/* SPDX-License-Identifier: MIT */ /* * libslirp glue * * Copyright (c) 2004-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "slirp.h" #ifndef _WIN32 #include #endif /* https://gitlab.freedesktop.org/slirp/libslirp/issues/18 */ #if defined(__NetBSD__) && defined(if_mtu) #undef if_mtu #endif #if defined(_WIN32) #define INITIAL_DNS_ADDR_BUF_SIZE 32 * 1024 #define REALLOC_RETRIES 5 // Broadcast site local DNS resolvers. We do not use these because they are // highly unlikely to be valid. // https://www.ietf.org/proceedings/52/I-D/draft-ietf-ipngwg-dns-discovery-03.txt static const struct in6_addr SITE_LOCAL_DNS_BROADCAST_ADDRS[] = { { {{ 0xfe, 0xc0, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }} }, { {{ 0xfe, 0xc0, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02 }} }, { {{ 0xfe, 0xc0, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, }} }, }; #endif int slirp_debug; /* Define to 1 if you want KEEPALIVE timers */ bool slirp_do_keepalive; /* host loopback address */ struct in_addr loopback_addr; /* host loopback network mask */ unsigned long loopback_mask; /* emulated hosts use the MAC addr 52:55:IP:IP:IP:IP */ static const uint8_t special_ethaddr[ETH_ALEN] = { 0x52, 0x55, 0x00, 0x00, 0x00, 0x00 }; unsigned curtime; static struct in_addr dns_addr; static struct in6_addr dns6_addr; static uint32_t dns6_scope_id; static unsigned dns_addr_time; static unsigned dns6_addr_time; #define TIMEOUT_FAST 2 /* milliseconds */ #define TIMEOUT_SLOW 499 /* milliseconds */ /* for the aging of certain requests like DNS */ #define TIMEOUT_DEFAULT 1000 /* milliseconds */ #if defined(_WIN32) int get_dns_addr(struct in_addr *pdns_addr) { FIXED_INFO *FixedInfo = NULL; ULONG BufLen; DWORD ret; IP_ADDR_STRING *pIPAddr; struct in_addr tmp_addr; if (dns_addr.s_addr != 0 && (curtime - dns_addr_time) < TIMEOUT_DEFAULT) { *pdns_addr = dns_addr; return 0; } FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO)); BufLen = sizeof(FIXED_INFO); if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) { if (FixedInfo) { GlobalFree(FixedInfo); FixedInfo = NULL; } FixedInfo = GlobalAlloc(GPTR, BufLen); } if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) { printf("GetNetworkParams failed. ret = %08x\n", (unsigned)ret); if (FixedInfo) { GlobalFree(FixedInfo); FixedInfo = NULL; } return -1; } pIPAddr = &(FixedInfo->DnsServerList); inet_aton(pIPAddr->IpAddress.String, &tmp_addr); *pdns_addr = tmp_addr; dns_addr = tmp_addr; dns_addr_time = curtime; if (FixedInfo) { GlobalFree(FixedInfo); FixedInfo = NULL; } return 0; } static int is_site_local_dns_broadcast(struct in6_addr *address) { int i; for (i = 0; i < G_N_ELEMENTS(SITE_LOCAL_DNS_BROADCAST_ADDRS); i++) { if (in6_equal(address, &SITE_LOCAL_DNS_BROADCAST_ADDRS[i])) { return 1; } } return 0; } static void print_dns_v6_address(struct in6_addr address) { char address_str[INET6_ADDRSTRLEN] = ""; if (inet_ntop(AF_INET6, &address, address_str, INET6_ADDRSTRLEN) == NULL) { DEBUG_ERROR("Failed to stringify IPv6 address for logging."); return; } DEBUG_CALL("IPv6 DNS server found: %s", address_str); } // Gets the first valid DNS resolver with an IPv6 address. // Ignores any site local broadcast DNS servers, as these // are on deprecated addresses and not generally expected // to work. Further details at: // https://www.ietf.org/proceedings/52/I-D/draft-ietf-ipngwg-dns-discovery-03.txt static int get_ipv6_dns_server(struct in6_addr *dns_server_address, uint32_t *scope_id) { PIP_ADAPTER_ADDRESSES addresses = NULL; PIP_ADAPTER_ADDRESSES address = NULL; IP_ADAPTER_DNS_SERVER_ADDRESS *dns_server = NULL; struct sockaddr_in6 *dns_v6_addr = NULL; ULONG buf_size = INITIAL_DNS_ADDR_BUF_SIZE; DWORD res = ERROR_BUFFER_OVERFLOW; int i; for (i = 0; i < REALLOC_RETRIES; i++) { // If non null, we hit buffer overflow, free it so we can try again. if (addresses != NULL) { g_free(addresses); } addresses = g_malloc(buf_size); res = GetAdaptersAddresses(AF_UNSPEC, GAA_FLAG_INCLUDE_PREFIX, NULL, addresses, &buf_size); if (res != ERROR_BUFFER_OVERFLOW) { break; } } if (res != NO_ERROR) { DEBUG_ERROR("Failed to get IPv6 DNS addresses due to error %lX", res); goto failure; } address = addresses; for (address = addresses; address != NULL; address = address->Next) { for (dns_server = address->FirstDnsServerAddress; dns_server != NULL; dns_server = dns_server->Next) { if (dns_server->Address.lpSockaddr->sa_family != AF_INET6) { continue; } dns_v6_addr = (struct sockaddr_in6 *)dns_server->Address.lpSockaddr; if (is_site_local_dns_broadcast(&dns_v6_addr->sin6_addr) == 0) { print_dns_v6_address(dns_v6_addr->sin6_addr); *dns_server_address = dns_v6_addr->sin6_addr; *scope_id = dns_v6_addr->sin6_scope_id; g_free(addresses); return 0; } } } DEBUG_ERROR("No IPv6 DNS servers found.\n"); failure: g_free(addresses); return -1; } int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id) { if (!in6_zero(&dns6_addr) && (curtime - dns6_addr_time) < TIMEOUT_DEFAULT) { *pdns6_addr = dns6_addr; *scope_id = dns6_scope_id; return 0; } if (get_ipv6_dns_server(pdns6_addr, scope_id) == 0) { dns6_addr = *pdns6_addr; dns6_addr_time = curtime; dns6_scope_id = *scope_id; return 0; } return -1; } static void winsock_cleanup(void) { WSACleanup(); } #elif defined(__APPLE__) #include static int get_dns_addr_cached(void *pdns_addr, void *cached_addr, socklen_t addrlen, unsigned *cached_time) { if (curtime - *cached_time < TIMEOUT_DEFAULT) { memcpy(pdns_addr, cached_addr, addrlen); return 0; } return 1; } static int get_dns_addr_libresolv(int af, void *pdns_addr, void *cached_addr, socklen_t addrlen, uint32_t *scope_id, uint32_t *cached_scope_id, unsigned *cached_time) { struct __res_state state; union res_sockaddr_union servers[NI_MAXSERV]; int count; int found; void *addr; // we only support IPv4 and IPv4, we assume it's one or the other assert(af == AF_INET || af == AF_INET6); if (res_ninit(&state) != 0) { return -1; } count = res_getservers(&state, servers, NI_MAXSERV); found = 0; DEBUG_MISC("IP address of your DNS(s):"); for (int i = 0; i < count; i++) { if (af == servers[i].sin.sin_family) { found++; } if (af == AF_INET) { addr = &servers[i].sin.sin_addr; } else { // af == AF_INET6 addr = &servers[i].sin6.sin6_addr; } // we use the first found entry if (found == 1) { memcpy(pdns_addr, addr, addrlen); memcpy(cached_addr, addr, addrlen); if (scope_id) { *scope_id = 0; } if (cached_scope_id) { *cached_scope_id = 0; } *cached_time = curtime; } if (found > 3) { DEBUG_MISC(" (more)"); break; } else if (slirp_debug & DBG_MISC) { char s[INET6_ADDRSTRLEN]; const char *res = inet_ntop(af, addr, s, sizeof(s)); if (!res) { res = " (string conversion error)"; } DEBUG_MISC(" %s", res); } } res_ndestroy(&state); if (!found) return -1; return 0; } int get_dns_addr(struct in_addr *pdns_addr) { if (dns_addr.s_addr != 0) { int ret; ret = get_dns_addr_cached(pdns_addr, &dns_addr, sizeof(dns_addr), &dns_addr_time); if (ret <= 0) { return ret; } } return get_dns_addr_libresolv(AF_INET, pdns_addr, &dns_addr, sizeof(dns_addr), NULL, NULL, &dns_addr_time); } int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id) { if (!in6_zero(&dns6_addr)) { int ret; ret = get_dns_addr_cached(pdns6_addr, &dns6_addr, sizeof(dns6_addr), &dns6_addr_time); if (ret == 0) { *scope_id = dns6_scope_id; } if (ret <= 0) { return ret; } } return get_dns_addr_libresolv(AF_INET6, pdns6_addr, &dns6_addr, sizeof(dns6_addr), scope_id, &dns6_scope_id, &dns6_addr_time); } #else // !defined(_WIN32) && !defined(__APPLE__) #if defined(__HAIKU__) #define RESOLV_CONF_PATH "/boot/system/settings/network/resolv.conf" #else #define RESOLV_CONF_PATH "/etc/resolv.conf" #endif static int get_dns_addr_cached(void *pdns_addr, void *cached_addr, socklen_t addrlen, struct stat *cached_stat, unsigned *cached_time) { struct stat old_stat; if (curtime - *cached_time < TIMEOUT_DEFAULT) { memcpy(pdns_addr, cached_addr, addrlen); return 0; } old_stat = *cached_stat; if (stat(RESOLV_CONF_PATH, cached_stat) != 0) { return -1; } if (cached_stat->st_dev == old_stat.st_dev && cached_stat->st_ino == old_stat.st_ino && cached_stat->st_size == old_stat.st_size && cached_stat->st_mtime == old_stat.st_mtime) { memcpy(pdns_addr, cached_addr, addrlen); return 0; } return 1; } static int get_dns_addr_resolv_conf(int af, void *pdns_addr, void *cached_addr, socklen_t addrlen, uint32_t *scope_id, uint32_t *cached_scope_id, unsigned *cached_time) { char buff[512]; char buff2[257]; FILE *f; int found = 0; union { struct in_addr dns_addr; struct in6_addr dns6_addr; } tmp_addr; unsigned if_index; assert(sizeof(tmp_addr) >= addrlen); f = fopen(RESOLV_CONF_PATH, "r"); if (!f) return -1; DEBUG_MISC("IP address of your DNS(s):"); while (fgets(buff, 512, f) != NULL) { if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) { char *c = strchr(buff2, '%'); if (c) { if_index = if_nametoindex(c + 1); *c = '\0'; } else { if_index = 0; } if (!inet_pton(af, buff2, &tmp_addr)) { continue; } /* If it's the first one, set it to dns_addr */ if (!found) { memcpy(pdns_addr, &tmp_addr, addrlen); memcpy(cached_addr, &tmp_addr, addrlen); if (scope_id) { *scope_id = if_index; } if (cached_scope_id) { *cached_scope_id = if_index; } *cached_time = curtime; } if (++found > 3) { DEBUG_MISC(" (more)"); break; } else if (slirp_debug & DBG_MISC) { char s[INET6_ADDRSTRLEN]; const char *res = inet_ntop(af, &tmp_addr, s, sizeof(s)); if (!res) { res = " (string conversion error)"; } DEBUG_MISC(" %s", res); } } } fclose(f); if (!found) return -1; return 0; } int get_dns_addr(struct in_addr *pdns_addr) { static struct stat dns_addr_stat; if (dns_addr.s_addr != 0) { int ret; ret = get_dns_addr_cached(pdns_addr, &dns_addr, sizeof(dns_addr), &dns_addr_stat, &dns_addr_time); if (ret <= 0) { return ret; } } return get_dns_addr_resolv_conf(AF_INET, pdns_addr, &dns_addr, sizeof(dns_addr), NULL, NULL, &dns_addr_time); } int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id) { static struct stat dns6_addr_stat; if (!in6_zero(&dns6_addr)) { int ret; ret = get_dns_addr_cached(pdns6_addr, &dns6_addr, sizeof(dns6_addr), &dns6_addr_stat, &dns6_addr_time); if (ret == 0) { *scope_id = dns6_scope_id; } if (ret <= 0) { return ret; } } return get_dns_addr_resolv_conf(AF_INET6, pdns6_addr, &dns6_addr, sizeof(dns6_addr), scope_id, &dns6_scope_id, &dns6_addr_time); } #endif static void slirp_init_once(void) { static int initialized; const char *debug; #ifdef _WIN32 WSADATA Data; #endif if (initialized) { return; } initialized = 1; #ifdef _WIN32 WSAStartup(MAKEWORD(2, 0), &Data); atexit(winsock_cleanup); #endif loopback_addr.s_addr = htonl(INADDR_LOOPBACK); loopback_mask = htonl(IN_CLASSA_NET); debug = g_getenv("SLIRP_DEBUG"); if (debug) { const GDebugKey keys[] = { { "call", DBG_CALL }, { "misc", DBG_MISC }, { "error", DBG_ERROR }, { "tftp", DBG_TFTP }, { "verbose_call", DBG_VERBOSE_CALL }, }; slirp_debug = g_parse_debug_string(debug, keys, G_N_ELEMENTS(keys)); } } static void ra_timer_handler_cb(void *opaque) { Slirp *slirp = opaque; return ra_timer_handler(slirp, NULL); } void slirp_handle_timer(Slirp *slirp, SlirpTimerId id, void *cb_opaque) { g_return_if_fail(id >= 0 && id < SLIRP_TIMER_NUM); switch (id) { case SLIRP_TIMER_RA: return ra_timer_handler(slirp, cb_opaque); default: abort(); } } void *slirp_timer_new(Slirp *slirp, SlirpTimerId id, void *cb_opaque) { g_return_val_if_fail(id >= 0 && id < SLIRP_TIMER_NUM, NULL); if (slirp->cfg_version >= 4 && slirp->cb->timer_new_opaque) { return slirp->cb->timer_new_opaque(id, cb_opaque, slirp->opaque); } switch (id) { case SLIRP_TIMER_RA: g_return_val_if_fail(cb_opaque == NULL, NULL); return slirp->cb->timer_new(ra_timer_handler_cb, slirp, slirp->opaque); default: abort(); } } Slirp *slirp_new(const SlirpConfig *cfg, const SlirpCb *callbacks, void *opaque) { Slirp *slirp; g_return_val_if_fail(cfg != NULL, NULL); g_return_val_if_fail(cfg->version >= SLIRP_CONFIG_VERSION_MIN, NULL); g_return_val_if_fail(cfg->version <= SLIRP_CONFIG_VERSION_MAX, NULL); g_return_val_if_fail(cfg->if_mtu >= IF_MTU_MIN || cfg->if_mtu == 0, NULL); g_return_val_if_fail(cfg->if_mtu <= IF_MTU_MAX, NULL); g_return_val_if_fail(cfg->if_mru >= IF_MRU_MIN || cfg->if_mru == 0, NULL); g_return_val_if_fail(cfg->if_mru <= IF_MRU_MAX, NULL); g_return_val_if_fail(!cfg->bootfile || (strlen(cfg->bootfile) < G_SIZEOF_MEMBER(struct bootp_t, bp_file)), NULL); slirp = g_malloc0(sizeof(Slirp)); slirp_init_once(); slirp->cfg_version = cfg->version; slirp->opaque = opaque; slirp->cb = callbacks; slirp->grand = g_rand_new(); slirp->restricted = cfg->restricted; slirp->in_enabled = cfg->in_enabled; slirp->in6_enabled = cfg->in6_enabled; if_init(slirp); ip_init(slirp); m_init(slirp); slirp->vnetwork_addr = cfg->vnetwork; slirp->vnetwork_mask = cfg->vnetmask; slirp->vhost_addr = cfg->vhost; slirp->vprefix_addr6 = cfg->vprefix_addr6; slirp->vprefix_len = cfg->vprefix_len; slirp->vhost_addr6 = cfg->vhost6; if (cfg->vhostname) { slirp_pstrcpy(slirp->client_hostname, sizeof(slirp->client_hostname), cfg->vhostname); } slirp->tftp_prefix = g_strdup(cfg->tftp_path); slirp->bootp_filename = g_strdup(cfg->bootfile); slirp->vdomainname = g_strdup(cfg->vdomainname); slirp->vdhcp_startaddr = cfg->vdhcp_start; slirp->vnameserver_addr = cfg->vnameserver; slirp->vnameserver_addr6 = cfg->vnameserver6; slirp->tftp_server_name = g_strdup(cfg->tftp_server_name); if (cfg->vdnssearch) { translate_dnssearch(slirp, cfg->vdnssearch); } slirp->if_mtu = cfg->if_mtu == 0 ? IF_MTU_DEFAULT : cfg->if_mtu; slirp->if_mru = cfg->if_mru == 0 ? IF_MRU_DEFAULT : cfg->if_mru; slirp->disable_host_loopback = cfg->disable_host_loopback; slirp->enable_emu = cfg->enable_emu; if (cfg->version >= 2) { slirp->outbound_addr = cfg->outbound_addr; slirp->outbound_addr6 = cfg->outbound_addr6; } else { slirp->outbound_addr = NULL; slirp->outbound_addr6 = NULL; } if (cfg->version >= 3) { slirp->disable_dns = cfg->disable_dns; } else { slirp->disable_dns = false; } if (cfg->version >= 4) { slirp->disable_dhcp = cfg->disable_dhcp; } else { slirp->disable_dhcp = false; } if (slirp->cfg_version >= 4 && slirp->cb->init_completed) { slirp->cb->init_completed(slirp, slirp->opaque); } if (cfg->version >= 5) { slirp->mfr_id = cfg->mfr_id; } else { slirp->mfr_id = 0; } ip6_post_init(slirp); return slirp; } Slirp *slirp_init(int restricted, bool in_enabled, struct in_addr vnetwork, struct in_addr vnetmask, struct in_addr vhost, bool in6_enabled, struct in6_addr vprefix_addr6, uint8_t vprefix_len, struct in6_addr vhost6, const char *vhostname, const char *tftp_server_name, const char *tftp_path, const char *bootfile, struct in_addr vdhcp_start, struct in_addr vnameserver, struct in6_addr vnameserver6, const char **vdnssearch, const char *vdomainname, const SlirpCb *callbacks, void *opaque) { SlirpConfig cfg; memset(&cfg, 0, sizeof(cfg)); cfg.version = 1; cfg.restricted = restricted; cfg.in_enabled = in_enabled; cfg.vnetwork = vnetwork; cfg.vnetmask = vnetmask; cfg.vhost = vhost; cfg.in6_enabled = in6_enabled; cfg.vprefix_addr6 = vprefix_addr6; cfg.vprefix_len = vprefix_len; cfg.vhost6 = vhost6; cfg.vhostname = vhostname; cfg.tftp_server_name = tftp_server_name; cfg.tftp_path = tftp_path; cfg.bootfile = bootfile; cfg.vdhcp_start = vdhcp_start; cfg.vnameserver = vnameserver; cfg.vnameserver6 = vnameserver6; cfg.vdnssearch = vdnssearch; cfg.vdomainname = vdomainname; return slirp_new(&cfg, callbacks, opaque); } void slirp_cleanup(Slirp *slirp) { struct gfwd_list *e, *next; for (e = slirp->guestfwd_list; e; e = next) { next = e->ex_next; g_free(e->ex_exec); g_free(e->ex_unix); g_free(e); } ip_cleanup(slirp); ip6_cleanup(slirp); m_cleanup(slirp); g_rand_free(slirp->grand); g_free(slirp->vdnssearch); g_free(slirp->tftp_prefix); g_free(slirp->bootp_filename); g_free(slirp->vdomainname); g_free(slirp); } #define CONN_CANFSEND(so) \ (((so)->so_state & (SS_FCANTSENDMORE | SS_ISFCONNECTED)) == SS_ISFCONNECTED) #define CONN_CANFRCV(so) \ (((so)->so_state & (SS_FCANTRCVMORE | SS_ISFCONNECTED)) == SS_ISFCONNECTED) static void slirp_update_timeout(Slirp *slirp, uint32_t *timeout) { uint32_t t; if (*timeout <= TIMEOUT_FAST) { return; } t = MIN(1000, *timeout); /* If we have tcp timeout with slirp, then we will fill @timeout with * more precise value. */ if (slirp->time_fasttimo) { *timeout = TIMEOUT_FAST; return; } if (slirp->do_slowtimo) { t = MIN(TIMEOUT_SLOW, t); } *timeout = t; } void slirp_pollfds_fill(Slirp *slirp, uint32_t *timeout, SlirpAddPollCb add_poll, void *opaque) { struct socket *so, *so_next; /* * First, TCP sockets */ /* * *_slowtimo needs calling if there are IP fragments * in the fragment queue, or there are TCP connections active */ slirp->do_slowtimo = ((slirp->tcb.so_next != &slirp->tcb) || (&slirp->ipq.ip_link != slirp->ipq.ip_link.next)); for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so_next) { int events = 0; so_next = so->so_next; so->pollfds_idx = -1; /* * See if we need a tcp_fasttimo */ if (slirp->time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK) { slirp->time_fasttimo = curtime; /* Flag when want a fasttimo */ } /* * NOFDREF can include still connecting to local-host, * newly socreated() sockets etc. Don't want to select these. */ if (so->so_state & SS_NOFDREF || so->s == -1) { continue; } /* * Set for reading sockets which are accepting */ if (so->so_state & SS_FACCEPTCONN) { so->pollfds_idx = add_poll( so->s, SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR, opaque); continue; } /* * Set for writing sockets which are connecting */ if (so->so_state & SS_ISFCONNECTING) { so->pollfds_idx = add_poll(so->s, SLIRP_POLL_OUT | SLIRP_POLL_ERR, opaque); continue; } /* * Set for writing if we are connected, can send more, and * we have something to send */ if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) { events |= SLIRP_POLL_OUT | SLIRP_POLL_ERR; } /* * Set for reading (and urgent data) if we are connected, can * receive more, and we have room for it. * * If sb is already half full, we will wait for the guest to consume it, * and notify again in sbdrop() when the sb becomes less than half full. */ if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen / 2))) { events |= SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR | SLIRP_POLL_PRI; } if (events) { so->pollfds_idx = add_poll(so->s, events, opaque); } } /* * UDP sockets */ for (so = slirp->udb.so_next; so != &slirp->udb; so = so_next) { so_next = so->so_next; so->pollfds_idx = -1; /* * See if it's timed out */ if (so->so_expire) { if (so->so_expire <= curtime) { udp_detach(so); continue; } else { slirp->do_slowtimo = true; /* Let socket expire */ } } /* * When UDP packets are received from over the * link, they're sendto()'d straight away, so * no need for setting for writing * Limit the number of packets queued by this session * to 4. Note that even though we try and limit this * to 4 packets, the session could have more queued * if the packets needed to be fragmented * (XXX <= 4 ?) */ if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) { so->pollfds_idx = add_poll( so->s, SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR, opaque); } } /* * ICMP sockets */ for (so = slirp->icmp.so_next; so != &slirp->icmp; so = so_next) { so_next = so->so_next; so->pollfds_idx = -1; /* * See if it's timed out */ if (so->so_expire) { if (so->so_expire <= curtime) { icmp_detach(so); continue; } else { slirp->do_slowtimo = true; /* Let socket expire */ } } if (so->so_state & SS_ISFCONNECTED) { so->pollfds_idx = add_poll( so->s, SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR, opaque); } } slirp_update_timeout(slirp, timeout); } void slirp_pollfds_poll(Slirp *slirp, int select_error, SlirpGetREventsCb get_revents, void *opaque) { struct socket *so, *so_next; int ret; curtime = slirp->cb->clock_get_ns(slirp->opaque) / SCALE_MS; /* * See if anything has timed out */ if (slirp->time_fasttimo && ((curtime - slirp->time_fasttimo) >= TIMEOUT_FAST)) { tcp_fasttimo(slirp); slirp->time_fasttimo = 0; } if (slirp->do_slowtimo && ((curtime - slirp->last_slowtimo) >= TIMEOUT_SLOW)) { ip_slowtimo(slirp); tcp_slowtimo(slirp); slirp->last_slowtimo = curtime; } /* * Check sockets */ if (!select_error) { /* * Check TCP sockets */ for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so_next) { int revents; so_next = so->so_next; revents = 0; if (so->pollfds_idx != -1) { revents = get_revents(so->pollfds_idx, opaque); } if (so->so_state & SS_NOFDREF || so->s == -1) { continue; } #ifndef __APPLE__ /* * Check for URG data * This will soread as well, so no need to * test for SLIRP_POLL_IN below if this succeeds. * * This is however disabled on MacOS, which apparently always * reports data as PRI when it is the last data of the * connection. We would then report it out of band, which the guest * would most probably not be ready for. */ if (revents & SLIRP_POLL_PRI) { ret = sorecvoob(so); if (ret < 0) { /* Socket error might have resulted in the socket being * removed, do not try to do anything more with it. */ continue; } } /* * Check sockets for reading */ else #endif if (revents & (SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR | SLIRP_POLL_PRI)) { /* * Check for incoming connections */ if (so->so_state & SS_FACCEPTCONN) { tcp_connect(so); continue; } /* else */ ret = soread(so); /* Output it if we read something */ if (ret > 0) { tcp_output(sototcpcb(so)); } if (ret < 0) { /* Socket error might have resulted in the socket being * removed, do not try to do anything more with it. */ continue; } } /* * Check sockets for writing */ if (!(so->so_state & SS_NOFDREF) && (revents & (SLIRP_POLL_OUT | SLIRP_POLL_ERR))) { /* * Check for non-blocking, still-connecting sockets */ if (so->so_state & SS_ISFCONNECTING) { /* Connected */ so->so_state &= ~SS_ISFCONNECTING; ret = send(so->s, (const void *)&ret, 0, 0); if (ret < 0) { /* XXXXX Must fix, zero bytes is a NOP */ if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS || errno == ENOTCONN) { continue; } /* else failed */ so->so_state &= SS_PERSISTENT_MASK; so->so_state |= SS_NOFDREF; } /* else so->so_state &= ~SS_ISFCONNECTING; */ /* * Continue tcp_input */ tcp_input((struct mbuf *)NULL, sizeof(struct ip), so, so->so_ffamily); /* continue; */ } else { ret = sowrite(so); if (ret > 0) { /* Call tcp_output in case we need to send a window * update to the guest, otherwise it will be stuck * until it sends a window probe. */ tcp_output(sototcpcb(so)); } } } } /* * Now UDP sockets. * Incoming packets are sent straight away, they're not buffered. * Incoming UDP data isn't buffered either. */ for (so = slirp->udb.so_next; so != &slirp->udb; so = so_next) { int revents; so_next = so->so_next; revents = 0; if (so->pollfds_idx != -1) { revents = get_revents(so->pollfds_idx, opaque); } if (so->s != -1 && (revents & (SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR))) { sorecvfrom(so); } } /* * Check incoming ICMP relies. */ for (so = slirp->icmp.so_next; so != &slirp->icmp; so = so_next) { int revents; so_next = so->so_next; revents = 0; if (so->pollfds_idx != -1) { revents = get_revents(so->pollfds_idx, opaque); } if (so->s != -1 && (revents & (SLIRP_POLL_IN | SLIRP_POLL_HUP | SLIRP_POLL_ERR))) { icmp_receive(so); } } } if_start(slirp); } static void arp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len) { const struct slirp_arphdr *ah = (const struct slirp_arphdr *)(pkt + ETH_HLEN); uint8_t arp_reply[MAX(ETH_HLEN + sizeof(struct slirp_arphdr), 64)]; struct ethhdr *reh = (struct ethhdr *)arp_reply; struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_reply + ETH_HLEN); int ar_op; struct gfwd_list *ex_ptr; if (!slirp->in_enabled) { return; } if (pkt_len < ETH_HLEN + sizeof(struct slirp_arphdr)) { return; /* packet too short */ } ar_op = ntohs(ah->ar_op); switch (ar_op) { case ARPOP_REQUEST: if (ah->ar_tip == ah->ar_sip) { /* Gratuitous ARP */ arp_table_add(slirp, ah->ar_sip, ah->ar_sha); return; } if ((ah->ar_tip & slirp->vnetwork_mask.s_addr) == slirp->vnetwork_addr.s_addr) { if (ah->ar_tip == slirp->vnameserver_addr.s_addr || ah->ar_tip == slirp->vhost_addr.s_addr) goto arp_ok; /* TODO: IPv6 */ for (ex_ptr = slirp->guestfwd_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { if (ex_ptr->ex_addr.s_addr == ah->ar_tip) goto arp_ok; } return; arp_ok: memset(arp_reply, 0, sizeof(arp_reply)); arp_table_add(slirp, ah->ar_sip, ah->ar_sha); /* ARP request for alias/dns mac address */ memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN); memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4); memcpy(&reh->h_source[2], &ah->ar_tip, 4); reh->h_proto = htons(ETH_P_ARP); rah->ar_hrd = htons(1); rah->ar_pro = htons(ETH_P_IP); rah->ar_hln = ETH_ALEN; rah->ar_pln = 4; rah->ar_op = htons(ARPOP_REPLY); memcpy(rah->ar_sha, reh->h_source, ETH_ALEN); rah->ar_sip = ah->ar_tip; memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN); rah->ar_tip = ah->ar_sip; slirp_send_packet_all(slirp, arp_reply, sizeof(arp_reply)); } break; case ARPOP_REPLY: arp_table_add(slirp, ah->ar_sip, ah->ar_sha); break; default: break; } } void slirp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len) { struct mbuf *m; int proto; if (pkt_len < ETH_HLEN) return; proto = (((uint16_t)pkt[12]) << 8) + pkt[13]; switch (proto) { case ETH_P_ARP: arp_input(slirp, pkt, pkt_len); break; case ETH_P_IP: case ETH_P_IPV6: m = m_get(slirp); if (!m) return; /* Note: we add 2 to align the IP header on 4 bytes, * and add the margin for the tcpiphdr overhead */ if (M_FREEROOM(m) < pkt_len + TCPIPHDR_DELTA + 2) { m_inc(m, pkt_len + TCPIPHDR_DELTA + 2); } m->m_len = pkt_len + TCPIPHDR_DELTA + 2; memcpy(m->m_data + TCPIPHDR_DELTA + 2, pkt, pkt_len); m->m_data += TCPIPHDR_DELTA + 2 + ETH_HLEN; m->m_len -= TCPIPHDR_DELTA + 2 + ETH_HLEN; if (proto == ETH_P_IP) { ip_input(m); } else if (proto == ETH_P_IPV6) { ip6_input(m); } break; case ETH_P_NCSI: ncsi_input(slirp, pkt, pkt_len); break; default: break; } } /* Prepare the IPv4 packet to be sent to the ethernet device. Returns 1 if no * packet should be sent, 0 if the packet must be re-queued, 2 if the packet * is ready to go. */ static int if_encap4(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh, uint8_t ethaddr[ETH_ALEN]) { const struct ip *iph = (const struct ip *)ifm->m_data; if (!arp_table_search(slirp, iph->ip_dst.s_addr, ethaddr)) { uint8_t arp_req[ETH_HLEN + sizeof(struct slirp_arphdr)]; struct ethhdr *reh = (struct ethhdr *)arp_req; struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_req + ETH_HLEN); if (!ifm->resolution_requested) { /* If the client addr is not known, send an ARP request */ memset(reh->h_dest, 0xff, ETH_ALEN); memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4); memcpy(&reh->h_source[2], &slirp->vhost_addr, 4); reh->h_proto = htons(ETH_P_ARP); rah->ar_hrd = htons(1); rah->ar_pro = htons(ETH_P_IP); rah->ar_hln = ETH_ALEN; rah->ar_pln = 4; rah->ar_op = htons(ARPOP_REQUEST); /* source hw addr */ memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN - 4); memcpy(&rah->ar_sha[2], &slirp->vhost_addr, 4); /* source IP */ rah->ar_sip = slirp->vhost_addr.s_addr; /* target hw addr (none) */ memset(rah->ar_tha, 0, ETH_ALEN); /* target IP */ rah->ar_tip = iph->ip_dst.s_addr; slirp->client_ipaddr = iph->ip_dst; slirp_send_packet_all(slirp, arp_req, sizeof(arp_req)); ifm->resolution_requested = true; /* Expire request and drop outgoing packet after 1 second */ ifm->expiration_date = slirp->cb->clock_get_ns(slirp->opaque) + 1000000000ULL; } return 0; } else { memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 4); /* XXX: not correct */ memcpy(&eh->h_source[2], &slirp->vhost_addr, 4); eh->h_proto = htons(ETH_P_IP); /* Send this */ return 2; } } /* Prepare the IPv6 packet to be sent to the ethernet device. Returns 1 if no * packet should be sent, 0 if the packet must be re-queued, 2 if the packet * is ready to go. */ static int if_encap6(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh, uint8_t ethaddr[ETH_ALEN]) { const struct ip6 *ip6h = mtod(ifm, const struct ip6 *); if (!ndp_table_search(slirp, ip6h->ip_dst, ethaddr)) { if (!ifm->resolution_requested) { ndp_send_ns(slirp, ip6h->ip_dst); ifm->resolution_requested = true; ifm->expiration_date = slirp->cb->clock_get_ns(slirp->opaque) + 1000000000ULL; } return 0; } else { eh->h_proto = htons(ETH_P_IPV6); in6_compute_ethaddr(ip6h->ip_src, eh->h_source); /* Send this */ return 2; } } /* Output the IP packet to the ethernet device. Returns 0 if the packet must be * re-queued. */ int if_encap(Slirp *slirp, struct mbuf *ifm) { uint8_t buf[IF_MTU_MAX + 100]; struct ethhdr *eh = (struct ethhdr *)buf; uint8_t ethaddr[ETH_ALEN]; const struct ip *iph = (const struct ip *)ifm->m_data; int ret; char ethaddr_str[ETH_ADDRSTRLEN]; if (ifm->m_len + ETH_HLEN > sizeof(buf)) { return 1; } switch (iph->ip_v) { case IPVERSION: ret = if_encap4(slirp, ifm, eh, ethaddr); if (ret < 2) { return ret; } break; case IP6VERSION: ret = if_encap6(slirp, ifm, eh, ethaddr); if (ret < 2) { return ret; } break; default: g_assert_not_reached(); } memcpy(eh->h_dest, ethaddr, ETH_ALEN); DEBUG_ARG("src = %s", slirp_ether_ntoa(eh->h_source, ethaddr_str, sizeof(ethaddr_str))); DEBUG_ARG("dst = %s", slirp_ether_ntoa(eh->h_dest, ethaddr_str, sizeof(ethaddr_str))); memcpy(buf + sizeof(struct ethhdr), ifm->m_data, ifm->m_len); slirp_send_packet_all(slirp, buf, ifm->m_len + ETH_HLEN); return 1; } /* Drop host forwarding rule, return 0 if found. */ int slirp_remove_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr, int host_port) { struct socket *so; struct socket *head = (is_udp ? &slirp->udb : &slirp->tcb); struct sockaddr_in addr; int port = htons(host_port); socklen_t addr_len; for (so = head->so_next; so != head; so = so->so_next) { addr_len = sizeof(addr); if ((so->so_state & SS_HOSTFWD) && getsockname(so->s, (struct sockaddr *)&addr, &addr_len) == 0 && addr_len == sizeof(addr) && addr.sin_family == AF_INET && addr.sin_addr.s_addr == host_addr.s_addr && addr.sin_port == port) { so->slirp->cb->unregister_poll_fd(so->s, so->slirp->opaque); closesocket(so->s); sofree(so); return 0; } } return -1; } int slirp_add_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr, int host_port, struct in_addr guest_addr, int guest_port) { if (!guest_addr.s_addr) { guest_addr = slirp->vdhcp_startaddr; } if (is_udp) { if (!udp_listen(slirp, host_addr.s_addr, htons(host_port), guest_addr.s_addr, htons(guest_port), SS_HOSTFWD)) return -1; } else { if (!tcp_listen(slirp, host_addr.s_addr, htons(host_port), guest_addr.s_addr, htons(guest_port), SS_HOSTFWD)) return -1; } return 0; } int slirp_remove_hostxfwd(Slirp *slirp, const struct sockaddr *haddr, socklen_t haddrlen, int flags) { struct socket *so; struct socket *head = (flags & SLIRP_HOSTFWD_UDP ? &slirp->udb : &slirp->tcb); struct sockaddr_storage addr; socklen_t addr_len; for (so = head->so_next; so != head; so = so->so_next) { addr_len = sizeof(addr); if ((so->so_state & SS_HOSTFWD) && getsockname(so->s, (struct sockaddr *)&addr, &addr_len) == 0 && sockaddr_equal(&addr, (const struct sockaddr_storage *) haddr)) { so->slirp->cb->unregister_poll_fd(so->s, so->slirp->opaque); closesocket(so->s); sofree(so); return 0; } } return -1; } int slirp_add_hostxfwd(Slirp *slirp, const struct sockaddr *haddr, socklen_t haddrlen, const struct sockaddr *gaddr, socklen_t gaddrlen, int flags) { struct sockaddr_in gdhcp_addr; int fwd_flags = SS_HOSTFWD; if (flags & SLIRP_HOSTFWD_V6ONLY) fwd_flags |= SS_HOSTFWD_V6ONLY; if (gaddr->sa_family == AF_INET) { const struct sockaddr_in *gaddr_in = (const struct sockaddr_in *) gaddr; if (gaddrlen < sizeof(struct sockaddr_in)) { errno = EINVAL; return -1; } if (!gaddr_in->sin_addr.s_addr) { gdhcp_addr = *gaddr_in; gdhcp_addr.sin_addr = slirp->vdhcp_startaddr; gaddr = (struct sockaddr *) &gdhcp_addr; gaddrlen = sizeof(gdhcp_addr); } } else { if (gaddrlen < sizeof(struct sockaddr_in6)) { errno = EINVAL; return -1; } /* * Libslirp currently only provides a stateless DHCPv6 server, thus * we can't translate "addr-any" to the guest here. Instead, we defer * performing the translation to when it's needed. See * soassign_guest_addr_if_needed(). */ } if (flags & SLIRP_HOSTFWD_UDP) { if (!udpx_listen(slirp, haddr, haddrlen, gaddr, gaddrlen, fwd_flags)) return -1; } else { if (!tcpx_listen(slirp, haddr, haddrlen, gaddr, gaddrlen, fwd_flags)) return -1; } return 0; } /* TODO: IPv6 */ static bool check_guestfwd(Slirp *slirp, struct in_addr *guest_addr, int guest_port) { struct gfwd_list *tmp_ptr; if (!guest_addr->s_addr) { guest_addr->s_addr = slirp->vnetwork_addr.s_addr | (htonl(0x0204) & ~slirp->vnetwork_mask.s_addr); } if ((guest_addr->s_addr & slirp->vnetwork_mask.s_addr) != slirp->vnetwork_addr.s_addr || guest_addr->s_addr == slirp->vhost_addr.s_addr || guest_addr->s_addr == slirp->vnameserver_addr.s_addr) { return false; } /* check if the port is "bound" */ for (tmp_ptr = slirp->guestfwd_list; tmp_ptr; tmp_ptr = tmp_ptr->ex_next) { if (guest_port == tmp_ptr->ex_fport && guest_addr->s_addr == tmp_ptr->ex_addr.s_addr) return false; } return true; } int slirp_add_exec(Slirp *slirp, const char *cmdline, struct in_addr *guest_addr, int guest_port) { if (!check_guestfwd(slirp, guest_addr, guest_port)) { return -1; } add_exec(&slirp->guestfwd_list, cmdline, *guest_addr, htons(guest_port)); return 0; } int slirp_add_unix(Slirp *slirp, const char *unixsock, struct in_addr *guest_addr, int guest_port) { #ifdef G_OS_UNIX if (!check_guestfwd(slirp, guest_addr, guest_port)) { return -1; } add_unix(&slirp->guestfwd_list, unixsock, *guest_addr, htons(guest_port)); return 0; #else g_warn_if_reached(); return -1; #endif } int slirp_add_guestfwd(Slirp *slirp, SlirpWriteCb write_cb, void *opaque, struct in_addr *guest_addr, int guest_port) { if (!check_guestfwd(slirp, guest_addr, guest_port)) { return -1; } add_guestfwd(&slirp->guestfwd_list, write_cb, opaque, *guest_addr, htons(guest_port)); return 0; } int slirp_remove_guestfwd(Slirp *slirp, struct in_addr guest_addr, int guest_port) { return remove_guestfwd(&slirp->guestfwd_list, guest_addr, htons(guest_port)); } ssize_t slirp_send(struct socket *so, const void *buf, size_t len, int flags) { if (so->s == -1 && so->guestfwd) { /* XXX this blocks entire thread. Rewrite to use * qemu_chr_fe_write and background I/O callbacks */ so->guestfwd->write_cb(buf, len, so->guestfwd->opaque); return len; } if (so->s == -1) { /* * This should in theory not happen but it is hard to be * sure because some code paths will end up with so->s == -1 * on a failure but don't dispose of the struct socket. * Check specifically, so we don't pass -1 to send(). */ errno = EBADF; return -1; } return send(so->s, buf, len, flags); } struct socket *slirp_find_ctl_socket(Slirp *slirp, struct in_addr guest_addr, int guest_port) { struct socket *so; /* TODO: IPv6 */ for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so->so_next) { if (so->so_faddr.s_addr == guest_addr.s_addr && htons(so->so_fport) == guest_port) { return so; } } return NULL; } size_t slirp_socket_can_recv(Slirp *slirp, struct in_addr guest_addr, int guest_port) { struct iovec iov[2]; struct socket *so; so = slirp_find_ctl_socket(slirp, guest_addr, guest_port); if (!so || so->so_state & SS_NOFDREF) { return 0; } if (!CONN_CANFRCV(so) || so->so_snd.sb_cc >= (so->so_snd.sb_datalen / 2)) { /* If the sb is already half full, we will wait for the guest to consume it, * and notify again in sbdrop() when the sb becomes less than half full. */ return 0; } return sopreprbuf(so, iov, NULL); } void slirp_socket_recv(Slirp *slirp, struct in_addr guest_addr, int guest_port, const uint8_t *buf, int size) { int ret; struct socket *so = slirp_find_ctl_socket(slirp, guest_addr, guest_port); if (!so) return; ret = soreadbuf(so, (const char *)buf, size); if (ret > 0) tcp_output(sototcpcb(so)); } void slirp_send_packet_all(Slirp *slirp, const void *buf, size_t len) { ssize_t ret = slirp->cb->send_packet(buf, len, slirp->opaque); if (ret < 0) { g_critical("Failed to send packet, ret: %ld", (long)ret); } else if (ret < len) { DEBUG_ERROR("send_packet() didn't send all data: %ld < %lu", (long)ret, (unsigned long)len); } }