aboutsummaryrefslogtreecommitdiff
path: root/mt/af_matmul/failedattempt.c
blob: f56168e29448528729c9d8c4421064c423ed2ce1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
//**************************************************************************
// Multi-threaded Matrix Multiply benchmark
//--------------------------------------------------------------------------
// TA     : Christopher Celio
// Student: 
//
//
// This benchmark multiplies two 2-D arrays together and writes the results to
// a third vector. The input data (and reference data) should be generated
// using the matmul_gendata.pl perl script and dumped to a file named
// dataset.h. 


// print out arrays, etc.
//#define DEBUG

//--------------------------------------------------------------------------
// Includes 

#include <string.h>
#include <stdlib.h>
#include <stdio.h>


//--------------------------------------------------------------------------
// Input/Reference Data

typedef float data_t;
#include "dataset.h"
 
  
//--------------------------------------------------------------------------
// Basic Utilities and Multi-thread Support

__thread unsigned long coreid;
unsigned long ncores;

#include "util.h"
   
#define stringify_1(s) #s
#define stringify(s) stringify_1(s)
#define stats(code) do { \
    unsigned long _c = -rdcycle(), _i = -rdinstret(); \
    code; \
    _c += rdcycle(), _i += rdinstret(); \
    if (coreid == 0) \
      printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
             stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
  } while(0)
 

//--------------------------------------------------------------------------
// Helper functions
    
void printArrayMT( char name[], int n, data_t arr[] )
{
   int i;
   if (coreid != 0)
      return;
  
   printf( " %10s :", name );
   for ( i = 0; i < n; i++ )
      printf( " %3ld ", (long) arr[i] );
   printf( "\n" );
}
      
void __attribute__((noinline)) verifyMT(size_t n, const data_t* test, const data_t* correct)
{
   if (coreid != 0)
      return;

   size_t i;
   for (i = 0; i < n; i++)
   {
      if (test[i] != correct[i])
      {
         printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n", 
            i, (long)test[i], i, (long)correct[i]);
         exit(-1);
      }
   }
   
   return;
}
 
//--------------------------------------------------------------------------
// matmul function
 
// single-thread, naive version
void __attribute__((noinline)) matmul_naive(const int lda,  const data_t A[], const data_t B[], data_t C[] )
{
   int i, j, k;

   if (coreid > 0)
      return;
  
   for ( i = 0; i < lda; i++ )
      for ( j = 0; j < lda; j++ )  
      {
         for ( k = 0; k < lda; k++ ) 
         {
            C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
         }
      }

}
 


void __attribute__((noinline)) matmul(const int lda,  const data_t A[], const data_t B[], data_t C[] )
{
  size_t i;
	size_t i2;
  size_t j;
	size_t j2;
	size_t k;
	size_t k2;
  size_t max_dim = lda*lda;
	size_t block_size = lda/2;
  data_t temp_mat[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
	if (coreid == 0) {
		//making a 16x16 block 
		//First block: Top 16x16 block left of A and top left of B = top left of C
		//Second block: top right 16x16 right block of A and top right of B = top right of C
		for (j2= 0; j2 < 2; j2++) {
		  for (i2 = 0; i2 < 2; i2++) {
				//for (j2= 0; j2 < 2; j2++) {
					//K represents which row of A and C
					for (k = 0; k < block_size; k++) {
						int rowIndex = k*32;
						for (i = i2*block_size; i < i2*block_size+block_size; i++) {
							int elementA = A[rowIndex+i];
							int columnIndex = i%32*32;
							for (j = 0; j < block_size; j++) {
								temp_mat[j] += elementA*B[columnIndex+j+j2*block_size];
					    }
						}
						//Put temp_mat into actual result Matrix	
						for (k2 = 0; k2 < block_size; k2++) {	   
							C[rowIndex+k2+j2*block_size] += temp_mat[k2];
							temp_mat[k2] = 0;
						}
					}
				}
			}
	} else {
		for (j2= 0; j2 < 2; j2++) {	  
	  		for (i2 = 0; i2 < 2; i2++) {
				//for (j2= 0; j2 < 2; j2++) {
				//K represents which row of A and C
					for (k = block_size; k < lda; k++) {
						int rowIndex = k*32;
						for (i = i2*block_size; i < i2*block_size+block_size; i++) {
							int elementA = A[rowIndex+i];
							int columnIndex = i%32*32;
							for (j = 0; j < block_size; j++) {
								temp_mat[j] += elementA*B[columnIndex+j+j2*block_size];
						  }
						}
						//Put temp_mat into actual result Matrix	
						for (k2 = 0; k2 < block_size; k2++) {	   
							C[rowIndex+k2+j2*block_size] += temp_mat[k2];
							temp_mat[k2] = 0;
						}
					}
				}
			}
	}


  //size_t half_lda = lda/2;
	// k = which pair of row we're on 

   




/*
  for (k = coreid*lda/ncores; k < (lda/ncores + coreid*lda/ncores); k += 2) {
	  //printf("%d", k);
  	for (i = 0; i < lda ; i++) {
			int elementA = A[32*k+i];
			int elementA2 = A[i + 32*(k+1)];
			int column = i%32*32;
	    for (j = 0; j < lda; j++) {
				C[32*k + j] += elementA*B[column+j];
				C[32*(k+1) + j] += elementA2*B[column+j]; 
			}
		}

	}
*/	
	
/*
    data_t element=A[i];
    data_t element2 = A[i+1];
    data_t element3 = A[i+2];
    data_t element4 = A[i+3];
    data_t element5 = A[i+4];
    data_t element6 = A[i+5];
    data_t element7 = A[i+6];
    data_t element8 = A[i+7];
    int row= (int)(i/32)*32;
    int row2 = (i+1)/32*32;
    int row3 = (i+2)/32*32;
    int row4 = (i+3)/32*32;
    int row5 = (i+4)/32*32;
    int row6 = (i+5)/32*32;
    int row7 = (i+6)/32*32;
    int row8 = (i+7)/32*32;
    int column = i%32*32;
    int column2 = (i+1)%32*32;
    int column3 = (i+2)%32*32;
    int column4 = (i+3)%32*32;
    int column5 = (i+4)%32*32;
    int column6 = (i+5)%32*32;
    int column7 = (i+6)%32*32;

	*/

    //int column8 = (i+7)%32*32;

  /*
    for (j=0; j < lda; j++) {
	sum = B[
      C[row+j]+=element*B[column+j];
      C[row2+j]+=element2*B[column2+j];
      C[row3+j]+=element3*B[column3+j];
      C[row4+j]+=element4*B[column4+j];
      C[row5+j]+=element5*B[column5+j];
      C[row6+j]+=element6*B[column6+j];
      C[row7+j]+=element7*B[column7+j];
      C[row8+j]+=element8*B[column8+j];
      C[row+j]+=element*B[column+j]+element2*B[column2+j]+element3*B[column3+j]+element4*B[column4+j]+element5*B[column5+j]+element6*B[column6+j]+element7*B[column7+j]+element8*B[column8+j];
    }
  }
	*/


  

      
   
   // ***************************** //
   // **** ADD YOUR CODE HERE ***** //
   // ***************************** //
   //
   // feel free to make a separate function for MI and MSI versions.
 
}

//--------------------------------------------------------------------------
// Main
//
// all threads start executing thread_entry(). Use their "coreid" to
// differentiate between threads (each thread is running on a separate core).
  
void thread_entry(int cid, int nc)
{
   coreid = cid;
   ncores = nc;

   // static allocates data in the binary, which is visible to both threads
   static data_t results_data[ARRAY_SIZE];


   // Execute the provided, naive matmul
   barrier(nc);
   stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
 
   
   // verify
   verifyMT(ARRAY_SIZE, results_data, verify_data);
   
   // clear results from the first trial
   size_t i;
   if (coreid == 0) 
      for (i=0; i < ARRAY_SIZE; i++)
         results_data[i] = 0;
   barrier(nc);

   
   // Execute your faster matmul
   barrier(nc);
   stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
 
#ifdef DEBUG
   printArrayMT("results:", ARRAY_SIZE, results_data);
   printArrayMT("verify :", ARRAY_SIZE, verify_data);
#endif
   
   // verify
   verifyMT(ARRAY_SIZE, results_data, verify_data);
   barrier(nc);

   exit(0);
}