aboutsummaryrefslogtreecommitdiff
path: root/riscv/decode.h
blob: 70f146deb5b118357468f88e2b0d8087b328d257 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
// See LICENSE for license details.

#ifndef _RISCV_DECODE_H
#define _RISCV_DECODE_H

#if (-1 != ~0) || ((-1 >> 1) != -1)
# error spike requires a two''s-complement c++ implementation
#endif

#include <algorithm>
#include <cstdint>
#include <string.h>
#include <strings.h>
#include "encoding.h"
#include "config.h"
#include "common.h"
#include "softfloat_types.h"
#include "specialize.h"
#include "v_ext_macros.h"
#include <cinttypes>

typedef int64_t sreg_t;
typedef uint64_t reg_t;

#ifdef __SIZEOF_INT128__
typedef __int128 int128_t;
typedef unsigned __int128 uint128_t;
#endif

const int NXPR = 32;
const int NFPR = 32;
const int NVPR = 32;
const int NCSR = 4096;

#define X_RA 1
#define X_SP 2

#define VCSR_VXRM_SHIFT 1
#define VCSR_VXRM  (0x3 << VCSR_VXRM_SHIFT)

#define VCSR_VXSAT_SHIFT 0
#define VCSR_VXSAT  (0x1 << VCSR_VXSAT_SHIFT)

#define FP_RD_NE  0
#define FP_RD_0   1
#define FP_RD_DN  2
#define FP_RD_UP  3
#define FP_RD_NMM 4

#define FSR_RD_SHIFT 5
#define FSR_RD   (0x7 << FSR_RD_SHIFT)

#define FPEXC_NX 0x01
#define FPEXC_UF 0x02
#define FPEXC_OF 0x04
#define FPEXC_DZ 0x08
#define FPEXC_NV 0x10

#define FSR_AEXC_SHIFT 0
#define FSR_NVA  (FPEXC_NV << FSR_AEXC_SHIFT)
#define FSR_OFA  (FPEXC_OF << FSR_AEXC_SHIFT)
#define FSR_UFA  (FPEXC_UF << FSR_AEXC_SHIFT)
#define FSR_DZA  (FPEXC_DZ << FSR_AEXC_SHIFT)
#define FSR_NXA  (FPEXC_NX << FSR_AEXC_SHIFT)
#define FSR_AEXC (FSR_NVA | FSR_OFA | FSR_UFA | FSR_DZA | FSR_NXA)

#define insn_length(x) \
  (((x) & 0x03) < 0x03 ? 2 : \
   ((x) & 0x1f) < 0x1f ? 4 : \
   ((x) & 0x3f) < 0x3f ? 6 : \
   ((x) & 0x7f) == 0x7f ? 4 : \
   8)
#define MAX_INSN_LENGTH 8
#define PC_ALIGN 2

typedef uint64_t insn_bits_t;
class insn_t
{
public:
  insn_t() = default;
  insn_t(insn_bits_t bits) : b(bits) {}
  insn_bits_t bits() { return b & ~((UINT64_MAX) << (length() * 8)); }
  int length() { return insn_length(b); }
  int64_t i_imm() { return int64_t(b) >> 20; }
  int64_t shamt() { return x(20, 6); }
  int64_t s_imm() { return x(7, 5) + (xs(25, 7) << 5); }
  int64_t sb_imm() { return (x(8, 4) << 1) + (x(25, 6) << 5) + (x(7, 1) << 11) + (imm_sign() << 12); }
  int64_t u_imm() { return int64_t(b) >> 12 << 12; }
  int64_t uj_imm() { return (x(21, 10) << 1) + (x(20, 1) << 11) + (x(12, 8) << 12) + (imm_sign() << 20); }
  uint64_t rd() { return x(7, 5); }
  uint64_t rs1() { return x(15, 5); }
  uint64_t rs2() { return x(20, 5); }
  uint64_t rs3() { return x(27, 5); }
  uint64_t rm() { return x(12, 3); }
  uint64_t csr() { return x(20, 12); }
  uint64_t iorw() { return x(20, 8); }
  uint64_t bs() { return x(30, 2); } // Crypto ISE - SM4/AES32 byte select.
  uint64_t rcon() { return x(20, 4); } // Crypto ISE - AES64 round const.

  int64_t rvc_imm() { return x(2, 5) + (xs(12, 1) << 5); }
  int64_t rvc_zimm() { return x(2, 5) + (x(12, 1) << 5); }
  int64_t rvc_addi4spn_imm() { return (x(6, 1) << 2) + (x(5, 1) << 3) + (x(11, 2) << 4) + (x(7, 4) << 6); }
  int64_t rvc_addi16sp_imm() { return (x(6, 1) << 4) + (x(2, 1) << 5) + (x(5, 1) << 6) + (x(3, 2) << 7) + (xs(12, 1) << 9); }
  int64_t rvc_lwsp_imm() { return (x(4, 3) << 2) + (x(12, 1) << 5) + (x(2, 2) << 6); }
  int64_t rvc_ldsp_imm() { return (x(5, 2) << 3) + (x(12, 1) << 5) + (x(2, 3) << 6); }
  int64_t rvc_swsp_imm() { return (x(9, 4) << 2) + (x(7, 2) << 6); }
  int64_t rvc_sdsp_imm() { return (x(10, 3) << 3) + (x(7, 3) << 6); }
  int64_t rvc_lw_imm() { return (x(6, 1) << 2) + (x(10, 3) << 3) + (x(5, 1) << 6); }
  int64_t rvc_ld_imm() { return (x(10, 3) << 3) + (x(5, 2) << 6); }
  int64_t rvc_j_imm() { return (x(3, 3) << 1) + (x(11, 1) << 4) + (x(2, 1) << 5) + (x(7, 1) << 6) + (x(6, 1) << 7) + (x(9, 2) << 8) + (x(8, 1) << 10) + (xs(12, 1) << 11); }
  int64_t rvc_b_imm() { return (x(3, 2) << 1) + (x(10, 2) << 3) + (x(2, 1) << 5) + (x(5, 2) << 6) + (xs(12, 1) << 8); }
  int64_t rvc_simm3() { return x(10, 3); }
  uint64_t rvc_rd() { return rd(); }
  uint64_t rvc_rs1() { return rd(); }
  uint64_t rvc_rs2() { return x(2, 5); }
  uint64_t rvc_rs1s() { return 8 + x(7, 3); }
  uint64_t rvc_rs2s() { return 8 + x(2, 3); }

  uint64_t v_vm() { return x(25, 1); }
  uint64_t v_wd() { return x(26, 1); }
  uint64_t v_nf() { return x(29, 3); }
  uint64_t v_simm5() { return xs(15, 5); }
  uint64_t v_zimm5() { return x(15, 5); }
  uint64_t v_zimm10() { return x(20, 10); }
  uint64_t v_zimm11() { return x(20, 11); }
  uint64_t v_lmul() { return x(20, 2); }
  uint64_t v_frac_lmul() { return x(22, 1); }
  uint64_t v_sew() { return 1 << (x(23, 3) + 3); }
  uint64_t v_width() { return x(12, 3); }
  uint64_t v_mop() { return x(26, 2); }
  uint64_t v_lumop() { return x(20, 5); }
  uint64_t v_sumop() { return x(20, 5); }
  uint64_t v_vta() { return x(26, 1); }
  uint64_t v_vma() { return x(27, 1); }
  uint64_t v_mew() { return x(28, 1); }

  uint64_t p_imm2() { return x(20, 2); }
  uint64_t p_imm3() { return x(20, 3); }
  uint64_t p_imm4() { return x(20, 4); }
  uint64_t p_imm5() { return x(20, 5); }
  uint64_t p_imm6() { return x(20, 6); }

private:
  insn_bits_t b;
  uint64_t x(int lo, int len) { return (b >> lo) & ((insn_bits_t(1) << len) - 1); }
  uint64_t xs(int lo, int len) { return int64_t(b) << (64 - lo - len) >> (64 - len); }
  uint64_t imm_sign() { return xs(63, 1); }
};

template <class T, size_t N, bool zero_reg>
class regfile_t
{
public:
  void write(size_t i, T value)
  {
    if (!zero_reg || i != 0)
      data[i] = value;
  }
  const T& operator [] (size_t i) const
  {
    return data[i];
  }
  regfile_t()
  {
    reset();
  }
  void reset()
  {
    memset(data, 0, sizeof(data));
  }
private:
  T data[N];
};

// helpful macros, etc
#define MMU (*p->get_mmu())
#define STATE (*p->get_state())
#define FLEN (p->get_flen())
#define CHECK_REG(reg) ((void) 0)
#define READ_REG(reg) ({ CHECK_REG(reg); STATE.XPR[reg]; })
#define READ_FREG(reg) STATE.FPR[reg]
#define RD READ_REG(insn.rd())
#define RS1 READ_REG(insn.rs1())
#define RS2 READ_REG(insn.rs2())
#define RS3 READ_REG(insn.rs3())
#define WRITE_RD(value) WRITE_REG(insn.rd(), value)

#ifndef RISCV_ENABLE_COMMITLOG
# define WRITE_REG(reg, value) ({ CHECK_REG(reg); STATE.XPR.write(reg, value); })
# define WRITE_FREG(reg, value) DO_WRITE_FREG(reg, freg(value))
# define WRITE_VSTATUS {}
#else
   /* 0 : int
    * 1 : floating
    * 2 : vector reg
    * 3 : vector hint
    * 4 : csr
    */
# define WRITE_REG(reg, value) ({ \
    reg_t wdata = (value); /* value may have side effects */ \
    STATE.log_reg_write[(reg) << 4] = {wdata, 0}; \
    CHECK_REG(reg); \
    STATE.XPR.write(reg, wdata); \
  })
# define WRITE_FREG(reg, value) ({ \
    freg_t wdata = freg(value); /* value may have side effects */ \
    STATE.log_reg_write[((reg) << 4) | 1] = wdata; \
    DO_WRITE_FREG(reg, wdata); \
  })
# define WRITE_VSTATUS STATE.log_reg_write[3] = {0, 0};
#endif

// RVC macros
#define WRITE_RVC_RS1S(value) WRITE_REG(insn.rvc_rs1s(), value)
#define WRITE_RVC_RS2S(value) WRITE_REG(insn.rvc_rs2s(), value)
#define WRITE_RVC_FRS2S(value) WRITE_FREG(insn.rvc_rs2s(), value)
#define RVC_RS1 READ_REG(insn.rvc_rs1())
#define RVC_RS2 READ_REG(insn.rvc_rs2())
#define RVC_RS1S READ_REG(insn.rvc_rs1s())
#define RVC_RS2S READ_REG(insn.rvc_rs2s())
#define RVC_FRS2 READ_FREG(insn.rvc_rs2())
#define RVC_FRS2S READ_FREG(insn.rvc_rs2s())
#define RVC_SP READ_REG(X_SP)

// FPU macros
#define FRS1 READ_FREG(insn.rs1())
#define FRS2 READ_FREG(insn.rs2())
#define FRS3 READ_FREG(insn.rs3())
#define dirty_fp_state  STATE.sstatus->dirty(SSTATUS_FS)
#define dirty_ext_state STATE.sstatus->dirty(SSTATUS_XS)
#define dirty_vs_state  STATE.sstatus->dirty(SSTATUS_VS)
#define DO_WRITE_FREG(reg, value) (STATE.FPR.write(reg, value), dirty_fp_state)
#define WRITE_FRD(value) WRITE_FREG(insn.rd(), value)
 
#define SHAMT (insn.i_imm() & 0x3F)
#define BRANCH_TARGET (pc + insn.sb_imm())
#define JUMP_TARGET (pc + insn.uj_imm())
#define RM ({ int rm = insn.rm(); \
              if (rm == 7) rm = STATE.frm->read(); \
              if (rm > 4) throw trap_illegal_instruction(insn.bits()); \
              rm; })

#define get_field(reg, mask) (((reg) & (decltype(reg))(mask)) / ((mask) & ~((mask) << 1)))
#define set_field(reg, mask, val) (((reg) & ~(decltype(reg))(mask)) | (((decltype(reg))(val) * ((mask) & ~((mask) << 1))) & (decltype(reg))(mask)))

#define require_privilege(p) require(STATE.prv >= (p))
#define require_novirt() if (unlikely(STATE.v)) throw trap_virtual_instruction(insn.bits())
#define require_rv64 require(xlen == 64)
#define require_rv32 require(xlen == 32)
#define require_extension(s) require(p->extension_enabled(s))
#define require_either_extension(A,B) require(p->extension_enabled(A) || p->extension_enabled(B));
#define require_impl(s) require(p->supports_impl(s))
#define require_fp          require(STATE.sstatus->enabled(SSTATUS_FS))
#define require_accelerator require(STATE.sstatus->enabled(SSTATUS_XS))
#define require_vector_vs   require(STATE.sstatus->enabled(SSTATUS_VS))
#define require_vector(alu) \
  do { \
    require_vector_vs; \
    require_extension('V'); \
    require(!P.VU.vill); \
    if (alu && !P.VU.vstart_alu) \
      require(P.VU.vstart->read() == 0); \
    WRITE_VSTATUS; \
    dirty_vs_state; \
  } while (0);
#define require_vector_novtype(is_log, alu) \
  do { \
    require_vector_vs; \
    require_extension('V'); \
    if (alu && !P.VU.vstart_alu) \
      require(P.VU.vstart->read() == 0); \
    if (is_log) \
      WRITE_VSTATUS; \
    dirty_vs_state; \
  } while (0);
#define require_align(val, pos) require(is_aligned(val, pos))
#define require_noover(astart, asize, bstart, bsize) \
  require(!is_overlapped(astart, asize, bstart, bsize))
#define require_noover_widen(astart, asize, bstart, bsize) \
  require(!is_overlapped_widen(astart, asize, bstart, bsize))
#define require_vm do { if (insn.v_vm() == 0) require(insn.rd() != 0); } while (0);
#define require_envcfg(field) \
  do { \
    if (((STATE.prv != PRV_M) && (m##field == 0)) || \
        ((STATE.prv == PRV_U && !STATE.v) && (s##field == 0))) \
      throw trap_illegal_instruction(insn.bits()); \
    else if (STATE.v && ((h##field == 0) || \
                        ((STATE.prv == PRV_U) && (s##field == 0)))) \
      throw trap_virtual_instruction(insn.bits()); \
  } while (0);

#define set_fp_exceptions ({ if (softfloat_exceptionFlags) { \
                               STATE.fflags->write(STATE.fflags->read() | softfloat_exceptionFlags); \
                             } \
                             softfloat_exceptionFlags = 0; })

#define sext32(x) ((sreg_t)(int32_t)(x))
#define zext32(x) ((reg_t)(uint32_t)(x))
#define sext_xlen(x) (((sreg_t)(x) << (64 - xlen)) >> (64 - xlen))
#define zext(x, pos) (((reg_t)(x) << (64 - (pos))) >> (64 - (pos)))
#define zext_xlen(x) zext(x, xlen)

#define set_pc(x) \
  do { p->check_pc_alignment(x); \
       npc = sext_xlen(x); \
     } while (0)

#define set_pc_and_serialize(x) \
  do { reg_t __npc = (x) & p->pc_alignment_mask(); \
       npc = PC_SERIALIZE_AFTER; \
       STATE.pc = __npc; \
     } while (0)

class wait_for_interrupt_t {};

#define wfi() \
  do { set_pc_and_serialize(npc); \
       npc = PC_SERIALIZE_WFI; \
       throw wait_for_interrupt_t(); \
     } while (0)

#define serialize() set_pc_and_serialize(npc)

/* Sentinel PC values to serialize simulator pipeline */
#define PC_SERIALIZE_BEFORE 3
#define PC_SERIALIZE_AFTER 5
#define PC_SERIALIZE_WFI 7
#define invalid_pc(pc) ((pc) & 1)

/* Convenience wrappers to simplify softfloat code sequences */
#define isBoxedF16(r) (isBoxedF32(r) && ((uint64_t)((r.v[0] >> 16) + 1) == ((uint64_t)1 << 48)))
#define unboxF16(r) (isBoxedF16(r) ? (uint16_t)r.v[0] : defaultNaNF16UI)
#define isBoxedF32(r) (isBoxedF64(r) && ((uint32_t)((r.v[0] >> 32) + 1) == 0))
#define unboxF32(r) (isBoxedF32(r) ? (uint32_t)r.v[0] : defaultNaNF32UI)
#define isBoxedF64(r) ((r.v[1] + 1) == 0)
#define unboxF64(r) (isBoxedF64(r) ? r.v[0] : defaultNaNF64UI)
typedef float128_t freg_t;
inline float16_t f16(uint16_t v) { return { v }; }
inline float32_t f32(uint32_t v) { return { v }; }
inline float64_t f64(uint64_t v) { return { v }; }
inline float16_t f16(freg_t r) { return f16(unboxF16(r)); }
inline float32_t f32(freg_t r) { return f32(unboxF32(r)); }
inline float64_t f64(freg_t r) { return f64(unboxF64(r)); }
inline float128_t f128(freg_t r) { return r; }
inline freg_t freg(float16_t f) { return { ((uint64_t)-1 << 16) | f.v, (uint64_t)-1 }; }
inline freg_t freg(float32_t f) { return { ((uint64_t)-1 << 32) | f.v, (uint64_t)-1 }; }
inline freg_t freg(float64_t f) { return { f.v, (uint64_t)-1 }; }
inline freg_t freg(float128_t f) { return f; }
#define F16_SIGN ((uint16_t)1 << 15)
#define F32_SIGN ((uint32_t)1 << 31)
#define F64_SIGN ((uint64_t)1 << 63)
#define fsgnj16(a, b, n, x) \
  f16((f16(a).v & ~F16_SIGN) | ((((x) ? f16(a).v : (n) ? F16_SIGN : 0) ^ f16(b).v) & F16_SIGN))
#define fsgnj32(a, b, n, x) \
  f32((f32(a).v & ~F32_SIGN) | ((((x) ? f32(a).v : (n) ? F32_SIGN : 0) ^ f32(b).v) & F32_SIGN))
#define fsgnj64(a, b, n, x) \
  f64((f64(a).v & ~F64_SIGN) | ((((x) ? f64(a).v : (n) ? F64_SIGN : 0) ^ f64(b).v) & F64_SIGN))

#define isNaNF128(x) isNaNF128UI(x.v[1], x.v[0])
inline float128_t defaultNaNF128()
{
  float128_t nan;
  nan.v[1] = defaultNaNF128UI64;
  nan.v[0] = defaultNaNF128UI0;
  return nan;
}
inline freg_t fsgnj128(freg_t a, freg_t b, bool n, bool x)
{
  a.v[1] = (a.v[1] & ~F64_SIGN) | (((x ? a.v[1] : n ? F64_SIGN : 0) ^ b.v[1]) & F64_SIGN);
  return a;
}
inline freg_t f128_negate(freg_t a)
{
  a.v[1] ^= F64_SIGN;
  return a;
}

#define validate_csr(which, write) ({ \
  if (!STATE.serialized) return PC_SERIALIZE_BEFORE; \
  STATE.serialized = false; \
  /* permissions check occurs in get_csr */ \
  (which); })

/* For debug only. This will fail if the native machine's float types are not IEEE */
inline float to_f(float32_t f) { float r; memcpy(&r, &f, sizeof(r)); return r; }
inline double to_f(float64_t f) { double r; memcpy(&r, &f, sizeof(r)); return r; }
inline long double to_f(float128_t f) { long double r; memcpy(&r, &f, sizeof(r)); return r; }

// Vector macros
#define e8 8      // 8b elements
#define e16 16    // 16b elements
#define e32 32    // 32b elements
#define e64 64    // 64b elements
#define e128 128  // 128b elements
#define e256 256  // 256b elements
#define e512 512  // 512b elements
#define e1024 1024  // 1024b elements

#define vsext(x, sew) (((sreg_t)(x) << (64 - sew)) >> (64 - sew))
#define vzext(x, sew) (((reg_t)(x) << (64 - sew)) >> (64 - sew))

#define DEBUG_RVV 0

#if DEBUG_RVV
#define DEBUG_RVV_FP_VV \
  printf("vfp(%lu) vd=%f vs1=%f vs2=%f\n", i, to_f(vd), to_f(vs1), to_f(vs2));
#define DEBUG_RVV_FP_VF \
  printf("vfp(%lu) vd=%f vs1=%f vs2=%f\n", i, to_f(vd), to_f(rs1), to_f(vs2));
#define DEBUG_RVV_FMA_VV \
  printf("vfma(%lu) vd=%f vs1=%f vs2=%f vd_old=%f\n", i, to_f(vd), to_f(vs1), to_f(vs2), to_f(vd_old));
#define DEBUG_RVV_FMA_VF \
  printf("vfma(%lu) vd=%f vs1=%f vs2=%f vd_old=%f\n", i, to_f(vd), to_f(rs1), to_f(vs2), to_f(vd_old));
#else
#define DEBUG_RVV_FP_VV 0
#define DEBUG_RVV_FP_VF 0
#define DEBUG_RVV_FMA_VV 0
#define DEBUG_RVV_FMA_VF 0
#endif

// The p-extension support is contributed by
// Programming Langauge Lab, Department of Computer Science, National Tsing-Hua University, Taiwan

#define P_FIELD(R, INDEX, SIZE) \
  (type_sew_t<SIZE>::type)get_field(R, make_mask64(((INDEX) * SIZE), SIZE))

#define P_UFIELD(R, INDEX, SIZE) \
  (type_usew_t<SIZE>::type)get_field(R, make_mask64(((INDEX) * SIZE), SIZE))

#define P_B(R, INDEX) P_UFIELD(R, INDEX, 8)
#define P_H(R, INDEX) P_UFIELD(R, INDEX, 16)
#define P_W(R, INDEX) P_UFIELD(R, INDEX, 32)
#define P_SB(R, INDEX) P_FIELD(R, INDEX, 8)
#define P_SH(R, INDEX) P_FIELD(R, INDEX, 16)
#define P_SW(R, INDEX) P_FIELD(R, INDEX, 32)

#define READ_REG_PAIR(reg) ({ \
  require((reg) % 2 == 0); \
  (reg) == 0 ? reg_t(0) : \
  (READ_REG((reg) + 1) << 32) + zext32(READ_REG(reg)); })

#define RS1_PAIR READ_REG_PAIR(insn.rs1())
#define RS2_PAIR READ_REG_PAIR(insn.rs2())
#define RD_PAIR READ_REG_PAIR(insn.rd())

#define WRITE_PD() \
  rd_tmp = set_field(rd_tmp, make_mask64((i * sizeof(pd) * 8), sizeof(pd) * 8), pd);

#define WRITE_RD_PAIR(value) \
  if (insn.rd() != 0) { \
    require(insn.rd() % 2 == 0); \
    WRITE_REG(insn.rd(), sext32(value)); \
    WRITE_REG(insn.rd() + 1, (sreg_t(value)) >> 32); \
  }

#define P_SET_OV(ov) \
  if (ov) P.VU.vxsat->write(1);

#define P_SAT(R, BIT) \
  if (R > INT##BIT##_MAX) { \
    R = INT##BIT##_MAX; \
    P_SET_OV(1); \
  } else if (R < INT##BIT##_MIN) { \
    R = INT##BIT##_MIN; \
    P_SET_OV(1); \
  }

#define P_SATU(R, BIT) \
  if (R > UINT##BIT##_MAX) { \
    R = UINT##BIT##_MAX; \
    P_SET_OV(1); \
  } else if (R < 0) { \
    P_SET_OV(1); \
    R = 0; \
  }

#define P_LOOP_BASE(BIT) \
  require_extension(EXT_ZPN); \
  require(BIT == e8 || BIT == e16 || BIT == e32); \
  reg_t rd_tmp = RD; \
  reg_t rs1 = RS1; \
  reg_t rs2 = RS2; \
  sreg_t len = xlen / BIT; \
  for (sreg_t i = len - 1; i >= 0; --i) {

#define P_ONE_LOOP_BASE(BIT) \
  require_extension(EXT_ZPN); \
  require(BIT == e8 || BIT == e16 || BIT == e32); \
  reg_t rd_tmp = RD; \
  reg_t rs1 = RS1; \
  sreg_t len = xlen / BIT; \
  for (sreg_t i = len - 1; i >= 0; --i) {

#define P_I_LOOP_BASE(BIT, IMMBIT) \
  require_extension(EXT_ZPN); \
  require(BIT == e8 || BIT == e16 || BIT == e32); \
  reg_t rd_tmp = RD; \
  reg_t rs1 = RS1; \
  type_usew_t<BIT>::type imm##IMMBIT##u = insn.p_imm##IMMBIT(); \
  sreg_t len = xlen / BIT; \
  for (sreg_t i = len - 1; i >= 0; --i) {

#define P_X_LOOP_BASE(BIT, LOWBIT) \
  require_extension(EXT_ZPN); \
  require(BIT == e8 || BIT == e16 || BIT == e32); \
  reg_t rd_tmp = RD; \
  reg_t rs1 = RS1; \
  type_usew_t<BIT>::type sa = RS2 & ((uint64_t(1) << LOWBIT) - 1); \
  type_sew_t<BIT>::type ssa = int64_t(RS2) << (64 - LOWBIT) >> (64 - LOWBIT); \
  sreg_t len = xlen / BIT; \
  for (sreg_t i = len - 1; i >= 0; --i) {

#define P_MUL_LOOP_BASE(BIT) \
  require_extension(EXT_ZPN); \
  require(BIT == e8 || BIT == e16 || BIT == e32); \
  reg_t rd_tmp = RD; \
  reg_t rs1 = RS1; \
  reg_t rs2 = RS2; \
  sreg_t len = 32 / BIT; \
  for (sreg_t i = len - 1; i >= 0; --i) {

#define P_REDUCTION_LOOP_BASE(BIT, BIT_INNER, USE_RD) \
  require_extension(EXT_ZPN); \
  require(BIT == e16 || BIT == e32 || BIT == e64); \
  reg_t rd_tmp = USE_RD ? zext_xlen(RD) : 0; \
  reg_t rs1 = zext_xlen(RS1); \
  reg_t rs2 = zext_xlen(RS2); \
  sreg_t len = 64 / BIT; \
  sreg_t len_inner = BIT / BIT_INNER; \
  for (sreg_t i = len - 1; i >= 0; --i) { \
    sreg_t pd_res = P_FIELD(rd_tmp, i, BIT); \
    for (sreg_t j = i * len_inner; j < (i + 1) * len_inner; ++j) {

#define P_REDUCTION_ULOOP_BASE(BIT, BIT_INNER, USE_RD) \
  require_extension(EXT_ZPN); \
  require(BIT == e16 || BIT == e32 || BIT == e64); \
  reg_t rd_tmp = USE_RD ? zext_xlen(RD) : 0; \
  reg_t rs1 = zext_xlen(RS1); \
  reg_t rs2 = zext_xlen(RS2); \
  sreg_t len = 64 / BIT; \
  sreg_t len_inner = BIT / BIT_INNER; \
  for (sreg_t i = len - 1; i >=0; --i) { \
    reg_t pd_res = P_UFIELD(rd_tmp, i, BIT); \
    for (sreg_t j = i * len_inner; j < (i + 1) * len_inner; ++j) {

#define P_PARAMS(BIT) \
  auto pd = P_FIELD(rd_tmp, i, BIT); \
  auto ps1 = P_FIELD(rs1, i, BIT); \
  auto ps2 = P_FIELD(rs2, i, BIT);

#define P_UPARAMS(BIT) \
  auto pd = P_UFIELD(rd_tmp, i, BIT); \
  auto ps1 = P_UFIELD(rs1, i, BIT); \
  auto ps2 = P_UFIELD(rs2, i, BIT);

#define P_CORSS_PARAMS(BIT) \
  auto pd = P_FIELD(rd_tmp, i, BIT); \
  auto ps1 = P_FIELD(rs1, i, BIT); \
  auto ps2 = P_FIELD(rs2, (i ^ 1), BIT);

#define P_CORSS_UPARAMS(BIT) \
  auto pd = P_UFIELD(rd_tmp, i, BIT); \
  auto ps1 = P_UFIELD(rs1, i, BIT); \
  auto ps2 = P_UFIELD(rs2, (i ^ 1), BIT);

#define P_ONE_PARAMS(BIT) \
  auto pd = P_FIELD(rd_tmp, i, BIT); \
  auto ps1 = P_FIELD(rs1, i, BIT);

#define P_ONE_UPARAMS(BIT) \
  auto pd = P_UFIELD(rd_tmp, i, BIT); \
  auto ps1 = P_UFIELD(rs1, i, BIT);

#define P_ONE_SUPARAMS(BIT) \
  auto pd = P_UFIELD(rd_tmp, i, BIT); \
  auto ps1 = P_FIELD(rs1, i, BIT);

#define P_MUL_PARAMS(BIT) \
  auto pd = P_FIELD(rd_tmp, i, BIT * 2); \
  auto ps1 = P_FIELD(rs1, i, BIT); \
  auto ps2 = P_FIELD(rs2, i, BIT);

#define P_MUL_UPARAMS(BIT) \
  auto pd = P_UFIELD(rd_tmp, i, BIT * 2); \
  auto ps1 = P_UFIELD(rs1, i, BIT); \
  auto ps2 = P_UFIELD(rs2, i, BIT);

#define P_MUL_CROSS_PARAMS(BIT) \
  auto pd = P_FIELD(rd_tmp, i, BIT * 2); \
  auto ps1 = P_FIELD(rs1, i, BIT); \
  auto ps2 = P_FIELD(rs2, (i ^ 1), BIT);

#define P_MUL_CROSS_UPARAMS(BIT) \
  auto pd = P_UFIELD(rd_tmp, i, BIT*2); \
  auto ps1 = P_UFIELD(rs1, i, BIT); \
  auto ps2 = P_UFIELD(rs2, (i ^ 1), BIT);

#define P_REDUCTION_PARAMS(BIT_INNER) \
  auto ps1 = P_FIELD(rs1, j, BIT_INNER); \
  auto ps2 = P_FIELD(rs2, j, BIT_INNER);

#define P_REDUCTION_UPARAMS(BIT_INNER) \
  auto ps1 = P_UFIELD(rs1, j, BIT_INNER); \
  auto ps2 = P_UFIELD(rs2, j, BIT_INNER);

#define P_REDUCTION_SUPARAMS(BIT_INNER) \
  auto ps1 = P_FIELD(rs1, j, BIT_INNER); \
  auto ps2 = P_UFIELD(rs2, j, BIT_INNER);

#define P_REDUCTION_CROSS_PARAMS(BIT_INNER) \
  auto ps1 = P_FIELD(rs1, j, BIT_INNER); \
  auto ps2 = P_FIELD(rs2, (j ^ 1), BIT_INNER);

#define P_LOOP_BODY(BIT, BODY) { \
  P_PARAMS(BIT) \
  BODY \
  WRITE_PD(); \
}

#define P_ULOOP_BODY(BIT, BODY) { \
  P_UPARAMS(BIT) \
  BODY \
  WRITE_PD(); \
}

#define P_ONE_LOOP_BODY(BIT, BODY) { \
  P_ONE_PARAMS(BIT) \
  BODY \
  WRITE_PD(); \
}

#define P_CROSS_LOOP_BODY(BIT, BODY) { \
  P_CORSS_PARAMS(BIT) \
  BODY \
  WRITE_PD(); \
}

#define P_CROSS_ULOOP_BODY(BIT, BODY) { \
  P_CORSS_UPARAMS(BIT) \
  BODY \
  WRITE_PD(); \
}

#define P_ONE_ULOOP_BODY(BIT, BODY) { \
  P_ONE_UPARAMS(BIT) \
  BODY \
  WRITE_PD(); \
}

#define P_MUL_LOOP_BODY(BIT, BODY) { \
  P_MUL_PARAMS(BIT) \
  BODY \
  WRITE_PD(); \
}

#define P_MUL_ULOOP_BODY(BIT, BODY) { \
  P_MUL_UPARAMS(BIT) \
  BODY \
  WRITE_PD(); \
}

#define P_MUL_CROSS_LOOP_BODY(BIT, BODY) { \
  P_MUL_CROSS_PARAMS(BIT) \
  BODY \
  WRITE_PD(); \
}

#define P_MUL_CROSS_ULOOP_BODY(BIT, BODY) { \
  P_MUL_CROSS_UPARAMS(BIT) \
  BODY \
  WRITE_PD(); \
}

#define P_LOOP(BIT, BODY) \
  P_LOOP_BASE(BIT) \
  P_LOOP_BODY(BIT, BODY) \
  P_LOOP_END()

#define P_ONE_LOOP(BIT, BODY) \
  P_ONE_LOOP_BASE(BIT) \
  P_ONE_LOOP_BODY(BIT, BODY) \
  P_LOOP_END()

#define P_ULOOP(BIT, BODY) \
  P_LOOP_BASE(BIT) \
  P_ULOOP_BODY(BIT, BODY) \
  P_LOOP_END()

#define P_CROSS_LOOP(BIT, BODY1, BODY2) \
  P_LOOP_BASE(BIT) \
  P_CROSS_LOOP_BODY(BIT, BODY1) \
  --i; \
  if (sizeof(#BODY2) == 1) { \
    P_CROSS_LOOP_BODY(BIT, BODY1) \
  } \
  else { \
    P_CROSS_LOOP_BODY(BIT, BODY2) \
  } \
  P_LOOP_END()

#define P_CROSS_ULOOP(BIT, BODY1, BODY2) \
  P_LOOP_BASE(BIT) \
  P_CROSS_ULOOP_BODY(BIT, BODY1) \
  --i; \
  P_CROSS_ULOOP_BODY(BIT, BODY2) \
  P_LOOP_END()

#define P_STRAIGHT_LOOP(BIT, BODY1, BODY2) \
  P_LOOP_BASE(BIT) \
  P_LOOP_BODY(BIT, BODY1) \
  --i; \
  P_LOOP_BODY(BIT, BODY2) \
  P_LOOP_END()

#define P_STRAIGHT_ULOOP(BIT, BODY1, BODY2) \
  P_LOOP_BASE(BIT) \
  P_ULOOP_BODY(BIT, BODY1) \
  --i; \
  P_ULOOP_BODY(BIT, BODY2) \
  P_LOOP_END()

#define P_X_LOOP(BIT, RS2_LOW_BIT, BODY) \
  P_X_LOOP_BASE(BIT, RS2_LOW_BIT) \
  P_ONE_LOOP_BODY(BIT, BODY) \
  P_LOOP_END()

#define P_X_ULOOP(BIT, RS2_LOW_BIT, BODY) \
  P_X_LOOP_BASE(BIT, RS2_LOW_BIT) \
  P_ONE_ULOOP_BODY(BIT, BODY) \
  P_LOOP_END()

#define P_I_LOOP(BIT, IMMBIT, BODY) \
  P_I_LOOP_BASE(BIT, IMMBIT) \
  P_ONE_LOOP_BODY(BIT, BODY) \
  P_LOOP_END()

#define P_I_ULOOP(BIT, IMMBIT, BODY) \
  P_I_LOOP_BASE(BIT, IMMBIT) \
  P_ONE_ULOOP_BODY(BIT, BODY) \
  P_LOOP_END()

#define P_MUL_LOOP(BIT, BODY) \
  P_MUL_LOOP_BASE(BIT) \
  P_MUL_LOOP_BODY(BIT, BODY) \
  P_PAIR_LOOP_END()

#define P_MUL_ULOOP(BIT, BODY) \
  P_MUL_LOOP_BASE(BIT) \
  P_MUL_ULOOP_BODY(BIT, BODY) \
  P_PAIR_LOOP_END()

#define P_MUL_CROSS_LOOP(BIT, BODY) \
  P_MUL_LOOP_BASE(BIT) \
  P_MUL_CROSS_LOOP_BODY(BIT, BODY) \
  P_PAIR_LOOP_END()

#define P_MUL_CROSS_ULOOP(BIT, BODY) \
  P_MUL_LOOP_BASE(BIT) \
  P_MUL_CROSS_ULOOP_BODY(BIT, BODY) \
  P_PAIR_LOOP_END()

#define P_REDUCTION_LOOP(BIT, BIT_INNER, USE_RD, IS_SAT, BODY) \
  P_REDUCTION_LOOP_BASE(BIT, BIT_INNER, USE_RD) \
  P_REDUCTION_PARAMS(BIT_INNER) \
  BODY \
  P_REDUCTION_LOOP_END(BIT, IS_SAT)

#define P_REDUCTION_ULOOP(BIT, BIT_INNER, USE_RD, IS_SAT, BODY) \
  P_REDUCTION_ULOOP_BASE(BIT, BIT_INNER, USE_RD) \
  P_REDUCTION_UPARAMS(BIT_INNER) \
  BODY \
  P_REDUCTION_ULOOP_END(BIT, IS_SAT)

#define P_REDUCTION_SULOOP(BIT, BIT_INNER, USE_RD, IS_SAT, BODY) \
  P_REDUCTION_LOOP_BASE(BIT, BIT_INNER, USE_RD) \
  P_REDUCTION_SUPARAMS(BIT_INNER) \
  BODY \
  P_REDUCTION_LOOP_END(BIT, IS_SAT)

#define P_REDUCTION_CROSS_LOOP(BIT, BIT_INNER, USE_RD, IS_SAT, BODY) \
  P_REDUCTION_LOOP_BASE(BIT, BIT_INNER, USE_RD) \
  P_REDUCTION_CROSS_PARAMS(BIT_INNER) \
  BODY \
  P_REDUCTION_LOOP_END(BIT, IS_SAT)

#define P_LOOP_END() \
  } \
  WRITE_RD(sext_xlen(rd_tmp));

#define P_PAIR_LOOP_END() \
  } \
  if (xlen == 32) { \
    WRITE_RD_PAIR(rd_tmp); \
  } \
  else { \
    WRITE_RD(sext_xlen(rd_tmp)); \
  }

#define P_REDUCTION_LOOP_END(BIT, IS_SAT) \
    } \
    if (IS_SAT) { \
      P_SAT(pd_res, BIT); \
    } \
    type_usew_t<BIT>::type pd = pd_res; \
    WRITE_PD(); \
  } \
  WRITE_RD(sext_xlen(rd_tmp));

#define P_REDUCTION_ULOOP_END(BIT, IS_SAT) \
    } \
    if (IS_SAT) { \
      P_SATU(pd_res, BIT); \
    } \
    type_usew_t<BIT>::type pd = pd_res; \
    WRITE_PD(); \
  } \
  WRITE_RD(sext_xlen(rd_tmp));

#define P_SUNPKD8(X, Y) \
  require_extension(EXT_ZPN); \
  reg_t rd_tmp = 0; \
  int16_t pd[4] = { \
    P_SB(RS1, Y), \
    P_SB(RS1, X), \
    P_SB(RS1, Y + 4), \
    P_SB(RS1, X + 4), \
  }; \
  if (xlen == 64) { \
    memcpy(&rd_tmp, pd, 8); \
  } else { \
    memcpy(&rd_tmp, pd, 4); \
  } \
  WRITE_RD(sext_xlen(rd_tmp));

#define P_ZUNPKD8(X, Y) \
  require_extension(EXT_ZPN); \
  reg_t rd_tmp = 0; \
  uint16_t pd[4] = { \
    P_B(RS1, Y), \
    P_B(RS1, X), \
    P_B(RS1, Y + 4), \
    P_B(RS1, X + 4), \
  }; \
  if (xlen == 64) { \
    memcpy(&rd_tmp, pd, 8); \
  } else { \
    memcpy(&rd_tmp, pd, 4); \
  } \
  WRITE_RD(sext_xlen(rd_tmp));

#define P_PK(BIT, X, Y) \
  require_extension(EXT_ZPN); \
  require(BIT == e16 || BIT == e32); \
  reg_t rd_tmp = 0, rs1 = RS1, rs2 = RS2; \
  for (sreg_t i = 0; i < xlen / BIT / 2; i++) { \
    rd_tmp = set_field(rd_tmp, make_mask64(i * 2 * BIT, BIT), \
      P_UFIELD(RS2, i * 2 + Y, BIT)); \
    rd_tmp = set_field(rd_tmp, make_mask64((i * 2 + 1) * BIT, BIT), \
      P_UFIELD(RS1, i * 2 + X, BIT)); \
  } \
  WRITE_RD(sext_xlen(rd_tmp));

#define P_64_PROFILE_BASE() \
  require_extension(EXT_ZPSFOPERAND); \
  sreg_t rd, rs1, rs2;

#define P_64_UPROFILE_BASE() \
  require_extension(EXT_ZPSFOPERAND); \
  reg_t rd, rs1, rs2;

#define P_64_PROFILE_PARAM(USE_RD, INPUT_PAIR) \
  if (xlen == 32) { \
    rs1 = INPUT_PAIR ? RS1_PAIR : RS1; \
    rs2 = INPUT_PAIR ? RS2_PAIR : RS2; \
    rd = USE_RD ? RD_PAIR : 0; \
  } else { \
    rs1 = RS1; \
    rs2 = RS2; \
    rd = USE_RD ? RD : 0; \
  }

#define P_64_PROFILE(BODY) \
  P_64_PROFILE_BASE() \
  P_64_PROFILE_PARAM(false, true) \
  BODY \
  P_64_PROFILE_END() \

#define P_64_UPROFILE(BODY) \
  P_64_UPROFILE_BASE() \
  P_64_PROFILE_PARAM(false, true) \
  BODY \
  P_64_PROFILE_END() \

#define P_64_PROFILE_REDUCTION(BIT, BODY) \
  P_64_PROFILE_BASE() \
  P_64_PROFILE_PARAM(true, false) \
  for (sreg_t i = 0; i < xlen / BIT; i++) { \
    sreg_t ps1 = P_FIELD(rs1, i, BIT); \
    sreg_t ps2 = P_FIELD(rs2, i, BIT); \
    BODY \
  } \
  P_64_PROFILE_END() \

#define P_64_UPROFILE_REDUCTION(BIT, BODY) \
  P_64_UPROFILE_BASE() \
  P_64_PROFILE_PARAM(true, false) \
  for (sreg_t i = 0; i < xlen / BIT; i++) { \
    reg_t ps1 = P_UFIELD(rs1, i, BIT); \
    reg_t ps2 = P_UFIELD(rs2, i, BIT); \
    BODY \
  } \
  P_64_PROFILE_END() \

#define P_64_PROFILE_END() \
  if (xlen == 32) { \
    WRITE_RD_PAIR(rd); \
  } else { \
    WRITE_RD(sext_xlen(rd)); \
  }

#define DECLARE_XENVCFG_VARS(field) \
  reg_t m##field = get_field(STATE.menvcfg->read(), MENVCFG_##field); \
  reg_t s##field = get_field(STATE.senvcfg->read(), SENVCFG_##field); \
  reg_t h##field = get_field(STATE.henvcfg->read(), HENVCFG_##field)

#define DEBUG_START             0x0
#define DEBUG_END               (0x1000 - 1)

#endif