\t\t%" PRId32 "\t\t%" PRIx32 "\t\t%s\n",
temp->pid, temp->oncpu,
temp->asid, temp->name);
else
tmp +=
sprintf(tmp,
"%" PRId32 "\t\t%" PRId32 "\t\t%" PRIx32 "\t\t%s\n",
temp->pid, temp->oncpu,
temp->asid, temp->name);
}
temp = temp->next;
}
return display;
}
error:
display = calloc(40, 1);
sprintf(display, "linux_ps_command failed\n");
return display;
}