aboutsummaryrefslogtreecommitdiff
path: root/riscv/mmu.cc
blob: e954e5a51d6f322596398f1e0e4e936cecc4de71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// See LICENSE for license details.

#include "mmu.h"
#include "sim.h"
#include "processor.h"

mmu_t::mmu_t(simif_t* sim, processor_t* proc)
 : sim(sim), proc(proc),
  check_triggers_fetch(false),
  check_triggers_load(false),
  check_triggers_store(false),
  matched_trigger(NULL)
{
  flush_tlb();
}

mmu_t::~mmu_t()
{
}

void mmu_t::flush_icache()
{
  for (size_t i = 0; i < ICACHE_ENTRIES; i++)
    icache[i].tag = -1;
}

void mmu_t::flush_tlb()
{
  memset(tlb_insn_tag, -1, sizeof(tlb_insn_tag));
  memset(tlb_load_tag, -1, sizeof(tlb_load_tag));
  memset(tlb_store_tag, -1, sizeof(tlb_store_tag));

  flush_icache();
}

reg_t mmu_t::translate(reg_t addr, access_type type)
{
  if (!proc)
    return addr;

  reg_t mode = proc->state.prv;
  if (type != FETCH) {
    if (!proc->state.dcsr.cause && get_field(proc->state.mstatus, MSTATUS_MPRV))
      mode = get_field(proc->state.mstatus, MSTATUS_MPP);
  }

  return walk(addr, type, mode) | (addr & (PGSIZE-1));
}

tlb_entry_t mmu_t::fetch_slow_path(reg_t vaddr)
{
  reg_t paddr = translate(vaddr, FETCH);

  if (auto host_addr = sim->addr_to_mem(paddr)) {
    return refill_tlb(vaddr, paddr, host_addr, FETCH);
  } else {
    if (!sim->mmio_load(paddr, sizeof fetch_temp, (uint8_t*)&fetch_temp))
      throw trap_instruction_access_fault(vaddr);
    tlb_entry_t entry = {(char*)&fetch_temp - vaddr, paddr - vaddr};
    return entry;
  }
}

reg_t reg_from_bytes(size_t len, const uint8_t* bytes)
{
  switch (len) {
    case 1:
      return bytes[0];
    case 2:
      return bytes[0] |
        (((reg_t) bytes[1]) << 8);
    case 4:
      return bytes[0] |
        (((reg_t) bytes[1]) << 8) |
        (((reg_t) bytes[2]) << 16) |
        (((reg_t) bytes[3]) << 24);
    case 8:
      return bytes[0] |
        (((reg_t) bytes[1]) << 8) |
        (((reg_t) bytes[2]) << 16) |
        (((reg_t) bytes[3]) << 24) |
        (((reg_t) bytes[4]) << 32) |
        (((reg_t) bytes[5]) << 40) |
        (((reg_t) bytes[6]) << 48) |
        (((reg_t) bytes[7]) << 56);
  }
  abort();
}

void mmu_t::load_slow_path(reg_t addr, reg_t len, uint8_t* bytes)
{
  reg_t paddr = translate(addr, LOAD);

  if (auto host_addr = sim->addr_to_mem(paddr)) {
    memcpy(bytes, host_addr, len);
    if (tracer.interested_in_range(paddr, paddr + PGSIZE, LOAD))
      tracer.trace(paddr, len, LOAD);
    else
      refill_tlb(addr, paddr, host_addr, LOAD);
  } else if (!sim->mmio_load(paddr, len, bytes)) {
    throw trap_load_access_fault(addr);
  }

  if (!matched_trigger) {
    reg_t data = reg_from_bytes(len, bytes);
    matched_trigger = trigger_exception(OPERATION_LOAD, addr, data);
    if (matched_trigger)
      throw *matched_trigger;
  }
}

void mmu_t::store_slow_path(reg_t addr, reg_t len, const uint8_t* bytes)
{
  reg_t paddr = translate(addr, STORE);

  if (!matched_trigger) {
    reg_t data = reg_from_bytes(len, bytes);
    matched_trigger = trigger_exception(OPERATION_STORE, addr, data);
    if (matched_trigger)
      throw *matched_trigger;
  }

  if (auto host_addr = sim->addr_to_mem(paddr)) {
    memcpy(host_addr, bytes, len);
    if (tracer.interested_in_range(paddr, paddr + PGSIZE, STORE))
      tracer.trace(paddr, len, STORE);
    else
      refill_tlb(addr, paddr, host_addr, STORE);
  } else if (!sim->mmio_store(paddr, len, bytes)) {
    throw trap_store_access_fault(addr);
  }
}

tlb_entry_t mmu_t::refill_tlb(reg_t vaddr, reg_t paddr, char* host_addr, access_type type)
{
  reg_t idx = (vaddr >> PGSHIFT) % TLB_ENTRIES;
  reg_t expected_tag = vaddr >> PGSHIFT;

  if ((tlb_load_tag[idx] & ~TLB_CHECK_TRIGGERS) != expected_tag)
    tlb_load_tag[idx] = -1;
  if ((tlb_store_tag[idx] & ~TLB_CHECK_TRIGGERS) != expected_tag)
    tlb_store_tag[idx] = -1;
  if ((tlb_insn_tag[idx] & ~TLB_CHECK_TRIGGERS) != expected_tag)
    tlb_insn_tag[idx] = -1;

  if ((check_triggers_fetch && type == FETCH) ||
      (check_triggers_load && type == LOAD) ||
      (check_triggers_store && type == STORE))
    expected_tag |= TLB_CHECK_TRIGGERS;

  if (type == FETCH) tlb_insn_tag[idx] = expected_tag;
  else if (type == STORE) tlb_store_tag[idx] = expected_tag;
  else tlb_load_tag[idx] = expected_tag;

  tlb_entry_t entry = {host_addr - vaddr, paddr - vaddr};
  tlb_data[idx] = entry;
  return entry;
}

reg_t mmu_t::walk(reg_t addr, access_type type, reg_t mode)
{
  vm_info vm = decode_vm_info(proc->max_xlen, mode, proc->get_state()->satp);
  if (vm.levels == 0)
    return addr & ((reg_t(2) << (proc->xlen-1))-1); // zero-extend from xlen

  bool s_mode = mode == PRV_S;
  bool sum = get_field(proc->state.mstatus, MSTATUS_SUM);
  bool mxr = get_field(proc->state.mstatus, MSTATUS_MXR);

  // verify bits xlen-1:va_bits-1 are all equal
  int va_bits = PGSHIFT + vm.levels * vm.idxbits;
  reg_t mask = (reg_t(1) << (proc->xlen - (va_bits-1))) - 1;
  reg_t masked_msbs = (addr >> (va_bits-1)) & mask;
  if (masked_msbs != 0 && masked_msbs != mask)
    vm.levels = 0;

  reg_t base = vm.ptbase;
  for (int i = vm.levels - 1; i >= 0; i--) {
    int ptshift = i * vm.idxbits;
    reg_t idx = (addr >> (PGSHIFT + ptshift)) & ((1 << vm.idxbits) - 1);

    // check that physical address of PTE is legal
    auto ppte = sim->addr_to_mem(base + idx * vm.ptesize);
    if (!ppte)
      goto fail_access;

    reg_t pte = vm.ptesize == 4 ? *(uint32_t*)ppte : *(uint64_t*)ppte;
    reg_t ppn = pte >> PTE_PPN_SHIFT;

    if (PTE_TABLE(pte)) { // next level of page table
      base = ppn << PGSHIFT;
    } else if ((pte & PTE_U) ? s_mode && (type == FETCH || !sum) : !s_mode) {
      break;
    } else if (!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) {
      break;
    } else if (type == FETCH ? !(pte & PTE_X) :
               type == LOAD ?  !(pte & PTE_R) && !(mxr && (pte & PTE_X)) :
                               !((pte & PTE_R) && (pte & PTE_W))) {
      break;
    } else if ((ppn & ((reg_t(1) << ptshift) - 1)) != 0) {
      break;
    } else {
      reg_t ad = PTE_A | ((type == STORE) * PTE_D);
#ifdef RISCV_ENABLE_DIRTY
      // set accessed and possibly dirty bits.
      *(uint32_t*)ppte |= ad;
#else
      // take exception if access or possibly dirty bit is not set.
      if ((pte & ad) != ad)
        break;
#endif
      // for superpage mappings, make a fake leaf PTE for the TLB's benefit.
      reg_t vpn = addr >> PGSHIFT;
      reg_t value = (ppn | (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT;
      return value;
    }
  }

fail:
  switch (type) {
    case FETCH: throw trap_instruction_page_fault(addr);
    case LOAD: throw trap_load_page_fault(addr);
    case STORE: throw trap_store_page_fault(addr);
    default: abort();
  }

fail_access:
  switch (type) {
    case FETCH: throw trap_instruction_access_fault(addr);
    case LOAD: throw trap_load_access_fault(addr);
    case STORE: throw trap_store_access_fault(addr);
    default: abort();
  }
}

void mmu_t::register_memtracer(memtracer_t* t)
{
  flush_tlb();
  tracer.hook(t);
}