aboutsummaryrefslogtreecommitdiff
path: root/mt/as_matmul/as_matmul.c
diff options
context:
space:
mode:
Diffstat (limited to 'mt/as_matmul/as_matmul.c')
-rwxr-xr-xmt/as_matmul/as_matmul.c281
1 files changed, 0 insertions, 281 deletions
diff --git a/mt/as_matmul/as_matmul.c b/mt/as_matmul/as_matmul.c
deleted file mode 100755
index 15855e0..0000000
--- a/mt/as_matmul/as_matmul.c
+++ /dev/null
@@ -1,281 +0,0 @@
-//**************************************************************************
-// Multi-threaded Matrix Multiply benchmark
-//--------------------------------------------------------------------------
-// TA : Christopher Celio
-// Student:
-//
-//
-// This benchmark multiplies two 2-D arrays together and writes the results to
-// a third vector. The input data (and reference data) should be generated
-// using the matmul_gendata.pl perl script and dumped to a file named
-// dataset.h.
-
-
-// print out arrays, etc.
-//#define DEBUG
-
-//--------------------------------------------------------------------------
-// Includes
-
-#include <string.h>
-#include <stdlib.h>
-#include <stdio.h>
-
-
-//--------------------------------------------------------------------------
-// Input/Reference Data
-
-typedef float data_t;
-#include "dataset.h"
-
-
-//--------------------------------------------------------------------------
-// Basic Utilities and Multi-thread Support
-
-__thread unsigned long coreid;
-unsigned long ncores;
-
-#include "util.h"
-
-#define stringify_1(s) #s
-#define stringify(s) stringify_1(s)
-#define stats(code) do { \
- unsigned long _c = -rdcycle(), _i = -rdinstret(); \
- code; \
- _c += rdcycle(), _i += rdinstret(); \
- if (coreid == 0) \
- printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
- stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
- } while(0)
-
-
-//--------------------------------------------------------------------------
-// Helper functions
-
-void printArrayMT( char name[], int n, data_t arr[] )
-{
- int i;
- if (coreid != 0)
- return;
-
- printf( " %10s :", name );
- for ( i = 0; i < n; i++ )
- printf( " %3ld ", (long) arr[i] );
- printf( "\n" );
-}
-
-void __attribute__((noinline)) verifyMT(size_t n, const data_t* test, const data_t* correct)
-{
- if (coreid != 0)
- return;
-
- size_t i;
- for (i = 0; i < n; i++)
- {
- if (test[i] != correct[i])
- {
- printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
- i, (long)test[i], i, (long)correct[i]);
- exit(-1);
- }
- }
-
- return;
-}
-
-//--------------------------------------------------------------------------
-// matmul function
-
-// single-thread, naive version
-void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
-{
- int i, j, k;
-
- if (coreid > 0)
- return;
-
- for ( i = 0; i < lda; i++ )
- for ( j = 0; j < lda; j++ )
- {
- for ( k = 0; k < lda; k++ )
- {
- C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
- }
- }
-
-}
-
-
-
-void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
-{
-
- // ***************************** //
- // **** ADD YOUR CODE HERE ***** //
- // ***************************** //
- //
- // feel free to make a separate function for MI and MSI versions.
-
- int i, j, k, n, m;
-
-
- //matmul_naive(32, input1_data, input2_data, results_data); barrier(nc): 957424 cycles, 29.2 cycles/iter, 3.6 CPI
- //matmul(32, input1_data, input2_data, results_data); barrier(nc): 340408 cycles, 10.3 cycles/iter, 1.8 CPI
-
- for (n = 0; n < lda; n += 1) {
- for (m = 0; m < lda; m += 1) {
- bTranspose[lda*m + n] = B[lda*n + m];
- bTranspose[lda*n + m] = B[lda*m + n];
- }
- }
- barrier(ncores);
-
- for ( j = coreid; j < lda; j += 2*ncores ) {
- for ( i = 0; i < lda; i += 1 ){
- c1 = 0; //global vars c1, c2
- c2 = 0;
- for ( k = 0; k < lda; k += 1 ) {
- c1 += A[j * lda + k] * bTranspose[i*lda + k];
- c2 += A[(j+2) * lda + k] * bTranspose[i*lda + k];
-
- //barrier(nc);
- }
-
- C[i + j * lda] = c1;
- C[i + (j+2) * lda] = c2;
- barrier(ncores);
- }
- //barrier(nc);
- }
-
-
-
-
- //matmul_naive(32, input1_data, input2_data, results_data); barrier(nc): 983609 cycles, 30.0 cycles/iter, 3.7 CPI
- //matmul(32, input1_data, input2_data, results_data); barrier(nc): 389942 cycles, 11.9 cycles/iter, 2.5 CPI
-
- /*
- for ( j = coreid; j < lda; j += 2*ncores ) {
- for ( i = 0; i < lda; i += 1 ){
- c1 = 0; //global vars c1, c2
- c2 = 0;
- for ( k = 0; k < lda; k += 1 ) {
- c1 += A[j * lda + k] * B[k*lda + i];
- c2 += A[(j+2) * lda + k] * B[k*lda + i];
-
- //barrier(nc);
- }
-
- C[i + j * lda] = c1;
- C[i + (j+2) * lda] = c2;
- barrier(nc);
- }
- //barrier(nc);
- }
- */
-
- // matmul_naive(32, input1_data, input2_data, results_data); barrier(nc): 973781 cycles, 29.7 cycles/iter, 3.7 CPI
- // matmul(32, input1_data, input2_data, results_data); barrier(nc): 461066 cycles, 14.0 cycles/iter, 3.5 CPI
- // for ( k = 0; k < lda; k += 1 ) {
- // for ( j = coreid; j < lda; j += 2*ncores ) {
- // for ( i = 0; i < lda; i += 1 ){
- // C[i + j * lda] += A[j * lda + k] * B[k*lda + i];
- // C[i + (j+2) * lda] += A[(j+2) * lda + k] * B[k*lda + i];
- // //barrier(nc);
- // }
- // barrier(nc);
- // }
- // //barrier(nc);
- // }
-
-
- // matmul_naive(32, input1_data, input2_data, results_data); barrier(nc): 965136 cycles, 29.4 cycles/iter, 3.7 CPI
- // matmul(32, input1_data, input2_data, results_data); barrier(nc): 513779 cycles, 15.6 cycles/iter, 3.2 CPI
-
- // for ( j = coreid; j < lda; j += 2*ncores ) {
- // for ( i = 0; i < lda; i += 1 ){
- // for ( k = 0; k < lda; k += 1 ) {
- // C[i + j * lda] += A[j * lda + k] * B[k*lda + i];
- // C[i + (j+2) * lda] += A[(j+2) * lda + k] * B[k*lda + i];
-
- // //barrier(nc);
- // }
- // barrier(nc);
- // }
- // //barrier(nc);
- //}
-
-
- // matmul_naive(32, input1_data, input2_data, results_data); barrier(nc): 937892 cycles, 28.6 cycles/iter, 3.6 CPI
- // matmul(32, input1_data, input2_data, results_data); barrier(nc): 576478 cycles, 17.5 cycles/iter, 3.5 CPI
-
- // for ( i = 0; i < lda; i += 1 ){
- // for ( j = coreid; j < lda; j += 2*ncores ) {
- // for ( k = 0; k < lda; k += 1 ) {
- // C[i + j * lda] += A[j * lda + k] * B[k*lda + i];
- // C[i + (j+2) * lda] += A[(j+2) * lda + k] * B[k*lda + i];
-
- // //barrier(nc);
- // }
- // barrier(nc);
- // }
- // //barrier(nc);
- // }
-
- //for ( i = coreid; i < lda; i += ncores ){
- // for ( j = coreid; j < lda; j += ncores ) {
- // for ( k = coreid; k < lda; k += ncores ) {
- // C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
- // }
- //barrier(nc);
- // }
- //}
-}
-
-//--------------------------------------------------------------------------
-// Main
-//
-// all threads start executing thread_entry(). Use their "coreid" to
-// differentiate between threads (each thread is running on a separate core).
-
-void thread_entry(int cid, int nc)
-{
- coreid = cid;
- ncores = nc;
-
- // static allocates data in the binary, which is visible to both threads
- static data_t results_data[ARRAY_SIZE];
-
-
-// // Execute the provided, naive matmul
-// barrier(nc);
-// stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
-//
-//
-// // verify
-// verifyMT(ARRAY_SIZE, results_data, verify_data);
-//
-// // clear results from the first trial
-// size_t i;
-// if (coreid == 0)
-// for (i=0; i < ARRAY_SIZE; i++)
-// results_data[i] = 0;
-// barrier(nc);
-
-
- // Execute your faster matmul
- barrier(nc);
- stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
-
-#ifdef DEBUG
- printArrayMT("results:", ARRAY_SIZE, results_data);
- printArrayMT("verify :", ARRAY_SIZE, verify_data);
-#endif
-
- // verify
- verifyMT(ARRAY_SIZE, results_data, verify_data);
- barrier(nc);
-
- exit(0);
-}
-