// See LICENSE for license details. #include "config.h" #include "sim.h" #include "mmu.h" #include "dts.h" #include "remote_bitbang.h" #include "byteorder.h" #include "platform.h" #include "libfdt.h" #include "socketif.h" #include #include #include #include #include #include #include #include #include #include #include volatile bool ctrlc_pressed = false; static void handle_signal(int sig) { if (ctrlc_pressed) exit(-1); ctrlc_pressed = true; signal(sig, &handle_signal); } const size_t sim_t::INTERLEAVE; extern device_factory_t* clint_factory; extern device_factory_t* plic_factory; extern device_factory_t* ns16550_factory; sim_t::sim_t(const cfg_t *cfg, bool halted, std::vector> mems, const std::vector& plugin_device_factories, const std::vector& args, const debug_module_config_t &dm_config, const char *log_path, bool dtb_enabled, const char *dtb_file, bool socket_enabled, FILE *cmd_file) // needed for command line option --cmd : htif_t(args), isa(cfg->isa, cfg->priv), cfg(cfg), mems(mems), procs(std::max(cfg->nprocs(), size_t(1))), dtb_enabled(dtb_enabled), log_file(log_path), cmd_file(cmd_file), sout_(nullptr), current_step(0), current_proc(0), debug(false), histogram_enabled(false), log(false), remote_bitbang(NULL), debug_module(this, dm_config) { signal(SIGINT, &handle_signal); sout_.rdbuf(std::cerr.rdbuf()); // debug output goes to stderr by default for (auto& x : mems) bus.add_device(x.first, x.second); bus.add_device(DEBUG_START, &debug_module); socketif = NULL; #ifdef HAVE_BOOST_ASIO if (socket_enabled) { socketif = new socketif_t(); } #else if (socket_enabled) { fputs("Socket support requires compilation with boost asio; " "please rebuild the riscv-isa-sim project using " "\"configure --with-boost-asio\".\n", stderr); abort(); } #endif #ifndef RISCV_ENABLE_DUAL_ENDIAN if (cfg->endianness != endianness_little) { fputs("Big-endian support has not been prroperly enabled; " "please rebuild the riscv-isa-sim project using " "\"configure --enable-dual-endian\".\n", stderr); abort(); } #endif debug_mmu = new mmu_t(this, cfg->endianness, NULL); for (size_t i = 0; i < cfg->nprocs(); i++) { procs[i] = new processor_t(&isa, cfg, this, cfg->hartids[i], halted, log_file.get(), sout_); harts[cfg->hartids[i]] = procs[i]; } // When running without using a dtb, skip the fdt-based configuration steps if (!dtb_enabled) return; // Only make a CLINT (Core-Local INTerrupt controller) and PLIC (Platform- // Level-Interrupt-Controller) if they are specified in the device tree // configuration. // // This isn't *quite* as general as we could get (because you might have one // that's not bus-accessible), but it should handle the normal use cases. In // particular, the default device tree configuration that you get without // setting the dtb_file argument has one. std::vector device_factories = { {clint_factory, {}}, // clint must be element 0 {plic_factory, {}}, // plic must be element 1 {ns16550_factory, {}}}; device_factories.insert(device_factories.end(), plugin_device_factories.begin(), plugin_device_factories.end()); // Load dtb_file if provided, otherwise self-generate a dts/dtb if (dtb_file) { std::ifstream fin(dtb_file, std::ios::binary); if (!fin.good()) { std::cerr << "can't find dtb file: " << dtb_file << std::endl; exit(-1); } std::stringstream strstream; strstream << fin.rdbuf(); dtb = strstream.str(); } else { std::pair initrd_bounds = cfg->initrd_bounds; std::string device_nodes; for (const device_factory_sargs_t& factory_sargs: device_factories) { const device_factory_t* factory = factory_sargs.first; const std::vector& sargs = factory_sargs.second; device_nodes.append(factory->generate_dts(this, sargs)); } dts = make_dts(INSNS_PER_RTC_TICK, CPU_HZ, initrd_bounds.first, initrd_bounds.second, cfg->bootargs, cfg->pmpregions, cfg->pmpgranularity, procs, mems, device_nodes); dtb = dts_compile(dts); } int fdt_code = fdt_check_header(dtb.c_str()); if (fdt_code) { std::cerr << "Failed to read DTB from "; if (!dtb_file) { std::cerr << "auto-generated DTS string"; } else { std::cerr << "`" << dtb_file << "'"; } std::cerr << ": " << fdt_strerror(fdt_code) << ".\n"; exit(-1); } void *fdt = (void *)dtb.c_str(); for (size_t i = 0; i < device_factories.size(); i++) { const device_factory_t* factory = device_factories[i].first; const std::vector& sargs = device_factories[i].second; reg_t device_base = 0; abstract_device_t* device = factory->parse_from_fdt(fdt, this, &device_base, sargs); if (device) { assert(device_base); std::shared_ptr dev_ptr(device); add_device(device_base, dev_ptr); if (i == 0) // clint_factory clint = std::static_pointer_cast(dev_ptr); else if (i == 1) // plic_factory plic = std::static_pointer_cast(dev_ptr); } } //per core attribute int cpu_offset = 0, cpu_map_offset, rc; size_t cpu_idx = 0; cpu_offset = fdt_get_offset(fdt, "/cpus"); cpu_map_offset = fdt_get_offset(fdt, "/cpus/cpu-map"); if (cpu_offset < 0) return; for (cpu_offset = fdt_get_first_subnode(fdt, cpu_offset); cpu_offset >= 0; cpu_offset = fdt_get_next_subnode(fdt, cpu_offset)) { if (!(cpu_map_offset < 0) && cpu_offset == cpu_map_offset) continue; if (cpu_idx >= nprocs()) break; //handle pmp reg_t pmp_num, pmp_granularity; if (fdt_parse_pmp_num(fdt, cpu_offset, &pmp_num) != 0) pmp_num = 0; procs[cpu_idx]->set_pmp_num(pmp_num); if (fdt_parse_pmp_alignment(fdt, cpu_offset, &pmp_granularity) == 0) { procs[cpu_idx]->set_pmp_granularity(pmp_granularity); } //handle mmu-type const char *mmu_type; rc = fdt_parse_mmu_type(fdt, cpu_offset, &mmu_type); if (rc == 0) { procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SBARE); if (strncmp(mmu_type, "riscv,sv32", strlen("riscv,sv32")) == 0) { procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SV32); } else if (strncmp(mmu_type, "riscv,sv39", strlen("riscv,sv39")) == 0) { procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SV39); } else if (strncmp(mmu_type, "riscv,sv48", strlen("riscv,sv48")) == 0) { procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SV48); } else if (strncmp(mmu_type, "riscv,sv57", strlen("riscv,sv57")) == 0) { procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SV57); } else if (strncmp(mmu_type, "riscv,sbare", strlen("riscv,sbare")) == 0) { //has been set in the beginning } else { std::cerr << "core (" << cpu_idx << ") has an invalid 'mmu-type': " << mmu_type << ").\n"; exit(1); } } else { procs[cpu_idx]->set_mmu_capability(IMPL_MMU_SBARE); } cpu_idx++; } if (cpu_idx != nprocs()) { std::cerr << "core number in dts (" << cpu_idx << ") doesn't match it in command line (" << nprocs() << ").\n"; exit(1); } } sim_t::~sim_t() { for (size_t i = 0; i < procs.size(); i++) delete procs[i]; delete debug_mmu; } int sim_t::run() { if (!debug && log) set_procs_debug(true); htif_t::set_expected_xlen(isa.get_max_xlen()); // htif_t::run() will repeatedly call back into sim_t::idle(), each // invocation of which will advance target time return htif_t::run(); } void sim_t::step(size_t n) { for (size_t i = 0, steps = 0; i < n; i += steps) { steps = std::min(n - i, INTERLEAVE - current_step); procs[current_proc]->step(steps); current_step += steps; if (current_step == INTERLEAVE) { current_step = 0; procs[current_proc]->get_mmu()->yield_load_reservation(); if (++current_proc == procs.size()) { current_proc = 0; reg_t rtc_ticks = INTERLEAVE / INSNS_PER_RTC_TICK; for (auto &dev : devices) dev->tick(rtc_ticks); } } } } void sim_t::add_device(reg_t addr, std::shared_ptr dev) { bus.add_device(addr, dev.get()); devices.push_back(dev); } void sim_t::set_debug(bool value) { debug = value; } void sim_t::set_histogram(bool value) { histogram_enabled = value; for (size_t i = 0; i < procs.size(); i++) { procs[i]->set_histogram(histogram_enabled); } } void sim_t::configure_log(bool enable_log, bool enable_commitlog) { log = enable_log; if (!enable_commitlog) return; for (processor_t *proc : procs) { proc->enable_log_commits(); } } void sim_t::set_procs_debug(bool value) { for (size_t i=0; i< procs.size(); i++) procs[i]->set_debug(value); } static bool paddr_ok(reg_t addr) { return (addr >> MAX_PADDR_BITS) == 0; } bool sim_t::mmio_load(reg_t paddr, size_t len, uint8_t* bytes) { if (paddr + len < paddr || !paddr_ok(paddr + len - 1)) return false; return bus.load(paddr, len, bytes); } bool sim_t::mmio_store(reg_t paddr, size_t len, const uint8_t* bytes) { if (paddr + len < paddr || !paddr_ok(paddr + len - 1)) return false; return bus.store(paddr, len, bytes); } void sim_t::set_rom() { const int reset_vec_size = 8; reg_t start_pc = cfg->start_pc.value_or(get_entry_point()); uint32_t reset_vec[reset_vec_size] = { 0x297, // auipc t0,0x0 0x28593 + (reset_vec_size * 4 << 20), // addi a1, t0, &dtb 0xf1402573, // csrr a0, mhartid get_core(0)->get_xlen() == 32 ? 0x0182a283u : // lw t0,24(t0) 0x0182b283u, // ld t0,24(t0) 0x28067, // jr t0 0, (uint32_t) (start_pc & 0xffffffff), (uint32_t) (start_pc >> 32) }; if (get_target_endianness() == endianness_big) { int i; // Instuctions are little endian for (i = 0; reset_vec[i] != 0; i++) reset_vec[i] = to_le(reset_vec[i]); // Data is big endian for (; i < reset_vec_size; i++) reset_vec[i] = to_be(reset_vec[i]); // Correct the high/low order of 64-bit start PC if (get_core(0)->get_xlen() != 32) std::swap(reset_vec[reset_vec_size-2], reset_vec[reset_vec_size-1]); } else { for (int i = 0; i < reset_vec_size; i++) reset_vec[i] = to_le(reset_vec[i]); } std::vector rom((char*)reset_vec, (char*)reset_vec + sizeof(reset_vec)); rom.insert(rom.end(), dtb.begin(), dtb.end()); const int align = 0x1000; rom.resize((rom.size() + align - 1) / align * align); std::shared_ptr boot_rom(new rom_device_t(rom)); add_device(DEFAULT_RSTVEC, boot_rom); } char* sim_t::addr_to_mem(reg_t paddr) { if (!paddr_ok(paddr)) return NULL; auto desc = bus.find_device(paddr); if (auto mem = dynamic_cast(desc.second)) if (paddr - desc.first < mem->size()) return mem->contents(paddr - desc.first); return NULL; } const char* sim_t::get_symbol(uint64_t paddr) { return htif_t::get_symbol(paddr); } // htif void sim_t::reset() { if (dtb_enabled) set_rom(); } void sim_t::idle() { if (done()) return; if (debug || ctrlc_pressed) interactive(); else step(INTERLEAVE); if (remote_bitbang) remote_bitbang->tick(); } void sim_t::read_chunk(addr_t taddr, size_t len, void* dst) { assert(len == 8); auto data = debug_mmu->to_target(debug_mmu->load(taddr)); memcpy(dst, &data, sizeof data); } void sim_t::write_chunk(addr_t taddr, size_t len, const void* src) { assert(len == 8); target_endian data; memcpy(&data, src, sizeof data); debug_mmu->store(taddr, debug_mmu->from_target(data)); } endianness_t sim_t::get_target_endianness() const { return debug_mmu->is_target_big_endian()? endianness_big : endianness_little; } void sim_t::proc_reset(unsigned id) { debug_module.proc_reset(id); }