//************************************************************************** // Multi-threaded Matrix Multiply benchmark //-------------------------------------------------------------------------- // TA : Christopher Celio // Student: // // // This benchmark multiplies two 2-D arrays together and writes the results to // a third vector. The input data (and reference data) should be generated // using the matmul_gendata.pl perl script and dumped to a file named // dataset.h. // print out arrays, etc. //#define DEBUG //-------------------------------------------------------------------------- // Includes #include #include #include #define REG_I 8 #define REG_J 2 //#define BLOCK_I 32 #define BLOCK_J 16 #define BLOCK_K 16 #define LDA 32 #define NCORES 2 #define MIN(X,Y) (X < Y ? X : Y) //-------------------------------------------------------------------------- // Input/Reference Data typedef float data_t; #include "dataset.h" //-------------------------------------------------------------------------- // Basic Utilities and Multi-thread Support __thread unsigned long coreid; unsigned long ncores; #include "util.h" #define stringify_1(s) #s #define stringify(s) stringify_1(s) #define stats(code) do { \ unsigned long _c = -rdcycle(), _i = -rdinstret(); \ code; \ _c += rdcycle(), _i += rdinstret(); \ if (coreid == 0) \ printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \ stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \ } while(0) //-------------------------------------------------------------------------- // Helper functions void printArray( char name[], int n, data_t arr[] ) { int i; if (coreid != 0) return; printf( " %10s :", name ); for ( i = 0; i < n; i++ ) printf( " %3ld ", (long) arr[i] ); printf( "\n" ); } void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct) { if (coreid != 0) return; size_t i; for (i = 0; i < n; i++) { if (test[i] != correct[i]) { printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n", i, (long)test[i], i, (long)correct[i]); exit(-1); } } return; } //-------------------------------------------------------------------------- // matmul function // single-thread, naive version void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] ) { int i, j, k; if (coreid > 0) return; for ( i = 0; i < lda; i++ ) for ( j = 0; j < lda; j++ ) { for ( k = 0; k < lda; k++ ) { C[i + j*lda] += A[j*lda + k] * B[k*lda + i]; } } } void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] ) { // ***************************** // // **** ADD YOUR CODE HERE ***** // // ***************************** // // // feel free to make a separate function for MI and MSI versions. int i, j, k, ri, rj, ii, jj, kk; data_t *Aj, *Cj, *Bi; data_t c[REG_I][REG_J], a[REG_J], b[REG_I]; size_t start = coreid * (LDA / NCORES), end = (coreid == NCORES - 1 ? LDA : (coreid + 1) * (LDA / NCORES)); /* if (coreid > 0) { */ /* return; */ /* } */ /* start = 0, end = lda; */ if (ncores == NCORES && lda == LDA) { for (jj = start; jj < end; jj += BLOCK_J) for (kk = 0; kk < LDA; kk += BLOCK_K) //for (ii = 0; ii < LDA; ii += BLOCK_I) for (j = jj; j < MIN(end, jj + BLOCK_J); j += REG_J) { Aj = A + j*LDA; Cj = C + j*LDA; for (i = 0; i < LDA; i += REG_I) { /* Load C in register blocks. */ Bi = B + i; for (ri = 0; ri < REG_I; ri++) { for (rj = 0; rj < REG_J; rj++) { c[ri][rj] = Cj[i + ri + ( rj)*LDA]; } } for (k = kk; k < MIN(LDA, kk + BLOCK_K); k++) { /* Load a,b in register blocks. */ /* for (rj = 0; rj < REG_J; rj++) { a[rj] = A[(j + rj)*LDA + k]; }*/ /* for (ri = 0; ri < REG_I; ri++) { */ /* b[ri] = Bi[k*LDA + ri]; */ /* } */ /* /\* Compute C in register blocks. *\/ */ /* for (rj = 0; rj < REG_J; rj++) { */ /* a[rj] = Aj[( rj)*LDA + k]; */ /* for (ri = 0; ri < REG_I; ri++) { */ /* c[ri][rj] += a[rj] * b[ri]; */ /* } */ /* } */ a[0] = Aj[k]; a[1] = Aj[k + LDA]; b[0] = Bi[k*LDA]; b[1] = Bi[k*LDA + 1]; b[2] = Bi[k*LDA + 2]; b[3] = Bi[k*LDA + 3]; b[4] = Bi[k*LDA + 4]; b[5] = Bi[k*LDA + 5]; b[6] = Bi[k*LDA + 6]; b[7] = Bi[k*LDA + 7]; c[0][0] += b[0] * a[0]; c[0][1] += b[0] * a[1]; c[1][0] += b[1] * a[0]; c[1][1] += b[1] * a[1]; c[2][0] += b[2] * a[0]; c[2][1] += b[2] * a[1]; c[3][0] += b[3] * a[0]; c[3][1] += b[3] * a[1]; c[4][0] += b[4] * a[0]; c[4][1] += b[4] * a[1]; c[5][0] += b[5] * a[0]; c[5][1] += b[5] * a[1]; c[6][0] += b[6] * a[0]; c[6][1] += b[6] * a[1]; c[7][0] += b[7] * a[0]; c[7][1] += b[7] * a[1]; /* c[0][0] += b[0] * a[0]; */ /* c[1][1] += b[1] * a[1]; */ /* c[2][0] += b[2] * a[0]; */ /* c[3][1] += b[3] * a[1]; */ /* c[4][0] += b[4] * a[0]; */ /* c[5][1] += b[5] * a[1]; */ /* c[6][0] += b[6] * a[0]; */ /* c[7][1] += b[7] * a[1]; */ /* c[0][0] += b[0] * a[0]; */ /* c[1][1] += b[1] * a[1]; */ /* c[2][0] += b[2] * a[0]; */ /* c[3][1] += b[3] * a[1]; */ /* c[4][0] += b[4] * a[0]; */ /* c[5][1] += b[5] * a[1]; */ /* c[6][0] += b[6] * a[0]; */ /* c[7][1] += b[7] * a[1]; */ } /* store C in register blocks. */ for (ri = 0; ri < REG_I; ri++) { for (rj = 0; rj < REG_J; rj++) { Cj[i + ri + (rj)*LDA] = c[ri][rj]; } } } } /* We only care about performance for 32x32 matrices and 2 cores. Otherwise just naive mat_mul */ } else { if (coreid > 0) return; for ( i = 0; i < lda; i++ ) for ( j = 0; j < lda; j++ ) for ( k = 0; k < lda; k++ ) C[i + j*lda] += A[j*lda + k] * B[k*lda + i]; } } //-------------------------------------------------------------------------- // Main // // all threads start executing thread_entry(). Use their "coreid" to // differentiate between threads (each thread is running on a separate core). void thread_entry(int cid, int nc) { coreid = cid; ncores = nc; // static allocates data in the binary, which is visible to both threads static data_t results_data[ARRAY_SIZE]; // /* // Execute the provided, naive matmul */ // barrier(); // stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier()); // // // // verify // verify(ARRAY_SIZE, results_data, verify_data); // // // clear results from the first trial // size_t i; // if (coreid == 0) // for (i=0; i < ARRAY_SIZE; i++) // results_data[i] = 0; // barrier(); // Execute your faster matmul barrier(); stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier()); #ifdef DEBUG printArray("results:", ARRAY_SIZE, results_data); printArray("verify :", ARRAY_SIZE, verify_data); #endif // verify verify(ARRAY_SIZE, results_data, verify_data); barrier(); exit(0); }