/***************************************************************************
* Copyright (C) 2011 by Broadcom Corporation *
* Evan Hunter - ehunter@broadcom.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include
#include
#include "target/target.h"
#include "target/target_type.h"
#include "rtos.h"
#include "helper/log.h"
#include "helper/types.h"
#include "gnulib/gl_linkedhash_map.h"
#include "rtos_standard_stackings.h"
#include "target/armv7m.h"
#include "target/cortex_m.h"
#define FREERTOS_MAX_PRIORITIES 63
#define FREERTOS_THREAD_NAME_STR_SIZE 200
struct FreeRTOS_params {
const char *target_name;
int (*stacking)(struct rtos *rtos, const struct rtos_register_stacking **stacking,
target_addr_t stack_ptr);
const struct command_registration *commands;
};
struct FreeRTOS_thread_entry {
threadid_t threadid;
target_addr_t tcb;
};
struct FreeRTOS {
const struct FreeRTOS_params *param;
threadid_t last_threadid;
/* Map from threadid to FreeRTOS_thread_entry. This map owns the value and
* is responsible for free()ing it. */
gl_map_t entry_by_threadid;
/* Map from tcb to FreeRTOS_thread_entry. */
gl_map_t entry_by_tcb;
/* sizeof(UBaseType_t) */
unsigned ubasetype_size;
/* sizeof(void *) */
unsigned pointer_size;
unsigned list_width;
unsigned list_item_width;
unsigned list_elem_next_offset;
unsigned list_elem_next_size;
unsigned list_elem_content_offset;
unsigned list_elem_content_size;
unsigned list_uxNumberOfItems_offset;
unsigned list_uxNumberOfItems_size;
unsigned list_next_offset;
unsigned list_next_size;
unsigned thread_stack_offset;
unsigned thread_stack_size;
unsigned thread_name_offset;
};
static int cortex_m_stacking(struct rtos *rtos, const struct rtos_register_stacking **stacking,
target_addr_t stack_ptr)
{
/* Check for armv7m with *enabled* FPU, i.e. a Cortex-M4F */
int cm4_fpu_enabled = 0;
struct armv7m_common *armv7m_target = target_to_armv7m(rtos->target);
if (is_armv7m(armv7m_target)) {
if (armv7m_target->fp_feature == FPv4_SP) {
/* Found ARM v7m target which includes a FPU */
uint32_t cpacr;
int retval = target_read_u32(rtos->target, FPU_CPACR, &cpacr);
if (retval != ERROR_OK) {
LOG_ERROR("Could not read CPACR register to check FPU state");
return retval;
}
/* Check if CP10 and CP11 are set to full access. */
if (cpacr & 0x00F00000) {
/* Found target with enabled FPU */
cm4_fpu_enabled = 1;
}
}
}
if (cm4_fpu_enabled == 1) {
/* Read the LR to decide between stacking with or without FPU */
uint32_t LR_svc = 0;
int retval = target_read_u32(rtos->target,
stack_ptr + 0x20,
&LR_svc);
if (retval != ERROR_OK) {
LOG_OUTPUT("Error reading stack frame from FreeRTOS thread");
return retval;
}
if ((LR_svc & 0x10) == 0)
*stacking = &rtos_standard_Cortex_M4F_FPU_stacking;
else
*stacking = &rtos_standard_Cortex_M4F_stacking;
} else {
*stacking = &rtos_standard_Cortex_M3_stacking;
}
return ERROR_OK;
}
static int nds32_stacking(struct rtos *rtos, const struct rtos_register_stacking **stacking,
target_addr_t stack_ptr)
{
*stacking = &rtos_standard_NDS32_N1068_stacking;
return ERROR_OK;
}
static enum {
STACKING_MAINLINE,
STACKING_METAL
} riscv_freertos_stacking;
COMMAND_HANDLER(handle_riscv_freertos_stacking)
{
if (CMD_ARGC != 1) {
LOG_ERROR("Command takes exactly 1 parameter");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (!strcmp(CMD_ARGV[0], "mainline")) {
riscv_freertos_stacking = STACKING_MAINLINE;
} else if (!strcmp(CMD_ARGV[0], "metal")) {
riscv_freertos_stacking = STACKING_METAL;
} else {
LOG_ERROR("Only two arguments are supported: mainline and metal");
return ERROR_COMMAND_SYNTAX_ERROR;
}
return ERROR_OK;
}
static const struct command_registration riscv_commands[] = {
{
.name = "riscv_freertos_stacking",
.handler = handle_riscv_freertos_stacking,
.mode = COMMAND_ANY,
.usage = "mainline|metal",
.help = "Select which FreeRTOS branch is being used. OpenOCD needs to "
"know because different branches save thread registers on the stack "
"in different orders. It is likely that this order on both branches will "
"change in the future, so make sure to seek out the very latest OpenOCD if "
"debugging is not working right."
},
COMMAND_REGISTRATION_DONE
};
static int riscv_stacking(struct rtos *rtos, const struct rtos_register_stacking **stacking,
target_addr_t stack_ptr)
{
struct FreeRTOS *freertos = (struct FreeRTOS *) rtos->rtos_specific_params;
LOG_DEBUG("riscv_freertos_stacking=%d", riscv_freertos_stacking);
switch (riscv_freertos_stacking) {
case STACKING_MAINLINE:
if (freertos->pointer_size == 4)
*stacking = &rtos_standard_RV32_stacking;
else if (freertos->pointer_size == 8)
*stacking = &rtos_standard_RV64_stacking;
break;
case STACKING_METAL:
if (freertos->pointer_size == 4)
*stacking = &rtos_metal_RV32_stacking;
else if (freertos->pointer_size == 8)
*stacking = &rtos_metal_RV64_stacking;
break;
}
return ERROR_OK;
}
static const struct FreeRTOS_params FreeRTOS_params_list[] = {
{
.target_name = "cortex_m",
.stacking = cortex_m_stacking
},
{
.target_name = "hla_target",
.stacking = cortex_m_stacking
},
{
.target_name = "nds32_v3",
.stacking = nds32_stacking,
},
{
.target_name = "riscv",
.stacking = riscv_stacking,
.commands = riscv_commands,
},
};
#define FREERTOS_NUM_PARAMS ((int)(sizeof(FreeRTOS_params_list)/sizeof(struct FreeRTOS_params)))
static bool FreeRTOS_detect_rtos(struct target *target);
static int FreeRTOS_create(struct target *target);
static int FreeRTOS_update_threads(struct rtos *rtos);
static int FreeRTOS_get_thread_reg_list(struct rtos *rtos, threadid_t thread_id,
struct rtos_reg **reg_list, int *num_regs);
static int FreeRTOS_get_thread_reg(struct rtos *rtos, threadid_t thread_id,
uint32_t reg_num, struct rtos_reg *reg);
static int FreeRTOS_set_reg(struct rtos *rtos, uint32_t reg_num, uint8_t *reg_value);
static int FreeRTOS_get_symbol_list_to_lookup(symbol_table_elem_t *symbol_list[]);
struct rtos_type FreeRTOS_rtos = {
.name = "FreeRTOS",
.detect_rtos = FreeRTOS_detect_rtos,
.create = FreeRTOS_create,
.update_threads = FreeRTOS_update_threads,
.get_thread_reg_list = FreeRTOS_get_thread_reg_list,
.get_thread_reg = FreeRTOS_get_thread_reg,
.set_reg = FreeRTOS_set_reg,
.get_symbol_list_to_lookup = FreeRTOS_get_symbol_list_to_lookup,
};
enum FreeRTOS_symbol_values {
FreeRTOS_VAL_pxCurrentTCB = 0,
FreeRTOS_VAL_pxReadyTasksLists = 1,
FreeRTOS_VAL_xDelayedTaskList1 = 2,
FreeRTOS_VAL_xDelayedTaskList2 = 3,
FreeRTOS_VAL_pxDelayedTaskList = 4,
FreeRTOS_VAL_pxOverflowDelayedTaskList = 5,
FreeRTOS_VAL_xPendingReadyList = 6,
FreeRTOS_VAL_xTasksWaitingTermination = 7,
FreeRTOS_VAL_xSuspendedTaskList = 8,
FreeRTOS_VAL_uxCurrentNumberOfTasks = 9,
FreeRTOS_VAL_uxTopUsedPriority = 10,
};
struct symbols {
const char *name;
bool optional;
};
static const struct symbols FreeRTOS_symbol_list[] = {
{ "pxCurrentTCB", false },
{ "pxReadyTasksLists", false },
{ "xDelayedTaskList1", false },
{ "xDelayedTaskList2", false },
{ "pxDelayedTaskList", false },
{ "pxOverflowDelayedTaskList", false },
{ "xPendingReadyList", false },
{ "xTasksWaitingTermination", true }, /* Only if INCLUDE_vTaskDelete */
{ "xSuspendedTaskList", true }, /* Only if INCLUDE_vTaskSuspend */
{ "uxCurrentNumberOfTasks", false },
{ "uxTopUsedPriority", true }, /* Unavailable since v7.5.3 */
{ NULL, false }
};
/* TODO: */
/* this is not safe for little endian yet */
/* may be problems reading if sizes are not 32 bit long integers. */
/* test mallocs for failure */
static int FreeRTOS_read_struct_value(
struct target *target, target_addr_t base_address, unsigned offset,
unsigned size_bytes, uint64_t *value)
{
uint8_t buf[size_bytes];
int retval = target_read_buffer(target, base_address + offset, size_bytes, buf);
*value = buf_get_u64(buf, 0, size_bytes * 8);
return retval;
}
typedef struct {
enum {
TYPE_POINTER,
TYPE_UBASE,
TYPE_TICKTYPE,
TYPE_LIST_ITEM,
TYPE_CHAR_ARRAY
} type;
unsigned offset;
unsigned size;
} type_offset_size_t;
static unsigned populate_offset_size(struct FreeRTOS *freertos,
type_offset_size_t *info, unsigned count)
{
unsigned offset = 0;
unsigned largest = 0;
for (unsigned i = 0; i < count; i++) {
unsigned align = 0;
switch (info[i].type) {
case TYPE_UBASE:
info[i].size = freertos->ubasetype_size;
align = freertos->ubasetype_size;
break;
case TYPE_POINTER:
info[i].size = freertos->pointer_size;
align = freertos->pointer_size;
break;
case TYPE_TICKTYPE:
/* Could be either 16 or 32 bits, depending on configUSE_16_BIT_TICKS. */
info[i].size = 4;
align = 4;
break;
case TYPE_LIST_ITEM:
info[i].size = freertos->list_item_width;
align = MAX(freertos->ubasetype_size, freertos->pointer_size);
break;
case TYPE_CHAR_ARRAY:
/* size is set by the caller. */
align = 1;
break;
}
assert(info[i].size > 0);
assert(align > 0);
largest = MAX(largest, align);
if (offset & (align - 1)) {
offset = offset & ~(align - 1);
offset += align;
}
info[i].offset = offset;
offset += info[i].size;
}
/* Now align offset to the largest type used, and return that as the width
* of the structure. */
if (offset & (largest - 1)) {
offset = offset & ~(largest - 1);
offset += largest;
}
return offset;
}
static void FreeRTOS_compute_offsets(struct rtos *rtos)
{
struct FreeRTOS *freertos = (struct FreeRTOS *) rtos->rtos_specific_params;
if (freertos->pointer_size != 0)
return;
freertos->pointer_size = DIV_ROUND_UP(target_address_bits(rtos->target), 8);
freertos->ubasetype_size = DIV_ROUND_UP(target_data_bits(rtos->target), 8);
/*
* FreeRTOS can be compiled with configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES
* in which case extra data is inserted and OpenOCD won't work right.
*/
/* struct xLIST */
type_offset_size_t struct_list_info[] = {
{TYPE_UBASE, 0, 0}, /* uxNumberOfItems */
{TYPE_POINTER, 0, 0}, /* ListItem_t *pxIndex */
{TYPE_TICKTYPE, 0, 0}, /* xItemValue */
{TYPE_POINTER, 0, 0}, /* ListItem_t *pxNext */
{TYPE_POINTER, 0, 0}, /* ListItem_t *pxPrevious */
};
/* struct xLIST_ITEM */
type_offset_size_t struct_list_item_info[] = {
{TYPE_TICKTYPE, 0, 0}, /* xItemValue */
{TYPE_POINTER, 0, 0}, /* ListItem_t *pxNext */
{TYPE_POINTER, 0, 0}, /* ListItem_t *pxPrevious */
{TYPE_POINTER, 0, 0}, /* void *pvOwner */
{TYPE_POINTER, 0, 0}, /* List_t *pvContainer */
};
/* struct tskTaskControlBlock */
type_offset_size_t task_control_block_info[] = {
{TYPE_POINTER, 0, 0}, /* StackType_t *pxTopOfStack */
{TYPE_LIST_ITEM, 0, 0}, /* ListItem_t xStateListItem */
{TYPE_LIST_ITEM, 0, 0}, /* ListItem_t xEventListItem */
{TYPE_UBASE, 0, 0}, /* uxPriority */
{TYPE_POINTER, 0, 0}, /* StackType_t *pxStack */
/* configMAX_TASK_NAME_LEN varies a lot between targets, but luckily the
* name is NULL_terminated and we don't need to read anything else in
* the TCB. */
{TYPE_CHAR_ARRAY, 0, FREERTOS_THREAD_NAME_STR_SIZE}, /* char pcTaskName[configMAX_TASK_NAME_LEN] */
/* Lots of more optional stuff, but is is irrelevant to us. */
};
freertos->list_width = populate_offset_size(
freertos, struct_list_info, ARRAY_SIZE(struct_list_info));
freertos->list_uxNumberOfItems_offset = struct_list_info[0].offset;
freertos->list_uxNumberOfItems_size = struct_list_info[0].size;
freertos->list_next_offset = struct_list_info[3].offset;
freertos->list_next_size = struct_list_info[3].size;
freertos->list_item_width = populate_offset_size(
freertos, struct_list_item_info, ARRAY_SIZE(struct_list_item_info));
freertos->list_elem_next_offset = struct_list_item_info[1].offset;
freertos->list_elem_next_size = struct_list_item_info[1].size;
freertos->list_elem_content_offset = struct_list_item_info[3].offset;
freertos->list_elem_content_size = struct_list_item_info[3].size;
populate_offset_size(
freertos, task_control_block_info, ARRAY_SIZE(task_control_block_info));
freertos->thread_stack_offset = task_control_block_info[0].offset;
freertos->thread_stack_size = task_control_block_info[0].size;
freertos->thread_name_offset = task_control_block_info[5].offset;
}
static int FreeRTOS_update_threads(struct rtos *rtos)
{
int retval;
unsigned int tasks_found = 0;
if (rtos->rtos_specific_params == NULL)
return ERROR_FAIL;
FreeRTOS_compute_offsets(rtos);
struct FreeRTOS *freertos = (struct FreeRTOS *) rtos->rtos_specific_params;
if (rtos->symbols == NULL) {
LOG_ERROR("No symbols for FreeRTOS");
return ERROR_FAIL;
}
if (rtos->symbols[FreeRTOS_VAL_uxCurrentNumberOfTasks].address == 0) {
LOG_ERROR("Don't have the number of threads in FreeRTOS");
return ERROR_FAIL;
}
uint64_t thread_list_size;
retval = FreeRTOS_read_struct_value(rtos->target,
rtos->symbols[FreeRTOS_VAL_uxCurrentNumberOfTasks].address,
0,
freertos->ubasetype_size,
&thread_list_size);
LOG_DEBUG("FreeRTOS: Read uxCurrentNumberOfTasks at 0x%" PRIx64 ", value %" PRIu64,
rtos->symbols[FreeRTOS_VAL_uxCurrentNumberOfTasks].address,
thread_list_size);
if (retval != ERROR_OK) {
LOG_ERROR("Could not read FreeRTOS thread count from target");
return retval;
}
/* wipe out previous thread details if any */
rtos_free_threadlist(rtos);
/* read the current thread */
target_addr_t pxCurrentTCB;
retval = FreeRTOS_read_struct_value(rtos->target,
rtos->symbols[FreeRTOS_VAL_pxCurrentTCB].address,
0,
freertos->pointer_size,
&pxCurrentTCB);
if (retval != ERROR_OK) {
LOG_ERROR("Error reading current thread in FreeRTOS thread list");
return retval;
}
LOG_DEBUG("FreeRTOS: Read pxCurrentTCB at 0x%" PRIx64 ", value 0x%" PRIx64,
rtos->symbols[FreeRTOS_VAL_pxCurrentTCB].address,
pxCurrentTCB);
if ((thread_list_size == 0) || (pxCurrentTCB == 0)) {
/* Either : No RTOS threads - there is always at least the current execution though */
/* OR : No current thread - all threads suspended - show the current execution
* of idling */
char tmp_str[] = "Current Execution";
thread_list_size++;
tasks_found++;
rtos->thread_details = malloc(
sizeof(struct thread_detail) * thread_list_size);
if (!rtos->thread_details) {
LOG_ERROR("Error allocating memory for %" PRIu64 " threads", thread_list_size);
return ERROR_FAIL;
}
rtos->thread_details->threadid = 1;
rtos->thread_details->exists = true;
rtos->thread_details->extra_info_str = NULL;
rtos->thread_details->thread_name_str = malloc(sizeof(tmp_str));
strcpy(rtos->thread_details->thread_name_str, tmp_str);
if (thread_list_size == 1) {
rtos->thread_count = 1;
return ERROR_OK;
}
} else {
/* create space for new thread details */
rtos->thread_details = malloc(
sizeof(struct thread_detail) * thread_list_size);
if (!rtos->thread_details) {
LOG_ERROR("Error allocating memory for %" PRId64 " threads", thread_list_size);
return ERROR_FAIL;
}
}
/* Find out how many lists are needed to be read from pxReadyTasksLists, */
uint64_t top_used_priority = 0;
if (rtos->symbols[FreeRTOS_VAL_uxTopUsedPriority].address == 0) {
LOG_WARNING("FreeRTOS: uxTopUsedPriority is not defined, consult the OpenOCD manual for a work-around");
/* This is a hack specific to the binary I'm debugging.
* Ideally we get https://github.com/FreeRTOS/FreeRTOS-Kernel/issues/33
* into our FreeRTOS source. */
top_used_priority = 6;
} else {
retval = FreeRTOS_read_struct_value(rtos->target,
rtos->symbols[FreeRTOS_VAL_uxTopUsedPriority].address,
0,
freertos->ubasetype_size,
&top_used_priority);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("FreeRTOS: Read uxTopUsedPriority at 0x%" PRIx64 ", value %" PRIu64,
rtos->symbols[FreeRTOS_VAL_uxTopUsedPriority].address,
top_used_priority);
}
if (top_used_priority > FREERTOS_MAX_PRIORITIES) {
LOG_ERROR("FreeRTOS top used priority is unreasonably big, not proceeding: %" PRIu64,
top_used_priority);
return ERROR_FAIL;
}
/* uxTopUsedPriority was defined as configMAX_PRIORITIES - 1
* in old FreeRTOS versions (before V7.5.3)
* Use contrib/rtos-helpers/FreeRTOS-openocd.c to get compatible symbol
* in newer FreeRTOS versions.
* Here we restore the original configMAX_PRIORITIES value */
unsigned int config_max_priorities = top_used_priority + 1;
symbol_address_t *list_of_lists =
malloc(sizeof(symbol_address_t) * (config_max_priorities + 5));
if (!list_of_lists) {
LOG_ERROR("Error allocating memory for %u priorities", config_max_priorities);
return ERROR_FAIL;
}
unsigned int num_lists;
for (num_lists = 0; num_lists < config_max_priorities; num_lists++)
list_of_lists[num_lists] = rtos->symbols[FreeRTOS_VAL_pxReadyTasksLists].address +
num_lists * freertos->list_width;
list_of_lists[num_lists++] = rtos->symbols[FreeRTOS_VAL_xDelayedTaskList1].address;
list_of_lists[num_lists++] = rtos->symbols[FreeRTOS_VAL_xDelayedTaskList2].address;
list_of_lists[num_lists++] = rtos->symbols[FreeRTOS_VAL_xPendingReadyList].address;
list_of_lists[num_lists++] = rtos->symbols[FreeRTOS_VAL_xSuspendedTaskList].address;
list_of_lists[num_lists++] = rtos->symbols[FreeRTOS_VAL_xTasksWaitingTermination].address;
rtos->current_thread = 0;
for (unsigned int i = 0; i < num_lists; i++) {
if (list_of_lists[i] == 0)
continue;
/* Read the number of threads in this list */
uint64_t list_thread_count = 0;
retval = FreeRTOS_read_struct_value(rtos->target,
list_of_lists[i],
freertos->list_uxNumberOfItems_offset,
freertos->list_uxNumberOfItems_size,
&list_thread_count);
if (retval != ERROR_OK) {
LOG_ERROR("Error reading number of threads in FreeRTOS thread list");
free(list_of_lists);
return retval;
}
LOG_DEBUG("FreeRTOS: Read thread count for list %u at 0x%" PRIx64 ", value %" PRIu64,
i, list_of_lists[i], list_thread_count);
if (list_thread_count == 0)
continue;
/* Read the location of first list item */
target_addr_t prev_list_elem_ptr = -1;
target_addr_t list_elem_ptr = 0;
retval = FreeRTOS_read_struct_value(rtos->target,
list_of_lists[i],
freertos->list_next_offset,
freertos->list_next_size,
&list_elem_ptr);
if (retval != ERROR_OK) {
LOG_ERROR("Error reading first thread item location in FreeRTOS thread list");
free(list_of_lists);
return retval;
}
LOG_DEBUG("FreeRTOS: Read first item for list %u at 0x%" PRIx64 ", value 0x%" PRIx64,
i, list_of_lists[i] + freertos->list_next_offset, list_elem_ptr);
while ((list_thread_count > 0) && (list_elem_ptr != 0) &&
(list_elem_ptr != prev_list_elem_ptr) &&
(tasks_found < thread_list_size)) {
/* Get the location of the thread structure. */
rtos->thread_details[tasks_found].threadid = 0;
target_addr_t tcb;
retval = FreeRTOS_read_struct_value(rtos->target,
list_elem_ptr,
freertos->list_elem_content_offset,
freertos->list_elem_content_size,
&tcb);
if (retval != ERROR_OK) {
LOG_ERROR("Error reading thread list item object in FreeRTOS thread list");
free(list_of_lists);
return retval;
}
const struct FreeRTOS_thread_entry *value =
gl_map_get(freertos->entry_by_tcb, &tcb);
if (value == NULL) {
struct FreeRTOS_thread_entry *new_value = calloc(1, sizeof(struct FreeRTOS_thread_entry));
new_value->tcb = tcb;
/* threadid can't be 0. */
new_value->threadid = ++freertos->last_threadid;
if (gl_map_nx_put(freertos->entry_by_tcb, &new_value->tcb, new_value) == -1) {
LOG_ERROR("gl_map_nx_put failed");
return ERROR_FAIL;
}
if (gl_map_nx_put(freertos->entry_by_threadid, &new_value->threadid, new_value) == -1) {
LOG_ERROR("gl_map_nx_put failed");
return ERROR_FAIL;
}
value = new_value;
}
rtos->thread_details[tasks_found].threadid = value->threadid;
LOG_DEBUG("FreeRTOS: Thread %" PRId64 " has TCB 0x%" TARGET_PRIxADDR
"; read from 0x%" PRIx64,
value->threadid, value->tcb,
list_elem_ptr + freertos->list_elem_content_offset);
/* get thread name */
char tmp_str[FREERTOS_THREAD_NAME_STR_SIZE];
/* Read the thread name */
retval = target_read_buffer(rtos->target,
value->tcb + freertos->thread_name_offset,
FREERTOS_THREAD_NAME_STR_SIZE,
(uint8_t *)&tmp_str);
if (retval != ERROR_OK) {
LOG_ERROR("Error reading first thread item location in FreeRTOS thread list");
free(list_of_lists);
return retval;
}
tmp_str[FREERTOS_THREAD_NAME_STR_SIZE-1] = '\x00';
LOG_DEBUG("FreeRTOS: Read Thread Name at 0x%" PRIx64 ", value '%s'",
value->tcb + freertos->thread_name_offset,
tmp_str);
if (tmp_str[0] == '\x00')
strcpy(tmp_str, "No Name");
rtos->thread_details[tasks_found].thread_name_str =
malloc(strlen(tmp_str)+1);
strcpy(rtos->thread_details[tasks_found].thread_name_str, tmp_str);
rtos->thread_details[tasks_found].exists = true;
if (value->tcb == pxCurrentTCB) {
char running_str[] = "State: Running";
rtos->current_thread = value->threadid;
rtos->thread_details[tasks_found].extra_info_str = malloc(
sizeof(running_str));
strcpy(rtos->thread_details[tasks_found].extra_info_str,
running_str);
} else
rtos->thread_details[tasks_found].extra_info_str = NULL;
tasks_found++;
list_thread_count--;
prev_list_elem_ptr = list_elem_ptr;
list_elem_ptr = 0;
retval = FreeRTOS_read_struct_value(rtos->target,
prev_list_elem_ptr,
freertos->list_elem_next_offset,
freertos->list_elem_next_size,
&list_elem_ptr);
if (retval != ERROR_OK) {
LOG_ERROR("Error reading next thread item location in FreeRTOS thread list");
free(list_of_lists);
return retval;
}
LOG_DEBUG("FreeRTOS: Read next thread location at " TARGET_ADDR_FMT
", value " TARGET_ADDR_FMT,
prev_list_elem_ptr + freertos->list_elem_next_offset,
list_elem_ptr);
}
}
free(list_of_lists);
rtos->thread_count = tasks_found;
return 0;
}
static int FreeRTOS_get_stacking_info(struct rtos *rtos, threadid_t thread_id,
const struct rtos_register_stacking **stacking_info,
target_addr_t *stack_ptr)
{
if (rtos->rtos_specific_params == NULL) {
LOG_ERROR("rtos_specific_params is NULL!");
return ERROR_FAIL;
}
FreeRTOS_compute_offsets(rtos);
struct FreeRTOS *freertos = (struct FreeRTOS *) rtos->rtos_specific_params;
const struct FreeRTOS_params *param = freertos->param;
const struct FreeRTOS_thread_entry *entry =
gl_map_get(freertos->entry_by_threadid, &thread_id);
if (entry == NULL) {
LOG_ERROR("Unknown thread id: %" PRId64, thread_id);
return ERROR_FAIL;
}
/* Read the stack pointer */
int retval = FreeRTOS_read_struct_value(rtos->target,
entry->tcb,
freertos->thread_stack_offset,
freertos->thread_stack_size,
stack_ptr);
if (retval != ERROR_OK) {
LOG_ERROR("Error reading stack frame from FreeRTOS thread %" PRIx64, thread_id);
return retval;
}
LOG_DEBUG("[%" PRId64 "] FreeRTOS: Read stack pointer at 0x%" PRIx64 ", value 0x%" PRIx64,
thread_id, entry->tcb + freertos->thread_stack_offset, *stack_ptr);
if (param->stacking(rtos, stacking_info, *stack_ptr) != ERROR_OK) {
LOG_ERROR("No stacking info found for %s!", param->target_name);
return ERROR_FAIL;
}
return ERROR_OK;
}
static int FreeRTOS_get_thread_reg_list(struct rtos *rtos, threadid_t thread_id,
struct rtos_reg **reg_list, int *num_regs)
{
/* Let the caller read registers directly for the current thread. */
if (thread_id == 0)
return ERROR_FAIL;
const struct rtos_register_stacking *stacking_info;
target_addr_t stack_ptr;
if (FreeRTOS_get_stacking_info(rtos, thread_id, &stacking_info, &stack_ptr) != ERROR_OK)
return ERROR_FAIL;
return rtos_generic_stack_read(rtos->target, stacking_info, stack_ptr, reg_list, num_regs);
}
static int FreeRTOS_get_thread_reg(struct rtos *rtos, threadid_t thread_id,
uint32_t reg_num, struct rtos_reg *reg)
{
LOG_DEBUG("reg_num=%d", reg_num);
/* Let the caller read registers directly for the current thread. */
if (thread_id == 0)
return ERROR_FAIL;
const struct rtos_register_stacking *stacking_info;
target_addr_t stack_ptr;
if (FreeRTOS_get_stacking_info(rtos, thread_id, &stacking_info, &stack_ptr) != ERROR_OK)
return ERROR_FAIL;
return rtos_generic_stack_read_reg(rtos->target, stacking_info, stack_ptr, reg_num, reg);
}
static int FreeRTOS_set_reg(struct rtos *rtos, uint32_t reg_num, uint8_t *reg_value)
{
LOG_DEBUG("[%" PRId64 "] reg_num=%" PRId32, rtos->current_threadid, reg_num);
/* Let the caller write registers directly for the current thread. */
if (rtos->current_threadid == rtos->current_thread)
return ERROR_FAIL;
const struct rtos_register_stacking *stacking_info;
target_addr_t stack_ptr;
if (FreeRTOS_get_stacking_info(rtos, rtos->current_threadid,
&stacking_info, &stack_ptr) != ERROR_OK)
return ERROR_FAIL;
return rtos_generic_stack_write_reg(rtos->target, stacking_info, stack_ptr,
reg_num, reg_value);
}
static int FreeRTOS_get_symbol_list_to_lookup(symbol_table_elem_t *symbol_list[])
{
unsigned int i;
*symbol_list = calloc(
ARRAY_SIZE(FreeRTOS_symbol_list), sizeof(symbol_table_elem_t));
for (i = 0; i < ARRAY_SIZE(FreeRTOS_symbol_list); i++) {
(*symbol_list)[i].symbol_name = FreeRTOS_symbol_list[i].name;
(*symbol_list)[i].optional = FreeRTOS_symbol_list[i].optional;
}
return 0;
}
#if 0
static int FreeRTOS_set_current_thread(struct rtos *rtos, threadid_t thread_id)
{
return 0;
}
static int FreeRTOS_get_thread_ascii_info(struct rtos *rtos, threadid_t thread_id, char **info)
{
int retval;
const struct FreeRTOS_params *param;
if (rtos == NULL)
return -1;
if (thread_id == 0)
return -2;
if (rtos->rtos_specific_params == NULL)
return -3;
param = (const struct FreeRTOS_params *) rtos->rtos_specific_params;
#define FREERTOS_THREAD_NAME_STR_SIZE (200)
char tmp_str[FREERTOS_THREAD_NAME_STR_SIZE];
/* Read the thread name */
retval = target_read_buffer(rtos->target,
thread_id + param->thread_name_offset,
FREERTOS_THREAD_NAME_STR_SIZE,
(uint8_t *)&tmp_str);
if (retval != ERROR_OK) {
LOG_ERROR("Error reading first thread item location in FreeRTOS thread list");
return retval;
}
tmp_str[FREERTOS_THREAD_NAME_STR_SIZE-1] = '\x00';
if (tmp_str[0] == '\x00')
strcpy(tmp_str, "No Name");
*info = malloc(strlen(tmp_str)+1);
strcpy(*info, tmp_str);
return 0;
}
#endif
static bool FreeRTOS_detect_rtos(struct target *target)
{
if ((target->rtos->symbols != NULL) &&
(target->rtos->symbols[FreeRTOS_VAL_pxReadyTasksLists].address != 0)) {
/* looks like FreeRTOS */
return true;
}
return false;
}
static bool target_addr_equals(const void *x1, const void *x2)
{
const target_addr_t *a1 = x1;
const target_addr_t *a2 = x2;
return *a1 == *a2;
}
static size_t target_addr_hash(const void *x)
{
const target_addr_t *a = x;
return *a;
}
static void free_const(const void *x)
{
/* Cast away const. */
free((void *) x);
}
static int FreeRTOS_create(struct target *target)
{
int i = 0;
while ((i < FREERTOS_NUM_PARAMS) &&
(0 != strcmp(FreeRTOS_params_list[i].target_name, target->type->name))) {
i++;
}
if (i >= FREERTOS_NUM_PARAMS) {
LOG_ERROR("Could not find target in FreeRTOS compatibility list");
return ERROR_FAIL;
}
target->rtos->rtos_specific_params = calloc(1, sizeof(struct FreeRTOS));
if (target->rtos->rtos_specific_params == NULL) {
LOG_ERROR("calloc failed");
return ERROR_FAIL;
}
struct FreeRTOS *freertos = (struct FreeRTOS *) target->rtos->rtos_specific_params;
freertos->entry_by_threadid = gl_map_nx_create_empty(
GL_LINKEDHASH_MAP, target_addr_equals, target_addr_hash, NULL, free_const);
if (freertos->entry_by_threadid == NULL) {
LOG_ERROR("gl_map_nx_create_empty failed");
return ERROR_FAIL;
}
freertos->entry_by_tcb = gl_map_nx_create_empty(
GL_LINKEDHASH_MAP, target_addr_equals, target_addr_hash, NULL, NULL);
if (freertos->entry_by_tcb == NULL) {
LOG_ERROR("gl_map_nx_create_empty failed");
return ERROR_FAIL;
}
freertos->param = &FreeRTOS_params_list[i];
if (freertos->param->commands) {
if (register_commands(target->rtos->cmd_ctx, NULL,
freertos->param->commands) != ERROR_OK)
return ERROR_FAIL;
}
return 0;
}