// See LICENSE for license details. #ifndef _RISCV_DECODE_MACROS_H #define _RISCV_DECODE_MACROS_H #include "config.h" #include "decode.h" #include "encoding.h" #include "common.h" #include "softfloat_types.h" #include "specialize.h" // helpful macros, etc #define MMU (*p->get_mmu()) #define STATE (*p->get_state()) #define FLEN (p->get_flen()) #define CHECK_REG(reg) ((void) 0) #define READ_REG(reg) (CHECK_REG(reg), STATE.XPR[reg]) #define READ_FREG(reg) STATE.FPR[reg] #define RD READ_REG(insn.rd()) #define RS1 READ_REG(insn.rs1()) #define RS2 READ_REG(insn.rs2()) #define RS3 READ_REG(insn.rs3()) #define WRITE_RD(value) WRITE_REG(insn.rd(), value) /* 0 : int * 1 : floating * 2 : vector reg * 3 : vector hint * 4 : csr */ #define WRITE_REG(reg, value) ({ \ reg_t wdata = (value); /* value may have side effects */ \ if (DECODE_MACRO_USAGE_LOGGED) STATE.log_reg_write[(reg) << 4] = {wdata, 0}; \ CHECK_REG(reg); \ STATE.XPR.write(reg, wdata); \ }) #define WRITE_FREG(reg, value) ({ \ freg_t wdata = freg(value); /* value may have side effects */ \ if (DECODE_MACRO_USAGE_LOGGED) STATE.log_reg_write[((reg) << 4) | 1] = wdata; \ DO_WRITE_FREG(reg, wdata); \ }) #define WRITE_VSTATUS STATE.log_reg_write[3] = {0, 0}; /* the value parameter needs to be evaluated before writing to the registers */ #define WRITE_REG_PAIR(reg, value) \ if (reg != 0) { \ require((reg) % 2 == 0); \ uint64_t val = (value); \ WRITE_REG(reg, sext32(val)); \ WRITE_REG((reg) + 1, (sreg_t(val)) >> 32); \ } // RVC macros #define WRITE_RVC_RS1S(value) WRITE_REG(insn.rvc_rs1s(), value) #define WRITE_RVC_RS2S(value) WRITE_REG(insn.rvc_rs2s(), value) #define WRITE_RVC_FRS2S(value) WRITE_FREG(insn.rvc_rs2s(), value) #define RVC_RS1 READ_REG(insn.rvc_rs1()) #define RVC_RS2 READ_REG(insn.rvc_rs2()) #define RVC_RS1S READ_REG(insn.rvc_rs1s()) #define RVC_RS2S READ_REG(insn.rvc_rs2s()) #define RVC_FRS2 READ_FREG(insn.rvc_rs2()) #define RVC_FRS2S READ_FREG(insn.rvc_rs2s()) #define RVC_SP READ_REG(X_SP) // Zc* macros #define RVC_R1S (Sn(insn.rvc_r1sc())) #define RVC_R2S (Sn(insn.rvc_r2sc())) #define SP READ_REG(X_SP) #define RA READ_REG(X_RA) // Zdinx macros #define READ_REG_PAIR(reg) ({ \ require((reg) % 2 == 0); \ (reg) == 0 ? reg_t(0) : \ (READ_REG((reg) + 1) << 32) + zext32(READ_REG(reg)); }) #define RS1_PAIR READ_REG_PAIR(insn.rs1()) #define RS2_PAIR READ_REG_PAIR(insn.rs2()) #define RD_PAIR READ_REG_PAIR(insn.rd()) #define WRITE_RD_PAIR(value) WRITE_REG_PAIR(insn.rd(), value) // Zilsd macros #define WRITE_RD_D(value) (xlen == 32 ? WRITE_RD_PAIR(value) : WRITE_RD(value)) // Zcmlsd macros #define WRITE_RVC_RS2S_PAIR(value) WRITE_REG_PAIR(insn.rvc_rs2s(), value) #define RVC_RS2S_PAIR READ_REG_PAIR(insn.rvc_rs2s()) #define RVC_RS2_PAIR READ_REG_PAIR(insn.rvc_rs2()) // FPU macros #define READ_ZDINX_REG(reg) (xlen == 32 ? f64(READ_REG_PAIR(reg)) : f64(STATE.XPR[reg] & (uint64_t)-1)) #define READ_FREG_H(reg) (p->extension_enabled(EXT_ZFINX) ? f16(STATE.XPR[reg] & (uint16_t)-1) : f16(READ_FREG(reg))) #define READ_FREG_BF(reg) (p->extension_enabled(EXT_ZFINX) ? bf16(STATE.XPR[reg] & (uint16_t)-1) : bf16(READ_FREG(reg))) #define READ_FREG_F(reg) (p->extension_enabled(EXT_ZFINX) ? f32(STATE.XPR[reg] & (uint32_t)-1) : f32(READ_FREG(reg))) #define READ_FREG_D(reg) (p->extension_enabled(EXT_ZFINX) ? READ_ZDINX_REG(reg) : f64(READ_FREG(reg))) #define FRS1 READ_FREG(insn.rs1()) #define FRS2 READ_FREG(insn.rs2()) #define FRS3 READ_FREG(insn.rs3()) #define FRS1_H READ_FREG_H(insn.rs1()) #define FRS1_BF READ_FREG_BF(insn.rs1()) #define FRS1_F READ_FREG_F(insn.rs1()) #define FRS1_D READ_FREG_D(insn.rs1()) #define FRS2_H READ_FREG_H(insn.rs2()) #define FRS2_F READ_FREG_F(insn.rs2()) #define FRS2_D READ_FREG_D(insn.rs2()) #define FRS3_H READ_FREG_H(insn.rs3()) #define FRS3_F READ_FREG_F(insn.rs3()) #define FRS3_D READ_FREG_D(insn.rs3()) #define dirty_fp_state STATE.sstatus->dirty(SSTATUS_FS) #define dirty_ext_state STATE.sstatus->dirty(SSTATUS_XS) #define dirty_vs_state STATE.sstatus->dirty(SSTATUS_VS) #define DO_WRITE_FREG(reg, value) (STATE.FPR.write(reg, value), dirty_fp_state) #define WRITE_FRD(value) WRITE_FREG(insn.rd(), value) #define WRITE_FRD_H(value) \ do { \ if (p->extension_enabled(EXT_ZFINX)) \ WRITE_REG(insn.rd(), sext_xlen((int16_t)((value).v))); \ else { \ WRITE_FRD(value); \ } \ } while (0) #define WRITE_FRD_BF WRITE_FRD_H #define WRITE_FRD_F(value) \ do { \ if (p->extension_enabled(EXT_ZFINX)) \ WRITE_REG(insn.rd(), sext_xlen((value).v)); \ else { \ WRITE_FRD(value); \ } \ } while (0) #define WRITE_FRD_D(value) \ do { \ if (p->extension_enabled(EXT_ZFINX)) { \ if (xlen == 32) { \ WRITE_RD_PAIR((value).v); \ } else { \ WRITE_REG(insn.rd(), (value).v); \ } \ } else { \ WRITE_FRD(value); \ } \ } while (0) #define SHAMT (insn.i_imm() & 0x3F) #define BRANCH_TARGET (pc + insn.sb_imm()) #define JUMP_TARGET (pc + insn.uj_imm()) #define RM ({ int rm = insn.rm(); \ if (rm == 7) rm = STATE.frm->read(); \ if (rm > 4) throw trap_illegal_instruction(insn.bits()); \ rm; }) static inline bool is_aligned(const unsigned val, const unsigned pos) { return pos ? (val & (pos - 1)) == 0 : true; } #define require_privilege(p) require(STATE.prv >= (p)) #define require_novirt() (unlikely(STATE.v) ? throw trap_virtual_instruction(insn.bits()) : (void) 0) #define require_hs_qualified(cond) (STATE.v && !(cond) ? require_novirt() : require(cond)) #define require_privilege_hs_qualified(p) require_hs_qualified(STATE.prv >= (p)) #define require_rv64 require(xlen == 64) #define require_rv32 require(xlen == 32) #define require_extension(s) require(p->extension_enabled(s)) #define require_either_extension(A,B) require(p->extension_enabled(A) || p->extension_enabled(B)); #define require_impl(s) require(p->supports_impl(s)) #define require_fs require(STATE.sstatus->enabled(SSTATUS_FS)) #define require_fp STATE.fflags->verify_permissions(insn, false) #define require_accelerator require(STATE.sstatus->enabled(SSTATUS_XS)) #define require_vector_vs require(STATE.sstatus->enabled(SSTATUS_VS)) #define require_vector(alu) \ do { \ require_vector_vs; \ require(!P.VU.vill); \ if (alu && !P.VU.vstart_alu) \ require(P.VU.vstart->read() == 0); \ WRITE_VSTATUS; \ dirty_vs_state; \ } while (0); #define require_vector_novtype(is_log) \ do { \ require_vector_vs; \ if (is_log) \ WRITE_VSTATUS; \ dirty_vs_state; \ } while (0); #define require_align(val, pos) require(is_aligned(val, pos)) #define require_noover(astart, asize, bstart, bsize) \ require(!is_overlapped(astart, asize, bstart, bsize)) #define require_noover_widen(astart, asize, bstart, bsize) \ require(!is_overlapped_widen(astart, asize, bstart, bsize)) #define require_vm do { if (insn.v_vm() == 0) require(insn.rd() != 0); } while (0); #define require_envcfg(field) \ do { \ if (((STATE.prv != PRV_M) && (m##field == 0)) || \ ((STATE.prv == PRV_U && !STATE.v) && (s##field == 0))) \ throw trap_illegal_instruction(insn.bits()); \ else if (STATE.v && ((h##field == 0) || \ ((STATE.prv == PRV_U) && (s##field == 0)))) \ throw trap_virtual_instruction(insn.bits()); \ } while (0); #define require_zcmp_pushpop \ do { \ require_extension(EXT_ZCMP); \ reg_t rlist = insn.rvc_rlist(); \ require(rlist >= 4); \ \ if (p->extension_enabled('E')) { \ require(rlist <= 6); \ } \ } while (0); #define set_fp_exceptions ({ if (softfloat_exceptionFlags) { \ STATE.fflags->write(STATE.fflags->read() | softfloat_exceptionFlags); \ } \ softfloat_exceptionFlags = 0; }) #define sext32(x) ((sreg_t)(int32_t)(x)) #define zext32(x) ((reg_t)(uint32_t)(x)) #define sext_xlen(x) (((sreg_t)(x) << (64 - xlen)) >> (64 - xlen)) #define zext(x, pos) (((reg_t)(x) << (64 - (pos))) >> (64 - (pos))) #define zext_xlen(x) zext(x, xlen) #define set_pc(x) \ do { p->check_pc_alignment(x); \ npc = sext_xlen(x); \ } while (0) #define set_pc_and_serialize(x) \ do { reg_t __npc = (x) & p->pc_alignment_mask(); \ npc = PC_SERIALIZE_AFTER; \ STATE.pc = __npc; \ } while (0) class wait_for_interrupt_t {}; #define wfi() \ do { set_pc_and_serialize(npc); \ throw wait_for_interrupt_t(); \ } while (0) #define serialize() set_pc_and_serialize(npc) /* Sentinel PC values to serialize simulator pipeline */ #define PC_SERIALIZE_BEFORE 3 #define PC_SERIALIZE_AFTER 5 #define invalid_pc(pc) ((pc) & 1) /* Convenience wrappers to simplify softfloat code sequences */ #define isBoxedF16(r) (isBoxedF32(r) && ((uint64_t)((r.v[0] >> 16) + 1) == ((uint64_t)1 << 48))) #define unboxF16(r) (isBoxedF16(r) ? (uint16_t)r.v[0] : defaultNaNF16UI) #define isBoxedBF16(r) isBoxedF16(r) #define unboxBF16(r) (isBoxedBF16(r) ? (uint16_t)r.v[0] : defaultNaNBF16UI) #define isBoxedF32(r) (isBoxedF64(r) && ((uint32_t)((r.v[0] >> 32) + 1) == 0)) #define unboxF32(r) (isBoxedF32(r) ? (uint32_t)r.v[0] : defaultNaNF32UI) #define isBoxedF64(r) ((r.v[1] + 1) == 0) #define unboxF64(r) (isBoxedF64(r) ? r.v[0] : defaultNaNF64UI) inline float16_t f16(uint16_t v) { return { v }; } inline bfloat16_t bf16(uint16_t v) { return { v }; } inline float32_t f32(uint32_t v) { return { v }; } inline float64_t f64(uint64_t v) { return { v }; } inline float16_t f16(freg_t r) { return f16(unboxF16(r)); } inline bfloat16_t bf16(freg_t r) { return bf16(unboxBF16(r)); } inline float32_t f32(freg_t r) { return f32(unboxF32(r)); } inline float64_t f64(freg_t r) { return f64(unboxF64(r)); } inline float128_t f128(freg_t r) { return r; } inline freg_t freg(float16_t f) { return { ((uint64_t)-1 << 16) | f.v, (uint64_t)-1 }; } inline freg_t freg(float32_t f) { return { ((uint64_t)-1 << 32) | f.v, (uint64_t)-1 }; } inline freg_t freg(float64_t f) { return { f.v, (uint64_t)-1 }; } inline freg_t freg(float128_t f) { return f; } #define F16_SIGN ((uint16_t)1 << 15) #define F32_SIGN ((uint32_t)1 << 31) #define F64_SIGN ((uint64_t)1 << 63) #define fsgnj16(a, b, n, x) \ f16((f16(a).v & ~F16_SIGN) | ((((x) ? f16(a).v : (n) ? F16_SIGN : 0) ^ f16(b).v) & F16_SIGN)) #define fsgnj32(a, b, n, x) \ f32((f32(a).v & ~F32_SIGN) | ((((x) ? f32(a).v : (n) ? F32_SIGN : 0) ^ f32(b).v) & F32_SIGN)) #define fsgnj64(a, b, n, x) \ f64((f64(a).v & ~F64_SIGN) | ((((x) ? f64(a).v : (n) ? F64_SIGN : 0) ^ f64(b).v) & F64_SIGN)) #define isNaNF128(x) isNaNF128UI(x.v[1], x.v[0]) inline float128_t defaultNaNF128() { float128_t nan; nan.v[1] = defaultNaNF128UI64; nan.v[0] = defaultNaNF128UI0; return nan; } inline freg_t fsgnj128(freg_t a, freg_t b, bool n, bool x) { a.v[1] = (a.v[1] & ~F64_SIGN) | (((x ? a.v[1] : n ? F64_SIGN : 0) ^ b.v[1]) & F64_SIGN); return a; } inline freg_t f128_negate(freg_t a) { a.v[1] ^= F64_SIGN; return a; } #define validate_csr(which, write) ({ \ if (!STATE.serialized) return PC_SERIALIZE_BEFORE; \ STATE.serialized = false; \ /* permissions check occurs in get_csr */ \ (which); }) /* For debug only. This will fail if the native machine's float types are not IEEE */ inline float to_f(float32_t f) { float r; memcpy(&r, &f, sizeof(r)); return r; } inline double to_f(float64_t f) { double r; memcpy(&r, &f, sizeof(r)); return r; } inline long double to_f(float128_t f) { long double r; memcpy(&r, &f, sizeof(r)); return r; } // Vector macros #define e8 8 // 8b elements #define e16 16 // 16b elements #define e32 32 // 32b elements #define e64 64 // 64b elements #define e128 128 // 128b elements #define e256 256 // 256b elements #define e512 512 // 512b elements #define e1024 1024 // 1024b elements #define vsext(x, sew) (((sreg_t)(x) << (64 - sew)) >> (64 - sew)) #define vzext(x, sew) (((reg_t)(x) << (64 - sew)) >> (64 - sew)) #define DEBUG_RVV 0 #if DEBUG_RVV #define DEBUG_RVV_FP_VV \ printf("vfp(%lu) vd=%f vs1=%f vs2=%f\n", i, to_f(vd), to_f(vs1), to_f(vs2)); #define DEBUG_RVV_FP_VF \ printf("vfp(%lu) vd=%f vs1=%f vs2=%f\n", i, to_f(vd), to_f(rs1), to_f(vs2)); #define DEBUG_RVV_FMA_VV \ printf("vfma(%lu) vd=%f vs1=%f vs2=%f vd_old=%f\n", i, to_f(vd), to_f(vs1), to_f(vs2), to_f(vd_old)); #define DEBUG_RVV_FMA_VF \ printf("vfma(%lu) vd=%f vs1=%f vs2=%f vd_old=%f\n", i, to_f(vd), to_f(rs1), to_f(vs2), to_f(vd_old)); #else #define DEBUG_RVV_FP_VV 0 #define DEBUG_RVV_FP_VF 0 #define DEBUG_RVV_FMA_VV 0 #define DEBUG_RVV_FMA_VF 0 #endif #define DECLARE_XENVCFG_VARS(field) \ reg_t m##field = get_field(STATE.menvcfg->read(), MENVCFG_##field); \ reg_t s##field = get_field(STATE.senvcfg->read(), SENVCFG_##field); \ reg_t h##field = get_field(STATE.henvcfg->read(), HENVCFG_##field) #endif #define software_check(x, tval) (unlikely(!(x)) ? throw trap_software_check(tval) : (void) 0) #define ZICFILP_xLPE(v, prv) \ ({ \ reg_t lpe = 0ULL; \ if (p->extension_enabled(EXT_ZICFILP)) { \ DECLARE_XENVCFG_VARS(LPE); \ const reg_t msecLPE = get_field(STATE.mseccfg->read(), MSECCFG_MLPE); \ switch (prv) { \ case PRV_U: lpe = p->extension_enabled('S') ? sLPE : mLPE; break; \ case PRV_S: lpe = (v) ? hLPE : mLPE; break; \ case PRV_M: lpe = msecLPE; break; \ default: abort(); \ } \ } \ lpe; \ }) #define ZICFILP_IS_LP_EXPECTED(reg_num) \ (((reg_num) != 1 && (reg_num) != 5 && (reg_num) != 7) ? \ elp_t::LP_EXPECTED : elp_t::NO_LP_EXPECTED)