1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
/* Copyright 2013-2014 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __XSCOM_H
#define __XSCOM_H
#include <stdint.h>
#include <processor.h>
#include <cpu.h>
/*
* SCOM "partID" definitions:
*
* All Ids are 32-bits long, top nibble is reserved for the
* 'type' field:
* 0x0 = Processor Chip
* 0x8 = Memory Buffer (Centaur) Chip
* 0x4 = EX/Core Chiplet
*
* Processor Chip = Logical Fabric Id = PIR>>7
* 0b0000.0000.0000.0000.0000.0000.00NN.NCCC
* N=Node, C=Chip
* Centaur Chip = Associated Processor Chip with memory channel
* appended and flag set
* 0b1000.0000.0000.0000.0000.00NN.NCCC.MMMM
* N=Node, C=Chip, M=Memory Channel
* Processor EX/Core chiplet = PIR >> 3 with flag set.
* On P8:
* 0b0100.0000.0000.0000.0000.00NN.NCCC.PPPP
* On P9:
* 0b0100.0000.0000.0000.0000.0NNN.CCCP.PPPP
* N=Node, C=Chip, P=Processor core
*/
/*
* SCOM Address definition extracted from HWPs for documentation
* purposes
*
* "Normal" (legacy) format
*
* 111111 11112222 22222233 33333333 44444444 44555555 55556666
* 01234567 89012345 67890123 45678901 23456789 01234567 89012345 67890123
* -------- -------- -------- -------- -------- -------- -------- --------
* 00000000 00000000 00000000 00000000 0MCCCCCC ????PPPP 00LLLLLL LLLLLLLL
* || | |
* || | `-> Local Address*
* || |
* || `-> Port
* ||
* |`-> Chiplet ID**
* |
* `-> Multicast bit
*
* * Local address is composed of "00" + 4-bit ring + 10-bit ID
* The 10-bit ID is usually 4-bit sat_id and 6-bit reg_id
*
* ** Chiplet ID turns into multicast operation type and group number
* if the multicast bit is set
*
* "Indirect" format
*
*
* 111111 11112222 22222233 33333333 44444444 44555555 55556666
* 01234567 89012345 67890123 45678901 23456789 01234567 89012345 67890123
* -------- -------- -------- -------- -------- -------- -------- --------
* 10000000 0000IIII IIIIIGGG GGGLLLLL 0MCCCCCC ????PPPP 00LLLLLL LLLLLLLL
* | | | || | |
* | | | || | `-> Local Address*
* | | | || |
* | | | || `-> Port
* | | | ||
* | | | |`-> Chiplet ID**
* | | | |
* | | | `-> Multicast bit
* | | |
* | | `-> Lane ID
* | |
* | `-> RX or TX Group ID
* |
* `-> Indirect Register Address
*
* * Local address is composed of "00" + 4-bit ring + 4-bit sat_id + "111111"
*
* ** Chiplet ID turns into multicast operation type and group number
* if the multicast bit is set
*/
/*
* Generate a local address from a given ring/satellite/offset
* combination:
*
* Ring Satellite offset
* +---------+---------+-------------+
* | 4 | 4 | 6 |
* +---------+---------+-------------+
*/
#define XSCOM_SAT(_r, _s, _o) \
(((_r) << 10) | ((_s) << 6) | (_o))
/*
* Additional useful definitions for P8
*/
#define P8_EX_PCB_SLAVE_BASE 0x100F0000
#define XSCOM_ADDR_P8_EX_SLAVE(core, offset) \
(P8_EX_PCB_SLAVE_BASE | (((core) & 0xF) << 24) | ((offset) & 0xFFFF))
#define XSCOM_ADDR_P8_EX(core, addr) \
((((core) & 0xF) << 24) | (addr))
/*
* Additional useful definitions for P9
*/
/* An EQ is a quad (also named an EP) */
#define XSCOM_ADDR_P9_EP(core, addr) \
(((((core) & 0x1c) + 0x40) << 22) | (addr))
#define XSCOM_ADDR_P9_EP_SLAVE(core, addr) \
XSCOM_ADDR_P9_EP(core, (addr) | 0xf0000)
/* An EX is a pair of cores. They are accessed via their corresponding EQs
* with bit 0x400 indicating which of the 2 EX to address
*/
#define XSCOM_ADDR_P9_EX(core, addr) \
(XSCOM_ADDR_P9_EP(core, addr | (((core) & 2) << 9)))
/* An EC is an individual core and has its own XSCOM addressing */
#define XSCOM_ADDR_P9_EC(core, addr) \
(((((core) & 0x1F) + 0x20) << 24) | (addr))
#define XSCOM_ADDR_P9_EC_SLAVE(core, addr) \
XSCOM_ADDR_P9_EC(core, (addr) | 0xf0000)
/* Power 9 EC slave per-core power mgt slave registers */
#define EC_PPM_SPECIAL_WKUP_OTR 0x010A
#define EC_PPM_SPECIAL_WKUP_FSP 0x010B
#define EC_PPM_SPECIAL_WKUP_OCC 0x010C
#define EC_PPM_SPECIAL_WKUP_HYP 0x010D
/************* XXXX Move these P8 only registers elswhere !!! ****************/
/* Per core power mgt registers */
#define PM_OHA_MODE_REG 0x1002000D
#define L2_FIR_ACTION1 0x10012807
/* EX slave per-core power mgt slave regisers */
#define EX_PM_GP0 0x0100
#define EX_PM_GP1 0x0103
#define EX_PM_CLEAR_GP1 0x0104 /* AND SCOM */
#define EX_PM_SET_GP1 0x0105 /* OR SCOM */
#define EX_PM_SPECIAL_WAKEUP_FSP 0x010B
#define EX_PM_SPECIAL_WAKEUP_OCC 0x010C
#define EX_PM_SPECIAL_WAKEUP_PHYP 0x010D
#define EX_PM_IDLE_STATE_HISTORY_PHYP 0x0110
#define EX_PM_IDLE_STATE_HISTORY_FSP 0x0111
#define EX_PM_IDLE_STATE_HISTORY_OCC 0x0112
#define EX_PM_IDLE_STATE_HISTORY_PERF 0x0113
#define EX_PM_CORE_PFET_VRET 0x0130
#define EX_PM_CORE_ECO_VRET 0x0150
#define EX_PM_PPMSR 0x0153
#define EX_PM_PPMCR 0x0159
/* Power mgt bits in GP0 */
#define EX_PM_GP0_SPECIAL_WAKEUP_DONE PPC_BIT(31)
/* Power mgt settings in GP1 */
#define EX_PM_SETUP_GP1_FAST_SLEEP 0xD800000000000000ULL
#define EX_PM_SETUP_GP1_DEEP_SLEEP 0x2400000000000000ULL
#define EX_PM_SETUP_GP1_FAST_SLEEP_DEEP_WINKLE 0xC400000000000000ULL
#define EX_PM_GP1_SLEEP_WINKLE_MASK 0xFC00000000000000ULL
#define EX_PM_SETUP_GP1_PM_SPR_OVERRIDE_EN 0x0010000000000000ULL
#define EX_PM_SETUP_GP1_DPLL_FREQ_OVERRIDE_EN 0x0020000000000000ULL
/* Fields in history regs */
#define EX_PM_IDLE_ST_HIST_PM_STATE_MASK PPC_BITMASK(0, 2)
#define EX_PM_IDLE_ST_HIST_PM_STATE_LSH PPC_BITLSHIFT(2)
/***************************************************************************/
/* Definitions relating to indirect XSCOMs shared with centaur */
#define XSCOM_ADDR_IND_FLAG PPC_BIT(0)
#define XSCOM_ADDR_IND_ADDR PPC_BITMASK(12,31)
#define XSCOM_ADDR_IND_DATA PPC_BITMASK(48,63)
#define XSCOM_DATA_IND_READ PPC_BIT(0)
#define XSCOM_DATA_IND_COMPLETE PPC_BIT(32)
#define XSCOM_DATA_IND_ERR PPC_BITMASK(33,35)
#define XSCOM_DATA_IND_DATA PPC_BITMASK(48,63)
#define XSCOM_DATA_IND_FORM1_DATA PPC_BITMASK(12,63)
/* HB folks say: try 10 time for now */
#define XSCOM_IND_MAX_RETRIES 10
/* Max number of retries when XSCOM remains busy */
#define XSCOM_BUSY_MAX_RETRIES 3000
/* Max number of retries for xscom clearing recovery. */
#define XSCOM_CLEAR_MAX_RETRIES 10
/* xscom clear address range/mask */
#define XSCOM_CLEAR_RANGE_START 0x20010A00
#define XSCOM_CLEAR_RANGE_END 0x20010ABF
#define XSCOM_CLEAR_RANGE_MASK 0x200FFBFF
/* Retry count after which to reset XSCOM, if still busy */
#define XSCOM_BUSY_RESET_THRESHOLD 1000
/*
* Error handling:
*
* Error codes TBD, 0 = success
*/
/* Use only in select places where multiple SCOMs are time/latency sensitive */
extern void _xscom_lock(void);
extern int _xscom_read(uint32_t partid, uint64_t pcb_addr, uint64_t *val, bool take_lock, bool ignore_error);
extern int _xscom_write(uint32_t partid, uint64_t pcb_addr, uint64_t val, bool take_lock);
extern void _xscom_unlock(void);
/* Targeted SCOM access */
static inline int xscom_read(uint32_t partid, uint64_t pcb_addr, uint64_t *val)
{
return _xscom_read(partid, pcb_addr, val, true, false);
}
static inline int xscom_write(uint32_t partid, uint64_t pcb_addr, uint64_t val) {
return _xscom_write(partid, pcb_addr, val, true);
}
extern int xscom_write_mask(uint32_t partid, uint64_t pcb_addr, uint64_t val, uint64_t mask);
/* This chip SCOM access */
extern int xscom_readme(uint64_t pcb_addr, uint64_t *val);
extern int xscom_writeme(uint64_t pcb_addr, uint64_t val);
extern void xscom_init(void);
/* Mark XSCOM lock as being in console path */
extern void xscom_used_by_console(void);
/* Returns true if XSCOM can be used. Typically this returns false if
* the current CPU holds the XSCOM lock (to avoid re-entrancy from error path).
*/
extern bool xscom_ok(void);
extern int64_t xscom_read_cfam_chipid(uint32_t partid, uint32_t *chip_id);
extern int64_t xscom_trigger_xstop(void);
#endif /* __XSCOM_H */
|