1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
|
/* Copyright 2013-2014 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ccan/endian/endian.h>
#include "libffs.h"
#include "ecc.h"
#ifndef MIN
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#endif
enum ffs_type {
ffs_type_flash,
ffs_type_image,
};
struct ffs_handle {
struct ffs_hdr hdr; /* Converted header */
enum ffs_type type;
struct flash_chip *chip;
uint32_t flash_offset;
uint32_t max_size;
void *cache;
uint32_t cached_size;
};
static uint32_t ffs_checksum(void* data, size_t size)
{
uint32_t i, csum = 0;
for (i = csum = 0; i < (size/4); i++)
csum ^= ((uint32_t *)data)[i];
return csum;
}
static int ffs_check_convert_header(struct ffs_hdr *dst, struct ffs_hdr *src)
{
dst->magic = be32_to_cpu(src->magic);
if (dst->magic != FFS_MAGIC)
return FFS_ERR_BAD_MAGIC;
dst->version = be32_to_cpu(src->version);
if (dst->version != FFS_VERSION_1)
return FFS_ERR_BAD_VERSION;
if (ffs_checksum(src, FFS_HDR_SIZE) != 0)
return FFS_ERR_BAD_CKSUM;
dst->size = be32_to_cpu(src->size);
dst->entry_size = be32_to_cpu(src->entry_size);
dst->entry_count = be32_to_cpu(src->entry_count);
dst->block_size = be32_to_cpu(src->block_size);
dst->block_count = be32_to_cpu(src->block_count);
return 0;
}
int ffs_open_flash(struct flash_chip *chip, uint32_t offset,
uint32_t max_size, struct ffs_handle **ffs)
{
struct ffs_hdr hdr;
struct ffs_handle *f;
uint32_t fl_size, erase_size;
int rc;
if (!ffs)
return FLASH_ERR_PARM_ERROR;
*ffs = NULL;
/* Grab some info about our flash chip */
rc = flash_get_info(chip, NULL, &fl_size, &erase_size);
if (rc) {
FL_ERR("FFS: Error %d retrieving flash info\n", rc);
return rc;
}
if ((offset + max_size) < offset)
return FLASH_ERR_PARM_ERROR;
if ((offset + max_size) > fl_size)
return FLASH_ERR_PARM_ERROR;
/* Read flash header */
rc = flash_read(chip, offset, &hdr, sizeof(hdr));
if (rc) {
FL_ERR("FFS: Error %d reading flash header\n", rc);
return rc;
}
/* Allocate ffs_handle structure and start populating */
f = malloc(sizeof(*f));
if (!f)
return FLASH_ERR_MALLOC_FAILED;
memset(f, 0, sizeof(*f));
f->type = ffs_type_flash;
f->flash_offset = offset;
f->max_size = max_size ? max_size : (fl_size - offset);
f->chip = chip;
/* Convert and check flash header */
rc = ffs_check_convert_header(&f->hdr, &hdr);
if (rc) {
FL_ERR("FFS: Error %d checking flash header\n", rc);
free(f);
return rc;
}
/*
* Decide how much of the image to grab to get the whole
* partition map.
*/
f->cached_size = f->hdr.block_size * f->hdr.size;
FL_DBG("FFS: Partition map size: 0x%x\n", f->cached_size);
/* Align to erase size */
f->cached_size |= (erase_size - 1);
f->cached_size &= ~(erase_size - 1);
FL_DBG("FFS: Aligned to: 0x%x\n", f->cached_size);
/* Allocate cache */
f->cache = malloc(f->cached_size);
if (!f->cache) {
free(f);
return FLASH_ERR_MALLOC_FAILED;
}
/* Read the cached map */
rc = flash_read(chip, offset, f->cache, f->cached_size);
if (rc) {
FL_ERR("FFS: Error %d reading flash partition map\n", rc);
free(f);
}
if (rc == 0)
*ffs = f;
return rc;
}
#if 0 /* XXX TODO: For FW updates so we can copy nvram around */
int ffs_open_image(void *image, uint32_t size, uint32_t offset,
struct ffs_handle **ffs)
{
}
#endif
void ffs_close(struct ffs_handle *ffs)
{
if (ffs->cache)
free(ffs->cache);
free(ffs);
}
static struct ffs_entry *ffs_get_part(struct ffs_handle *ffs, uint32_t index,
uint32_t *out_offset)
{
uint32_t esize = ffs->hdr.entry_size;
uint32_t offset = FFS_HDR_SIZE + index * esize;
if (index > ffs->hdr.entry_count)
return NULL;
if (out_offset)
*out_offset = offset;
return (struct ffs_entry *)(ffs->cache + offset);
}
static int ffs_check_convert_entry(struct ffs_entry *dst, struct ffs_entry *src)
{
if (ffs_checksum(src, FFS_ENTRY_SIZE) != 0)
return FFS_ERR_BAD_CKSUM;
memcpy(dst->name, src->name, sizeof(dst->name));
dst->base = be32_to_cpu(src->base);
dst->size = be32_to_cpu(src->size);
dst->pid = be32_to_cpu(src->pid);
dst->id = be32_to_cpu(src->id);
dst->type = be32_to_cpu(src->type);
dst->flags = be32_to_cpu(src->flags);
dst->actual = be32_to_cpu(src->actual);
dst->user.datainteg = be16_to_cpu(src->user.datainteg);
return 0;
}
int ffs_lookup_part(struct ffs_handle *ffs, const char *name,
uint32_t *part_idx)
{
struct ffs_entry ent;
uint32_t i;
int rc;
/* Lookup the requested partition */
for (i = 0; i < ffs->hdr.entry_count; i++) {
struct ffs_entry *src_ent = ffs_get_part(ffs, i, NULL);
rc = ffs_check_convert_entry(&ent, src_ent);
if (rc) {
FL_ERR("FFS: Bad entry %d in partition map\n", i);
continue;
}
if (!strncmp(name, ent.name, sizeof(ent.name)))
break;
}
if (i >= ffs->hdr.entry_count)
return FFS_ERR_PART_NOT_FOUND;
if (part_idx)
*part_idx = i;
return 0;
}
int ffs_part_info(struct ffs_handle *ffs, uint32_t part_idx,
char **name, uint32_t *start,
uint32_t *total_size, uint32_t *act_size, bool *ecc)
{
struct ffs_entry *raw_ent;
struct ffs_entry ent;
char *n;
int rc;
if (part_idx >= ffs->hdr.entry_count)
return FFS_ERR_PART_NOT_FOUND;
raw_ent = ffs_get_part(ffs, part_idx, NULL);
if (!raw_ent)
return FFS_ERR_PART_NOT_FOUND;
rc = ffs_check_convert_entry(&ent, raw_ent);
if (rc) {
FL_ERR("FFS: Bad entry %d in partition map\n", part_idx);
return rc;
}
if (start)
*start = ent.base * ffs->hdr.block_size;
if (total_size)
*total_size = ent.size * ffs->hdr.block_size;
if (act_size)
*act_size = ent.actual;
if (ecc)
*ecc = ((ent.user.datainteg & FFS_ENRY_INTEG_ECC) != 0);
if (name) {
n = malloc(PART_NAME_MAX + 1);
memset(n, 0, PART_NAME_MAX + 1);
strncpy(n, ent.name, PART_NAME_MAX);
*name = n;
}
return 0;
}
int ffs_update_act_size(struct ffs_handle *ffs, uint32_t part_idx,
uint32_t act_size)
{
struct ffs_entry *ent;
uint32_t offset;
if (part_idx >= ffs->hdr.entry_count) {
FL_DBG("FFS: Entry out of bound\n");
return FFS_ERR_PART_NOT_FOUND;
}
ent = ffs_get_part(ffs, part_idx, &offset);
if (!ent) {
FL_DBG("FFS: Entry not found\n");
return FFS_ERR_PART_NOT_FOUND;
}
FL_DBG("FFS: part index %d at offset 0x%08x\n",
part_idx, offset);
/*
* NOTE: We are accessing the unconverted ffs_entry from the PNOR here
* (since we are going to write it back) so we need to be endian safe.
*/
if (ent->actual == cpu_to_be32(act_size)) {
FL_DBG("FFS: ent->actual alrady matches: 0x%08x==0x%08x\n",
cpu_to_be32(act_size), ent->actual);
return 0;
}
ent->actual = cpu_to_be32(act_size);
ent->checksum = ffs_checksum(ent, FFS_ENTRY_SIZE_CSUM);
if (!ffs->chip)
return 0;
return flash_smart_write(ffs->chip, offset, ent, FFS_ENTRY_SIZE);
}
#define COPY_BUFFER_LENGTH 4096
/*
* This provides a wrapper around flash_read on ECCed data
* len is length of data without ECC attached
*/
int ffs_flash_read(struct flash_chip *c, uint32_t pos, void *buf, uint32_t len,
bool ecc)
{
uint64_t *bufecc;
uint32_t copylen;
int rc;
uint8_t ret;
if (!ecc)
return flash_read(c, pos, buf, len);
/* Copy the buffer in chunks */
bufecc = malloc(ECC_BUFFER_SIZE(COPY_BUFFER_LENGTH));
if (!bufecc)
return FLASH_ERR_MALLOC_FAILED;
while (len > 0) {
/* What's left to copy? */
copylen = MIN(len, COPY_BUFFER_LENGTH);
/* Read ECCed data from flash */
rc = flash_read(c, pos, bufecc, ECC_BUFFER_SIZE(copylen));
if (rc)
goto err;
/* Extract data from ECCed data */
ret = eccmemcpy(buf, bufecc, copylen);
if (ret == UE) {
rc = FLASH_ERR_ECC_INVALID;
goto err;
}
/* Update for next copy */
len -= copylen;
buf = (uint8_t *)buf + copylen;
pos += ECC_BUFFER_SIZE(copylen);
}
return 0;
err:
free(bufecc);
return rc;
}
|