/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see . *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include
#include
#include
/* Regarding performance:
*
* Short story - it might be best to leave the performance at
* current levels.
*
* You may see a jump in speed if you change to using
* 32bit words for the block programming.
*
* Its a shame you cannot use the double word as its
* even faster - but you require external VPP for that mode.
*
* Having said all that 16bit writes give us the widest vdd
* operating range, so may be worth adding a note to that effect.
*
*/
/* Danger!!!! The STM32F1x and STM32F2x series actually have
* quite different flash controllers.
*
* What's more scary is that the names of the registers and their
* addresses are the same, but the actual bits and what they do are
* can be very different.
*
* To reduce testing complexity and dangers of regressions,
* a separate file is used for stm32fx2x.
*
* Sector sizes in kiBytes:
* 1 MiByte part with 4 x 16, 1 x 64, 7 x 128.
* 1.5 MiByte part with 4 x 16, 1 x 64, 11 x 128.
* 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128.
* 1 MiByte STM32F42x/43x part with DB1M Option set:
* 4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
*
* STM32F7[2|3]
* 512 kiByte part with 4 x 16, 1 x 64, 3 x 128.
*
* STM32F7[4|5]
* 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
*
* STM32F7[6|7]
* 1 MiByte part in single bank mode with 4 x 32, 1 x 128, 3 x 256.
* 1 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 3 x 128 each.
* 2 MiByte part in single-bank mode with 4 x 32, 1 x 128, 7 x 256.
* 2 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 7 x 128 each.
*
* Protection size is sector size.
*
* Tested with STM3220F-EVAL board.
*
* STM32F4xx series for reference.
*
* RM0090
* http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf
*
* PM0059
* www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
* PROGRAMMING_MANUAL/CD00233952.pdf
*
* STM32F7xx series for reference.
*
* RM0385
* http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
*
* RM0410
* http://www.st.com/resource/en/reference_manual/dm00224583.pdf
*
* RM0430
* http://www.st.com/resource/en/reference_manual/dm00305666.pdf
*
* RM0431
* http://www.st.com/resource/en/reference_manual/dm00305990.pdf
*
* STM32F1x series - notice that this code was copy, pasted and knocked
* into a stm32f2x driver, so in case something has been converted or
* bugs haven't been fixed, here are the original manuals:
*
* RM0008 - Reference manual
*
* RM0042, the Flash programming manual for low-, medium- high-density and
* connectivity line STM32F10x devices
*
* PM0068, the Flash programming manual for XL-density STM32F10x devices.
*
*/
/* Erase time can be as high as 1000ms, 10x this and it's toast... */
#define FLASH_ERASE_TIMEOUT 10000
#define FLASH_WRITE_TIMEOUT 5
/* Mass erase time can be as high as 32 s in x8 mode. */
#define FLASH_MASS_ERASE_TIMEOUT 33000
#define FLASH_BANK_BASE 0x80000000
#define STM32F2_OTP_SIZE 512
#define STM32F2_OTP_SECTOR_SIZE 32
#define STM32F2_OTP_BANK_BASE 0x1fff7800
#define STM32F2_OTP_LOCK_BASE ((STM32F2_OTP_BANK_BASE) + (STM32F2_OTP_SIZE))
/* see RM0410 section 3.6 "One-time programmable bytes" */
#define STM32F7_OTP_SECTOR_SIZE 64
#define STM32F7_OTP_SIZE 1024
#define STM32F7_OTP_BANK_BASE 0x1ff0f000
#define STM32F7_OTP_LOCK_BASE ((STM32F7_OTP_BANK_BASE) + (STM32F7_OTP_SIZE))
#define STM32_FLASH_BASE 0x40023c00
#define STM32_FLASH_ACR 0x40023c00
#define STM32_FLASH_KEYR 0x40023c04
#define STM32_FLASH_OPTKEYR 0x40023c08
#define STM32_FLASH_SR 0x40023c0C
#define STM32_FLASH_CR 0x40023c10
#define STM32_FLASH_OPTCR 0x40023c14
#define STM32_FLASH_OPTCR1 0x40023c18
#define STM32_FLASH_OPTCR2 0x40023c1c
/* FLASH_CR register bits */
#define FLASH_PG (1 << 0)
#define FLASH_SER (1 << 1)
#define FLASH_MER (1 << 2) /* MER/MER1 for f76x/77x */
#define FLASH_MER1 (1 << 15) /* MER2 for f76x/77x, confusing ... */
#define FLASH_STRT (1 << 16)
#define FLASH_PSIZE_8 (0 << 8)
#define FLASH_PSIZE_16 (1 << 8)
#define FLASH_PSIZE_32 (2 << 8)
#define FLASH_PSIZE_64 (3 << 8)
/* The sector number encoding is not straight binary for dual bank flash. */
#define FLASH_SNB(a) ((a) << 3)
#define FLASH_LOCK (1 << 31)
/* FLASH_SR register bits */
#define FLASH_BSY (1 << 16)
#define FLASH_PGSERR (1 << 7) /* Programming sequence error */
#define FLASH_PGPERR (1 << 6) /* Programming parallelism error */
#define FLASH_PGAERR (1 << 5) /* Programming alignment error */
#define FLASH_WRPERR (1 << 4) /* Write protection error */
#define FLASH_OPERR (1 << 1) /* Operation error */
#define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
/* STM32_FLASH_OPTCR register bits */
#define OPTCR_LOCK (1 << 0)
#define OPTCR_START (1 << 1)
#define OPTCR_NDBANK (1 << 29) /* not dual bank mode */
#define OPTCR_DB1M (1 << 30) /* 1 MiB devices dual flash bank option */
#define OPTCR_SPRMOD (1 << 31) /* switches PCROPi/nWPRi interpretation */
/* STM32_FLASH_OPTCR2 register bits */
#define OPTCR2_PCROP_RDP (1 << 31) /* erase PCROP zone when decreasing RDP */
/* register unlock keys */
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
/* option register unlock key */
#define OPTKEY1 0x08192A3B
#define OPTKEY2 0x4C5D6E7F
struct stm32x_options {
uint8_t RDP;
uint16_t user_options; /* bit 0-7 usual options, bit 8-11 extra options */
uint32_t protection;
uint32_t boot_addr;
uint32_t optcr2_pcrop;
};
struct stm32x_flash_bank {
struct stm32x_options option_bytes;
bool probed;
bool otp_unlocked;
bool has_large_mem; /* F42x/43x/469/479/7xx in dual bank mode */
bool has_extra_options; /* F42x/43x/469/479/7xx */
bool has_boot_addr; /* F7xx */
bool has_optcr2_pcrop; /* F72x/73x */
unsigned int protection_bits; /* F413/423 */
uint32_t user_bank_size;
};
static bool stm32x_is_otp(struct flash_bank *bank)
{
return bank->base == STM32F2_OTP_BANK_BASE ||
bank->base == STM32F7_OTP_BANK_BASE;
}
static bool stm32x_otp_is_f7(struct flash_bank *bank)
{
return bank->base == STM32F7_OTP_BANK_BASE;
}
static int stm32x_is_otp_unlocked(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
return stm32x_info->otp_unlocked;
}
static int stm32x_otp_disable(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
LOG_INFO("OTP memory bank #%u is disabled for write commands.",
bank->bank_number);
stm32x_info->otp_unlocked = false;
return ERROR_OK;
}
static int stm32x_otp_enable(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (!stm32x_info->otp_unlocked) {
LOG_INFO("OTP memory bank #%u is is enabled for write commands.",
bank->bank_number);
stm32x_info->otp_unlocked = true;
} else {
LOG_WARNING("OTP memory bank #%u is is already enabled for write commands.",
bank->bank_number);
}
return ERROR_OK;
}
/* flash bank stm32x 0 0
*/
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
struct stm32x_flash_bank *stm32x_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
bank->driver_priv = stm32x_info;
stm32x_info->probed = false;
stm32x_info->otp_unlocked = false;
stm32x_info->user_bank_size = bank->size;
return ERROR_OK;
}
static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
{
return reg;
}
static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
}
static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;) {
retval = stm32x_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32, status);
if ((status & FLASH_BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_WRPERR) {
LOG_ERROR("stm32x device protected");
retval = ERROR_FAIL;
}
/* Clear but report errors */
if (status & FLASH_ERROR) {
if (retval == ERROR_OK)
retval = ERROR_FAIL;
/* If this operation fails, we ignore it and report the original
* retval
*/
target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
status & FLASH_ERROR);
}
return retval;
}
static int stm32x_unlock_reg(struct target *target)
{
uint32_t ctrl;
/* first check if not already unlocked
* otherwise writing on STM32_FLASH_KEYR will fail
*/
int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_LOCK) == 0)
return ERROR_OK;
/* unlock flash registers */
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_LOCK) {
LOG_ERROR("flash not unlocked STM32_FLASH_CR: 0x%" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static int stm32x_unlock_option_reg(struct target *target)
{
uint32_t ctrl;
int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & OPTCR_LOCK) == 0)
return ERROR_OK;
/* unlock option registers */
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & OPTCR_LOCK) {
LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: 0x%" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static int stm32x_read_options(struct flash_bank *bank)
{
uint32_t optiondata;
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* read current option bytes */
int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
if (retval != ERROR_OK)
return retval;
/* caution: F2 implements 5 bits (WDG_SW only)
* whereas F7 6 bits (IWDG_SW and WWDG_SW) in user_options */
stm32x_info->option_bytes.user_options = optiondata & 0xfc;
stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
stm32x_info->option_bytes.protection =
(optiondata >> 16) & (~(0xffff << stm32x_info->protection_bits) & 0xffff);
if (stm32x_info->has_extra_options) {
/* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
stm32x_info->option_bytes.user_options |= (optiondata >> 20) &
((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00);
}
if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
if (retval != ERROR_OK)
return retval;
/* FLASH_OPTCR1 has quite different meanings ... */
if (stm32x_info->has_boot_addr) {
/* for F7xx it contains boot0 and boot1 */
stm32x_info->option_bytes.boot_addr = optiondata;
} else {
/* for F42x/43x/469/479 it contains 12 additional protection bits */
stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
}
}
if (stm32x_info->has_optcr2_pcrop) {
retval = target_read_u32(target, STM32_FLASH_OPTCR2, &optiondata);
if (retval != ERROR_OK)
return retval;
stm32x_info->option_bytes.optcr2_pcrop = optiondata;
if (stm32x_info->has_optcr2_pcrop &&
(stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) {
LOG_INFO("PCROP Engaged");
}
} else {
stm32x_info->option_bytes.optcr2_pcrop = 0x0;
}
if (stm32x_info->option_bytes.RDP != 0xAA)
LOG_INFO("Device Security Bit Set");
return ERROR_OK;
}
static int stm32x_write_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
uint32_t optiondata, optiondata2;
stm32x_info = bank->driver_priv;
int retval = stm32x_unlock_option_reg(target);
if (retval != ERROR_OK)
return retval;
/* rebuild option data */
optiondata = stm32x_info->option_bytes.user_options & 0xfc;
optiondata |= stm32x_info->option_bytes.RDP << 8;
optiondata |= (stm32x_info->option_bytes.protection &
(~(0xffff << stm32x_info->protection_bits))) << 16;
if (stm32x_info->has_extra_options) {
/* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
optiondata |= (stm32x_info->option_bytes.user_options &
((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00)) << 20;
}
if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
if (stm32x_info->has_boot_addr) {
/* F7xx uses FLASH_OPTCR1 for boot0 and boot1 ... */
optiondata2 = stm32x_info->option_bytes.boot_addr;
} else {
/* F42x/43x/469/479 uses FLASH_OPTCR1 for additional protection bits */
optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
}
retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
if (retval != ERROR_OK)
return retval;
}
/* program extra pcrop register */
if (stm32x_info->has_optcr2_pcrop) {
retval = target_write_u32(target, STM32_FLASH_OPTCR2,
stm32x_info->option_bytes.optcr2_pcrop);
if (retval != ERROR_OK)
return retval;
}
/* program options */
retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
if (retval != ERROR_OK)
return retval;
/* start programming cycle */
retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START);
if (retval != ERROR_OK)
return retval;
/* wait for completion, this might trigger a security erase and take a while */
retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
/* relock registers */
retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_otp_read_protect(struct flash_bank *bank)
{
struct target *target = bank->target;
uint32_t lock_base;
int retval;
uint8_t lock;
lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
: STM32F2_OTP_LOCK_BASE;
for (unsigned int i = 0; i < bank->num_sectors; i++) {
retval = target_read_u8(target, lock_base + i, &lock);
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_protected = !lock;
}
return ERROR_OK;
}
static int stm32x_otp_protect(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
uint32_t lock_base;
int i, retval;
uint8_t lock;
assert((first <= last) && (last < bank->num_sectors));
lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
: STM32F2_OTP_LOCK_BASE;
for (i = first; first <= last; i++) {
retval = target_read_u8(target, lock_base + i, &lock);
if (retval != ERROR_OK)
return retval;
if (lock)
continue;
lock = 0xff;
retval = target_write_u8(target, lock_base + i, lock);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
static int stm32x_protect_check(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct flash_sector *prot_blocks;
unsigned int num_prot_blocks;
int retval;
/* if it's the OTP bank, look at the lock bits there */
if (stm32x_is_otp(bank))
return stm32x_otp_read_protect(bank);
/* read write protection settings */
retval = stm32x_read_options(bank);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read option bytes");
return retval;
}
if (bank->prot_blocks) {
num_prot_blocks = bank->num_prot_blocks;
prot_blocks = bank->prot_blocks;
} else {
num_prot_blocks = bank->num_sectors;
prot_blocks = bank->sectors;
}
for (unsigned int i = 0; i < num_prot_blocks; i++)
prot_blocks[i].is_protected =
~(stm32x_info->option_bytes.protection >> i) & 1;
return ERROR_OK;
}
static int stm32x_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
if (stm32x_is_otp(bank)) {
LOG_ERROR("Cannot erase OTP memory");
return ERROR_FAIL;
}
assert((first <= last) && (last < bank->num_sectors));
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
int retval;
retval = stm32x_unlock_reg(target);
if (retval != ERROR_OK)
return retval;
/*
Sector Erase
To erase a sector, follow the procedure below:
1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
FLASH_SR register
2. Set the SER bit and select the sector
you wish to erase (SNB) in the FLASH_CR register
3. Set the STRT bit in the FLASH_CR register
4. Wait for the BSY bit to be cleared
*/
for (unsigned int i = first; i <= last; i++) {
unsigned int snb;
if (stm32x_info->has_large_mem && i >= 12)
snb = (i - 12) | 0x10;
else
snb = i;
retval = target_write_u32(target,
stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(snb) | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_erased = 1;
}
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (stm32x_is_otp(bank)) {
if (!set)
return ERROR_COMMAND_ARGUMENT_INVALID;
return stm32x_otp_protect(bank, first, last);
}
/* read protection settings */
int retval = stm32x_read_options(bank);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read option bytes");
return retval;
}
for (unsigned int i = first; i <= last; i++) {
if (set)
stm32x_info->option_bytes.protection &= ~(1 << i);
else
stm32x_info->option_bytes.protection |= (1 << i);
}
retval = stm32x_write_options(bank);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
static const uint8_t stm32x_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32f2x.inc"
};
if (stm32x_is_otp(bank) && !stm32x_is_otp_unlocked(bank)) {
LOG_ERROR("OTP memory bank is disabled for write commands.");
return ERROR_FAIL;
}
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32x_flash_write_code),
stm32x_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
if (buffer_size <= 256) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* buffer end */
init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* target address */
init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* count (halfword-16bit) */
init_reg_param(®_params[4], "r4", 32, PARAM_OUT); /* flash base */
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, count);
buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
retval = target_run_flash_async_algorithm(target, buffer, count, 2,
0, NULL,
5, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("error executing stm32x flash write algorithm");
uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
if (error & FLASH_WRPERR)
LOG_ERROR("flash memory write protected");
if (error != 0) {
LOG_ERROR("flash write failed = 0x%08" PRIx32, error);
/* Clear but report errors */
target_write_u32(target, STM32_FLASH_SR, error);
retval = ERROR_FAIL;
}
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
destroy_reg_param(®_params[3]);
destroy_reg_param(®_params[4]);
return retval;
}
static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t words_remaining = (count / 2);
uint32_t bytes_remaining = (count & 0x00000001);
uint32_t address = bank->base + offset;
uint32_t bytes_written = 0;
int retval;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x1) {
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
retval = stm32x_unlock_reg(target);
if (retval != ERROR_OK)
return retval;
/* multiple half words (2-byte) to be programmed? */
if (words_remaining > 0) {
/* try using a block write */
retval = stm32x_write_block(bank, buffer, offset, words_remaining);
if (retval != ERROR_OK) {
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) single dword accesses */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
}
} else {
buffer += words_remaining * 2;
address += words_remaining * 2;
words_remaining = 0;
}
}
if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
return retval;
/*
Standard programming
The Flash memory programming sequence is as follows:
1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
FLASH_SR register.
2. Set the PG bit in the FLASH_CR register
3. Perform the data write operation(s) to the desired memory address (inside main
memory block or OTP area):
– – Half-word access in case of x16 parallelism
– Word access in case of x32 parallelism
–
4.
Byte access in case of x8 parallelism
Double word access in case of x64 parallelism
Wait for the BSY bit to be cleared
*/
while (words_remaining > 0) {
uint16_t value;
memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
FLASH_PG | FLASH_PSIZE_16);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, address, value);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
bytes_written += 2;
words_remaining--;
address += 2;
}
if (bytes_remaining) {
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
FLASH_PG | FLASH_PSIZE_8);
if (retval != ERROR_OK)
return retval;
retval = target_write_u8(target, address, buffer[bytes_written]);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
}
return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
}
static void setup_sector(struct flash_bank *bank, unsigned int i,
unsigned int size)
{
assert(i < bank->num_sectors);
bank->sectors[i].offset = bank->size;
bank->sectors[i].size = size;
bank->size += bank->sectors[i].size;
LOG_DEBUG("sector %u: %ukBytes", i, size >> 10);
}
static uint16_t sector_size_in_kb(unsigned int i, uint16_t max_sector_size_in_kb)
{
if (i < 4)
return max_sector_size_in_kb / 8;
if (i == 4)
return max_sector_size_in_kb / 2;
return max_sector_size_in_kb;
}
static unsigned int calculate_number_of_sectors(struct flash_bank *bank,
uint16_t flash_size_in_kb,
uint16_t max_sector_size_in_kb)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
unsigned int nr_sectors;
/* Dual Bank Flash has two identically-arranged banks of sectors. */
if (stm32x_info->has_large_mem)
remaining_flash_size_in_kb /= 2;
for (nr_sectors = 0; remaining_flash_size_in_kb > 0; nr_sectors++) {
uint16_t size_in_kb = sector_size_in_kb(nr_sectors, max_sector_size_in_kb);
if (size_in_kb > remaining_flash_size_in_kb) {
LOG_INFO("%s Bank %" PRIu16 " kiB final sector clipped to %" PRIu16 " kiB",
stm32x_info->has_large_mem ? "Dual" : "Single",
flash_size_in_kb, remaining_flash_size_in_kb);
remaining_flash_size_in_kb = 0;
} else {
remaining_flash_size_in_kb -= size_in_kb;
}
}
return stm32x_info->has_large_mem ? nr_sectors*2 : nr_sectors;
}
static void setup_bank(struct flash_bank *bank, unsigned int start,
uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb)
{
uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
unsigned int sector_index = 0;
while (remaining_flash_size_in_kb > 0) {
uint16_t size_in_kb = sector_size_in_kb(sector_index, max_sector_size_in_kb);
if (size_in_kb > remaining_flash_size_in_kb) {
/* Clip last sector. Already warned in
* calculate_number_of_sectors. */
size_in_kb = remaining_flash_size_in_kb;
}
setup_sector(bank, start + sector_index, size_in_kb * 1024);
remaining_flash_size_in_kb -= size_in_kb;
sector_index++;
}
}
static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
{
/* this checks for a stm32f4x errata issue where a
* stm32f2x DBGMCU_IDCODE is incorrectly returned.
* If the issue is detected target is forced to stm32f4x Rev A.
* Only effects Rev A silicon */
struct target *target = bank->target;
struct cortex_m_common *cortex_m = target_to_cm(target);
/* read stm32 device id register */
int retval = target_read_u32(target, 0xE0042000, device_id);
if (retval != ERROR_OK)
return retval;
if ((*device_id & 0xfff) == 0x411 && cortex_m->core_info->partno == CORTEX_M4_PARTNO) {
*device_id &= ~((0xFFFF << 16) | 0xfff);
*device_id |= (0x1000 << 16) | 0x413;
LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
}
return retval;
}
static int stm32x_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
unsigned int num_prot_blocks, num_sectors;
uint16_t flash_size_in_kb;
uint16_t otp_size_in_b;
uint16_t otp_sector_size;
uint32_t flash_size_reg = 0x1FFF7A22;
uint16_t max_sector_size_in_kb = 128;
uint16_t max_flash_size_in_kb;
uint32_t device_id;
uint32_t base_address = 0x08000000;
stm32x_info->probed = false;
stm32x_info->has_large_mem = false;
stm32x_info->has_boot_addr = false;
stm32x_info->has_extra_options = false;
stm32x_info->has_optcr2_pcrop = false;
stm32x_info->protection_bits = 12; /* max. number of nWRPi bits (in FLASH_OPTCR !!!) */
num_prot_blocks = 0;
free(bank->sectors);
bank->num_sectors = 0;
bank->sectors = NULL;
free(bank->prot_blocks);
bank->num_prot_blocks = 0;
bank->prot_blocks = NULL;
/* if explicitly called out as OTP bank, short circuit probe */
if (stm32x_is_otp(bank)) {
if (stm32x_otp_is_f7(bank)) {
otp_size_in_b = STM32F7_OTP_SIZE;
otp_sector_size = STM32F7_OTP_SECTOR_SIZE;
} else {
otp_size_in_b = STM32F2_OTP_SIZE;
otp_sector_size = STM32F2_OTP_SECTOR_SIZE;
}
num_sectors = otp_size_in_b / otp_sector_size;
LOG_INFO("flash size = %" PRIu16 " bytes", otp_size_in_b);
assert(num_sectors > 0);
bank->num_sectors = num_sectors;
bank->sectors = calloc(sizeof(struct flash_sector), num_sectors);
if (stm32x_otp_is_f7(bank))
bank->size = STM32F7_OTP_SIZE;
else
bank->size = STM32F2_OTP_SIZE;
for (unsigned int i = 0; i < num_sectors; i++) {
bank->sectors[i].offset = i * otp_sector_size;
bank->sectors[i].size = otp_sector_size;
bank->sectors[i].is_erased = 1;
bank->sectors[i].is_protected = 0;
}
stm32x_info->probed = true;
return ERROR_OK;
}
/* read stm32 device id register */
int retval = stm32x_get_device_id(bank, &device_id);
if (retval != ERROR_OK)
return retval;
LOG_INFO("device id = 0x%08" PRIx32, device_id);
device_id &= 0xfff; /* only bits 0-11 are used further on */
/* set max flash size depending on family, id taken from AN2606 */
switch (device_id) {
case 0x411: /* F20x/21x */
case 0x413: /* F40x/41x */
max_flash_size_in_kb = 1024;
break;
case 0x419: /* F42x/43x */
case 0x434: /* F469/479 */
stm32x_info->has_extra_options = true;
max_flash_size_in_kb = 2048;
break;
case 0x423: /* F401xB/C */
max_flash_size_in_kb = 256;
break;
case 0x421: /* F446 */
case 0x431: /* F411 */
case 0x433: /* F401xD/E */
case 0x441: /* F412 */
max_flash_size_in_kb = 512;
break;
case 0x458: /* F410 */
max_flash_size_in_kb = 128;
break;
case 0x449: /* F74x/75x */
max_flash_size_in_kb = 1024;
max_sector_size_in_kb = 256;
flash_size_reg = 0x1FF0F442;
stm32x_info->has_extra_options = true;
stm32x_info->has_boot_addr = true;
break;
case 0x451: /* F76x/77x */
max_flash_size_in_kb = 2048;
max_sector_size_in_kb = 256;
flash_size_reg = 0x1FF0F442;
stm32x_info->has_extra_options = true;
stm32x_info->has_boot_addr = true;
break;
case 0x452: /* F72x/73x */
max_flash_size_in_kb = 512;
flash_size_reg = 0x1FF07A22; /* yes, 0x1FF*0*7A22, not 0x1FF*F*7A22 */
stm32x_info->has_extra_options = true;
stm32x_info->has_boot_addr = true;
stm32x_info->has_optcr2_pcrop = true;
break;
case 0x463: /* F413x/423x */
max_flash_size_in_kb = 1536;
stm32x_info->has_extra_options = true;
stm32x_info->protection_bits = 15;
num_prot_blocks = 15;
break;
default:
LOG_WARNING("Cannot identify target as a STM32 family.");
return ERROR_FAIL;
}
/* get flash size from target. */
retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
/* failed reading flash size or flash size invalid (early silicon),
* default to max target family */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %" PRIu16 "k flash",
max_flash_size_in_kb);
flash_size_in_kb = max_flash_size_in_kb;
}
/* if the user sets the size manually then ignore the probed value
* this allows us to work around devices that have a invalid flash size register value */
if (stm32x_info->user_bank_size) {
LOG_INFO("ignoring flash probed value, using configured bank size");
flash_size_in_kb = stm32x_info->user_bank_size / 1024;
}
LOG_INFO("flash size = %" PRIu16 " kbytes", flash_size_in_kb);
/* did we assign flash size? */
assert(flash_size_in_kb != 0xffff);
/* F42x/43x/469/479 1024 kiByte devices have a dual bank option */
if ((device_id == 0x419) || (device_id == 0x434)) {
uint32_t optiondata;
retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read option bytes");
return retval;
}
if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) {
stm32x_info->has_large_mem = true;
LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
} else {
stm32x_info->has_large_mem = false;
LOG_INFO("Single Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
}
}
/* F76x/77x devices have a dual bank option */
if (device_id == 0x451) {
uint32_t optiondata;
retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
if (retval != ERROR_OK) {
LOG_DEBUG("unable to read option bytes");
return retval;
}
if (optiondata & OPTCR_NDBANK) {
stm32x_info->has_large_mem = false;
LOG_INFO("Single Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
} else {
stm32x_info->has_large_mem = true;
max_sector_size_in_kb >>= 1; /* sector size divided by 2 in dual-bank mode */
LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
}
}
/* calculate numbers of pages */
unsigned int num_pages = calculate_number_of_sectors(
bank, flash_size_in_kb, max_sector_size_in_kb);
bank->base = base_address;
bank->num_sectors = num_pages;
bank->sectors = calloc(num_pages, sizeof(struct flash_sector));
for (unsigned int i = 0; i < num_pages; i++) {
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 0;
}
bank->size = 0;
LOG_DEBUG("allocated %u sectors", num_pages);
/* F76x/77x in dual bank mode */
if ((device_id == 0x451) && stm32x_info->has_large_mem)
num_prot_blocks = num_pages >> 1;
if (num_prot_blocks) {
bank->prot_blocks = malloc(sizeof(struct flash_sector) * num_prot_blocks);
for (unsigned int i = 0; i < num_prot_blocks; i++)
bank->prot_blocks[i].is_protected = 0;
LOG_DEBUG("allocated %u prot blocks", num_prot_blocks);
}
if (stm32x_info->has_large_mem) {
/* dual-bank */
setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb);
setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1,
max_sector_size_in_kb);
/* F767x/F77x in dual mode, one protection bit refers to two adjacent sectors */
if (device_id == 0x451) {
for (unsigned int i = 0; i < num_prot_blocks; i++) {
bank->prot_blocks[i].offset = bank->sectors[i << 1].offset;
bank->prot_blocks[i].size = bank->sectors[i << 1].size
+ bank->sectors[(i << 1) + 1].size;
}
}
} else {
/* single-bank */
setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb);
/* F413/F423, sectors 14 and 15 share one common protection bit */
if (device_id == 0x463) {
for (unsigned int i = 0; i < num_prot_blocks; i++) {
bank->prot_blocks[i].offset = bank->sectors[i].offset;
bank->prot_blocks[i].size = bank->sectors[i].size;
}
bank->prot_blocks[num_prot_blocks - 1].size <<= 1;
}
}
bank->num_prot_blocks = num_prot_blocks;
assert((bank->size >> 10) == flash_size_in_kb);
stm32x_info->probed = true;
return ERROR_OK;
}
static int stm32x_auto_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (stm32x_info->probed)
return ERROR_OK;
return stm32x_probe(bank);
}
static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
{
uint32_t dbgmcu_idcode;
/* read stm32 device id register */
int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
if (retval != ERROR_OK)
return retval;
uint16_t device_id = dbgmcu_idcode & 0xfff;
uint16_t rev_id = dbgmcu_idcode >> 16;
const char *device_str;
const char *rev_str = NULL;
switch (device_id) {
case 0x411:
device_str = "STM32F2xx";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x2000:
rev_str = "B";
break;
case 0x1001:
rev_str = "Z";
break;
case 0x2001:
rev_str = "Y";
break;
case 0x2003:
rev_str = "X";
break;
case 0x2007:
rev_str = "1";
break;
case 0x200F:
rev_str = "V";
break;
case 0x201F:
rev_str = "2";
break;
}
break;
case 0x413:
case 0x419:
case 0x434:
device_str = "STM32F4xx";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
case 0x1003:
rev_str = "Y";
break;
case 0x1007:
rev_str = "1";
break;
case 0x2001:
rev_str = "3";
break;
}
break;
case 0x421:
device_str = "STM32F446";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
}
break;
case 0x423:
case 0x431:
case 0x433:
case 0x458:
case 0x441:
device_str = "STM32F4xx (Low Power)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
case 0x2000:
rev_str = "B";
break;
case 0x3000:
rev_str = "C";
break;
}
break;
case 0x449:
device_str = "STM32F7[4|5]x";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
}
break;
case 0x451:
device_str = "STM32F7[6|7]x";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
}
break;
case 0x452:
device_str = "STM32F7[2|3]x";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
}
break;
case 0x463:
device_str = "STM32F4[1|2]3";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
}
break;
default:
command_print_sameline(cmd, "Cannot identify target as a STM32F2/4/7\n");
return ERROR_FAIL;
}
if (rev_str)
command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str);
else
command_print_sameline(cmd, "%s - Rev: unknown (0x%04" PRIx16 ")", device_str, rev_id);
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_lock_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_INFO("Target not halted");
/* return ERROR_TARGET_NOT_HALTED; */
}
if (stm32x_read_options(bank) != ERROR_OK) {
command_print(CMD, "%s failed to read options", bank->driver->name);
return ERROR_OK;
}
/* set readout protection */
stm32x_info->option_bytes.RDP = 0;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "%s failed to lock device", bank->driver->name);
return ERROR_OK;
}
command_print(CMD, "%s locked", bank->driver->name);
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_unlock_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_INFO("Target not halted");
/* return ERROR_TARGET_NOT_HALTED; */
}
if (stm32x_read_options(bank) != ERROR_OK) {
command_print(CMD, "%s failed to read options", bank->driver->name);
return ERROR_OK;
}
/* clear readout protection and complementary option bytes
* this will also force a device unlock if set */
stm32x_info->option_bytes.RDP = 0xAA;
if (stm32x_info->has_optcr2_pcrop) {
stm32x_info->option_bytes.optcr2_pcrop = OPTCR2_PCROP_RDP | (~1U << bank->num_sectors);
}
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "%s failed to unlock device", bank->driver->name);
return ERROR_OK;
}
command_print(CMD, "%s unlocked.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.", bank->driver->name);
return ERROR_OK;
}
static int stm32x_mass_erase(struct flash_bank *bank)
{
int retval;
uint32_t flash_mer;
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = NULL;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
stm32x_info = bank->driver_priv;
retval = stm32x_unlock_reg(target);
if (retval != ERROR_OK)
return retval;
/* mass erase flash memory */
if (stm32x_info->has_large_mem)
flash_mer = FLASH_MER | FLASH_MER1;
else
flash_mer = FLASH_MER;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
flash_mer | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
if (CMD_ARGC < 1) {
command_print(CMD, "stm32x mass_erase ");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_mass_erase(bank);
if (retval == ERROR_OK) {
/* set all sectors as erased */
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD, "stm32x mass erase complete");
} else {
command_print(CMD, "stm32x mass erase failed");
}
return retval;
}
COMMAND_HANDLER(stm32f2x_handle_options_read_command)
{
int retval;
struct flash_bank *bank;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC != 1) {
command_print(CMD, "stm32f2x options_read ");
return ERROR_COMMAND_SYNTAX_ERROR;
}
retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_read_options(bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
if (stm32x_info->has_extra_options) {
if (stm32x_info->has_boot_addr) {
uint32_t boot_addr = stm32x_info->option_bytes.boot_addr;
command_print(CMD, "stm32f2x user_options 0x%03" PRIX16 ","
" boot_add0 0x%04" PRIX32 ", boot_add1 0x%04" PRIX32,
stm32x_info->option_bytes.user_options,
boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16);
if (stm32x_info->has_optcr2_pcrop) {
command_print(CMD, "stm32f2x optcr2_pcrop 0x%08" PRIX32,
stm32x_info->option_bytes.optcr2_pcrop);
}
} else {
command_print(CMD, "stm32f2x user_options 0x%03" PRIX16,
stm32x_info->option_bytes.user_options);
}
} else {
command_print(CMD, "stm32f2x user_options 0x%02" PRIX16,
stm32x_info->option_bytes.user_options);
}
return retval;
}
COMMAND_HANDLER(stm32f2x_handle_options_write_command)
{
int retval;
struct flash_bank *bank;
struct stm32x_flash_bank *stm32x_info = NULL;
uint16_t user_options, boot_addr0, boot_addr1, options_mask;
if (CMD_ARGC < 1) {
command_print(CMD, "stm32f2x options_write ...");
return ERROR_COMMAND_SYNTAX_ERROR;
}
retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_read_options(bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
if (stm32x_info->has_boot_addr) {
if (CMD_ARGC != 4) {
command_print(CMD, "stm32f2x options_write "
" ");
return ERROR_COMMAND_SYNTAX_ERROR;
}
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0);
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1);
stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16);
} else {
if (CMD_ARGC != 2) {
command_print(CMD, "stm32f2x options_write ");
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options);
options_mask = !stm32x_info->has_extra_options ? ~0xfc :
~(((0xf00 << (stm32x_info->protection_bits - 12)) | 0xff) & 0xffc);
if (user_options & options_mask) {
command_print(CMD, "stm32f2x invalid user_options");
return ERROR_COMMAND_ARGUMENT_INVALID;
}
stm32x_info->option_bytes.user_options = user_options;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "stm32f2x failed to write options");
return ERROR_OK;
}
/* switching between single- and dual-bank modes requires re-probe */
/* ... and reprogramming of whole flash */
stm32x_info->probed = false;
command_print(CMD, "stm32f2x write options complete.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.");
return retval;
}
COMMAND_HANDLER(stm32f2x_handle_optcr2_write_command)
{
int retval;
struct flash_bank *bank;
struct stm32x_flash_bank *stm32x_info = NULL;
uint32_t optcr2_pcrop;
if (CMD_ARGC != 2) {
command_print(CMD, "stm32f2x optcr2_write ");
return ERROR_COMMAND_SYNTAX_ERROR;
}
retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
if (!stm32x_info->has_optcr2_pcrop) {
command_print(CMD, "no optcr2 register");
return ERROR_COMMAND_ARGUMENT_INVALID;
}
command_print(CMD, "INFO: To disable PCROP, set PCROP_RDP"
" with PCROPi bits STILL SET, then\nlock device and"
" finally unlock it. Clears PCROP and mass erases flash.");
retval = stm32x_read_options(bank);
if (retval != ERROR_OK)
return retval;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], optcr2_pcrop);
stm32x_info->option_bytes.optcr2_pcrop = optcr2_pcrop;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "stm32f2x failed to write options");
return ERROR_OK;
}
command_print(CMD, "stm32f2x optcr2_write complete.");
return retval;
}
COMMAND_HANDLER(stm32x_handle_otp_command)
{
if (CMD_ARGC < 2) {
command_print(CMD, "stm32x otp (enable|disable|show)");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
if (stm32x_is_otp(bank)) {
if (strcmp(CMD_ARGV[1], "enable") == 0) {
stm32x_otp_enable(bank);
} else if (strcmp(CMD_ARGV[1], "disable") == 0) {
stm32x_otp_disable(bank);
} else if (strcmp(CMD_ARGV[1], "show") == 0) {
command_print(CMD,
"OTP memory bank #%u is %s for write commands.",
bank->bank_number,
stm32x_is_otp_unlocked(bank) ? "enabled" : "disabled");
} else {
return ERROR_COMMAND_SYNTAX_ERROR;
}
} else {
command_print(CMD, "Failed: not an OTP bank.");
}
return retval;
}
static const struct command_registration stm32x_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32x_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
},
{
.name = "unlock",
.handler = stm32x_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
},
{
.name = "mass_erase",
.handler = stm32x_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "options_read",
.handler = stm32f2x_handle_options_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Read and display device option bytes.",
},
{
.name = "options_write",
.handler = stm32f2x_handle_options_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id user_options [ boot_add0 boot_add1 ]",
.help = "Write option bytes",
},
{
.name = "optcr2_write",
.handler = stm32f2x_handle_optcr2_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id optcr2",
.help = "Write optcr2 word",
},
{
.name = "otp",
.handler = stm32x_handle_otp_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "OTP (One Time Programmable) memory write enable/disable.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32x_command_handlers[] = {
{
.name = "stm32f2x",
.mode = COMMAND_ANY,
.help = "stm32f2x flash command group",
.usage = "",
.chain = stm32x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver stm32f2x_flash = {
.name = "stm32f2x",
.commands = stm32x_command_handlers,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.read = default_flash_read,
.probe = stm32x_probe,
.auto_probe = stm32x_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32x_protect_check,
.info = get_stm32x_info,
.free_driver_priv = default_flash_free_driver_priv,
};