1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
|
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* XIVE: eXternal Interrupt Virtualization Engine. POWER9 interrupt
* controller
*
* Copyright (c) 2016-2019, IBM Corporation.
*/
#include <skiboot.h>
#include <xscom.h>
#include <chip.h>
#include <io.h>
#include <xive.h>
#include <xive-p9-regs.h>
#include <xscom-p9-regs.h>
#include <interrupts.h>
#include <timebase.h>
#include <bitmap.h>
#include <buddy.h>
#include <phys-map.h>
#include <p9_stop_api.H>
/* Always notify from EQ to VP (no EOI on EQs). Will speed up
* EOIs at the expense of potentially higher powerbus traffic.
*/
#define EQ_ALWAYS_NOTIFY
/* Verbose debug */
#undef XIVE_VERBOSE_DEBUG
/* Extra debug options used in debug builds */
#ifdef DEBUG
#define XIVE_DEBUG_DUPLICATES
#define XIVE_PERCPU_LOG
#define XIVE_DEBUG_INIT_CACHE_UPDATES
#define XIVE_EXTRA_CHECK_INIT_CACHE
#undef XIVE_CHECK_MISROUTED_IPI
#define XIVE_CHECK_LOCKS
#else
#undef XIVE_DEBUG_DUPLICATES
#undef XIVE_PERCPU_LOG
#undef XIVE_DEBUG_INIT_CACHE_UPDATES
#undef XIVE_EXTRA_CHECK_INIT_CACHE
#undef XIVE_CHECK_MISROUTED_IPI
#undef XIVE_CHECK_LOCKS
#endif
/*
*
* VSDs, blocks, set translation etc...
*
* This stuff confused me to no end so here's an attempt at explaining
* my understanding of it and how I use it in OPAL & Linux
*
* For the following data structures, the XIVE use a mechanism called
* Virtualization Structure Tables (VST) to manage the memory layout
* and access: ESBs (Event State Buffers, aka IPI sources), EAS/IVT
* (Event assignment structures), END/EQs (Notification descriptors
* aka event queues) and NVT/VPD (Notification Virtual Targets).
*
* These structures divide those tables into 16 "blocks". Each XIVE
* instance has a definition for all 16 blocks that can either represent
* an actual table in memory or a remote XIVE MMIO port to access a
* block that is owned by that remote XIVE.
*
* Our SW design will consist of allocating one block per chip (and thus
* per XIVE instance) for now, thus giving us up to 16 supported chips in
* the system. We may have to revisit that if we ever support systems with
* more than 16 chips but that isn't on our radar at the moment or if we
* want to do like pHyp on some machines and dedicate 2 blocks per chip
* for some structures.
*
* Thus we need to be careful that we never expose to Linux the concept
* of block and block boundaries, but instead we provide full number ranges
* so that consecutive blocks can be supported.
*
* We will pre-allocate some of the tables in order to support a "fallback"
* mode operations where an old-style XICS is emulated via OPAL calls. This
* is achieved by having a default of one VP per physical thread associated
* with one EQ and one IPI. There is also enought EATs to cover all the PHBs.
*
* Similarily, for MMIO access, the BARs support what is called "set
* translation" which allows the BAR to be divided into a certain
* number of sets. The VC BAR (ESBs, ENDs, ...) supports 64 sets and
* the PC BAR supports 16. Each "set" can be routed to a specific
* block and offset within a block.
*
* For now, we will not use much of that functionality. We will use a
* fixed split between ESB and ENDs for the VC BAR as defined by the
* constants below and we will allocate all the PC BARs set to the
* local block of that chip
*/
#define XIVE_VSD_SIZE sizeof(u64)
/* VC BAR contains set translations for the ESBs and the EQs.
*
* It's divided in 64 sets, each of which can be either ESB pages or EQ pages.
* The table configuring this is the EDT
*
* Additionally, the ESB pages come in pair of Linux_Trig_Mode isn't enabled
* (which we won't enable for now as it assumes write-only permission which
* the MMU doesn't support).
*
* To get started we just hard wire the following setup:
*
* VC_BAR size is 512G. We split it into 384G of ESBs (48 sets) and 128G
* of ENDs (16 sets) for the time being. IE. Each set is thus 8GB
*/
#define VC_ESB_SETS 48
#define VC_END_SETS 16
#define VC_MAX_SETS 64
/* The table configuring the PC set translation (16 sets) is the VDT */
#define PC_MAX_SETS 16
/* XXX This is the currently top limit of number of ESB/SBE entries
* and EAS/IVT entries pre-allocated per chip. This should probably
* turn into a device-tree property or NVRAM setting, or maybe
* calculated from the amount of system RAM...
*
* This is currently set to 1M
*
* This is independent of the sizing of the MMIO space.
*
* WARNING: Due to how XICS emulation works, we cannot support more
* interrupts per chip at this stage as the full interrupt number
* (block + index) has to fit in a 24-bit number.
*
* That gives us a pre-allocated space of 256KB per chip for the state
* bits and 8M per chip for the EAS/IVT.
*
* Note: The HW interrupts from PCIe and similar other entities that
* use their own state bit array will have to share that IVT space,
* so we could potentially make the IVT size twice as big, but for now
* we will simply share it and ensure we don't hand out IPIs that
* overlap the HW interrupts.
*
* TODO: adjust the VC BAR range for IPI ESBs on this value
*/
#define XIVE_INT_ORDER 20 /* 1M interrupts */
#define XIVE_INT_COUNT (1ul << XIVE_INT_ORDER)
/*
* First interrupt number, also the first logical interrupt number
* allocated by Linux (the first numbers are reserved for ISA)
*/
#define XIVE_INT_FIRST 0x10
/* Corresponding direct table sizes */
#define SBE_PER_BYTE 4 /* PQ bits couples */
#define SBE_SIZE (XIVE_INT_COUNT / SBE_PER_BYTE)
#define IVT_SIZE (XIVE_INT_COUNT * sizeof(struct xive_ive))
/* Use 64K for everything by default */
#define XIVE_ESB_SHIFT (16 + 1) /* trigger + mgmt pages */
#define XIVE_ESB_PAGE_SIZE (1ul << XIVE_ESB_SHIFT) /* 2 pages */
/* Max number of EQs. We allocate an indirect table big enough so
* that when fully populated we can have that many EQs.
*
* The max number of EQs we support in our MMIO space is 128G/128K
* ie. 1M. Since one EQ is 8 words (32 bytes), a 64K page can hold
* 2K EQs. We need 512 pointers, ie, 4K of memory for the indirect
* table.
*
* TODO: adjust the VC BAR range for END ESBs on this value
*/
#define EQ_PER_PAGE (PAGE_SIZE / sizeof(struct xive_eq))
#define XIVE_EQ_ORDER 20 /* 1M ENDs */
#define XIVE_EQ_COUNT (1ul << XIVE_EQ_ORDER)
#define XIVE_EQ_TABLE_SIZE ((XIVE_EQ_COUNT / EQ_PER_PAGE) * XIVE_VSD_SIZE)
#define XIVE_EQ_SHIFT (16 + 1) /* ESn + ESe pages */
/* Number of priorities (and thus EQDs) we allocate for each VP */
#define NUM_INT_PRIORITIES 8
/* Max priority number */
#define XIVE_MAX_PRIO 7
/* Priority used for the one queue in XICS emulation */
#define XIVE_EMULATION_PRIO 7
/* Priority used for gather/silent escalation (KVM) */
#define XIVE_ESCALATION_PRIO 7
/* Max number of VPs. We allocate an indirect table big enough so
* that when fully populated we can have that many VPs.
*
* The max number of VPs we support in our MMIO space is 64G/64K
* ie. 1M. Since one VP is 16 words (64 bytes), a 64K page can hold
* 1K EQ. We need 1024 pointers, ie, 8K of memory for the indirect
* table.
*
* HOWEVER: A block supports only up to 512K VPs (19 bits of target
* in the EQ). Since we currently only support 1 block per chip,
* we will allocate half of the above. We might add support for
* 2 blocks per chip later if necessary.
*
* TODO: adjust the PC BAR range
*/
#define VP_PER_PAGE (PAGE_SIZE / sizeof(struct xive_vp))
#define NVT_SHIFT 19 /* in sync with EQ_W6_NVT_INDEX */
/*
* We use 8 priorities per VP and the number of EQs is configured to
* 1M. Therefore, our VP space is limited to 128k.
*/
#define XIVE_VP_ORDER (XIVE_EQ_ORDER - 3) /* 128k */
#define XIVE_VP_COUNT (1ul << XIVE_VP_ORDER)
#define XIVE_VP_TABLE_SIZE ((XIVE_VP_COUNT / VP_PER_PAGE) * XIVE_VSD_SIZE)
/*
* VP ids for HW threads.
*
* These values are hardcoded in the CAM line of the HW context and
* they depend on the thread id bits of the chip, 7bit for p9.
*
* HW CAM Line |chip|000000000001|thrdid |
* 23bits 4 12 7
*/
#define XIVE_THREADID_SHIFT 7
#define XIVE_HW_VP_BASE (1 << XIVE_THREADID_SHIFT)
#define XIVE_HW_VP_COUNT (1 << XIVE_THREADID_SHIFT)
/* The xive operation mode indicates the active "API" and corresponds
* to the "mode" parameter of the opal_xive_reset() call
*/
static enum {
XIVE_MODE_EMU = OPAL_XIVE_MODE_EMU,
XIVE_MODE_EXPL = OPAL_XIVE_MODE_EXPL,
XIVE_MODE_NONE,
} xive_mode = XIVE_MODE_NONE;
/* Each source controller has one of these. There's one embedded
* in the XIVE struct for IPIs
*/
struct xive_src {
struct irq_source is;
const struct irq_source_ops *orig_ops;
struct xive *xive;
void *esb_mmio;
uint32_t esb_base;
uint32_t esb_shift;
uint32_t flags;
};
#define LOG_TYPE_XIRR 0
#define LOG_TYPE_XIRR2 1
#define LOG_TYPE_POPQ 2
#define LOG_TYPE_EOI 3
#define LOG_TYPE_EQD 4
struct xive_log_ent {
uint8_t type;
uint8_t cnt;
uint64_t tb;
#define MAX_LOG_DATA 8
uint32_t data[MAX_LOG_DATA];
};
#define MAX_LOG_ENT 32
struct xive_cpu_state {
struct xive *xive;
void *tm_ring1;
#ifdef XIVE_PERCPU_LOG
struct xive_log_ent log[MAX_LOG_ENT];
uint32_t log_pos;
#endif
/* Base HW VP and associated queues */
uint32_t vp_blk;
uint32_t vp_idx;
uint32_t eq_blk;
uint32_t eq_idx; /* Base eq index of a block of 8 */
void *eq_page;
/* Pre-allocated IPI */
uint32_t ipi_irq;
/* Use for XICS emulation */
struct lock lock;
uint8_t cppr;
uint8_t mfrr;
uint8_t pending;
uint8_t prev_cppr;
uint32_t *eqbuf;
uint32_t eqptr;
uint32_t eqmsk;
uint8_t eqgen;
void *eqmmio;
uint64_t total_irqs;
};
#ifdef XIVE_PERCPU_LOG
static void log_add(struct xive_cpu_state *xs, uint8_t type,
uint8_t count, ...)
{
struct xive_log_ent *e = &xs->log[xs->log_pos];
va_list args;
int i;
e->type = type;
e->cnt = count;
e->tb = mftb();
va_start(args, count);
for (i = 0; i < count; i++)
e->data[i] = va_arg(args, u32);
va_end(args);
xs->log_pos = xs->log_pos + 1;
if (xs->log_pos == MAX_LOG_ENT)
xs->log_pos = 0;
}
static void log_print(struct xive_cpu_state *xs)
{
uint32_t pos = xs->log_pos;
uint8_t buf[256];
int i, j;
static const char *lts[] = {
">XIRR",
"<XIRR",
" POPQ",
" EOI",
" EQD"
};
for (i = 0; i < MAX_LOG_ENT; i++) {
struct xive_log_ent *e = &xs->log[pos];
uint8_t *b = buf, *eb = &buf[255];
b += snprintf(b, eb-b, "%08llx %s ", e->tb,
lts[e->type]);
for (j = 0; j < e->cnt && b < eb; j++)
b += snprintf(b, eb-b, "%08x ", e->data[j]);
printf("%s\n", buf);
pos = pos + 1;
if (pos == MAX_LOG_ENT)
pos = 0;
}
}
#else /* XIVE_PERCPU_LOG */
static inline void log_add(struct xive_cpu_state *xs __unused,
uint8_t type __unused,
uint8_t count __unused, ...) { }
static inline void log_print(struct xive_cpu_state *xs __unused) { }
#endif /* XIVE_PERCPU_LOG */
struct xive {
uint32_t chip_id;
uint32_t block_id;
struct dt_node *x_node;
uint64_t xscom_base;
/* MMIO regions */
void *ic_base;
uint64_t ic_size;
uint32_t ic_shift;
void *tm_base;
uint64_t tm_size;
uint32_t tm_shift;
void *pc_base;
uint64_t pc_size;
void *vc_base;
uint64_t vc_size;
void *esb_mmio;
void *eq_mmio;
/* Set on XSCOM register access error */
bool last_reg_error;
/* Per-XIVE mutex */
struct lock lock;
/* Pre-allocated tables.
*
* We setup all the VDS for actual tables (ie, by opposition to
* forwarding ports) as either direct pre-allocated or indirect
* and partially populated.
*
* Currently, the ESB/SBE and the EAS/IVT tables are direct and
* fully pre-allocated based on XIVE_INT_COUNT.
*
* The other tables are indirect, we thus pre-allocate the indirect
* table (ie, pages of pointers) and populate enough of the pages
* for our basic setup using 64K pages.
*
* The size of the indirect tables are driven by XIVE_VP_COUNT and
* XIVE_EQ_COUNT. The number of pre-allocated ones are driven by
* XIVE_HW_VP_COUNT (number of EQ depends on number of VP) in block
* mode, otherwise we only preallocate INITIAL_BLK0_VP_COUNT on
* block 0.
*/
/* Direct SBE and IVT tables */
void *sbe_base;
void *ivt_base;
/* Indirect END/EQ table. NULL entries are unallocated, count is
* the numbre of pointers (ie, sub page placeholders).
*/
__be64 *eq_ind_base;
uint32_t eq_ind_count;
/* EQ allocation bitmap. Each bit represent 8 EQs */
bitmap_t *eq_map;
/* Indirect NVT/VP table. NULL entries are unallocated, count is
* the numbre of pointers (ie, sub page placeholders).
*/
__be64 *vp_ind_base;
uint32_t vp_ind_count;
/* Pool of donated pages for provisioning indirect EQ and VP pages */
struct list_head donated_pages;
/* To ease a possible change to supporting more than one block of
* interrupts per chip, we store here the "base" global number
* and max number of interrupts for this chip. The global number
* encompass the block number and index.
*/
uint32_t int_base;
uint32_t int_max;
/* Due to the overlap between IPIs and HW sources in the IVT table,
* we keep some kind of top-down allocator. It is used for HW sources
* to "allocate" interrupt entries and will limit what can be handed
* out as IPIs. Of course this assumes we "allocate" all HW sources
* before we start handing out IPIs.
*
* Note: The numbers here are global interrupt numbers so that we can
* potentially handle more than one block per chip in the future.
*/
uint32_t int_hw_bot; /* Bottom of HW allocation */
uint32_t int_ipi_top; /* Highest IPI handed out so far + 1 */
/* The IPI allocation bitmap */
bitmap_t *ipi_alloc_map;
/* We keep track of which interrupts were ever enabled to
* speed up xive_reset
*/
bitmap_t *int_enabled_map;
/* Embedded source IPIs */
struct xive_src ipis;
/* Embedded escalation interrupts */
struct xive_src esc_irqs;
/* In memory queue overflow */
void *q_ovf;
};
#define XIVE_CAN_STORE_EOI(x) XIVE_STORE_EOI_ENABLED
/* Global DT node */
static struct dt_node *xive_dt_node;
/* Block <-> Chip conversions.
*
* As chipIDs may not be within the range of 16 block IDs supported by XIVE,
* we have a 2 way conversion scheme.
*
* From block to chip, use the global table below.
*
* From chip to block, a field in struct proc_chip contains the first block
* of that chip. For now we only support one block per chip but that might
* change in the future
*/
#define XIVE_INVALID_CHIP 0xffffffff
#define XIVE_MAX_CHIPS 16
static uint32_t xive_block_to_chip[XIVE_MAX_CHIPS];
static uint32_t xive_block_count;
static uint32_t xive_chip_to_block(uint32_t chip_id)
{
struct proc_chip *c = get_chip(chip_id);
assert(c);
assert(c->xive);
return c->xive->block_id;
}
/* Conversion between GIRQ and block/index.
*
* ------------------------------------
* |0000000E|BLOC| INDEX|
* ------------------------------------
* 8 4 20
*
* the E bit indicates that this is an escalation interrupt, in
* that case, the BLOCK/INDEX points to the EQ descriptor associated
* with the escalation.
*
* Global interrupt numbers for non-escalation interrupts are thus
* limited to 24 bits because the XICS emulation encodes the CPPR
* value in the top (MSB) 8 bits. Hence, 4 bits are left for the XIVE
* block number and the remaining 20 bits for the interrupt index
* number.
*/
#define INT_SHIFT 20
#define INT_ESC_SHIFT (INT_SHIFT + 4) /* 4bits block id */
#if XIVE_INT_ORDER > INT_SHIFT
#error "Too many ESBs for IRQ encoding"
#endif
#if XIVE_EQ_ORDER > INT_SHIFT
#error "Too many EQs for escalation IRQ number encoding"
#endif
#define GIRQ_TO_BLK(__g) (((__g) >> INT_SHIFT) & 0xf)
#define GIRQ_TO_IDX(__g) ((__g) & ((1 << INT_SHIFT) - 1))
#define BLKIDX_TO_GIRQ(__b,__i) (((uint32_t)(__b)) << INT_SHIFT | (__i))
#define GIRQ_IS_ESCALATION(__g) ((__g) & (1 << INT_ESC_SHIFT))
#define MAKE_ESCALATION_GIRQ(__b,__i)(BLKIDX_TO_GIRQ(__b,__i) | (1 << INT_ESC_SHIFT))
/* Block/IRQ to chip# conversions */
#define PC_BLK_TO_CHIP(__b) (xive_block_to_chip[__b])
#define VC_BLK_TO_CHIP(__b) (xive_block_to_chip[__b])
#define GIRQ_TO_CHIP(__isn) (VC_BLK_TO_CHIP(GIRQ_TO_BLK(__isn)))
/* Routing of physical processors to VPs */
#define PIR2VP_IDX(__pir) (XIVE_HW_VP_BASE | P9_PIR2LOCALCPU(__pir))
#define PIR2VP_BLK(__pir) (xive_chip_to_block(P9_PIR2GCID(__pir)))
#define VP2PIR(__blk, __idx) (P9_PIRFROMLOCALCPU(VC_BLK_TO_CHIP(__blk), (__idx) & 0x7f))
/* Decoding of OPAL API VP IDs. The VP IDs are encoded as follow
*
* Block group mode:
*
* -----------------------------------
* |GVEOOOOO| INDEX|
* -----------------------------------
* || |
* || Order
* |Virtual
* Group
*
* G (Group) : Set to 1 for a group VP (not currently supported)
* V (Virtual) : Set to 1 for an allocated VP (vs. a physical processor ID)
* E (Error) : Should never be 1, used internally for errors
* O (Order) : Allocation order of the VP block
*
* The conversion is thus done as follow (groups aren't implemented yet)
*
* If V=0, O must be 0 and 24-bit INDEX value is the PIR
* If V=1, the order O group is allocated such that if N is the number of
* chip bits considered for allocation (*)
* then the INDEX is constructed as follow (bit numbers such as 0=LSB)
* - bottom O-N bits is the index within the "VP block"
* - next N bits is the XIVE blockID of the VP
* - the remaining bits is the per-chip "base"
* so the conversion consists of "extracting" the block ID and moving
* down the upper bits by N bits.
*
* In non-block-group mode, the difference is that the blockID is
* on the left of the index (the entire VP block is in a single
* block ID)
*/
/* VP allocation */
static uint32_t xive_chips_alloc_bits = 0;
static struct buddy *xive_vp_buddy;
static struct lock xive_buddy_lock = LOCK_UNLOCKED;
/* VP# decoding/encoding */
static bool xive_decode_vp(uint32_t vp, uint32_t *blk, uint32_t *idx,
uint8_t *order, bool *group)
{
uint32_t o = (vp >> 24) & 0x1f;
uint32_t n = xive_chips_alloc_bits;
uint32_t index = vp & 0x00ffffff;
uint32_t imask = (1 << (o - n)) - 1;
/* Groups not supported yet */
if ((vp >> 31) & 1)
return false;
if (group)
*group = false;
/* PIR case */
if (((vp >> 30) & 1) == 0) {
if (find_cpu_by_pir(index) == NULL)
return false;
if (blk)
*blk = PIR2VP_BLK(index);
if (idx)
*idx = PIR2VP_IDX(index);
return true;
}
/* Ensure o > n, we have *at least* 2 VPs per block */
if (o <= n)
return false;
/* Combine the index base and index */
if (idx)
*idx = ((index >> n) & ~imask) | (index & imask);
/* Extract block ID */
if (blk)
*blk = (index >> (o - n)) & ((1 << n) - 1);
/* Return order as well if asked for */
if (order)
*order = o;
return true;
}
static uint32_t xive_encode_vp(uint32_t blk, uint32_t idx, uint32_t order)
{
uint32_t vp = 0x40000000 | (order << 24);
uint32_t n = xive_chips_alloc_bits;
uint32_t imask = (1 << (order - n)) - 1;
vp |= (idx & ~imask) << n;
vp |= blk << (order - n);
vp |= idx & imask;
return vp;
}
#define xive_regw(__x, __r, __v) \
__xive_regw(__x, __r, X_##__r, __v, #__r)
#define xive_regr(__x, __r) \
__xive_regr(__x, __r, X_##__r, #__r)
#define xive_regwx(__x, __r, __v) \
__xive_regw(__x, 0, X_##__r, __v, #__r)
#define xive_regrx(__x, __r) \
__xive_regr(__x, 0, X_##__r, #__r)
#ifdef XIVE_VERBOSE_DEBUG
#define xive_vdbg(__x,__fmt,...) prlog(PR_DEBUG,"XIVE[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_vdbg(__c,__fmt,...) prlog(PR_DEBUG,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
#else
#define xive_vdbg(x,fmt,...) do { } while(0)
#define xive_cpu_vdbg(x,fmt,...) do { } while(0)
#endif
#define xive_dbg(__x,__fmt,...) prlog(PR_DEBUG,"XIVE[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_dbg(__c,__fmt,...) prlog(PR_DEBUG,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
#define xive_warn(__x,__fmt,...) prlog(PR_WARNING,"XIVE[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_warn(__c,__fmt,...) prlog(PR_WARNING,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
#define xive_err(__x,__fmt,...) prlog(PR_ERR,"XIVE[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_err(__c,__fmt,...) prlog(PR_ERR,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
static void __xive_regw(struct xive *x, uint32_t m_reg, uint32_t x_reg, uint64_t v,
const char *rname)
{
bool use_xscom = (m_reg == 0) || !x->ic_base;
int64_t rc;
x->last_reg_error = false;
if (use_xscom) {
assert(x_reg != 0);
rc = xscom_write(x->chip_id, x->xscom_base + x_reg, v);
if (rc) {
if (!rname)
rname = "???";
xive_err(x, "Error writing register %s\n", rname);
/* Anything else we can do here ? */
x->last_reg_error = true;
}
} else {
out_be64(x->ic_base + m_reg, v);
}
}
static uint64_t __xive_regr(struct xive *x, uint32_t m_reg, uint32_t x_reg,
const char *rname)
{
bool use_xscom = (m_reg == 0) || !x->ic_base;
int64_t rc;
uint64_t val;
x->last_reg_error = false;
if (use_xscom) {
assert(x_reg != 0);
rc = xscom_read(x->chip_id, x->xscom_base + x_reg, &val);
if (rc) {
if (!rname)
rname = "???";
xive_err(x, "Error reading register %s\n", rname);
/* Anything else we can do here ? */
x->last_reg_error = true;
return -1ull;
}
} else {
val = in_be64(x->ic_base + m_reg);
}
return val;
}
/* Locate a controller from an IRQ number */
static struct xive *xive_from_isn(uint32_t isn)
{
uint32_t chip_id = GIRQ_TO_CHIP(isn);
struct proc_chip *c = get_chip(chip_id);
if (!c)
return NULL;
return c->xive;
}
static struct xive *xive_from_pc_blk(uint32_t blk)
{
uint32_t chip_id = PC_BLK_TO_CHIP(blk);
struct proc_chip *c = get_chip(chip_id);
if (!c)
return NULL;
return c->xive;
}
static struct xive *xive_from_vc_blk(uint32_t blk)
{
uint32_t chip_id = VC_BLK_TO_CHIP(blk);
struct proc_chip *c = get_chip(chip_id);
if (!c)
return NULL;
return c->xive;
}
static struct xive_eq *xive_get_eq(struct xive *x, unsigned int idx)
{
struct xive_eq *p;
if (idx >= (x->eq_ind_count * EQ_PER_PAGE))
return NULL;
p = (struct xive_eq *)(be64_to_cpu(x->eq_ind_base[idx / EQ_PER_PAGE]) &
VSD_ADDRESS_MASK);
if (!p)
return NULL;
return &p[idx % EQ_PER_PAGE];
}
static struct xive_ive *xive_get_ive(struct xive *x, unsigned int isn)
{
struct xive_ive *ivt;
uint32_t idx = GIRQ_TO_IDX(isn);
if (GIRQ_IS_ESCALATION(isn)) {
/* All right, an escalation IVE is buried inside an EQ, let's
* try to find it
*/
struct xive_eq *eq;
if (x->chip_id != VC_BLK_TO_CHIP(GIRQ_TO_BLK(isn))) {
xive_err(x, "xive_get_ive, ESC ISN 0x%x not on right chip\n", isn);
return NULL;
}
eq = xive_get_eq(x, idx);
if (!eq) {
xive_err(x, "xive_get_ive, ESC ISN 0x%x EQ not found\n", isn);
return NULL;
}
/* If using single-escalation, don't let anybody get to the individual
* escalation interrupts
*/
if (xive_get_field32(EQ_W0_UNCOND_ESCALATE, eq->w0))
return NULL;
/* Grab the buried IVE */
return (struct xive_ive *)(char *)&eq->w4;
} else {
/* Check the block matches */
if (isn < x->int_base || isn >= x->int_max) {
xive_err(x, "xive_get_ive, ISN 0x%x not on right chip\n", isn);
return NULL;
}
assert (idx < XIVE_INT_COUNT);
/* If we support >1 block per chip, this should still work as
* we are likely to make the table contiguous anyway
*/
ivt = x->ivt_base;
assert(ivt);
return ivt + idx;
}
}
static struct xive_vp *xive_get_vp(struct xive *x, unsigned int idx)
{
struct xive_vp *p;
assert(idx < (x->vp_ind_count * VP_PER_PAGE));
p = (struct xive_vp *)(be64_to_cpu(x->vp_ind_base[idx / VP_PER_PAGE]) &
VSD_ADDRESS_MASK);
if (!p)
return NULL;
return &p[idx % VP_PER_PAGE];
}
static void xive_init_default_vp(struct xive_vp *vp,
uint32_t eq_blk, uint32_t eq_idx)
{
memset(vp, 0, sizeof(struct xive_vp));
/* Stash the EQ base in the pressure relief interrupt field */
vp->w1 = cpu_to_be32((eq_blk << 28) | eq_idx);
vp->w0 = xive_set_field32(VP_W0_VALID, 0, 1);
}
static void xive_init_emu_eq(uint32_t vp_blk, uint32_t vp_idx,
struct xive_eq *eq, void *backing_page,
uint8_t prio)
{
memset(eq, 0, sizeof(struct xive_eq));
eq->w1 = xive_set_field32(EQ_W1_GENERATION, 0, 1);
eq->w3 = cpu_to_be32(((uint64_t)backing_page) & EQ_W3_OP_DESC_LO);
eq->w2 = cpu_to_be32((((uint64_t)backing_page) >> 32) & EQ_W2_OP_DESC_HI);
eq->w6 = xive_set_field32(EQ_W6_NVT_BLOCK, 0, vp_blk) |
xive_set_field32(EQ_W6_NVT_INDEX, 0, vp_idx);
eq->w7 = xive_set_field32(EQ_W7_F0_PRIORITY, 0, prio);
eq->w0 = xive_set_field32(EQ_W0_VALID, 0, 1) |
xive_set_field32(EQ_W0_ENQUEUE, 0, 1) |
xive_set_field32(EQ_W0_FIRMWARE, 0, 1) |
xive_set_field32(EQ_W0_QSIZE, 0, EQ_QSIZE_64K) |
#ifdef EQ_ALWAYS_NOTIFY
xive_set_field32(EQ_W0_UCOND_NOTIFY, 0, 1) |
#endif
0 ;
}
static uint32_t *xive_get_eq_buf(uint32_t eq_blk, uint32_t eq_idx)
{
struct xive *x = xive_from_vc_blk(eq_blk);
struct xive_eq *eq;
uint64_t addr;
assert(x);
eq = xive_get_eq(x, eq_idx);
assert(eq);
assert(xive_get_field32(EQ_W0_VALID, eq->w0));
addr = ((((uint64_t)be32_to_cpu(eq->w2)) & 0x0fffffff) << 32) | be32_to_cpu(eq->w3);
return (uint32_t *)addr;
}
static void *xive_get_donated_page(struct xive *x)
{
return (void *)list_pop_(&x->donated_pages, 0);
}
#define XIVE_ALLOC_IS_ERR(_idx) ((_idx) >= 0xfffffff0)
#define XIVE_ALLOC_NO_SPACE 0xffffffff /* No possible space */
#define XIVE_ALLOC_NO_IND 0xfffffffe /* Indirect need provisioning */
#define XIVE_ALLOC_NO_MEM 0xfffffffd /* Local allocation failed */
static uint32_t xive_alloc_eq_set(struct xive *x, bool alloc_indirect)
{
uint32_t ind_idx;
int idx;
int eq_base_idx;
xive_vdbg(x, "Allocating EQ set...\n");
assert(x->eq_map);
/* Allocate from the EQ bitmap. Each bit is 8 EQs */
idx = bitmap_find_zero_bit(*x->eq_map, 0, XIVE_EQ_COUNT >> 3);
if (idx < 0) {
xive_dbg(x, "Allocation from EQ bitmap failed !\n");
return XIVE_ALLOC_NO_SPACE;
}
eq_base_idx = idx << 3;
xive_vdbg(x, "Got EQs 0x%x..0x%x\n", eq_base_idx,
eq_base_idx + XIVE_MAX_PRIO);
/* Calculate the indirect page where the EQs reside */
ind_idx = eq_base_idx / EQ_PER_PAGE;
/* Is there an indirect page ? If not, check if we can provision it */
if (!x->eq_ind_base[ind_idx]) {
/* Default flags */
uint64_t vsd_flags = SETFIELD(VSD_TSIZE, 0ull, 4) |
SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
void *page;
/* If alloc_indirect is set, allocate the memory from OPAL own,
* otherwise try to provision from the donated pool
*/
if (alloc_indirect) {
/* Allocate/provision indirect page during boot only */
xive_vdbg(x, "Indirect empty, provisioning from local pool\n");
page = local_alloc(x->chip_id, PAGE_SIZE, PAGE_SIZE);
if (!page) {
xive_dbg(x, "provisioning failed !\n");
return XIVE_ALLOC_NO_MEM;
}
vsd_flags |= VSD_FIRMWARE;
} else {
xive_vdbg(x, "Indirect empty, provisioning from donated pages\n");
page = xive_get_donated_page(x);
if (!page) {
xive_vdbg(x, "no idirect pages available !\n");
return XIVE_ALLOC_NO_IND;
}
}
memset(page, 0, PAGE_SIZE);
x->eq_ind_base[ind_idx] = cpu_to_be64(vsd_flags |
(((uint64_t)page) & VSD_ADDRESS_MASK));
/* Any cache scrub needed ? */
}
bitmap_set_bit(*x->eq_map, idx);
return eq_base_idx;
}
static void xive_free_eq_set(struct xive *x, uint32_t eqs)
{
uint32_t idx;
xive_vdbg(x, "Freeing EQ 0x%x..0x%x\n", eqs, eqs + XIVE_MAX_PRIO);
assert((eqs & 7) == 0);
assert(x->eq_map);
idx = eqs >> 3;
bitmap_clr_bit(*x->eq_map, idx);
}
static bool xive_provision_vp_ind(struct xive *x, uint32_t vp_idx, uint32_t order)
{
uint32_t pbase, pend, i;
pbase = vp_idx / VP_PER_PAGE;
pend = (vp_idx + (1 << order)) / VP_PER_PAGE;
for (i = pbase; i <= pend; i++) {
void *page;
u64 vsd;
/* Already provisioned ? */
if (x->vp_ind_base[i])
continue;
/* Try to grab a donated page */
page = xive_get_donated_page(x);
if (!page)
return false;
/* Install the page */
memset(page, 0, PAGE_SIZE);
vsd = ((uint64_t)page) & VSD_ADDRESS_MASK;
vsd |= SETFIELD(VSD_TSIZE, 0ull, 4);
vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
x->vp_ind_base[i] = cpu_to_be64(vsd);
}
return true;
}
static void xive_init_vp_allocator(void)
{
/* Initialize chip alloc bits */
xive_chips_alloc_bits = ilog2(xive_block_count);
prlog(PR_INFO, "XIVE: %d chips considered for VP allocations\n",
1 << xive_chips_alloc_bits);
/* Allocate a buddy big enough for XIVE_VP_ORDER allocations.
*
* each bit in the buddy represents 1 << xive_chips_alloc_bits
* VPs.
*/
xive_vp_buddy = buddy_create(XIVE_VP_ORDER);
assert(xive_vp_buddy);
/* We reserve the whole range of VPs representing HW chips.
*
* These are 0x80..0xff, so order 7 starting at 0x80. This will
* reserve that range on each chip.
*/
assert(buddy_reserve(xive_vp_buddy, XIVE_HW_VP_BASE,
XIVE_THREADID_SHIFT));
}
static uint32_t xive_alloc_vps(uint32_t order)
{
uint32_t local_order, i;
int vp;
/* The minimum order is 2 VPs per chip */
if (order < (xive_chips_alloc_bits + 1))
order = xive_chips_alloc_bits + 1;
/* We split the allocation */
local_order = order - xive_chips_alloc_bits;
/* We grab that in the global buddy */
assert(xive_vp_buddy);
lock(&xive_buddy_lock);
vp = buddy_alloc(xive_vp_buddy, local_order);
unlock(&xive_buddy_lock);
if (vp < 0)
return XIVE_ALLOC_NO_SPACE;
/* Provision on every chip considered for allocation */
for (i = 0; i < (1 << xive_chips_alloc_bits); i++) {
struct xive *x = xive_from_pc_blk(i);
bool success;
/* Return internal error & log rather than assert ? */
assert(x);
lock(&x->lock);
success = xive_provision_vp_ind(x, vp, local_order);
unlock(&x->lock);
if (!success) {
lock(&xive_buddy_lock);
buddy_free(xive_vp_buddy, vp, local_order);
unlock(&xive_buddy_lock);
return XIVE_ALLOC_NO_IND;
}
}
/* Encode the VP number. "blk" is 0 as this represents
* all blocks and the allocation always starts at 0
*/
return xive_encode_vp(0, vp, order);
}
static void xive_free_vps(uint32_t vp)
{
uint32_t idx;
uint8_t order, local_order;
assert(xive_decode_vp(vp, NULL, &idx, &order, NULL));
/* We split the allocation */
local_order = order - xive_chips_alloc_bits;
/* Free that in the buddy */
lock(&xive_buddy_lock);
buddy_free(xive_vp_buddy, idx, local_order);
unlock(&xive_buddy_lock);
}
enum xive_cache_type {
xive_cache_ivc,
xive_cache_sbc,
xive_cache_eqc,
xive_cache_vpc,
};
static int64_t __xive_cache_watch(struct xive *x, enum xive_cache_type ctype,
uint64_t block, uint64_t idx,
uint32_t start_dword, uint32_t dword_count,
__be64 *new_data, bool light_watch,
bool synchronous);
static void xive_scrub_workaround_vp(struct xive *x, uint32_t block, uint32_t idx __unused)
{
/* VP variant of the workaround described in __xive_cache_scrub(),
* we need to be careful to use for that workaround an NVT that
* sits on the same xive but isn NOT part of a donated indirect
* entry.
*
* The reason is that the dummy cache watch will re-create a
* dirty entry in the cache, even if the entry is marked
* invalid.
*
* Thus if we are about to dispose of the indirect entry backing
* it, we'll cause a checkstop later on when trying to write it
* out.
*
* Note: This means the workaround only works for block group
* mode.
*/
__xive_cache_watch(x, xive_cache_vpc, block, XIVE_HW_VP_BASE, 0,
0, NULL, true, false);
}
static void xive_scrub_workaround_eq(struct xive *x, uint32_t block __unused, uint32_t idx)
{
void *mmio;
/* EQ variant of the workaround described in __xive_cache_scrub(),
* a simple non-side effect load from ESn will do
*/
mmio = x->eq_mmio + idx * XIVE_ESB_PAGE_SIZE;
/* Ensure the above has returned before we do anything else
* the XIVE store queue is completely empty
*/
load_wait(in_be64(mmio + XIVE_ESB_GET));
}
static int64_t __xive_cache_scrub(struct xive *x, enum xive_cache_type ctype,
uint64_t block, uint64_t idx,
bool want_inval, bool want_disable)
{
uint64_t sreg, sregx, mreg, mregx;
uint64_t mval, sval;
#ifdef XIVE_CHECK_LOCKS
assert(lock_held_by_me(&x->lock));
#endif
/* Workaround a HW bug in XIVE where the scrub completion
* isn't ordered by loads, thus the data might still be
* in a queue and may not have reached coherency.
*
* The workaround is two folds: We force the scrub to also
* invalidate, then after the scrub, we do a dummy cache
* watch which will make the HW read the data back, which
* should be ordered behind all the preceding stores.
*
* Update: For EQs we can do a non-side effect ESB load instead
* which is faster.
*/
want_inval = true;
switch (ctype) {
case xive_cache_ivc:
sreg = VC_IVC_SCRUB_TRIG;
sregx = X_VC_IVC_SCRUB_TRIG;
mreg = VC_IVC_SCRUB_MASK;
mregx = X_VC_IVC_SCRUB_MASK;
break;
case xive_cache_sbc:
sreg = VC_SBC_SCRUB_TRIG;
sregx = X_VC_SBC_SCRUB_TRIG;
mreg = VC_SBC_SCRUB_MASK;
mregx = X_VC_SBC_SCRUB_MASK;
break;
case xive_cache_eqc:
sreg = VC_EQC_SCRUB_TRIG;
sregx = X_VC_EQC_SCRUB_TRIG;
mreg = VC_EQC_SCRUB_MASK;
mregx = X_VC_EQC_SCRUB_MASK;
break;
case xive_cache_vpc:
sreg = PC_VPC_SCRUB_TRIG;
sregx = X_PC_VPC_SCRUB_TRIG;
mreg = PC_VPC_SCRUB_MASK;
mregx = X_PC_VPC_SCRUB_MASK;
break;
default:
return OPAL_INTERNAL_ERROR;
}
if (ctype == xive_cache_vpc) {
mval = PC_SCRUB_BLOCK_ID | PC_SCRUB_OFFSET;
sval = SETFIELD(PC_SCRUB_BLOCK_ID, idx, block) |
PC_SCRUB_VALID;
} else {
mval = VC_SCRUB_BLOCK_ID | VC_SCRUB_OFFSET;
sval = SETFIELD(VC_SCRUB_BLOCK_ID, idx, block) |
VC_SCRUB_VALID;
}
if (want_inval)
sval |= PC_SCRUB_WANT_INVAL;
if (want_disable)
sval |= PC_SCRUB_WANT_DISABLE;
__xive_regw(x, mreg, mregx, mval, NULL);
__xive_regw(x, sreg, sregx, sval, NULL);
/* XXX Add timeout !!! */
for (;;) {
sval = __xive_regr(x, sreg, sregx, NULL);
if (!(sval & VC_SCRUB_VALID))
break;
/* Small delay */
time_wait(100);
}
sync();
/* Workaround for HW bug described above (only applies to
* EQC and VPC
*/
if (ctype == xive_cache_eqc)
xive_scrub_workaround_eq(x, block, idx);
else if (ctype == xive_cache_vpc)
xive_scrub_workaround_vp(x, block, idx);
return 0;
}
static int64_t xive_ivc_scrub(struct xive *x, uint64_t block, uint64_t idx)
{
/* IVC has no "want_inval" bit, it always invalidates */
return __xive_cache_scrub(x, xive_cache_ivc, block, idx, false, false);
}
static int64_t xive_vpc_scrub(struct xive *x, uint64_t block, uint64_t idx)
{
return __xive_cache_scrub(x, xive_cache_vpc, block, idx, false, false);
}
static int64_t xive_vpc_scrub_clean(struct xive *x, uint64_t block, uint64_t idx)
{
return __xive_cache_scrub(x, xive_cache_vpc, block, idx, true, false);
}
static int64_t xive_eqc_scrub(struct xive *x, uint64_t block, uint64_t idx)
{
return __xive_cache_scrub(x, xive_cache_eqc, block, idx, false, false);
}
#define XIVE_CACHE_WATCH_MAX_RETRIES 10
static int64_t __xive_cache_watch(struct xive *x, enum xive_cache_type ctype,
uint64_t block, uint64_t idx,
uint32_t start_dword, uint32_t dword_count,
__be64 *new_data, bool light_watch,
bool synchronous)
{
uint64_t sreg, sregx, dreg0, dreg0x;
uint64_t dval0, sval, status;
int64_t i;
int retries = 0;
#ifdef XIVE_CHECK_LOCKS
assert(lock_held_by_me(&x->lock));
#endif
switch (ctype) {
case xive_cache_eqc:
sreg = VC_EQC_CWATCH_SPEC;
sregx = X_VC_EQC_CWATCH_SPEC;
dreg0 = VC_EQC_CWATCH_DAT0;
dreg0x = X_VC_EQC_CWATCH_DAT0;
sval = SETFIELD(VC_EQC_CWATCH_BLOCKID, idx, block);
break;
case xive_cache_vpc:
sreg = PC_VPC_CWATCH_SPEC;
sregx = X_PC_VPC_CWATCH_SPEC;
dreg0 = PC_VPC_CWATCH_DAT0;
dreg0x = X_PC_VPC_CWATCH_DAT0;
sval = SETFIELD(PC_VPC_CWATCH_BLOCKID, idx, block);
break;
default:
return OPAL_INTERNAL_ERROR;
}
/* The full bit is in the same position for EQC and VPC */
if (!light_watch)
sval |= VC_EQC_CWATCH_FULL;
for (;;) {
/* Write the cache watch spec */
__xive_regw(x, sreg, sregx, sval, NULL);
/* Load data0 register to populate the watch */
dval0 = __xive_regr(x, dreg0, dreg0x, NULL);
/* If new_data is NULL, this is a dummy watch used as a
* workaround for a HW bug
*/
if (!new_data) {
__xive_regw(x, dreg0, dreg0x, dval0, NULL);
return 0;
}
/* Write the words into the watch facility. We write in reverse
* order in case word 0 is part of it as it must be the last
* one written.
*/
for (i = start_dword + dword_count - 1; i >= start_dword ;i--) {
uint64_t dw = be64_to_cpu(new_data[i - start_dword]);
__xive_regw(x, dreg0 + i * 8, dreg0x + i, dw, NULL);
}
/* Write data0 register to trigger the update if word 0 wasn't
* written above
*/
if (start_dword > 0)
__xive_regw(x, dreg0, dreg0x, dval0, NULL);
/* This may not be necessary for light updates (it's possible
* that a sync in sufficient, TBD). Ensure the above is
* complete and check the status of the watch.
*/
status = __xive_regr(x, sreg, sregx, NULL);
/* Bits FULL and CONFLICT are in the same position in
* EQC and VPC
*/
if (!(status & VC_EQC_CWATCH_FULL) ||
!(status & VC_EQC_CWATCH_CONFLICT))
break;
if (!synchronous)
return OPAL_BUSY;
if (++retries == XIVE_CACHE_WATCH_MAX_RETRIES) {
xive_err(x, "Reached maximum retries %d when doing "
"a %s cache update\n", retries,
ctype == xive_cache_eqc ? "EQC" : "VPC");
return OPAL_BUSY;
}
}
/* Perform a scrub with "want_invalidate" set to false to push the
* cache updates to memory as well
*/
return __xive_cache_scrub(x, ctype, block, idx, false, false);
}
static int64_t xive_escalation_ive_cache_update(struct xive *x, uint64_t block,
uint64_t idx, struct xive_ive *ive,
bool synchronous)
{
return __xive_cache_watch(x, xive_cache_eqc, block, idx,
2, 1, &ive->w, true, synchronous);
}
static int64_t xive_eqc_cache_update(struct xive *x, uint64_t block,
uint64_t idx, struct xive_eq *eq,
bool synchronous)
{
return __xive_cache_watch(x, xive_cache_eqc, block, idx,
0, 4, (__be64 *)eq, false, synchronous);
}
static int64_t xive_vpc_cache_update(struct xive *x, uint64_t block,
uint64_t idx, struct xive_vp *vp,
bool synchronous)
{
return __xive_cache_watch(x, xive_cache_vpc, block, idx,
0, 8, (__be64 *)vp, false, synchronous);
}
static bool xive_set_vsd(struct xive *x, uint32_t tbl, uint32_t idx, uint64_t v)
{
/* Set VC version */
xive_regw(x, VC_VSD_TABLE_ADDR,
SETFIELD(VST_TABLE_SELECT, 0ull, tbl) |
SETFIELD(VST_TABLE_OFFSET, 0ull, idx));
if (x->last_reg_error)
return false;
xive_regw(x, VC_VSD_TABLE_DATA, v);
if (x->last_reg_error)
return false;
/* Except for IRQ table, also set PC version */
if (tbl == VST_TSEL_IRQ)
return true;
xive_regw(x, PC_VSD_TABLE_ADDR,
SETFIELD(VST_TABLE_SELECT, 0ull, tbl) |
SETFIELD(VST_TABLE_OFFSET, 0ull, idx));
if (x->last_reg_error)
return false;
xive_regw(x, PC_VSD_TABLE_DATA, v);
if (x->last_reg_error)
return false;
return true;
}
static bool xive_set_local_tables(struct xive *x)
{
uint64_t base, i;
/* These have to be power of 2 sized */
assert(is_pow2(SBE_SIZE));
assert(is_pow2(IVT_SIZE));
/* All tables set as exclusive */
base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
/* Set IVT as direct mode */
if (!xive_set_vsd(x, VST_TSEL_IVT, x->block_id, base |
(((uint64_t)x->ivt_base) & VSD_ADDRESS_MASK) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(IVT_SIZE) - 12)))
return false;
/* Set SBE as direct mode */
if (!xive_set_vsd(x, VST_TSEL_SBE, x->block_id, base |
(((uint64_t)x->sbe_base) & VSD_ADDRESS_MASK) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(SBE_SIZE) - 12)))
return false;
/* Set EQDT as indirect mode with 64K subpages */
if (!xive_set_vsd(x, VST_TSEL_EQDT, x->block_id, base |
(((uint64_t)x->eq_ind_base) & VSD_ADDRESS_MASK) |
VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull, 4)))
return false;
/* Set VPDT as indirect mode with 64K subpages */
if (!xive_set_vsd(x, VST_TSEL_VPDT, x->block_id, base |
(((uint64_t)x->vp_ind_base) & VSD_ADDRESS_MASK) |
VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull, 4)))
return false;
/* Setup queue overflows */
for (i = 0; i < VC_QUEUE_OVF_COUNT; i++) {
u64 addr = ((uint64_t)x->q_ovf) + i * PAGE_SIZE;
u64 cfg, sreg, sregx;
if (!xive_set_vsd(x, VST_TSEL_IRQ, i, base |
(addr & VSD_ADDRESS_MASK) |
SETFIELD(VSD_TSIZE, 0ull, 4)))
return false;
sreg = VC_IRQ_CONFIG_IPI + i * 8;
sregx = X_VC_IRQ_CONFIG_IPI + i;
cfg = __xive_regr(x, sreg, sregx, NULL);
cfg |= VC_IRQ_CONFIG_MEMB_EN;
cfg = SETFIELD(VC_IRQ_CONFIG_MEMB_SZ, cfg, 4);
__xive_regw(x, sreg, sregx, cfg, NULL);
}
return true;
}
static bool xive_configure_bars(struct xive *x)
{
uint64_t chip_id = x->chip_id;
uint64_t val;
/* IC BAR */
phys_map_get(chip_id, XIVE_IC, 0, (uint64_t *)&x->ic_base, &x->ic_size);
val = (uint64_t)x->ic_base | CQ_IC_BAR_VALID | CQ_IC_BAR_64K;
x->ic_shift = 16;
xive_regwx(x, CQ_IC_BAR, val);
if (x->last_reg_error)
return false;
/* TM BAR, only configure TM1. Note that this has the same address
* for each chip !!! Hence we create a fake chip 0 and use that for
* all phys_map_get(XIVE_TM) calls.
*/
phys_map_get(0, XIVE_TM, 0, (uint64_t *)&x->tm_base, &x->tm_size);
val = (uint64_t)x->tm_base | CQ_TM_BAR_VALID | CQ_TM_BAR_64K;
x->tm_shift = 16;
xive_regwx(x, CQ_TM1_BAR, val);
if (x->last_reg_error)
return false;
xive_regwx(x, CQ_TM2_BAR, 0);
if (x->last_reg_error)
return false;
/* PC BAR. Clear first, write mask, then write value */
phys_map_get(chip_id, XIVE_PC, 0, (uint64_t *)&x->pc_base, &x->pc_size);
xive_regwx(x, CQ_PC_BAR, 0);
if (x->last_reg_error)
return false;
val = ~(x->pc_size - 1) & CQ_PC_BARM_MASK;
xive_regwx(x, CQ_PC_BARM, val);
if (x->last_reg_error)
return false;
val = (uint64_t)x->pc_base | CQ_PC_BAR_VALID;
xive_regwx(x, CQ_PC_BAR, val);
if (x->last_reg_error)
return false;
/* VC BAR. Clear first, write mask, then write value */
phys_map_get(chip_id, XIVE_VC, 0, (uint64_t *)&x->vc_base, &x->vc_size);
xive_regwx(x, CQ_VC_BAR, 0);
if (x->last_reg_error)
return false;
val = ~(x->vc_size - 1) & CQ_VC_BARM_MASK;
xive_regwx(x, CQ_VC_BARM, val);
if (x->last_reg_error)
return false;
val = (uint64_t)x->vc_base | CQ_VC_BAR_VALID;
xive_regwx(x, CQ_VC_BAR, val);
if (x->last_reg_error)
return false;
/* Calculate some MMIO bases in the VC BAR */
x->esb_mmio = x->vc_base;
x->eq_mmio = x->vc_base + (x->vc_size / VC_MAX_SETS) * VC_ESB_SETS;
/* Print things out */
xive_dbg(x, "IC: %14p [0x%012llx/%d]\n", x->ic_base, x->ic_size,
x->ic_shift);
xive_dbg(x, "TM: %14p [0x%012llx/%d]\n", x->tm_base, x->tm_size,
x->tm_shift);
xive_dbg(x, "PC: %14p [0x%012llx]\n", x->pc_base, x->pc_size);
xive_dbg(x, "VC: %14p [0x%012llx]\n", x->vc_base, x->vc_size);
return true;
}
static void xive_dump_mmio(struct xive *x)
{
prlog(PR_DEBUG, " CQ_CFG_PB_GEN = %016llx\n",
in_be64(x->ic_base + CQ_CFG_PB_GEN));
prlog(PR_DEBUG, " CQ_MSGSND = %016llx\n",
in_be64(x->ic_base + CQ_MSGSND));
}
static bool xive_config_init(struct xive *x)
{
uint64_t val;
/* Configure PC and VC page sizes and disable Linux trigger mode */
xive_regwx(x, CQ_PBI_CTL, CQ_PBI_PC_64K | CQ_PBI_VC_64K | CQ_PBI_FORCE_TM_LOCAL);
if (x->last_reg_error)
return false;
/*** The rest can use MMIO ***/
/* Enable indirect mode in VC config */
val = xive_regr(x, VC_GLOBAL_CONFIG);
val |= VC_GCONF_INDIRECT;
xive_regw(x, VC_GLOBAL_CONFIG, val);
/* Enable indirect mode in PC config */
val = xive_regr(x, PC_GLOBAL_CONFIG);
val |= PC_GCONF_INDIRECT;
val |= PC_GCONF_CHIPID_OVR;
val = SETFIELD(PC_GCONF_CHIPID, val, x->block_id);
xive_regw(x, PC_GLOBAL_CONFIG, val);
xive_dbg(x, "PC_GLOBAL_CONFIG=%016llx\n", val);
val = xive_regr(x, PC_TCTXT_CFG);
val |= PC_TCTXT_CFG_BLKGRP_EN | PC_TCTXT_CFG_HARD_CHIPID_BLK;
val |= PC_TCTXT_CHIPID_OVERRIDE;
val |= PC_TCTXT_CFG_TARGET_EN;
val = SETFIELD(PC_TCTXT_CHIPID, val, x->block_id);
val = SETFIELD(PC_TCTXT_INIT_AGE, val, 0x2);
val |= PC_TCTXT_CFG_LGS_EN;
/* Disable pressure relief as we hijack the field in the VPs */
val &= ~PC_TCTXT_CFG_STORE_ACK;
if (this_cpu()->is_fused_core)
val |= PC_TCTXT_CFG_FUSE_CORE_EN;
else
val &= ~PC_TCTXT_CFG_FUSE_CORE_EN;
xive_regw(x, PC_TCTXT_CFG, val);
xive_dbg(x, "PC_TCTXT_CFG=%016llx\n", val);
val = xive_regr(x, CQ_CFG_PB_GEN);
/* 1-block-per-chip mode */
val = SETFIELD(CQ_INT_ADDR_OPT, val, 2);
xive_regw(x, CQ_CFG_PB_GEN, val);
/* Enable StoreEOI */
val = xive_regr(x, VC_SBC_CONFIG);
if (XIVE_CAN_STORE_EOI(x))
val |= VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH;
else
xive_dbg(x, "store EOI is disabled\n");
val |= VC_SBC_CONF_NO_UPD_PRF;
xive_regw(x, VC_SBC_CONFIG, val);
/* Disable block tracking on Nimbus (we may want to enable
* it on Cumulus later). HW Erratas.
*/
val = xive_regr(x, PC_TCTXT_TRACK);
val &= ~PC_TCTXT_TRACK_EN;
xive_regw(x, PC_TCTXT_TRACK, val);
/* Enable relaxed ordering of trigger forwarding */
val = xive_regr(x, VC_AIB_TX_ORDER_TAG2);
val |= VC_AIB_TX_ORDER_TAG2_REL_TF;
xive_regw(x, VC_AIB_TX_ORDER_TAG2, val);
/* Enable new END s and u bits for silent escalate */
val = xive_regr(x, VC_EQC_CONFIG);
val |= VC_EQC_CONF_ENABLE_END_s_BIT;
val |= VC_EQC_CONF_ENABLE_END_u_BIT;
xive_regw(x, VC_EQC_CONFIG, val);
/* Disable error reporting in the FIR for info errors
* from the VC.
*/
xive_regw(x, CQ_FIRMASK_OR, CQ_FIR_VC_INFO_ERROR_0_1);
/* Mask CI Load and Store to bad location, as IPI trigger
* pages may be mapped to user space, and a read on the
* trigger page causes a checkstop
*/
xive_regw(x, CQ_FIRMASK_OR, CQ_FIR_PB_RCMDX_CI_ERR1);
return true;
}
static bool xive_setup_set_xlate(struct xive *x)
{
unsigned int i;
/* Configure EDT for ESBs (aka IPIs) */
xive_regw(x, CQ_TAR, CQ_TAR_TBL_AUTOINC | CQ_TAR_TSEL_EDT);
if (x->last_reg_error)
return false;
for (i = 0; i < VC_ESB_SETS; i++) {
xive_regw(x, CQ_TDR,
/* IPI type */
(1ull << 62) |
/* block ID */
(((uint64_t)x->block_id) << 48) |
/* offset */
(((uint64_t)i) << 32));
if (x->last_reg_error)
return false;
}
/* Configure EDT for ENDs (aka EQs) */
for (i = 0; i < VC_END_SETS; i++) {
xive_regw(x, CQ_TDR,
/* EQ type */
(2ull << 62) |
/* block ID */
(((uint64_t)x->block_id) << 48) |
/* offset */
(((uint64_t)i) << 32));
if (x->last_reg_error)
return false;
}
/* Configure VDT */
xive_regw(x, CQ_TAR, CQ_TAR_TBL_AUTOINC | CQ_TAR_TSEL_VDT);
if (x->last_reg_error)
return false;
for (i = 0; i < PC_MAX_SETS; i++) {
xive_regw(x, CQ_TDR,
/* Valid bit */
(1ull << 63) |
/* block ID */
(((uint64_t)x->block_id) << 48) |
/* offset */
(((uint64_t)i) << 32));
if (x->last_reg_error)
return false;
}
return true;
}
static bool xive_prealloc_tables(struct xive *x)
{
uint32_t i, vp_init_count, vp_init_base;
uint32_t pbase, pend;
uint64_t al;
/* ESB/SBE has 4 entries per byte */
x->sbe_base = local_alloc(x->chip_id, SBE_SIZE, SBE_SIZE);
if (!x->sbe_base) {
xive_err(x, "Failed to allocate SBE\n");
return false;
}
/* SBEs are initialized to 0b01 which corresponds to "ints off" */
memset(x->sbe_base, 0x55, SBE_SIZE);
xive_dbg(x, "SBE at %p size 0x%lx\n", x->sbe_base, SBE_SIZE);
/* EAS/IVT entries are 8 bytes */
x->ivt_base = local_alloc(x->chip_id, IVT_SIZE, IVT_SIZE);
if (!x->ivt_base) {
xive_err(x, "Failed to allocate IVT\n");
return false;
}
/* We clear the entries (non-valid). They will be initialized
* when actually used
*/
memset(x->ivt_base, 0, IVT_SIZE);
xive_dbg(x, "IVT at %p size 0x%lx\n", x->ivt_base, IVT_SIZE);
/* Indirect EQ table. Limited to one top page. */
al = ALIGN_UP(XIVE_EQ_TABLE_SIZE, PAGE_SIZE);
if (al > PAGE_SIZE) {
xive_err(x, "EQ indirect table is too big !\n");
return false;
}
x->eq_ind_base = local_alloc(x->chip_id, al, al);
if (!x->eq_ind_base) {
xive_err(x, "Failed to allocate EQ indirect table\n");
return false;
}
memset(x->eq_ind_base, 0, al);
xive_dbg(x, "EQi at %p size 0x%llx\n", x->eq_ind_base, al);
x->eq_ind_count = XIVE_EQ_TABLE_SIZE / XIVE_VSD_SIZE;
/* Indirect VP table. Limited to one top page. */
al = ALIGN_UP(XIVE_VP_TABLE_SIZE, PAGE_SIZE);
if (al > PAGE_SIZE) {
xive_err(x, "VP indirect table is too big !\n");
return false;
}
x->vp_ind_base = local_alloc(x->chip_id, al, al);
if (!x->vp_ind_base) {
xive_err(x, "Failed to allocate VP indirect table\n");
return false;
}
xive_dbg(x, "VPi at %p size 0x%llx\n", x->vp_ind_base, al);
x->vp_ind_count = XIVE_VP_TABLE_SIZE / XIVE_VSD_SIZE;
memset(x->vp_ind_base, 0, al);
/* Populate/initialize VP/EQs indirect backing */
vp_init_count = XIVE_HW_VP_COUNT;
vp_init_base = XIVE_HW_VP_BASE;
/* Allocate pages for some VPs in indirect mode */
pbase = vp_init_base / VP_PER_PAGE;
pend = (vp_init_base + vp_init_count) / VP_PER_PAGE;
xive_dbg(x, "Allocating pages %d to %d of VPs (for %d VPs)\n",
pbase, pend, vp_init_count);
for (i = pbase; i <= pend; i++) {
void *page;
u64 vsd;
/* Indirect entries have a VSD format */
page = local_alloc(x->chip_id, PAGE_SIZE, PAGE_SIZE);
if (!page) {
xive_err(x, "Failed to allocate VP page\n");
return false;
}
xive_dbg(x, "VP%d at %p size 0x%x\n", i, page, PAGE_SIZE);
memset(page, 0, PAGE_SIZE);
vsd = ((uint64_t)page) & VSD_ADDRESS_MASK;
vsd |= SETFIELD(VSD_TSIZE, 0ull, 4);
vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
vsd |= VSD_FIRMWARE;
x->vp_ind_base[i] = cpu_to_be64(vsd);
}
/* Allocate the queue overflow pages */
x->q_ovf = local_alloc(x->chip_id, VC_QUEUE_OVF_COUNT * PAGE_SIZE, PAGE_SIZE);
if (!x->q_ovf) {
xive_err(x, "Failed to allocate queue overflow\n");
return false;
}
return true;
}
static void xive_add_provisioning_properties(void)
{
__be32 chips[XIVE_MAX_CHIPS];
uint32_t i, count;
dt_add_property_cells(xive_dt_node,
"ibm,xive-provision-page-size", PAGE_SIZE);
count = 1 << xive_chips_alloc_bits;
for (i = 0; i < count; i++)
chips[i] = cpu_to_be32(xive_block_to_chip[i]);
dt_add_property(xive_dt_node, "ibm,xive-provision-chips",
chips, 4 * count);
}
static void xive_create_mmio_dt_node(struct xive *x)
{
uint64_t tb = (uint64_t)x->tm_base;
uint32_t stride = 1u << x->tm_shift;
xive_dt_node = dt_new_addr(dt_root, "interrupt-controller", tb);
assert(xive_dt_node);
dt_add_property_u64s(xive_dt_node, "reg",
tb + 0 * stride, stride,
tb + 1 * stride, stride,
tb + 2 * stride, stride,
tb + 3 * stride, stride);
dt_add_property_strings(xive_dt_node, "compatible",
"ibm,opal-xive-pe", "ibm,opal-intc");
dt_add_property_cells(xive_dt_node, "ibm,xive-eq-sizes",
12, 16, 21, 24);
dt_add_property_cells(xive_dt_node, "ibm,xive-#priorities", 8);
dt_add_property(xive_dt_node, "single-escalation-support", NULL, 0);
xive_add_provisioning_properties();
}
static void xive_setup_forward_ports(struct xive *x, struct proc_chip *remote_chip)
{
struct xive *remote_xive = remote_chip->xive;
uint64_t base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_FORWARD);
uint32_t remote_id = remote_xive->block_id;
uint64_t nport;
/* ESB(SBE), EAS(IVT) and END(EQ) point to the notify port */
nport = ((uint64_t)remote_xive->ic_base) + (1ul << remote_xive->ic_shift);
if (!xive_set_vsd(x, VST_TSEL_IVT, remote_id, base | nport))
goto error;
if (!xive_set_vsd(x, VST_TSEL_SBE, remote_id, base | nport))
goto error;
if (!xive_set_vsd(x, VST_TSEL_EQDT, remote_id, base | nport))
goto error;
/* NVT/VPD points to the remote NVT MMIO sets */
if (!xive_set_vsd(x, VST_TSEL_VPDT, remote_id,
base | ((uint64_t)remote_xive->pc_base) |
SETFIELD(VSD_TSIZE, 0ull, ilog2(x->pc_size) - 12)))
goto error;
return;
error:
xive_err(x, "Failure configuring forwarding ports\n");
}
static void late_init_one_xive(struct xive *x)
{
struct proc_chip *chip;
/* We need to setup the cross-chip forward ports. Let's
* iterate all chip and set them up accordingly
*/
for_each_chip(chip) {
/* We skip ourselves or chips without a xive */
if (chip->xive == x || !chip->xive)
continue;
/* Setup our forward ports to that chip */
xive_setup_forward_ports(x, chip);
}
}
static bool xive_check_ipi_free(struct xive *x, uint32_t irq, uint32_t count)
{
uint32_t i, idx = GIRQ_TO_IDX(irq);
for (i = 0; i < count; i++)
if (bitmap_tst_bit(*x->ipi_alloc_map, idx + i))
return false;
return true;
}
uint32_t xive_alloc_hw_irqs(uint32_t chip_id, uint32_t count, uint32_t align)
{
struct proc_chip *chip = get_chip(chip_id);
struct xive *x;
uint32_t base, i;
assert(chip);
assert(is_pow2(align));
x = chip->xive;
assert(x);
lock(&x->lock);
/* Allocate the HW interrupts */
base = x->int_hw_bot - count;
base &= ~(align - 1);
if (base < x->int_ipi_top) {
xive_err(x,
"HW alloc request for %d interrupts aligned to %d failed\n",
count, align);
unlock(&x->lock);
return XIVE_IRQ_ERROR;
}
if (!xive_check_ipi_free(x, base, count)) {
xive_err(x, "HWIRQ boot allocator request overlaps dynamic allocator\n");
unlock(&x->lock);
return XIVE_IRQ_ERROR;
}
x->int_hw_bot = base;
/* Initialize the corresponding IVT entries to sane defaults,
* IE entry is valid, not routed and masked, EQ data is set
* to the GIRQ number.
*/
for (i = 0; i < count; i++) {
struct xive_ive *ive = xive_get_ive(x, base + i);
ive->w = xive_set_field64(IVE_VALID, 0ul, 1) |
xive_set_field64(IVE_MASKED, 0ul, 1) |
xive_set_field64(IVE_EQ_DATA, 0ul, base + i);
}
unlock(&x->lock);
return base;
}
uint32_t xive_alloc_ipi_irqs(uint32_t chip_id, uint32_t count, uint32_t align)
{
struct proc_chip *chip = get_chip(chip_id);
struct xive *x;
uint32_t base, i;
assert(chip);
assert(is_pow2(align));
x = chip->xive;
assert(x);
lock(&x->lock);
/* Allocate the IPI interrupts */
base = x->int_ipi_top + (align - 1);
base &= ~(align - 1);
if (base >= x->int_hw_bot) {
xive_err(x,
"IPI alloc request for %d interrupts aligned to %d failed\n",
count, align);
unlock(&x->lock);
return XIVE_IRQ_ERROR;
}
if (!xive_check_ipi_free(x, base, count)) {
xive_err(x, "IPI boot allocator request overlaps dynamic allocator\n");
unlock(&x->lock);
return XIVE_IRQ_ERROR;
}
x->int_ipi_top = base + count;
/* Initialize the corresponding IVT entries to sane defaults,
* IE entry is valid, not routed and masked, EQ data is set
* to the GIRQ number.
*/
for (i = 0; i < count; i++) {
struct xive_ive *ive = xive_get_ive(x, base + i);
ive->w = xive_set_field64(IVE_VALID, 0ul, 1) |
xive_set_field64(IVE_MASKED, 0ul, 1) |
xive_set_field64(IVE_EQ_DATA, 0ul, base + i);
}
unlock(&x->lock);
return base;
}
void *xive_get_trigger_port(uint32_t girq)
{
uint32_t idx = GIRQ_TO_IDX(girq);
struct xive *x;
/* Find XIVE on which the IVE resides */
x = xive_from_isn(girq);
if (!x)
return NULL;
if (GIRQ_IS_ESCALATION(girq)) {
/* There is no trigger page for escalation interrupts */
return NULL;
} else {
/* Make sure it's an IPI on that chip */
if (girq < x->int_base ||
girq >= x->int_ipi_top)
return NULL;
return x->esb_mmio + idx * XIVE_ESB_PAGE_SIZE;
}
}
uint64_t xive_get_notify_port(uint32_t chip_id, uint32_t ent)
{
struct proc_chip *chip = get_chip(chip_id);
struct xive *x;
uint32_t offset = 0;
assert(chip);
x = chip->xive;
assert(x);
/* This is where we can assign a different HW queue to a different
* source by offsetting into the cache lines of the notify port
*
* For now we keep it very basic, this will have to be looked at
* again on real HW with some proper performance analysis.
*
* Here's what Florian says on the matter:
*
* <<
* The first 2k of the notify port page can all be used for PCIe triggers
*
* However the idea would be that we try to use the first 4 cache lines to
* balance the PCIe Interrupt requests to use the least used snoop buses
* (we went from 2 to 4 snoop buses for P9). snoop 0 is heavily used
* (I think TLBIs are using that in addition to the normal addresses),
* snoop 3 is used for all Int commands, so I think snoop 2 (CL 2 in the
* page) is the least used overall. So we probably should that one for
* the Int commands from PCIe.
*
* In addition, our EAS cache supports hashing to provide "private" cache
* areas for the PHBs in the shared 1k EAS cache. This allows e.g. to avoid
* that one "thrashing" PHB thrashes the EAS cache for everyone, or provide
* a PHB with a private area that would allow high cache hits in case of a
* device using very few interrupts. The hashing is based on the offset within
* the cache line. So using that, you can e.g. set the EAS cache up so that
* IPIs use 512 entries, the x16 PHB uses 256 entries and the x8 PHBs 128
* entries each - or IPIs using all entries and sharing with PHBs, so PHBs
* would use 512 entries and 256 entries respectively.
*
* This is a tuning we would probably do later in the lab, but as a "prep"
* we should set up the different PHBs such that they are using different
* 8B-aligned offsets within the cache line, so e.g.
* PH4_0 addr 0x100 (CL 2 DW0
* PH4_1 addr 0x108 (CL 2 DW1)
* PH4_2 addr 0x110 (CL 2 DW2)
* etc.
* >>
*
* I'm using snoop1 for PHB0 and snoop2 for everybody else.
*/
switch(ent) {
case XIVE_HW_SRC_PHBn(0):
offset = 0x100;
break;
case XIVE_HW_SRC_PHBn(1):
offset = 0x208;
break;
case XIVE_HW_SRC_PHBn(2):
offset = 0x210;
break;
case XIVE_HW_SRC_PHBn(3):
offset = 0x218;
break;
case XIVE_HW_SRC_PHBn(4):
offset = 0x220;
break;
case XIVE_HW_SRC_PHBn(5):
offset = 0x228;
break;
case XIVE_HW_SRC_PSI:
offset = 0x230;
break;
default:
assert(false);
return 0;
}
/* Notify port is the second page of the IC BAR */
return ((uint64_t)x->ic_base) + (1ul << x->ic_shift) + offset;
}
/* Manufacture the powerbus packet bits 32:63 */
__attrconst uint32_t xive_get_notify_base(uint32_t girq)
{
return (GIRQ_TO_BLK(girq) << 28) | GIRQ_TO_IDX(girq);
}
static bool xive_get_irq_targetting(uint32_t isn, uint32_t *out_target,
uint8_t *out_prio, uint32_t *out_lirq)
{
struct xive_ive *ive;
struct xive *x, *eq_x;
struct xive_eq *eq;
uint32_t eq_blk, eq_idx;
uint32_t vp_blk __unused, vp_idx;
uint32_t prio, server;
bool is_escalation = GIRQ_IS_ESCALATION(isn);
/* Find XIVE on which the IVE resides */
x = xive_from_isn(isn);
if (!x)
return false;
/* Grab the IVE */
ive = xive_get_ive(x, isn);
if (!ive)
return false;
if (!xive_get_field64(IVE_VALID, ive->w) && !is_escalation) {
xive_err(x, "ISN %x lead to invalid IVE !\n", isn);
return false;
}
if (out_lirq)
*out_lirq = xive_get_field64(IVE_EQ_DATA, ive->w);
/* Find the EQ and its xive instance */
eq_blk = xive_get_field64(IVE_EQ_BLOCK, ive->w);
eq_idx = xive_get_field64(IVE_EQ_INDEX, ive->w);
eq_x = xive_from_vc_blk(eq_blk);
/* This can fail if the interrupt hasn't been initialized yet
* but it should also be masked, so fail silently
*/
if (!eq_x)
goto pick_default;
eq = xive_get_eq(eq_x, eq_idx);
if (!eq)
goto pick_default;
/* XXX Check valid and format 0 */
/* No priority conversion, return the actual one ! */
if (xive_get_field64(IVE_MASKED, ive->w))
prio = 0xff;
else
prio = xive_get_field32(EQ_W7_F0_PRIORITY, eq->w7);
if (out_prio)
*out_prio = prio;
vp_blk = xive_get_field32(EQ_W6_NVT_BLOCK, eq->w6);
vp_idx = xive_get_field32(EQ_W6_NVT_INDEX, eq->w6);
server = VP2PIR(vp_blk, vp_idx);
if (out_target)
*out_target = server;
xive_vdbg(eq_x, "EQ info for ISN %x: prio=%d, server=0x%x (VP %x/%x)\n",
isn, prio, server, vp_blk, vp_idx);
return true;
pick_default:
xive_vdbg(eq_x, "EQ info for ISN %x: Using masked defaults\n", isn);
if (out_prio)
*out_prio = 0xff;
/* Pick a random default, me will be fine ... */
if (out_target)
*out_target = mfspr(SPR_PIR);
return true;
}
static inline bool xive_eq_for_target(uint32_t target, uint8_t prio,
uint32_t *out_eq_blk,
uint32_t *out_eq_idx)
{
struct xive *x;
struct xive_vp *vp;
uint32_t vp_blk, vp_idx;
uint32_t eq_blk, eq_idx;
if (prio > XIVE_MAX_PRIO)
return false;
/* Get the VP block/index from the target word */
if (!xive_decode_vp(target, &vp_blk, &vp_idx, NULL, NULL))
return false;
/* Grab the target VP's XIVE */
x = xive_from_pc_blk(vp_blk);
if (!x)
return false;
/* Find the VP structrure where we stashed the EQ number */
vp = xive_get_vp(x, vp_idx);
if (!vp)
return false;
/* Grab it, it's in the pressure relief interrupt field,
* top 4 bits are the block (word 1).
*/
eq_blk = be32_to_cpu(vp->w1) >> 28;
eq_idx = be32_to_cpu(vp->w1) & 0x0fffffff;
/* Currently the EQ block and VP block should be the same */
if (eq_blk != vp_blk) {
xive_err(x, "eq_blk != vp_blk (%d vs. %d) for target 0x%08x/%d\n",
eq_blk, vp_blk, target, prio);
return false;
}
if (out_eq_blk)
*out_eq_blk = eq_blk;
if (out_eq_idx)
*out_eq_idx = eq_idx + prio;
return true;
}
static int64_t xive_set_irq_targetting(uint32_t isn, uint32_t target,
uint8_t prio, uint32_t lirq,
bool synchronous)
{
struct xive *x;
struct xive_ive *ive, new_ive;
uint32_t eq_blk, eq_idx;
bool is_escalation = GIRQ_IS_ESCALATION(isn);
int64_t rc;
/* Find XIVE on which the IVE resides */
x = xive_from_isn(isn);
if (!x)
return OPAL_PARAMETER;
/* Grab the IVE */
ive = xive_get_ive(x, isn);
if (!ive)
return OPAL_PARAMETER;
if (!xive_get_field64(IVE_VALID, ive->w) && !is_escalation) {
xive_err(x, "ISN %x lead to invalid IVE !\n", isn);
return OPAL_PARAMETER;
}
lock(&x->lock);
/* If using emulation mode, fixup prio to the only supported one */
if (xive_mode == XIVE_MODE_EMU && prio != 0xff)
prio = XIVE_EMULATION_PRIO;
/* Read existing IVE */
new_ive = *ive;
/* Are we masking ? */
if (prio == 0xff && !is_escalation) {
new_ive.w = xive_set_field64(IVE_MASKED, new_ive.w, 1);
xive_vdbg(x, "ISN %x masked !\n", isn);
/* Put prio 7 in the EQ */
prio = XIVE_MAX_PRIO;
} else {
/* Unmasking */
new_ive.w = xive_set_field64(IVE_MASKED, new_ive.w, 0);
xive_vdbg(x, "ISN %x unmasked !\n", isn);
/* For normal interrupt sources, keep track of which ones
* we ever enabled since the last reset
*/
if (!is_escalation)
bitmap_set_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn));
}
/* If prio isn't 0xff, re-target the IVE. First find the EQ
* correponding to the target
*/
if (prio != 0xff) {
if (!xive_eq_for_target(target, prio, &eq_blk, &eq_idx)) {
xive_err(x, "Can't find EQ for target/prio 0x%x/%d\n",
target, prio);
unlock(&x->lock);
return OPAL_PARAMETER;
}
/* Try to update it atomically to avoid an intermediary
* stale state
*/
new_ive.w = xive_set_field64(IVE_EQ_BLOCK, new_ive.w, eq_blk);
new_ive.w = xive_set_field64(IVE_EQ_INDEX, new_ive.w, eq_idx);
}
new_ive.w = xive_set_field64(IVE_EQ_DATA, new_ive.w, lirq);
xive_vdbg(x,"ISN %x routed to eq %x/%x lirq=%08x IVE=%016llx !\n",
isn, eq_blk, eq_idx, lirq, be64_to_cpu(new_ive.w));
/* Updating the cache differs between real IVEs and escalation
* IVEs inside an EQ
*/
if (is_escalation) {
rc = xive_escalation_ive_cache_update(x, x->block_id,
GIRQ_TO_IDX(isn), &new_ive, synchronous);
} else {
sync();
*ive = new_ive;
rc = xive_ivc_scrub(x, x->block_id, GIRQ_TO_IDX(isn));
}
unlock(&x->lock);
return rc;
}
static int64_t xive_source_get_xive(struct irq_source *is __unused,
uint32_t isn, uint16_t *server,
uint8_t *prio)
{
uint32_t target_id;
if (xive_get_irq_targetting(isn, &target_id, prio, NULL)) {
*server = target_id << 2;
return OPAL_SUCCESS;
} else
return OPAL_PARAMETER;
}
static void xive_update_irq_mask(struct xive_src *s, uint32_t idx, bool masked)
{
void *mmio_base = s->esb_mmio + (1ul << s->esb_shift) * idx;
uint32_t offset;
/* XXX FIXME: A quick mask/umask can make us shoot an interrupt
* more than once to a queue. We need to keep track better
*/
if (s->flags & XIVE_SRC_EOI_PAGE1)
mmio_base += 1ull << (s->esb_shift - 1);
if (masked)
offset = XIVE_ESB_SET_PQ_01;
else
offset = XIVE_ESB_SET_PQ_00;
in_be64(mmio_base + offset);
}
static int64_t xive_sync(struct xive *x)
{
uint64_t r;
void *p;
lock(&x->lock);
/* Second 2K range of second page */
p = x->ic_base + (1 << x->ic_shift) + 0x800;
/* TODO: Make this more fine grained */
out_be64(p + (10 << 7), 0); /* Sync OS escalations */
out_be64(p + (11 << 7), 0); /* Sync Hyp escalations */
out_be64(p + (12 << 7), 0); /* Sync Redistribution */
out_be64(p + ( 8 << 7), 0); /* Sync IPI */
out_be64(p + ( 9 << 7), 0); /* Sync HW */
#define SYNC_MASK \
(VC_EQC_CONF_SYNC_IPI | \
VC_EQC_CONF_SYNC_HW | \
VC_EQC_CONF_SYNC_ESC1 | \
VC_EQC_CONF_SYNC_ESC2 | \
VC_EQC_CONF_SYNC_REDI)
/* XXX Add timeout */
for (;;) {
r = xive_regr(x, VC_EQC_CONFIG);
if ((r & SYNC_MASK) == SYNC_MASK)
break;
cpu_relax();
}
xive_regw(x, VC_EQC_CONFIG, r & ~SYNC_MASK);
/* Workaround HW issue, read back before allowing a new sync */
xive_regr(x, VC_GLOBAL_CONFIG);
unlock(&x->lock);
return 0;
}
static int64_t __xive_set_irq_config(struct irq_source *is, uint32_t girq,
uint64_t vp, uint8_t prio, uint32_t lirq,
bool update_esb, bool sync)
{
struct xive_src *s = container_of(is, struct xive_src, is);
uint32_t old_target, vp_blk;
u8 old_prio;
int64_t rc;
/* Grab existing target */
if (!xive_get_irq_targetting(girq, &old_target, &old_prio, NULL))
return OPAL_PARAMETER;
/* Let XIVE configure the EQ. We do the update without the
* synchronous flag, thus a cache update failure will result
* in us returning OPAL_BUSY
*/
rc = xive_set_irq_targetting(girq, vp, prio, lirq, false);
if (rc)
return rc;
/* Do we need to update the mask ? */
if (old_prio != prio && (old_prio == 0xff || prio == 0xff)) {
/* The source has special variants of masking/unmasking */
if (s->orig_ops && s->orig_ops->set_xive) {
/* We don't pass as server on source ops ! Targetting
* is handled by the XIVE
*/
rc = s->orig_ops->set_xive(is, girq, 0, prio);
} else if (update_esb) {
/* Ensure it's enabled/disabled in the source
* controller
*/
xive_update_irq_mask(s, girq - s->esb_base,
prio == 0xff);
}
}
/*
* Synchronize the source and old target XIVEs to ensure that
* all pending interrupts to the old target have reached their
* respective queue.
*
* WARNING: This assumes the VP and it's queues are on the same
* XIVE instance !
*/
if (!sync)
return OPAL_SUCCESS;
xive_sync(s->xive);
if (xive_decode_vp(old_target, &vp_blk, NULL, NULL, NULL)) {
struct xive *x = xive_from_pc_blk(vp_blk);
if (x)
xive_sync(x);
}
return OPAL_SUCCESS;
}
static int64_t xive_set_irq_config(uint32_t girq, uint64_t vp, uint8_t prio,
uint32_t lirq, bool update_esb)
{
struct irq_source *is = irq_find_source(girq);
return __xive_set_irq_config(is, girq, vp, prio, lirq, update_esb,
true);
}
static int64_t xive_source_set_xive(struct irq_source *is,
uint32_t isn, uint16_t server, uint8_t prio)
{
/*
* WARNING: There is an inherent race with the use of the
* mask bit in the EAS/IVT. When masked, interrupts are "lost"
* but their P/Q bits are still set. So when unmasking, one has
* to check the P bit and possibly trigger a resend.
*
* We "deal" with it by relying on the fact that the OS will
* lazy disable MSIs. Thus mask will only be called if the
* interrupt occurred while already logically masked. Thus
* losing subsequent occurrences is of no consequences, we just
* need to "cleanup" P and Q when unmasking.
*
* This needs to be documented in the OPAL APIs
*/
/* Unmangle server */
server >>= 2;
/* Set logical irq to match isn */
return __xive_set_irq_config(is, isn, server, prio, isn, true, true);
}
static void __xive_source_eoi(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
uint32_t idx = isn - s->esb_base;
struct xive_ive *ive;
void *mmio_base;
uint64_t eoi_val;
/* Grab the IVE */
ive = s->xive->ivt_base;
if (!ive)
return;
ive += GIRQ_TO_IDX(isn);
/* XXX To fix the races with mask/unmask potentially causing
* multiple queue entries, we need to keep track of EOIs here,
* before the masked test below
*/
/* If it's invalid or masked, don't do anything */
if (xive_get_field64(IVE_MASKED, ive->w) || !xive_get_field64(IVE_VALID, ive->w))
return;
/* Grab MMIO control address for that ESB */
mmio_base = s->esb_mmio + (1ull << s->esb_shift) * idx;
/* If the XIVE supports the new "store EOI facility, use it */
if (s->flags & XIVE_SRC_STORE_EOI)
out_be64(mmio_base + XIVE_ESB_STORE_EOI, 0);
else {
uint64_t offset;
/* Otherwise for EOI, we use the special MMIO that does
* a clear of both P and Q and returns the old Q.
*
* This allows us to then do a re-trigger if Q was set
* rather than synthetizing an interrupt in software
*/
if (s->flags & XIVE_SRC_EOI_PAGE1)
mmio_base += 1ull << (s->esb_shift - 1);
/* LSIs don't need anything special, just EOI */
if (s->flags & XIVE_SRC_LSI)
in_be64(mmio_base);
else {
offset = XIVE_ESB_SET_PQ_00;
eoi_val = in_be64(mmio_base + offset);
xive_vdbg(s->xive, "ISN: %08x EOI=%llx\n",
isn, eoi_val);
if (!(eoi_val & 1))
return;
/* Re-trigger always on page0 or page1 ? */
out_be64(mmio_base + XIVE_ESB_STORE_TRIGGER, 0);
}
}
}
static void xive_source_eoi(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
if (s->orig_ops && s->orig_ops->eoi)
s->orig_ops->eoi(is, isn);
else
__xive_source_eoi(is, isn);
}
static void xive_source_interrupt(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
if (!s->orig_ops || !s->orig_ops->interrupt)
return;
s->orig_ops->interrupt(is, isn);
}
static uint64_t xive_source_attributes(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
if (!s->orig_ops || !s->orig_ops->attributes)
return IRQ_ATTR_TARGET_LINUX;
return s->orig_ops->attributes(is, isn);
}
static char *xive_source_name(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
if (!s->orig_ops || !s->orig_ops->name)
return NULL;
return s->orig_ops->name(is, isn);
}
void xive_source_mask(struct irq_source *is, uint32_t isn)
{
struct xive_src *s = container_of(is, struct xive_src, is);
xive_update_irq_mask(s, isn - s->esb_base, true);
}
static const struct irq_source_ops xive_irq_source_ops = {
.get_xive = xive_source_get_xive,
.set_xive = xive_source_set_xive,
.eoi = xive_source_eoi,
.interrupt = xive_source_interrupt,
.attributes = xive_source_attributes,
.name = xive_source_name,
};
static void __xive_register_source(struct xive *x, struct xive_src *s,
uint32_t base, uint32_t count,
uint32_t shift, void *mmio, uint32_t flags,
bool secondary, void *data,
const struct irq_source_ops *orig_ops)
{
s->esb_base = base;
s->esb_shift = shift;
s->esb_mmio = mmio;
s->flags = flags;
s->orig_ops = orig_ops;
s->xive = x;
s->is.start = base;
s->is.end = base + count;
s->is.ops = &xive_irq_source_ops;
s->is.data = data;
__register_irq_source(&s->is, secondary);
}
void xive_register_hw_source(uint32_t base, uint32_t count, uint32_t shift,
void *mmio, uint32_t flags, void *data,
const struct irq_source_ops *ops)
{
struct xive_src *s;
struct xive *x = xive_from_isn(base);
assert(x);
s = malloc(sizeof(struct xive_src));
assert(s);
__xive_register_source(x, s, base, count, shift, mmio, flags,
false, data, ops);
}
void xive_register_ipi_source(uint32_t base, uint32_t count, void *data,
const struct irq_source_ops *ops)
{
struct xive_src *s;
struct xive *x = xive_from_isn(base);
uint32_t base_idx = GIRQ_TO_IDX(base);
void *mmio_base;
uint32_t flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE;
assert(x);
assert(base >= x->int_base && (base + count) <= x->int_ipi_top);
s = malloc(sizeof(struct xive_src));
assert(s);
/* Store EOI supported on DD2.0 */
if (XIVE_CAN_STORE_EOI(x))
flags |= XIVE_SRC_STORE_EOI;
/* Callbacks assume the MMIO base corresponds to the first
* interrupt of that source structure so adjust it
*/
mmio_base = x->esb_mmio + (1ul << XIVE_ESB_SHIFT) * base_idx;
__xive_register_source(x, s, base, count, XIVE_ESB_SHIFT, mmio_base,
flags, false, data, ops);
}
static struct xive *init_one_xive(struct dt_node *np)
{
struct xive *x;
struct proc_chip *chip;
uint32_t flags;
x = zalloc(sizeof(struct xive));
assert(x);
x->x_node = np;
x->xscom_base = dt_get_address(np, 0, NULL);
x->chip_id = dt_get_chip_id(np);
/* "Allocate" a new block ID for the chip */
x->block_id = xive_block_count++;
assert (x->block_id < XIVE_MAX_CHIPS);
xive_block_to_chip[x->block_id] = x->chip_id;
init_lock(&x->lock);
chip = get_chip(x->chip_id);
assert(chip);
/* All supported P9 are revision 2 (Nimbus DD2) */
switch (chip->type) {
case PROC_CHIP_P9_NIMBUS:
/* We should not be able to boot a P9N DD1 */
assert((chip->ec_level & 0xf0) != 0x10);
/* Fallthrough */
case PROC_CHIP_P9_CUMULUS:
case PROC_CHIP_P9P:
break;
default:
assert(0);
}
xive_dbg(x, "Initializing block ID %d...\n", x->block_id);
chip->xive = x;
list_head_init(&x->donated_pages);
/* Base interrupt numbers and allocator init */
/* XXX Consider allocating half as many ESBs than MMIO space
* so that HW sources land outside of ESB space...
*/
x->int_base = BLKIDX_TO_GIRQ(x->block_id, 0);
x->int_max = x->int_base + XIVE_INT_COUNT;
x->int_hw_bot = x->int_max;
x->int_ipi_top = x->int_base;
/* Make sure we never hand out "2" as it's reserved for XICS emulation
* IPI returns. Generally start handing out at 0x10
*/
if (x->int_ipi_top < XIVE_INT_FIRST)
x->int_ipi_top = XIVE_INT_FIRST;
/* Allocate a few bitmaps */
x->eq_map = local_alloc(x->chip_id, BITMAP_BYTES(XIVE_EQ_COUNT >> 3), PAGE_SIZE);
assert(x->eq_map);
memset(x->eq_map, 0, BITMAP_BYTES(XIVE_EQ_COUNT >> 3));
/* Make sure we don't hand out 0 */
bitmap_set_bit(*x->eq_map, 0);
x->int_enabled_map = local_alloc(x->chip_id, BITMAP_BYTES(XIVE_INT_COUNT), PAGE_SIZE);
assert(x->int_enabled_map);
memset(x->int_enabled_map, 0, BITMAP_BYTES(XIVE_INT_COUNT));
x->ipi_alloc_map = local_alloc(x->chip_id, BITMAP_BYTES(XIVE_INT_COUNT), PAGE_SIZE);
assert(x->ipi_alloc_map);
memset(x->ipi_alloc_map, 0, BITMAP_BYTES(XIVE_INT_COUNT));
xive_dbg(x, "Handling interrupts [%08x..%08x]\n",
x->int_base, x->int_max - 1);
/* Setup the BARs */
if (!xive_configure_bars(x))
goto fail;
/* Some basic global inits such as page sizes etc... */
if (!xive_config_init(x))
goto fail;
/* Configure the set translations for MMIO */
if (!xive_setup_set_xlate(x))
goto fail;
/* Dump some MMIO registers for diagnostics */
xive_dump_mmio(x);
/* Pre-allocate a number of tables */
if (!xive_prealloc_tables(x))
goto fail;
/* Configure local tables in VSDs (forward ports will be
* handled later)
*/
if (!xive_set_local_tables(x))
goto fail;
/* Register built-in source controllers (aka IPIs) */
flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE;
if (XIVE_CAN_STORE_EOI(x))
flags |= XIVE_SRC_STORE_EOI;
__xive_register_source(x, &x->ipis, x->int_base,
x->int_hw_bot - x->int_base, XIVE_ESB_SHIFT,
x->esb_mmio, flags, true, NULL, NULL);
/* Register escalation sources */
__xive_register_source(x, &x->esc_irqs,
MAKE_ESCALATION_GIRQ(x->block_id, 0),
XIVE_EQ_COUNT, XIVE_EQ_SHIFT,
x->eq_mmio, XIVE_SRC_EOI_PAGE1,
false, NULL, NULL);
return x;
fail:
xive_err(x, "Initialization failed...\n");
/* Should this be fatal ? */
//assert(false);
return NULL;
}
/*
* XICS emulation
*/
static void xive_ipi_init(struct xive *x, struct cpu_thread *cpu)
{
struct xive_cpu_state *xs = cpu->xstate;
assert(xs);
__xive_set_irq_config(&x->ipis.is, xs->ipi_irq, cpu->pir,
XIVE_EMULATION_PRIO, xs->ipi_irq,
true, true);
}
static void xive_ipi_eoi(struct xive *x, uint32_t idx)
{
uint8_t *mm = x->esb_mmio + idx * XIVE_ESB_PAGE_SIZE;
uint8_t eoi_val;
/* For EOI, we use the special MMIO that does a clear of both
* P and Q and returns the old Q.
*
* This allows us to then do a re-trigger if Q was set rather
* than synthetizing an interrupt in software
*/
eoi_val = in_8(mm + PAGE_SIZE + XIVE_ESB_SET_PQ_00);
if (eoi_val & 1) {
out_8(mm + XIVE_ESB_STORE_TRIGGER, 0);
}
}
static void xive_ipi_trigger(struct xive *x, uint32_t idx)
{
uint8_t *mm = x->esb_mmio + idx * XIVE_ESB_PAGE_SIZE;
xive_vdbg(x, "Trigger IPI 0x%x\n", idx);
out_8(mm + XIVE_ESB_STORE_TRIGGER, 0);
}
static void xive_reset_enable_thread(struct cpu_thread *c)
{
struct proc_chip *chip = get_chip(c->chip_id);
struct xive *x = chip->xive;
uint32_t fc, bit;
uint64_t enable;
/* Get fused core number */
fc = (c->pir >> 3) & 0xf;
/* Get bit in register */
bit = c->pir & 0x3f;
/* Get which register to access */
if (fc < 8) {
xive_regw(x, PC_THREAD_EN_REG0_CLR, PPC_BIT(bit));
xive_regw(x, PC_THREAD_EN_REG0_SET, PPC_BIT(bit));
/*
* To guarantee that the TIMA accesses will see the
* latest state of the enable register, add an extra
* load on PC_THREAD_EN_REG.
*/
enable = xive_regr(x, PC_THREAD_EN_REG0);
if (!(enable & PPC_BIT(bit)))
xive_cpu_err(c, "Failed to enable thread\n");
} else {
xive_regw(x, PC_THREAD_EN_REG1_CLR, PPC_BIT(bit));
xive_regw(x, PC_THREAD_EN_REG1_SET, PPC_BIT(bit));
/* Same as above */
enable = xive_regr(x, PC_THREAD_EN_REG1);
if (!(enable & PPC_BIT(bit)))
xive_cpu_err(c, "Failed to enable thread\n");
}
}
void xive_cpu_callin(struct cpu_thread *cpu)
{
struct xive_cpu_state *xs = cpu->xstate;
uint8_t old_w2 __unused, w2 __unused;
if (!xs)
return;
/* Reset the HW thread context and enable it */
xive_reset_enable_thread(cpu);
/* Set VT to 1 */
old_w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2);
out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2, 0x80);
w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2);
xive_cpu_vdbg(cpu, "Initialized TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n",
xs->vp_blk, xs->vp_idx,
in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS),
old_w2, w2);
}
#ifdef XIVE_DEBUG_INIT_CACHE_UPDATES
static bool xive_check_eq_update(struct xive *x, uint32_t idx, struct xive_eq *eq)
{
struct xive_eq *eq_p = xive_get_eq(x, idx);
struct xive_eq eq2;
assert(eq_p);
eq2 = *eq_p;
if (memcmp(eq, &eq2, sizeof(struct xive_eq)) != 0) {
xive_err(x, "EQ update mismatch idx %d\n", idx);
xive_err(x, "want: %08x %08x %08x %08x\n",
be32_to_cpu(eq->w0), be32_to_cpu(eq->w1),
be32_to_cpu(eq->w2), be32_to_cpu(eq->w3));
xive_err(x, " %08x %08x %08x %08x\n",
be32_to_cpu(eq->w4), be32_to_cpu(eq->w5),
be32_to_cpu(eq->w6), be32_to_cpu(eq->w7));
xive_err(x, "got : %08x %08x %08x %08x\n",
be32_to_cpu(eq2.w0), be32_to_cpu(eq2.w1),
be32_to_cpu(eq2.w2), be32_to_cpu(eq2.w3));
xive_err(x, " %08x %08x %08x %08x\n",
be32_to_cpu(eq2.w4), be32_to_cpu(eq2.w5),
be32_to_cpu(eq2.w6), be32_to_cpu(eq2.w7));
return false;
}
return true;
}
static bool xive_check_vpc_update(struct xive *x, uint32_t idx, struct xive_vp *vp)
{
struct xive_vp *vp_p = xive_get_vp(x, idx);
struct xive_vp vp2;
assert(vp_p);
vp2 = *vp_p;
if (memcmp(vp, &vp2, sizeof(struct xive_vp)) != 0) {
xive_err(x, "VP update mismatch idx %d\n", idx);
xive_err(x, "want: %08x %08x %08x %08x\n",
be32_to_cpu(vp->w0), be32_to_cpu(vp->w1),
be32_to_cpu(vp->w2), be32_to_cpu(vp->w3));
xive_err(x, " %08x %08x %08x %08x\n",
be32_to_cpu(vp->w4), be32_to_cpu(vp->w5),
be32_to_cpu(vp->w6), be32_to_cpu(vp->w7));
xive_err(x, "got : %08x %08x %08x %08x\n",
be32_to_cpu(vp2.w0), be32_to_cpu(vp2.w1),
be32_to_cpu(vp2.w2), be32_to_cpu(vp2.w3));
xive_err(x, " %08x %08x %08x %08x\n",
be32_to_cpu(vp2.w4), be32_to_cpu(vp2.w5),
be32_to_cpu(vp2.w6), be32_to_cpu(vp2.w7));
return false;
}
return true;
}
#else
static inline bool xive_check_eq_update(struct xive *x __unused,
uint32_t idx __unused,
struct xive_eq *eq __unused)
{
return true;
}
static inline bool xive_check_vpc_update(struct xive *x __unused,
uint32_t idx __unused,
struct xive_vp *vp __unused)
{
return true;
}
#endif
#ifdef XIVE_EXTRA_CHECK_INIT_CACHE
static void xive_special_cache_check(struct xive *x, uint32_t blk, uint32_t idx)
{
struct xive_vp vp = {0};
uint32_t i;
for (i = 0; i < 1000; i++) {
struct xive_vp *vp_m = xive_get_vp(x, idx);
memset(vp_m, (~i) & 0xff, sizeof(*vp_m));
sync();
vp.w1 = cpu_to_be32((i << 16) | i);
xive_vpc_cache_update(x, blk, idx, &vp, true);
if (!xive_check_vpc_update(x, idx, &vp)) {
xive_dbg(x, "Test failed at %d iterations\n", i);
return;
}
}
xive_dbg(x, "1000 iterations test success at %d/0x%x\n", blk, idx);
}
#else
static inline void xive_special_cache_check(struct xive *x __unused,
uint32_t blk __unused,
uint32_t idx __unused)
{
}
#endif
static void xive_setup_hw_for_emu(struct xive_cpu_state *xs)
{
struct xive_eq eq;
struct xive_vp vp;
struct xive *x_eq, *x_vp;
/* Grab the XIVE where the VP resides. It could be different from
* the local chip XIVE if not using block group mode
*/
x_vp = xive_from_pc_blk(xs->vp_blk);
assert(x_vp);
/* Grab the XIVE where the EQ resides. It will be the same as the
* VP one with the current provisioning but I prefer not making
* this code depend on it.
*/
x_eq = xive_from_vc_blk(xs->eq_blk);
assert(x_eq);
/* Initialize the structure */
xive_init_emu_eq(xs->vp_blk, xs->vp_idx, &eq,
xs->eq_page, XIVE_EMULATION_PRIO);
/* Use the cache watch to write it out */
lock(&x_eq->lock);
xive_eqc_cache_update(x_eq, xs->eq_blk, xs->eq_idx + XIVE_EMULATION_PRIO, &eq, true);
xive_check_eq_update(x_eq, xs->eq_idx + XIVE_EMULATION_PRIO, &eq);
/* Extra testing of cache watch & scrub facilities */
xive_special_cache_check(x_vp, xs->vp_blk, xs->vp_idx);
unlock(&x_eq->lock);
/* Initialize/enable the VP */
xive_init_default_vp(&vp, xs->eq_blk, xs->eq_idx);
/* Use the cache watch to write it out */
lock(&x_vp->lock);
xive_vpc_cache_update(x_vp, xs->vp_blk, xs->vp_idx, &vp, true);
xive_check_vpc_update(x_vp, xs->vp_idx, &vp);
unlock(&x_vp->lock);
}
static void xive_init_cpu_emulation(struct xive_cpu_state *xs,
struct cpu_thread *cpu)
{
struct xive *x;
/* Setup HW EQ and VP */
xive_setup_hw_for_emu(xs);
/* Setup and unmask the IPI */
xive_ipi_init(xs->xive, cpu);
/* Initialize remaining state */
xs->cppr = 0;
xs->mfrr = 0xff;
xs->eqbuf = xive_get_eq_buf(xs->vp_blk,
xs->eq_idx + XIVE_EMULATION_PRIO);
assert(xs->eqbuf);
memset(xs->eqbuf, 0, PAGE_SIZE);
xs->eqptr = 0;
xs->eqmsk = (PAGE_SIZE / 4) - 1;
xs->eqgen = 0;
x = xive_from_vc_blk(xs->eq_blk);
assert(x);
xs->eqmmio = x->eq_mmio + (xs->eq_idx + XIVE_EMULATION_PRIO) * XIVE_ESB_PAGE_SIZE;
}
static void xive_init_cpu_exploitation(struct xive_cpu_state *xs)
{
struct xive_vp vp;
struct xive *x_vp;
/* Grab the XIVE where the VP resides. It could be different from
* the local chip XIVE if not using block group mode
*/
x_vp = xive_from_pc_blk(xs->vp_blk);
assert(x_vp);
/* Initialize/enable the VP */
xive_init_default_vp(&vp, xs->eq_blk, xs->eq_idx);
/* Use the cache watch to write it out */
lock(&x_vp->lock);
xive_vpc_cache_update(x_vp, xs->vp_blk, xs->vp_idx, &vp, true);
unlock(&x_vp->lock);
/* Clenaup remaining state */
xs->cppr = 0;
xs->mfrr = 0xff;
xs->eqbuf = NULL;
xs->eqptr = 0;
xs->eqmsk = 0;
xs->eqgen = 0;
xs->eqmmio = NULL;
}
static void xive_configure_ex_special_bar(struct xive *x, struct cpu_thread *c)
{
uint64_t xa, val;
int64_t rc;
xive_cpu_vdbg(c, "Setting up special BAR\n");
xa = XSCOM_ADDR_P9_EX(pir_to_core_id(c->pir), P9X_EX_NCU_SPEC_BAR);
val = (uint64_t)x->tm_base | P9X_EX_NCU_SPEC_BAR_ENABLE;
if (x->tm_shift == 16)
val |= P9X_EX_NCU_SPEC_BAR_256K;
xive_cpu_vdbg(c, "NCU_SPEC_BAR_XA[%08llx]=%016llx\n", xa, val);
rc = xscom_write(c->chip_id, xa, val);
if (rc) {
xive_cpu_err(c, "Failed to setup NCU_SPEC_BAR\n");
/* XXXX what do do now ? */
}
}
void xive_late_init(void)
{
struct cpu_thread *c;
prlog(PR_INFO, "SLW: Configuring self-restore for NCU_SPEC_BAR\n");
for_each_present_cpu(c) {
if(cpu_is_thread0(c)) {
struct proc_chip *chip = get_chip(c->chip_id);
struct xive *x = chip->xive;
uint64_t xa, val, rc;
xa = XSCOM_ADDR_P9_EX(pir_to_core_id(c->pir),
P9X_EX_NCU_SPEC_BAR);
val = (uint64_t)x->tm_base | P9X_EX_NCU_SPEC_BAR_ENABLE;
/* Bail out if wakeup engine has already failed */
if ( wakeup_engine_state != WAKEUP_ENGINE_PRESENT) {
prlog(PR_ERR, "XIVE p9_stop_api fail detected\n");
break;
}
rc = p9_stop_save_scom((void *)chip->homer_base, xa, val,
P9_STOP_SCOM_REPLACE, P9_STOP_SECTION_EQ_SCOM);
if (rc) {
xive_cpu_err(c, "p9_stop_api failed for NCU_SPEC_BAR rc=%lld\n",
rc);
wakeup_engine_state = WAKEUP_ENGINE_FAILED;
}
}
}
}
static void xive_provision_cpu(struct xive_cpu_state *xs, struct cpu_thread *c)
{
struct xive *x;
void *p;
/* Physical VPs are pre-allocated */
xs->vp_blk = PIR2VP_BLK(c->pir);
xs->vp_idx = PIR2VP_IDX(c->pir);
/* For now we use identical block IDs for VC and PC but that might
* change. We allocate the EQs on the same XIVE as the VP.
*/
xs->eq_blk = xs->vp_blk;
/* Grab the XIVE where the EQ resides. It could be different from
* the local chip XIVE if not using block group mode
*/
x = xive_from_vc_blk(xs->eq_blk);
assert(x);
/* Allocate a set of EQs for that VP */
xs->eq_idx = xive_alloc_eq_set(x, true);
assert(!XIVE_ALLOC_IS_ERR(xs->eq_idx));
/* Provision one of the queues. Allocate the memory on the
* chip where the CPU resides
*/
p = local_alloc(c->chip_id, PAGE_SIZE, PAGE_SIZE);
if (!p) {
xive_err(x, "Failed to allocate EQ backing store\n");
assert(false);
}
xs->eq_page = p;
}
static void xive_init_cpu(struct cpu_thread *c)
{
struct proc_chip *chip = get_chip(c->chip_id);
struct xive *x = chip->xive;
struct xive_cpu_state *xs;
if (!x)
return;
/*
* Each core pair (EX) needs this special BAR setup to have the
* right powerbus cycle for the TM area (as it has the same address
* on all chips so it's somewhat special).
*
* Because we don't want to bother trying to figure out which core
* of a pair is present we just do the setup for each of them, which
* is harmless.
*/
if (cpu_is_thread0(c) || cpu_is_core_chiplet_primary(c))
xive_configure_ex_special_bar(x, c);
/* Initialize the state structure */
c->xstate = xs = local_alloc(c->chip_id, sizeof(struct xive_cpu_state), 1);
assert(xs);
memset(xs, 0, sizeof(struct xive_cpu_state));
xs->xive = x;
init_lock(&xs->lock);
/* Shortcut to TM HV ring */
xs->tm_ring1 = x->tm_base + (1u << x->tm_shift);
/* Allocate an IPI */
xs->ipi_irq = xive_alloc_ipi_irqs(c->chip_id, 1, 1);
xive_cpu_vdbg(c, "CPU IPI is irq %08x\n", xs->ipi_irq);
/* Provision a VP and some EQDs for a physical CPU */
xive_provision_cpu(xs, c);
/* Initialize the XICS emulation related fields */
xive_init_cpu_emulation(xs, c);
}
static void xive_init_cpu_properties(struct cpu_thread *cpu)
{
struct cpu_thread *t;
__be32 iprop[8][2] = { };
uint32_t i;
assert(cpu_thread_count <= 8);
if (!cpu->node)
return;
for (i = 0; i < cpu_thread_count; i++) {
t = (i == 0) ? cpu : find_cpu_by_pir(cpu->pir + i);
if (!t)
continue;
iprop[i][0] = cpu_to_be32(t->xstate->ipi_irq);
iprop[i][1] = 0; /* Edge */
}
dt_add_property(cpu->node, "interrupts", iprop, cpu_thread_count * 8);
dt_add_property_cells(cpu->node, "interrupt-parent", get_ics_phandle());
}
#ifdef XIVE_DEBUG_DUPLICATES
static uint32_t xive_count_irq_copies(struct xive_cpu_state *xs, uint32_t ref)
{
uint32_t i, irq;
uint32_t cnt = 0;
uint32_t pos = xs->eqptr;
uint32_t gen = xs->eqgen;
for (i = 0; i < 0x3fff; i++) {
irq = xs->eqbuf[pos];
if ((irq >> 31) == gen)
break;
if (irq == ref)
cnt++;
pos = (pos + 1) & xs->eqmsk;
if (!pos)
gen ^= 1;
}
return cnt;
}
#else
static inline uint32_t xive_count_irq_copies(struct xive_cpu_state *xs __unused,
uint32_t ref __unused)
{
return 1;
}
#endif
static uint32_t xive_read_eq(struct xive_cpu_state *xs, bool just_peek)
{
uint32_t cur, copies;
xive_cpu_vdbg(this_cpu(), " EQ %s... IDX=%x MSK=%x G=%d\n",
just_peek ? "peek" : "read",
xs->eqptr, xs->eqmsk, xs->eqgen);
cur = xs->eqbuf[xs->eqptr];
xive_cpu_vdbg(this_cpu(), " cur: %08x [%08x %08x %08x ...]\n", cur,
xs->eqbuf[(xs->eqptr + 1) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 2) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 3) & xs->eqmsk]);
if ((cur >> 31) == xs->eqgen)
return 0;
/* Debug: check for duplicate interrupts in the queue */
copies = xive_count_irq_copies(xs, cur);
if (copies > 1) {
struct xive_eq *eq;
prerror("Wow ! Dups of irq %x, found %d copies !\n",
cur & 0x7fffffff, copies);
prerror("[%08x > %08x %08x %08x %08x ...] eqgen=%x eqptr=%x jp=%d\n",
xs->eqbuf[(xs->eqptr - 1) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 0) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 1) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 2) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 3) & xs->eqmsk],
xs->eqgen, xs->eqptr, just_peek);
lock(&xs->xive->lock);
__xive_cache_scrub(xs->xive, xive_cache_eqc, xs->eq_blk,
xs->eq_idx + XIVE_EMULATION_PRIO,
false, false);
unlock(&xs->xive->lock);
eq = xive_get_eq(xs->xive, xs->eq_idx + XIVE_EMULATION_PRIO);
prerror("EQ @%p W0=%08x W1=%08x qbuf @%p\n",
eq, be32_to_cpu(eq->w0), be32_to_cpu(eq->w1), xs->eqbuf);
}
log_add(xs, LOG_TYPE_POPQ, 7, cur,
xs->eqbuf[(xs->eqptr + 1) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 2) & xs->eqmsk],
copies,
xs->eqptr, xs->eqgen, just_peek);
if (!just_peek) {
xs->eqptr = (xs->eqptr + 1) & xs->eqmsk;
if (xs->eqptr == 0)
xs->eqgen ^= 1;
xs->total_irqs++;
}
return cur & 0x00ffffff;
}
static uint8_t xive_sanitize_cppr(uint8_t cppr)
{
if (cppr == 0xff || cppr == 0)
return cppr;
else
return XIVE_EMULATION_PRIO;
}
static inline uint8_t opal_xive_check_pending(struct xive_cpu_state *xs,
uint8_t cppr)
{
uint8_t mask = (cppr > 7) ? 0xff : ~((0x100 >> cppr) - 1);
return xs->pending & mask;
}
static void opal_xive_update_cppr(struct xive_cpu_state *xs, u8 cppr)
{
/* Peform the update */
xs->cppr = cppr;
out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, cppr);
/* Trigger the IPI if it's still more favored than the CPPR
*
* This can lead to a bunch of spurrious retriggers if the
* IPI is queued up behind other interrupts but that's not
* a big deal and keeps the code simpler
*/
if (xs->mfrr < cppr)
xive_ipi_trigger(xs->xive, GIRQ_TO_IDX(xs->ipi_irq));
}
static int64_t opal_xive_eoi(uint32_t xirr)
{
struct cpu_thread *c = this_cpu();
struct xive_cpu_state *xs = c->xstate;
uint32_t isn = xirr & 0x00ffffff;
struct xive *src_x;
bool special_ipi = false;
uint8_t cppr;
/*
* In exploitation mode, this is supported as a way to perform
* an EOI via a FW calls. This can be needed to workaround HW
* implementation bugs for example. In this case interrupts will
* have the OPAL_XIVE_IRQ_EOI_VIA_FW flag set.
*
* In that mode the entire "xirr" argument is interpreterd as
* a global IRQ number (including the escalation bit), ther is
* no split between the top 8 bits for CPPR and bottom 24 for
* the interrupt number.
*/
if (xive_mode != XIVE_MODE_EMU)
return irq_source_eoi(xirr) ? OPAL_SUCCESS : OPAL_PARAMETER;
if (!xs)
return OPAL_INTERNAL_ERROR;
xive_cpu_vdbg(c, "EOI xirr=%08x cur_cppr=%d\n", xirr, xs->cppr);
/* Limit supported CPPR values from OS */
cppr = xive_sanitize_cppr(xirr >> 24);
lock(&xs->lock);
log_add(xs, LOG_TYPE_EOI, 3, isn, xs->eqptr, xs->eqgen);
/* If this was our magic IPI, convert to IRQ number */
if (isn == 2) {
isn = xs->ipi_irq;
special_ipi = true;
xive_cpu_vdbg(c, "User EOI for IPI !\n");
}
/* First check if we have stuff in that queue. If we do, don't bother with
* doing an EOI on the EQ. Just mark that priority pending, we'll come
* back later.
*
* If/when supporting multiple queues we would have to check them all
* in ascending prio order up to the passed-in CPPR value (exclusive).
*/
if (xive_read_eq(xs, true)) {
xive_cpu_vdbg(c, " isn %08x, skip, queue non empty\n", xirr);
xs->pending |= 1 << XIVE_EMULATION_PRIO;
}
#ifndef EQ_ALWAYS_NOTIFY
else {
uint8_t eoi_val;
/* Perform EQ level EOI. Only one EQ for now ...
*
* Note: We aren't doing an actual EOI. Instead we are clearing
* both P and Q and will re-check the queue if Q was set.
*/
eoi_val = in_8(xs->eqmmio + XIVE_ESB_SET_PQ_00);
xive_cpu_vdbg(c, " isn %08x, eoi_val=%02x\n", xirr, eoi_val);
/* Q was set ? Check EQ again after doing a sync to ensure
* ordering.
*/
if (eoi_val & 1) {
sync();
if (xive_read_eq(xs, true))
xs->pending |= 1 << XIVE_EMULATION_PRIO;
}
}
#endif
/* Perform source level EOI if it's not our emulated MFRR IPI
* otherwise EOI ourselves
*/
src_x = xive_from_isn(isn);
if (src_x) {
uint32_t idx = GIRQ_TO_IDX(isn);
/* Is it an IPI ? */
if (special_ipi) {
xive_ipi_eoi(src_x, idx);
} else {
/* Otherwise go through the source mechanism */
xive_vdbg(src_x, "EOI of IDX %x in EXT range\n", idx);
irq_source_eoi(isn);
}
} else {
xive_cpu_err(c, " EOI unknown ISN %08x\n", isn);
}
/* Finally restore CPPR */
opal_xive_update_cppr(xs, cppr);
xive_cpu_vdbg(c, " pending=0x%x cppr=%d\n", xs->pending, cppr);
unlock(&xs->lock);
/* Return whether something is pending that is suitable for
* delivery considering the new CPPR value. This can be done
* without lock as these fields are per-cpu.
*/
return opal_xive_check_pending(xs, cppr) ? 1 : 0;
}
#ifdef XIVE_CHECK_MISROUTED_IPI
static void xive_dump_eq(uint32_t eq_blk, uint32_t eq_idx)
{
struct cpu_thread *me = this_cpu();
struct xive *x;
struct xive_eq *eq;
x = xive_from_vc_blk(eq_blk);
if (!x)
return;
eq = xive_get_eq(x, eq_idx);
if (!eq)
return;
xive_cpu_err(me, "EQ: %08x %08x %08x %08x (@%p)\n",
eq->w0, eq->w1, eq->w2, eq->w3, eq);
xive_cpu_err(me, " %08x %08x %08x %08x\n",
eq->w4, eq->w5, eq->w6, eq->w7);
}
static int64_t __opal_xive_dump_emu(struct xive_cpu_state *xs, uint32_t pir);
static bool check_misrouted_ipi(struct cpu_thread *me, uint32_t irq)
{
struct cpu_thread *c;
for_each_present_cpu(c) {
struct xive_cpu_state *xs = c->xstate;
struct xive_ive *ive;
uint32_t ipi_target, i, eq_blk, eq_idx;
struct proc_chip *chip;
struct xive *x;
if (!xs)
continue;
if (irq == xs->ipi_irq) {
xive_cpu_err(me, "misrouted IPI 0x%x, should"
" be aimed at CPU 0x%x\n",
irq, c->pir);
xive_cpu_err(me, " my eq_page=%p eqbuff=%p eq=0x%x/%x\n",
me->xstate->eq_page, me->xstate->eqbuf,
me->xstate->eq_blk, me->xstate->eq_idx + XIVE_EMULATION_PRIO);
xive_cpu_err(me, "tgt eq_page=%p eqbuff=%p eq=0x%x/%x\n",
c->xstate->eq_page, c->xstate->eqbuf,
c->xstate->eq_blk, c->xstate->eq_idx + XIVE_EMULATION_PRIO);
__opal_xive_dump_emu(me->xstate, me->pir);
__opal_xive_dump_emu(c->xstate, c->pir);
if (xive_get_irq_targetting(xs->ipi_irq, &ipi_target, NULL, NULL))
xive_cpu_err(me, "target=%08x\n", ipi_target);
else
xive_cpu_err(me, "target=???\n");
/* Find XIVE on which the IVE resides */
x = xive_from_isn(irq);
if (!x) {
xive_cpu_err(me, "no xive attached\n");
return true;
}
ive = xive_get_ive(x, irq);
if (!ive) {
xive_cpu_err(me, "no ive attached\n");
return true;
}
xive_cpu_err(me, "ive=%016llx\n", be64_to_cpu(ive->w));
for_each_chip(chip) {
x = chip->xive;
if (!x)
continue;
ive = x->ivt_base;
for (i = 0; i < XIVE_INT_COUNT; i++) {
if (xive_get_field64(IVE_EQ_DATA, ive[i].w) == irq) {
eq_blk = xive_get_field64(IVE_EQ_BLOCK, ive[i].w);
eq_idx = xive_get_field64(IVE_EQ_INDEX, ive[i].w);
xive_cpu_err(me, "Found source: 0x%x ive=%016llx\n"
" eq 0x%x/%x",
BLKIDX_TO_GIRQ(x->block_id, i),
be64_to_cpu(ive[i].w), eq_blk, eq_idx);
xive_dump_eq(eq_blk, eq_idx);
}
}
}
return true;
}
}
return false;
}
#else
static inline bool check_misrouted_ipi(struct cpu_thread *c __unused,
uint32_t irq __unused)
{
return false;
}
#endif
static int64_t opal_xive_get_xirr(__be32 *out_xirr, bool just_poll)
{
struct cpu_thread *c = this_cpu();
struct xive_cpu_state *xs = c->xstate;
uint16_t ack;
uint8_t active, old_cppr;
if (xive_mode != XIVE_MODE_EMU)
return OPAL_WRONG_STATE;
if (!xs)
return OPAL_INTERNAL_ERROR;
if (!out_xirr)
return OPAL_PARAMETER;
*out_xirr = 0;
lock(&xs->lock);
/*
* Due to the need to fetch multiple interrupts from the EQ, we
* need to play some tricks.
*
* The "pending" byte in "xs" keeps track of the priorities that
* are known to have stuff to read (currently we only use one).
*
* It is set in EOI and cleared when consumed here. We don't bother
* looking ahead here, EOI will do it.
*
* We do need to still do an ACK every time in case a higher prio
* exception occurred (though we don't do prio yet... right ? still
* let's get the basic design right !).
*
* Note that if we haven't found anything via ack, but did find
* something in the queue, we must also raise CPPR back.
*/
xive_cpu_vdbg(c, "get_xirr W01=%016llx W2=%08x\n",
__in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS),
__in_be32(xs->tm_ring1 + TM_QW3_HV_PHYS + 8));
/* Perform the HV Ack cycle */
if (just_poll)
ack = __in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS) >> 48;
else
ack = __in_be16(xs->tm_ring1 + TM_SPC_ACK_HV_REG);
sync();
xive_cpu_vdbg(c, "get_xirr,%s=%04x\n", just_poll ? "POLL" : "ACK", ack);
/* Capture the old CPPR which we will return with the interrupt */
old_cppr = xs->cppr;
switch(GETFIELD(TM_QW3_NSR_HE, (ack >> 8))) {
case TM_QW3_NSR_HE_NONE:
break;
case TM_QW3_NSR_HE_POOL:
break;
case TM_QW3_NSR_HE_PHYS:
/* Mark pending and keep track of the CPPR update */
if (!just_poll && (ack & 0xff) != 0xff) {
xs->cppr = ack & 0xff;
xs->pending |= 1 << xs->cppr;
}
break;
case TM_QW3_NSR_HE_LSI:
break;
}
/* Calculate "active" lines as being the pending interrupts
* masked by the "old" CPPR
*/
active = opal_xive_check_pending(xs, old_cppr);
log_add(xs, LOG_TYPE_XIRR, 6, old_cppr, xs->cppr, xs->pending, active,
xs->eqptr, xs->eqgen);
#ifdef XIVE_PERCPU_LOG
{
struct xive_eq *eq;
lock(&xs->xive->lock);
__xive_cache_scrub(xs->xive, xive_cache_eqc, xs->eq_blk,
xs->eq_idx + XIVE_EMULATION_PRIO,
false, false);
unlock(&xs->xive->lock);
eq = xive_get_eq(xs->xive, xs->eq_idx + XIVE_EMULATION_PRIO);
log_add(xs, LOG_TYPE_EQD, 2, be32_to_cpu(eq->w0), be32_to_cpu(eq->w1));
}
#endif /* XIVE_PERCPU_LOG */
xive_cpu_vdbg(c, " cppr=%d->%d pending=0x%x active=%x\n",
old_cppr, xs->cppr, xs->pending, active);
if (active) {
/* Find highest pending */
uint8_t prio = ffs(active) - 1;
uint32_t val;
/* XXX Use "p" to select queue */
val = xive_read_eq(xs, just_poll);
if (val && val < XIVE_INT_FIRST)
xive_cpu_err(c, "Bogus interrupt 0x%x received !\n", val);
/* Convert to magic IPI if needed */
if (val == xs->ipi_irq)
val = 2;
if (check_misrouted_ipi(c, val))
val = 2;
*out_xirr = cpu_to_be32((old_cppr << 24) | val);
/* If we are polling, that's it */
if (just_poll)
goto skip;
/* Clear the pending bit. EOI will set it again if needed. We
* could check the queue but that's not really critical here.
*/
xs->pending &= ~(1 << prio);
/* Spurrious IPB bit, nothing to fetch, bring CPPR back */
if (!val)
prio = old_cppr;
/* We could have fetched a pending interrupt left over
* by a previous EOI, so the CPPR might need adjusting
* Also if we had a spurrious one as well.
*/
if (xs->cppr != prio) {
xs->cppr = prio;
out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, prio);
xive_cpu_vdbg(c, " adjusted CPPR to %d\n", prio);
}
if (val)
xive_cpu_vdbg(c, " found irq, prio=%d\n", prio);
} else {
/* Nothing was active, this is a fluke, restore CPPR */
opal_xive_update_cppr(xs, old_cppr);
xive_cpu_vdbg(c, " nothing active, restored CPPR to %d\n",
old_cppr);
}
skip:
log_add(xs, LOG_TYPE_XIRR2, 5, xs->cppr, xs->pending,
be32_to_cpu(*out_xirr), xs->eqptr, xs->eqgen);
xive_cpu_vdbg(c, " returning XIRR=%08x, pending=0x%x\n",
be32_to_cpu(*out_xirr), xs->pending);
unlock(&xs->lock);
return OPAL_SUCCESS;
}
static int64_t opal_xive_set_cppr(uint8_t cppr)
{
struct cpu_thread *c = this_cpu();
struct xive_cpu_state *xs = c->xstate;
if (xive_mode != XIVE_MODE_EMU)
return OPAL_WRONG_STATE;
/* Limit supported CPPR values */
cppr = xive_sanitize_cppr(cppr);
if (!xs)
return OPAL_INTERNAL_ERROR;
xive_cpu_vdbg(c, "CPPR setting to %d\n", cppr);
lock(&xs->lock);
opal_xive_update_cppr(xs, cppr);
unlock(&xs->lock);
return OPAL_SUCCESS;
}
static int64_t opal_xive_set_mfrr(uint32_t cpu, uint8_t mfrr)
{
struct cpu_thread *c = find_cpu_by_server(cpu);
struct xive_cpu_state *xs;
uint8_t old_mfrr;
if (xive_mode != XIVE_MODE_EMU)
return OPAL_WRONG_STATE;
if (!c)
return OPAL_PARAMETER;
xs = c->xstate;
if (!xs)
return OPAL_INTERNAL_ERROR;
lock(&xs->lock);
old_mfrr = xs->mfrr;
xive_cpu_vdbg(c, " Setting MFRR to %x, old is %x\n", mfrr, old_mfrr);
xs->mfrr = mfrr;
if (old_mfrr > mfrr && mfrr < xs->cppr)
xive_ipi_trigger(xs->xive, GIRQ_TO_IDX(xs->ipi_irq));
unlock(&xs->lock);
return OPAL_SUCCESS;
}
static uint64_t xive_convert_irq_flags(uint64_t iflags)
{
uint64_t oflags = 0;
if (iflags & XIVE_SRC_STORE_EOI)
oflags |= OPAL_XIVE_IRQ_STORE_EOI;
/* OPAL_XIVE_IRQ_TRIGGER_PAGE is only meant to be set if
* the interrupt has a *separate* trigger page.
*/
if ((iflags & XIVE_SRC_EOI_PAGE1) &&
(iflags & XIVE_SRC_TRIGGER_PAGE))
oflags |= OPAL_XIVE_IRQ_TRIGGER_PAGE;
if (iflags & XIVE_SRC_LSI)
oflags |= OPAL_XIVE_IRQ_LSI;
return oflags;
}
static int64_t opal_xive_get_irq_info(uint32_t girq,
__be64 *out_flags,
__be64 *out_eoi_page,
__be64 *out_trig_page,
__be32 *out_esb_shift,
__be32 *out_src_chip)
{
struct irq_source *is = irq_find_source(girq);
struct xive_src *s = container_of(is, struct xive_src, is);
uint32_t idx;
uint64_t mm_base;
uint64_t eoi_page = 0, trig_page = 0;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (is == NULL || out_flags == NULL)
return OPAL_PARAMETER;
assert(is->ops == &xive_irq_source_ops);
if (out_flags)
*out_flags = cpu_to_be64(xive_convert_irq_flags(s->flags));
idx = girq - s->esb_base;
if (out_esb_shift)
*out_esb_shift = cpu_to_be32(s->esb_shift);
mm_base = (uint64_t)s->esb_mmio + (1ull << s->esb_shift) * idx;
/* The EOI page can either be the first or second page */
if (s->flags & XIVE_SRC_EOI_PAGE1) {
uint64_t p1off = 1ull << (s->esb_shift - 1);
eoi_page = mm_base + p1off;
} else
eoi_page = mm_base;
/* The trigger page, if it exists, is always the first page */
if (s->flags & XIVE_SRC_TRIGGER_PAGE)
trig_page = mm_base;
if (out_eoi_page)
*out_eoi_page = cpu_to_be64(eoi_page);
if (out_trig_page)
*out_trig_page = cpu_to_be64(trig_page);
if (out_src_chip)
*out_src_chip = cpu_to_be32(GIRQ_TO_CHIP(girq));
return OPAL_SUCCESS;
}
static int64_t opal_xive_get_irq_config(uint32_t girq,
__be64 *out_vp,
uint8_t *out_prio,
__be32 *out_lirq)
{
uint32_t vp;
uint32_t lirq;
uint8_t prio;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (xive_get_irq_targetting(girq, &vp, &prio, &lirq)) {
*out_vp = cpu_to_be64(vp);
*out_prio = prio;
*out_lirq = cpu_to_be32(lirq);
return OPAL_SUCCESS;
} else
return OPAL_PARAMETER;
}
static int64_t opal_xive_set_irq_config(uint32_t girq,
uint64_t vp,
uint8_t prio,
uint32_t lirq)
{
/*
* This variant is meant for a XIVE-aware OS, thus it will
* *not* affect the ESB state of the interrupt. If used with
* a prio of FF, the IVT/EAS will be mased. In that case the
* races have to be handled by the OS.
*
* The exception to this rule is interrupts for which masking
* and unmasking is handled by firmware. In that case the ESB
* state isn't under OS control and will be dealt here. This
* is currently only the case of LSIs and on P9 DD1.0 only so
* isn't an issue.
*/
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
return xive_set_irq_config(girq, vp, prio, lirq, false);
}
static int64_t opal_xive_get_queue_info(uint64_t vp, uint32_t prio,
__be64 *out_qpage,
__be64 *out_qsize,
__be64 *out_qeoi_page,
__be32 *out_escalate_irq,
__be64 *out_qflags)
{
uint32_t blk, idx;
struct xive *x;
struct xive_eq *eq;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!xive_eq_for_target(vp, prio, &blk, &idx))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
eq = xive_get_eq(x, idx);
if (!eq)
return OPAL_PARAMETER;
if (out_escalate_irq) {
uint32_t esc_idx = idx;
/* If escalations are routed to a single queue, fix up
* the escalation interrupt number here.
*/
if (xive_get_field32(EQ_W0_UNCOND_ESCALATE, eq->w0))
esc_idx |= XIVE_ESCALATION_PRIO;
*out_escalate_irq =
cpu_to_be32(MAKE_ESCALATION_GIRQ(blk, esc_idx));
}
/* If this is a single-escalation gather queue, that's all
* there is to return
*/
if (xive_get_field32(EQ_W0_SILENT_ESCALATE, eq->w0)) {
if (out_qflags)
*out_qflags = 0;
if (out_qpage)
*out_qpage = 0;
if (out_qsize)
*out_qsize = 0;
if (out_qeoi_page)
*out_qeoi_page = 0;
return OPAL_SUCCESS;
}
if (out_qpage) {
if (xive_get_field32(EQ_W0_ENQUEUE, eq->w0))
*out_qpage = cpu_to_be64(((uint64_t)xive_get_field32(EQ_W2_OP_DESC_HI, eq->w2) << 32) | be32_to_cpu(eq->w3));
else
*out_qpage = 0;
}
if (out_qsize) {
if (xive_get_field32(EQ_W0_ENQUEUE, eq->w0))
*out_qsize = cpu_to_be64(xive_get_field32(EQ_W0_QSIZE, eq->w0) + 12);
else
*out_qsize = 0;
}
if (out_qeoi_page) {
*out_qeoi_page =
cpu_to_be64((uint64_t)x->eq_mmio + idx * XIVE_ESB_PAGE_SIZE);
}
if (out_qflags) {
*out_qflags = 0;
if (xive_get_field32(EQ_W0_VALID, eq->w0))
*out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ENABLED);
if (xive_get_field32(EQ_W0_UCOND_NOTIFY, eq->w0))
*out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ALWAYS_NOTIFY);
if (xive_get_field32(EQ_W0_ESCALATE_CTL, eq->w0))
*out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ESCALATE);
}
return OPAL_SUCCESS;
}
static void xive_cleanup_eq(struct xive_eq *eq)
{
eq->w0 = xive_set_field32(EQ_W0_FIRMWARE, 0, xive_get_field32(EQ_W0_FIRMWARE, eq->w0));
eq->w1 = cpu_to_be32(EQ_W1_ESe_Q | EQ_W1_ESn_Q);
eq->w2 = eq->w3 = eq->w4 = eq->w5 = eq->w6 = eq->w7 = 0;
}
static int64_t opal_xive_set_queue_info(uint64_t vp, uint32_t prio,
uint64_t qpage,
uint64_t qsize,
uint64_t qflags)
{
uint32_t blk, idx;
struct xive *x;
struct xive_eq *old_eq;
struct xive_eq eq;
uint32_t vp_blk, vp_idx;
bool group;
int64_t rc;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!xive_eq_for_target(vp, prio, &blk, &idx))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
old_eq = xive_get_eq(x, idx);
if (!old_eq)
return OPAL_PARAMETER;
/* If this is a silent escalation queue, it cannot be
* configured directly
*/
if (xive_get_field32(EQ_W0_SILENT_ESCALATE, old_eq->w0))
return OPAL_PARAMETER;
/* This shouldn't fail or xive_eq_for_target would have
* failed already
*/
if (!xive_decode_vp(vp, &vp_blk, &vp_idx, NULL, &group))
return OPAL_PARAMETER;
/*
* Make a local copy which we will later try to commit using
* the cache watch facility
*/
eq = *old_eq;
if (qflags & OPAL_XIVE_EQ_ENABLED) {
switch(qsize) {
/* Supported sizes */
case 12:
case 16:
case 21:
case 24:
eq.w3 = cpu_to_be32(((uint64_t)qpage) & EQ_W3_OP_DESC_LO);
eq.w2 = cpu_to_be32((((uint64_t)qpage) >> 32) & EQ_W2_OP_DESC_HI);
eq.w0 = xive_set_field32(EQ_W0_ENQUEUE, eq.w0, 1);
eq.w0 = xive_set_field32(EQ_W0_QSIZE, eq.w0, qsize - 12);
break;
case 0:
eq.w2 = eq.w3 = 0;
eq.w0 = xive_set_field32(EQ_W0_ENQUEUE, eq.w0, 0);
break;
default:
return OPAL_PARAMETER;
}
/* Ensure the priority and target are correctly set (they will
* not be right after allocation
*/
eq.w6 = xive_set_field32(EQ_W6_NVT_BLOCK, 0, vp_blk) |
xive_set_field32(EQ_W6_NVT_INDEX, 0, vp_idx);
eq.w7 = xive_set_field32(EQ_W7_F0_PRIORITY, 0, prio);
/* XXX Handle group i bit when needed */
/* Always notify flag */
if (qflags & OPAL_XIVE_EQ_ALWAYS_NOTIFY)
eq.w0 = xive_set_field32(EQ_W0_UCOND_NOTIFY, eq.w0, 1);
else
eq.w0 = xive_set_field32(EQ_W0_UCOND_NOTIFY, eq.w0, 0);
/* Escalation flag */
if (qflags & OPAL_XIVE_EQ_ESCALATE)
eq.w0 = xive_set_field32(EQ_W0_ESCALATE_CTL, eq.w0, 1);
else
eq.w0 = xive_set_field32(EQ_W0_ESCALATE_CTL, eq.w0, 0);
/* Unconditionally clear the current queue pointer, set
* generation to 1 and disable escalation interrupts.
*/
eq.w1 = xive_set_field32(EQ_W1_GENERATION, 0, 1) |
xive_set_field32(EQ_W1_ES, 0, xive_get_field32(EQ_W1_ES, old_eq->w1));
/* Enable. We always enable backlog for an enabled queue
* otherwise escalations won't work.
*/
eq.w0 = xive_set_field32(EQ_W0_VALID, eq.w0, 1);
eq.w0 = xive_set_field32(EQ_W0_BACKLOG, eq.w0, 1);
} else
xive_cleanup_eq(&eq);
/* Update EQ, non-synchronous */
lock(&x->lock);
rc = xive_eqc_cache_update(x, blk, idx, &eq, false);
unlock(&x->lock);
return rc;
}
static int64_t opal_xive_get_queue_state(uint64_t vp, uint32_t prio,
__be32 *out_qtoggle,
__be32 *out_qindex)
{
uint32_t blk, idx;
struct xive *x;
struct xive_eq *eq;
int64_t rc;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!out_qtoggle || !out_qindex ||
!xive_eq_for_target(vp, prio, &blk, &idx))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
eq = xive_get_eq(x, idx);
if (!eq)
return OPAL_PARAMETER;
/* Scrub the queue */
lock(&x->lock);
rc = xive_eqc_scrub(x, blk, idx);
unlock(&x->lock);
if (rc)
return rc;
/* We don't do disable queues */
if (!xive_get_field32(EQ_W0_VALID, eq->w0))
return OPAL_WRONG_STATE;
*out_qtoggle = cpu_to_be32(xive_get_field32(EQ_W1_GENERATION, eq->w1));
*out_qindex = cpu_to_be32(xive_get_field32(EQ_W1_PAGE_OFF, eq->w1));
return OPAL_SUCCESS;
}
static int64_t opal_xive_set_queue_state(uint64_t vp, uint32_t prio,
uint32_t qtoggle, uint32_t qindex)
{
uint32_t blk, idx;
struct xive *x;
struct xive_eq *eq, new_eq;
int64_t rc;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!xive_eq_for_target(vp, prio, &blk, &idx))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
eq = xive_get_eq(x, idx);
if (!eq)
return OPAL_PARAMETER;
/* We don't do disable queues */
if (!xive_get_field32(EQ_W0_VALID, eq->w0))
return OPAL_WRONG_STATE;
new_eq = *eq;
new_eq.w1 = xive_set_field32(EQ_W1_GENERATION, new_eq.w1, qtoggle);
new_eq.w1 = xive_set_field32(EQ_W1_PAGE_OFF, new_eq.w1, qindex);
lock(&x->lock);
rc = xive_eqc_cache_update(x, blk, idx, &new_eq, false);
unlock(&x->lock);
return rc;
}
static int64_t opal_xive_donate_page(uint32_t chip_id, uint64_t addr)
{
struct proc_chip *c = get_chip(chip_id);
struct list_node *n;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!c)
return OPAL_PARAMETER;
if (!c->xive)
return OPAL_PARAMETER;
if (addr & 0xffff)
return OPAL_PARAMETER;
n = (struct list_node *)addr;
lock(&c->xive->lock);
list_add(&c->xive->donated_pages, n);
unlock(&c->xive->lock);
return OPAL_SUCCESS;
}
static int64_t opal_xive_get_vp_info(uint64_t vp_id,
__be64 *out_flags,
__be64 *out_cam_value,
__be64 *out_report_cl_pair,
__be32 *out_chip_id)
{
struct xive *x;
struct xive_vp *vp;
uint32_t blk, idx;
bool group;
if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
return OPAL_PARAMETER;
/* We don't do groups yet */
if (group)
return OPAL_PARAMETER;
x = xive_from_pc_blk(blk);
if (!x)
return OPAL_PARAMETER;
vp = xive_get_vp(x, idx);
if (!vp)
return OPAL_PARAMETER;
if (out_flags) {
uint32_t eq_blk, eq_idx;
struct xive_eq *eq;
struct xive *eq_x;
*out_flags = 0;
/* We would like to a way to stash a SW bit in the VP to
* know whether silent escalation is enabled or not, but
* unlike what happens with EQs, the PC cache watch doesn't
* implement the reserved bit in the VPs... so we have to go
* look at EQ 7 instead.
*/
/* Grab EQ for prio 7 to check for silent escalation */
if (!xive_eq_for_target(vp_id, XIVE_ESCALATION_PRIO,
&eq_blk, &eq_idx))
return OPAL_PARAMETER;
eq_x = xive_from_vc_blk(eq_blk);
if (!eq_x)
return OPAL_PARAMETER;
eq = xive_get_eq(x, eq_idx);
if (!eq)
return OPAL_PARAMETER;
if (xive_get_field32(VP_W0_VALID, vp->w0))
*out_flags |= cpu_to_be64(OPAL_XIVE_VP_ENABLED);
if (xive_get_field32(EQ_W0_SILENT_ESCALATE, eq->w0))
*out_flags |= cpu_to_be64(OPAL_XIVE_VP_SINGLE_ESCALATION);
}
if (out_cam_value)
*out_cam_value = cpu_to_be64((blk << NVT_SHIFT) | idx);
if (out_report_cl_pair) {
*out_report_cl_pair = cpu_to_be64(((uint64_t)(be32_to_cpu(vp->w6) & 0x0fffffff)) << 32);
*out_report_cl_pair |= cpu_to_be64(be32_to_cpu(vp->w7) & 0xffffff00);
}
if (out_chip_id)
*out_chip_id = cpu_to_be32(xive_block_to_chip[blk]);
return OPAL_SUCCESS;
}
static int64_t xive_setup_silent_gather(uint64_t vp_id, bool enable)
{
uint32_t blk, idx, i;
struct xive_eq *eq_orig;
struct xive_eq eq;
struct xive *x;
int64_t rc;
/* Get base EQ block */
if (!xive_eq_for_target(vp_id, 0, &blk, &idx))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
/* Grab prio 7 */
eq_orig = xive_get_eq(x, idx + XIVE_ESCALATION_PRIO);
if (!eq_orig)
return OPAL_PARAMETER;
/* If trying to enable silent gather, make sure prio 7 is not
* already enabled as a normal queue
*/
if (enable && xive_get_field32(EQ_W0_VALID, eq_orig->w0) &&
!xive_get_field32(EQ_W0_SILENT_ESCALATE, eq_orig->w0)) {
xive_dbg(x, "Attempt at enabling silent gather but"
" prio 7 queue already in use\n");
return OPAL_PARAMETER;
}
eq = *eq_orig;
if (enable) {
/* W0: Enabled and "s" set, no other bit */
eq.w0 = xive_set_field32(EQ_W0_FIRMWARE, 0, xive_get_field32(EQ_W0_FIRMWARE, eq.w0)) |
xive_set_field32(EQ_W0_VALID, 0, 1) |
xive_set_field32(EQ_W0_SILENT_ESCALATE, 0, 1) |
xive_set_field32(EQ_W0_ESCALATE_CTL, 0, 1) |
xive_set_field32(EQ_W0_BACKLOG, 0, 1);
/* W1: Mark ESn as 01, ESe as 00 */
eq.w1 = xive_set_field32(EQ_W1_ESn_P, eq.w1, 0);
eq.w1 = xive_set_field32(EQ_W1_ESn_Q, eq.w1, 1);
eq.w1 = xive_set_field32(EQ_W1_ESe, eq.w1, 0);
} else if (xive_get_field32(EQ_W0_SILENT_ESCALATE, eq.w0))
xive_cleanup_eq(&eq);
if (!memcmp(eq_orig, &eq, sizeof(eq)))
rc = 0;
else
rc = xive_eqc_cache_update(x, blk, idx + 7, &eq, false);
if (rc)
return rc;
/* Mark/unmark all other prios with the new "u" bit and update
* escalation
*/
for (i = 0; i < NUM_INT_PRIORITIES; i++) {
if (i == XIVE_ESCALATION_PRIO)
continue;
eq_orig = xive_get_eq(x, idx + i);
if (!eq_orig)
continue;
eq = *eq_orig;
if (enable) {
/* Set new "u" bit */
eq.w0 = xive_set_field32(EQ_W0_UNCOND_ESCALATE, eq.w0, 1);
/* Re-route escalation interrupt (previous
* route is lost !) to the gather queue
*/
eq.w4 = xive_set_field32(EQ_W4_ESC_EQ_BLOCK, eq.w4, blk);
eq.w4 = xive_set_field32(EQ_W4_ESC_EQ_INDEX, eq.w4, idx + XIVE_ESCALATION_PRIO);
} else if (xive_get_field32(EQ_W0_UNCOND_ESCALATE, eq.w0)) {
/* Clear the "u" bit, disable escalations if it was set */
eq.w0 = xive_set_field32(EQ_W0_UNCOND_ESCALATE, eq.w0, 0);
eq.w0 = xive_set_field32(EQ_W0_ESCALATE_CTL, eq.w0, 0);
}
if (!memcmp(eq_orig, &eq, sizeof(eq)))
continue;
rc = xive_eqc_cache_update(x, blk, idx + i, &eq, false);
if (rc)
break;
}
return rc;
}
static int64_t opal_xive_set_vp_info(uint64_t vp_id,
uint64_t flags,
uint64_t report_cl_pair)
{
struct xive *x;
struct xive_vp *vp, vp_new;
uint32_t blk, idx;
bool group;
int64_t rc;
if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
return OPAL_PARAMETER;
/* We don't do groups yet */
if (group)
return OPAL_PARAMETER;
if (report_cl_pair & 0xff)
return OPAL_PARAMETER;
x = xive_from_pc_blk(blk);
if (!x)
return OPAL_PARAMETER;
vp = xive_get_vp(x, idx);
if (!vp)
return OPAL_PARAMETER;
lock(&x->lock);
vp_new = *vp;
if (flags & OPAL_XIVE_VP_ENABLED) {
vp_new.w0 = xive_set_field32(VP_W0_VALID, vp_new.w0, 1);
vp_new.w6 = cpu_to_be32(report_cl_pair >> 32);
vp_new.w7 = cpu_to_be32(report_cl_pair & 0xffffffff);
if (flags & OPAL_XIVE_VP_SINGLE_ESCALATION)
rc = xive_setup_silent_gather(vp_id, true);
else
rc = xive_setup_silent_gather(vp_id, false);
} else {
vp_new.w0 = vp_new.w6 = vp_new.w7 = 0;
rc = xive_setup_silent_gather(vp_id, false);
}
if (rc) {
if (rc != OPAL_BUSY)
xive_dbg(x, "Silent gather setup failed with err %lld\n", rc);
goto bail;
}
rc = xive_vpc_cache_update(x, blk, idx, &vp_new, false);
if (rc)
goto bail;
/* When disabling, we scrub clean (invalidate the entry) so
* we can avoid cache ops in alloc/free
*/
if (!(flags & OPAL_XIVE_VP_ENABLED))
xive_vpc_scrub_clean(x, blk, idx);
bail:
unlock(&x->lock);
return rc;
}
static int64_t opal_xive_get_vp_state(uint64_t vp_id, __be64 *out_state)
{
struct xive *x;
struct xive_vp *vp;
uint32_t blk, idx;
int64_t rc;
bool group;
if (!out_state || !xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
return OPAL_PARAMETER;
if (group)
return OPAL_PARAMETER;
x = xive_from_pc_blk(blk);
if (!x)
return OPAL_PARAMETER;
vp = xive_get_vp(x, idx);
if (!vp)
return OPAL_PARAMETER;
/* Scrub the vp */
lock(&x->lock);
rc = xive_vpc_scrub(x, blk, idx);
unlock(&x->lock);
if (rc)
return rc;
if (!xive_get_field32(VP_W0_VALID, vp->w0))
return OPAL_WRONG_STATE;
/*
* Return word4 and word5 which contain the saved HW thread
* context. The IPB register is all we care for now on P9.
*/
*out_state = cpu_to_be64((((uint64_t)be32_to_cpu(vp->w4)) << 32) | be32_to_cpu(vp->w5));
return OPAL_SUCCESS;
}
static void xive_cleanup_cpu_tima(struct cpu_thread *c)
{
struct xive_cpu_state *xs = c->xstate;
struct xive *x = xs->xive;
void *ind_tm_base = x->ic_base + (4 << x->ic_shift);
uint8_t old_w2 __unused, w2 __unused;
/* Reset the HW context */
xive_reset_enable_thread(c);
/* Setup indirect access to the corresponding thread */
xive_regw(x, PC_TCTXT_INDIR0,
PC_TCTXT_INDIR_VALID |
SETFIELD(PC_TCTXT_INDIR_THRDID, 0ull, c->pir & 0xff));
/* Workaround for HW issue: Need to read the above register
* back before doing the subsequent accesses
*/
xive_regr(x, PC_TCTXT_INDIR0);
/* Set VT to 1 */
old_w2 = in_8(ind_tm_base + TM_QW3_HV_PHYS + TM_WORD2);
out_8(ind_tm_base + TM_QW3_HV_PHYS + TM_WORD2, 0x80);
w2 = in_8(ind_tm_base + TM_QW3_HV_PHYS + TM_WORD2);
/* Dump HV state */
xive_cpu_vdbg(c, "[reset] VP TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n",
xs->vp_blk, xs->vp_idx,
in_be64(ind_tm_base + TM_QW3_HV_PHYS),
old_w2, w2);
/* Reset indirect access */
xive_regw(x, PC_TCTXT_INDIR0, 0);
}
static int64_t xive_vc_ind_cache_kill(struct xive *x, uint64_t type)
{
uint64_t val;
/* We clear the whole thing */
xive_regw(x, VC_AT_MACRO_KILL_MASK, 0);
xive_regw(x, VC_AT_MACRO_KILL, VC_KILL_VALID |
SETFIELD(VC_KILL_TYPE, 0ull, type));
/* XXX SIMICS problem ? */
if (chip_quirk(QUIRK_SIMICS))
return 0;
/* XXX Add timeout */
for (;;) {
val = xive_regr(x, VC_AT_MACRO_KILL);
if (!(val & VC_KILL_VALID))
break;
}
return 0;
}
static int64_t xive_pc_ind_cache_kill(struct xive *x)
{
uint64_t val;
/* We clear the whole thing */
xive_regw(x, PC_AT_KILL_MASK, 0);
xive_regw(x, PC_AT_KILL, PC_AT_KILL_VALID);
/* XXX SIMICS problem ? */
if (chip_quirk(QUIRK_SIMICS))
return 0;
/* XXX Add timeout */
for (;;) {
val = xive_regr(x, PC_AT_KILL);
if (!(val & PC_AT_KILL_VALID))
break;
}
return 0;
}
static void xive_cleanup_vp_ind(struct xive *x)
{
int i;
xive_dbg(x, "Cleaning up %d VP ind entries...\n", x->vp_ind_count);
for (i = 0; i < x->vp_ind_count; i++) {
if (be64_to_cpu(x->vp_ind_base[i]) & VSD_FIRMWARE) {
xive_dbg(x, " %04x ... skip (firmware)\n", i);
continue;
}
if (x->vp_ind_base[i] != 0) {
x->vp_ind_base[i] = 0;
xive_dbg(x, " %04x ... cleaned\n", i);
}
}
xive_pc_ind_cache_kill(x);
}
static void xive_cleanup_eq_ind(struct xive *x)
{
int i;
xive_dbg(x, "Cleaning up %d EQ ind entries...\n", x->eq_ind_count);
for (i = 0; i < x->eq_ind_count; i++) {
if (be64_to_cpu(x->eq_ind_base[i]) & VSD_FIRMWARE) {
xive_dbg(x, " %04x ... skip (firmware)\n", i);
continue;
}
if (x->eq_ind_base[i] != 0) {
x->eq_ind_base[i] = 0;
xive_dbg(x, " %04x ... cleaned\n", i);
}
}
xive_vc_ind_cache_kill(x, VC_KILL_EQD);
}
static void xive_reset_one(struct xive *x)
{
struct cpu_thread *c;
bool eq_firmware;
int i;
xive_dbg(x, "Resetting one xive...\n");
lock(&x->lock);
/* Check all interrupts are disabled */
i = bitmap_find_one_bit(*x->int_enabled_map, 0, XIVE_INT_COUNT);
if (i >= 0)
xive_warn(x, "Interrupt %d (and maybe more) not disabled"
" at reset !\n", i);
/* Reset IPI allocation */
xive_dbg(x, "freeing alloc map %p/%p\n",
x->ipi_alloc_map, *x->ipi_alloc_map);
memset(x->ipi_alloc_map, 0, BITMAP_BYTES(XIVE_INT_COUNT));
xive_dbg(x, "Resetting EQs...\n");
/* Reset all allocated EQs and free the user ones */
bitmap_for_each_one(*x->eq_map, XIVE_EQ_COUNT >> 3, i) {
struct xive_eq eq0;
struct xive_eq *eq;
int j;
if (i == 0)
continue;
eq_firmware = false;
for (j = 0; j < NUM_INT_PRIORITIES; j++) {
uint32_t idx = (i << 3) | j;
eq = xive_get_eq(x, idx);
if (!eq)
continue;
/* We need to preserve the firmware bit, otherwise
* we will incorrectly free the EQs that are reserved
* for the physical CPUs
*/
if (xive_get_field32(EQ_W0_VALID, eq->w0)) {
if (!xive_get_field32(EQ_W0_FIRMWARE, eq->w0))
xive_dbg(x, "EQ 0x%x:0x%x is valid at reset: %08x %08x\n",
x->block_id, idx, be32_to_cpu(eq->w0), be32_to_cpu(eq->w1));
eq0 = *eq;
xive_cleanup_eq(&eq0);
xive_eqc_cache_update(x, x->block_id, idx, &eq0, true);
}
if (xive_get_field32(EQ_W0_FIRMWARE, eq->w0))
eq_firmware = true;
}
if (!eq_firmware)
bitmap_clr_bit(*x->eq_map, i);
}
/* Take out all VPs from HW and reset all CPPRs to 0 */
for_each_present_cpu(c) {
if (c->chip_id != x->chip_id)
continue;
if (!c->xstate)
continue;
xive_cleanup_cpu_tima(c);
}
/* Reset all user-allocated VPs. This is inefficient, we should
* either keep a bitmap of allocated VPs or add an iterator to
* the buddy which is trickier but doable.
*/
for (i = 0; i < XIVE_VP_COUNT; i++) {
struct xive_vp *vp;
struct xive_vp vp0 = {0};
/* Ignore the physical CPU VPs */
if (i >= XIVE_HW_VP_BASE &&
i < (XIVE_HW_VP_BASE + XIVE_HW_VP_COUNT))
continue;
/* Is the VP valid ? */
vp = xive_get_vp(x, i);
if (!vp || !xive_get_field32(VP_W0_VALID, vp->w0))
continue;
/* Clear it */
xive_dbg(x, "VP 0x%x:0x%x is valid at reset\n", x->block_id, i);
xive_vpc_cache_update(x, x->block_id, i, &vp0, true);
}
/* Forget about remaining donated pages */
list_head_init(&x->donated_pages);
/* And cleanup donated indirect VP and EQ pages */
xive_cleanup_vp_ind(x);
xive_cleanup_eq_ind(x);
/* The rest must not be called with the lock held */
unlock(&x->lock);
/* Re-configure VPs and emulation */
for_each_present_cpu(c) {
struct xive_cpu_state *xs = c->xstate;
if (c->chip_id != x->chip_id || !xs)
continue;
if (xive_mode == XIVE_MODE_EMU)
xive_init_cpu_emulation(xs, c);
else
xive_init_cpu_exploitation(xs);
}
}
static void xive_reset_mask_source_cb(struct irq_source *is,
void *data __unused)
{
struct xive_src *s = container_of(is, struct xive_src, is);
struct xive *x;
uint32_t isn;
if (is->ops != &xive_irq_source_ops)
return;
/* Skip escalation sources */
if (GIRQ_IS_ESCALATION(is->start))
return;
x = s->xive;
/* Iterate all interrupts */
for (isn = is->start; isn < is->end; isn++) {
/* Has it ever been enabled ? */
if (!bitmap_tst_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn)))
continue;
/* Mask it and clear the enabled map bit */
xive_vdbg(x, "[reset] disabling source 0x%x\n", isn);
__xive_set_irq_config(is, isn, 0, 0xff, isn, true, false);
bitmap_clr_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn));
}
}
void xive_cpu_reset(void)
{
struct cpu_thread *c = this_cpu();
struct xive_cpu_state *xs = c->xstate;
xs->cppr = 0;
out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, 0);
in_be64(xs->tm_ring1 + TM_SPC_PULL_POOL_CTX);
}
static int64_t __xive_reset(uint64_t version)
{
struct proc_chip *chip;
xive_mode = version;
/* Mask all interrupt sources */
irq_for_each_source(xive_reset_mask_source_cb, NULL);
/* For each XIVE do a sync... */
for_each_chip(chip) {
if (!chip->xive)
continue;
xive_sync(chip->xive);
}
/* For each XIVE reset everything else... */
for_each_chip(chip) {
if (!chip->xive)
continue;
xive_reset_one(chip->xive);
}
/* Cleanup global VP allocator */
buddy_reset(xive_vp_buddy);
/* We reserve the whole range of VPs representing HW chips.
*
* These are 0x80..0xff, so order 7 starting at 0x80. This will
* reserve that range on each chip.
*/
assert(buddy_reserve(xive_vp_buddy, XIVE_HW_VP_BASE,
XIVE_THREADID_SHIFT));
return OPAL_SUCCESS;
}
/* Called by fast reboot */
int64_t xive_reset(void)
{
if (xive_mode == XIVE_MODE_NONE)
return OPAL_SUCCESS;
return __xive_reset(XIVE_MODE_EMU);
}
static int64_t opal_xive_reset(uint64_t version)
{
prlog(PR_DEBUG, "XIVE reset, version: %d...\n", (int)version);
if (version > 1)
return OPAL_PARAMETER;
return __xive_reset(version);
}
static int64_t opal_xive_free_vp_block(uint64_t vp_base)
{
uint32_t blk, idx, i, j, count;
uint8_t order;
bool group;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!xive_decode_vp(vp_base, &blk, &idx, &order, &group))
return OPAL_PARAMETER;
if (group)
return OPAL_PARAMETER;
if (blk)
return OPAL_PARAMETER;
if (order < (xive_chips_alloc_bits + 1))
return OPAL_PARAMETER;
if (idx & ((1 << (order - xive_chips_alloc_bits)) - 1))
return OPAL_PARAMETER;
count = 1 << order;
for (i = 0; i < count; i++) {
uint32_t vp_id = vp_base + i;
uint32_t blk, idx, eq_blk, eq_idx;
struct xive *x;
struct xive_vp *vp;
if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) {
prerror("XIVE: Couldn't decode VP id %u\n", vp_id);
return OPAL_INTERNAL_ERROR;
}
x = xive_from_pc_blk(blk);
if (!x) {
prerror("XIVE: Instance not found for deallocated VP"
" block %d\n", blk);
return OPAL_INTERNAL_ERROR;
}
vp = xive_get_vp(x, idx);
if (!vp) {
prerror("XIVE: VP not found for deallocation !");
return OPAL_INTERNAL_ERROR;
}
/* VP must be disabled */
if (xive_get_field32(VP_W0_VALID, vp->w0)) {
prlog(PR_ERR, "XIVE: freeing active VP %d\n", vp_id);
return OPAL_XIVE_FREE_ACTIVE;
}
/* Not populated */
if (vp->w1 == 0)
continue;
eq_blk = be32_to_cpu(vp->w1) >> 28;
eq_idx = be32_to_cpu(vp->w1) & 0x0fffffff;
lock(&x->lock);
/* Ensure EQs are disabled and cleaned up. Ideally the caller
* should have done it but we double check it here
*/
for (j = 0; j < NUM_INT_PRIORITIES; j++) {
struct xive *eq_x = xive_from_vc_blk(eq_blk);
struct xive_eq eq, *orig_eq = xive_get_eq(eq_x, eq_idx + j);
if (!xive_get_field32(EQ_W0_VALID, orig_eq->w0))
continue;
prlog(PR_WARNING, "XIVE: freeing VP %d with queue %d active\n",
vp_id, j);
eq = *orig_eq;
xive_cleanup_eq(&eq);
xive_eqc_cache_update(x, eq_blk, eq_idx + j, &eq, true);
}
/* Mark it not populated so we don't try to free it again */
vp->w1 = 0;
if (eq_blk != blk) {
prerror("XIVE: Block mismatch trying to free EQs\n");
unlock(&x->lock);
return OPAL_INTERNAL_ERROR;
}
xive_free_eq_set(x, eq_idx);
unlock(&x->lock);
}
xive_free_vps(vp_base);
return OPAL_SUCCESS;
}
static int64_t opal_xive_alloc_vp_block(uint32_t alloc_order)
{
uint32_t vp_base, eqs, count, i;
int64_t rc;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
prlog(PR_TRACE, "opal_xive_alloc_vp_block(%d)\n", alloc_order);
vp_base = xive_alloc_vps(alloc_order);
if (XIVE_ALLOC_IS_ERR(vp_base)) {
if (vp_base == XIVE_ALLOC_NO_IND)
return OPAL_XIVE_PROVISIONING;
return OPAL_RESOURCE;
}
/* Allocate EQs and initialize VPs */
count = 1 << alloc_order;
for (i = 0; i < count; i++) {
uint32_t vp_id = vp_base + i;
uint32_t blk, idx;
struct xive *x;
struct xive_vp *vp;
if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) {
prerror("XIVE: Couldn't decode VP id %u\n", vp_id);
return OPAL_INTERNAL_ERROR;
}
x = xive_from_pc_blk(blk);
if (!x) {
prerror("XIVE: Instance not found for allocated VP"
" block %d\n", blk);
rc = OPAL_INTERNAL_ERROR;
goto fail;
}
vp = xive_get_vp(x, idx);
if (!vp) {
prerror("XIVE: VP not found after allocation !");
rc = OPAL_INTERNAL_ERROR;
goto fail;
}
/* Allocate EQs, if fails, free the VPs and return */
lock(&x->lock);
eqs = xive_alloc_eq_set(x, false);
unlock(&x->lock);
if (XIVE_ALLOC_IS_ERR(eqs)) {
if (eqs == XIVE_ALLOC_NO_IND)
rc = OPAL_XIVE_PROVISIONING;
else
rc = OPAL_RESOURCE;
goto fail;
}
/* Initialize the VP structure. We don't use a cache watch
* as we have made sure when freeing the entries to scrub
* it out of the cache.
*/
memset(vp, 0, sizeof(*vp));
vp->w1 = cpu_to_be32((blk << 28) | eqs);
}
return vp_base;
fail:
opal_xive_free_vp_block(vp_base);
return rc;
}
static int64_t xive_try_allocate_irq(struct xive *x)
{
int idx, base_idx, max_count, girq;
struct xive_ive *ive;
lock(&x->lock);
base_idx = x->int_ipi_top - x->int_base;
max_count = x->int_hw_bot - x->int_ipi_top;
idx = bitmap_find_zero_bit(*x->ipi_alloc_map, base_idx, max_count);
if (idx < 0) {
unlock(&x->lock);
return OPAL_RESOURCE;
}
bitmap_set_bit(*x->ipi_alloc_map, idx);
girq = x->int_base + idx;
/* Mark the IVE valid. Don't bother with the HW cache, it's
* still masked anyway, the cache will be updated when unmasked
* and configured.
*/
ive = xive_get_ive(x, girq);
if (!ive) {
bitmap_clr_bit(*x->ipi_alloc_map, idx);
unlock(&x->lock);
return OPAL_PARAMETER;
}
ive->w = xive_set_field64(IVE_VALID, 0ul, 1) |
xive_set_field64(IVE_MASKED, 0ul, 1) |
xive_set_field64(IVE_EQ_DATA, 0ul, girq);
unlock(&x->lock);
return girq;
}
static int64_t opal_xive_allocate_irq(uint32_t chip_id)
{
struct proc_chip *chip;
bool try_all = false;
int64_t rc;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (chip_id == OPAL_XIVE_ANY_CHIP) {
try_all = true;
chip_id = this_cpu()->chip_id;
}
chip = get_chip(chip_id);
if (!chip)
return OPAL_PARAMETER;
/* Try initial target chip */
if (!chip->xive)
rc = OPAL_PARAMETER;
else
rc = xive_try_allocate_irq(chip->xive);
if (rc >= 0 || !try_all)
return rc;
/* Failed and we try all... do so */
for_each_chip(chip) {
if (!chip->xive)
continue;
rc = xive_try_allocate_irq(chip->xive);
if (rc >= 0)
break;
}
return rc;
}
static int64_t opal_xive_free_irq(uint32_t girq)
{
struct irq_source *is = irq_find_source(girq);
struct xive_src *s = container_of(is, struct xive_src, is);
struct xive *x = xive_from_isn(girq);
struct xive_ive *ive;
uint32_t idx;
if (xive_mode != XIVE_MODE_EXPL)
return OPAL_WRONG_STATE;
if (!x || !is)
return OPAL_PARAMETER;
idx = GIRQ_TO_IDX(girq);
lock(&x->lock);
ive = xive_get_ive(x, girq);
if (!ive) {
unlock(&x->lock);
return OPAL_PARAMETER;
}
/* Mask the interrupt source */
xive_update_irq_mask(s, girq - s->esb_base, true);
/* Mark the IVE masked and invalid */
ive->w = xive_set_field64(IVE_VALID, 0ul, 1) |
xive_set_field64(IVE_MASKED, 0ul, 1);
xive_ivc_scrub(x, x->block_id, idx);
/* Free it */
if (!bitmap_tst_bit(*x->ipi_alloc_map, idx)) {
unlock(&x->lock);
return OPAL_PARAMETER;
}
bitmap_clr_bit(*x->ipi_alloc_map, idx);
bitmap_clr_bit(*x->int_enabled_map, idx);
unlock(&x->lock);
return OPAL_SUCCESS;
}
static int64_t opal_xive_dump_tm(uint32_t offset, const char *n, uint32_t pir)
{
struct cpu_thread *c = find_cpu_by_pir(pir);
struct xive_cpu_state *xs;
struct xive *x;
void *ind_tm_base;
uint64_t v0,v1;
if (!c)
return OPAL_PARAMETER;
xs = c->xstate;
if (!xs || !xs->tm_ring1)
return OPAL_INTERNAL_ERROR;
x = xs->xive;
ind_tm_base = x->ic_base + (4 << x->ic_shift);
lock(&x->lock);
/* Setup indirect access to the corresponding thread */
xive_regw(x, PC_TCTXT_INDIR0,
PC_TCTXT_INDIR_VALID |
SETFIELD(PC_TCTXT_INDIR_THRDID, 0ull, pir & 0xff));
/* Workaround for HW issue: Need to read the above register
* back before doing the subsequent accesses
*/
xive_regr(x, PC_TCTXT_INDIR0);
v0 = in_be64(ind_tm_base + offset);
if (offset == TM_QW3_HV_PHYS) {
v1 = in_8(ind_tm_base + offset + 8);
v1 <<= 56;
} else {
v1 = in_be32(ind_tm_base + offset + 8);
v1 <<= 32;
}
prlog(PR_INFO, "CPU[%04x]: TM state for QW %s\n", pir, n);
prlog(PR_INFO, "CPU[%04x]: NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
" W2 W3\n", pir);
prlog(PR_INFO, "CPU[%04x]: %02x %02x %02x %02x %02x "
"%02x %02x %02x %08x %08x\n", pir,
(uint8_t)(v0 >> 58) & 0xff, (uint8_t)(v0 >> 48) & 0xff,
(uint8_t)(v0 >> 40) & 0xff, (uint8_t)(v0 >> 32) & 0xff,
(uint8_t)(v0 >> 24) & 0xff, (uint8_t)(v0 >> 16) & 0xff,
(uint8_t)(v0 >> 8) & 0xff, (uint8_t)(v0 ) & 0xff,
(uint32_t)(v1 >> 32) & 0xffffffff,
(uint32_t)(v1 & 0xffffffff));
xive_regw(x, PC_TCTXT_INDIR0, 0);
unlock(&x->lock);
return OPAL_SUCCESS;
}
static int64_t opal_xive_dump_vp(uint32_t vp_id)
{
uint32_t blk, idx;
uint8_t order;
bool group;
struct xive *x;
struct xive_vp *vp;
uint32_t *vpw;
if (!xive_decode_vp(vp_id, &blk, &idx, &order, &group))
return OPAL_PARAMETER;
x = xive_from_vc_blk(blk);
if (!x)
return OPAL_PARAMETER;
vp = xive_get_vp(x, idx);
if (!vp)
return OPAL_PARAMETER;
lock(&x->lock);
xive_vpc_scrub_clean(x, blk, idx);
vpw = ((uint32_t *)vp) + (group ? 8 : 0);
prlog(PR_INFO, "VP[%08x]: 0..3: %08x %08x %08x %08x\n", vp_id,
vpw[0], vpw[1], vpw[2], vpw[3]);
prlog(PR_INFO, "VP[%08x]: 4..7: %08x %08x %08x %08x\n", vp_id,
vpw[4], vpw[5], vpw[6], vpw[7]);
unlock(&x->lock);
return OPAL_SUCCESS;
}
static int64_t __opal_xive_dump_emu(struct xive_cpu_state *xs, uint32_t pir)
{
struct xive_eq *eq;
uint32_t ipi_target;
uint8_t *mm, pq;
prlog(PR_INFO, "CPU[%04x]: XIVE emulation state\n", pir);
prlog(PR_INFO, "CPU[%04x]: cppr=%02x mfrr=%02x pend=%02x"
" prev_cppr=%02x total_irqs=%llx\n", pir,
xs->cppr, xs->mfrr, xs->pending, xs->prev_cppr, xs->total_irqs);
prlog(PR_INFO, "CPU[%04x]: EQ IDX=%x MSK=%x G=%d [%08x %08x %08x > %08x %08x %08x %08x ...]\n",
pir, xs->eqptr, xs->eqmsk, xs->eqgen,
xs->eqbuf[(xs->eqptr - 3) & xs->eqmsk],
xs->eqbuf[(xs->eqptr - 2) & xs->eqmsk],
xs->eqbuf[(xs->eqptr - 1) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 0) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 1) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 2) & xs->eqmsk],
xs->eqbuf[(xs->eqptr + 3) & xs->eqmsk]);
mm = xs->xive->esb_mmio + GIRQ_TO_IDX(xs->ipi_irq) * XIVE_ESB_PAGE_SIZE;
pq = in_8(mm + 0x10800);
if (xive_get_irq_targetting(xs->ipi_irq, &ipi_target, NULL, NULL))
prlog(PR_INFO, "CPU[%04x]: IPI #%08x PQ=%x target=%08x\n",
pir, xs->ipi_irq, pq, ipi_target);
else
prlog(PR_INFO, "CPU[%04x]: IPI #%08x PQ=%x target=??\n",
pir, xs->ipi_irq, pq);
__xive_cache_scrub(xs->xive, xive_cache_eqc, xs->eq_blk,
xs->eq_idx + XIVE_EMULATION_PRIO,
false, false);
eq = xive_get_eq(xs->xive, xs->eq_idx + XIVE_EMULATION_PRIO);
prlog(PR_INFO, "CPU[%04x]: EQ @%p W0=%08x W1=%08x qbuf @%p\n",
pir, eq, be32_to_cpu(eq->w0), be32_to_cpu(eq->w1), xs->eqbuf);
return OPAL_SUCCESS;
}
static int64_t opal_xive_dump_emu(uint32_t pir)
{
struct cpu_thread *c = find_cpu_by_pir(pir);
struct xive_cpu_state *xs;
int64_t rc;
if (!c)
return OPAL_PARAMETER;
xs = c->xstate;
if (!xs) {
prlog(PR_INFO, " <none>\n");
return OPAL_SUCCESS;
}
lock(&xs->lock);
rc = __opal_xive_dump_emu(xs, pir);
log_print(xs);
unlock(&xs->lock);
return rc;
}
static int64_t opal_xive_sync_irq_src(uint32_t girq)
{
struct xive *x = xive_from_isn(girq);
if (!x)
return OPAL_PARAMETER;
return xive_sync(x);
}
static int64_t opal_xive_sync_irq_target(uint32_t girq)
{
uint32_t target, vp_blk;
struct xive *x;
if (!xive_get_irq_targetting(girq, &target, NULL, NULL))
return OPAL_PARAMETER;
if (!xive_decode_vp(target, &vp_blk, NULL, NULL, NULL))
return OPAL_PARAMETER;
x = xive_from_pc_blk(vp_blk);
if (!x)
return OPAL_PARAMETER;
return xive_sync(x);
}
static int64_t opal_xive_sync(uint32_t type, uint32_t id)
{
int64_t rc = OPAL_SUCCESS;;
if (type & XIVE_SYNC_EAS)
rc = opal_xive_sync_irq_src(id);
if (rc)
return rc;
if (type & XIVE_SYNC_QUEUE)
rc = opal_xive_sync_irq_target(id);
if (rc)
return rc;
/* Add more ... */
return rc;
}
static int64_t opal_xive_dump(uint32_t type, uint32_t id)
{
switch (type) {
case XIVE_DUMP_TM_HYP:
return opal_xive_dump_tm(TM_QW3_HV_PHYS, "PHYS", id);
case XIVE_DUMP_TM_POOL:
return opal_xive_dump_tm(TM_QW2_HV_POOL, "POOL", id);
case XIVE_DUMP_TM_OS:
return opal_xive_dump_tm(TM_QW1_OS, "OS ", id);
case XIVE_DUMP_TM_USER:
return opal_xive_dump_tm(TM_QW0_USER, "USER", id);
case XIVE_DUMP_VP:
return opal_xive_dump_vp(id);
case XIVE_DUMP_EMU_STATE:
return opal_xive_dump_emu(id);
default:
return OPAL_PARAMETER;
}
}
static void xive_init_globals(void)
{
uint32_t i;
for (i = 0; i < XIVE_MAX_CHIPS; i++)
xive_block_to_chip[i] = XIVE_INVALID_CHIP;
}
void init_xive(void)
{
struct dt_node *np;
struct proc_chip *chip;
struct cpu_thread *cpu;
struct xive *one_xive;
bool first = true;
/* Look for xive nodes and do basic inits */
dt_for_each_compatible(dt_root, np, "ibm,power9-xive-x") {
struct xive *x;
/* Initialize some global stuff */
if (first)
xive_init_globals();
/* Create/initialize the xive instance */
x = init_one_xive(np);
if (first)
one_xive = x;
first = false;
}
if (first)
return;
xive_mode = XIVE_MODE_EMU;
/* Init VP allocator */
xive_init_vp_allocator();
/* Create a device-tree node for Linux use */
xive_create_mmio_dt_node(one_xive);
/* Some inits must be done after all xive have been created
* such as setting up the forwarding ports
*/
for_each_chip(chip) {
if (chip->xive)
late_init_one_xive(chip->xive);
}
/* Initialize XICS emulation per-cpu structures */
for_each_present_cpu(cpu) {
xive_init_cpu(cpu);
}
/* Add interrupts propertie to each CPU node */
for_each_present_cpu(cpu) {
if (cpu_is_thread0(cpu))
xive_init_cpu_properties(cpu);
}
/* Calling boot CPU */
xive_cpu_callin(this_cpu());
/* Register XICS emulation calls */
opal_register(OPAL_INT_GET_XIRR, opal_xive_get_xirr, 2);
opal_register(OPAL_INT_SET_CPPR, opal_xive_set_cppr, 1);
opal_register(OPAL_INT_EOI, opal_xive_eoi, 1);
opal_register(OPAL_INT_SET_MFRR, opal_xive_set_mfrr, 2);
/* Register XIVE exploitation calls */
opal_register(OPAL_XIVE_RESET, opal_xive_reset, 1);
opal_register(OPAL_XIVE_GET_IRQ_INFO, opal_xive_get_irq_info, 6);
opal_register(OPAL_XIVE_GET_IRQ_CONFIG, opal_xive_get_irq_config, 4);
opal_register(OPAL_XIVE_SET_IRQ_CONFIG, opal_xive_set_irq_config, 4);
opal_register(OPAL_XIVE_GET_QUEUE_INFO, opal_xive_get_queue_info, 7);
opal_register(OPAL_XIVE_SET_QUEUE_INFO, opal_xive_set_queue_info, 5);
opal_register(OPAL_XIVE_DONATE_PAGE, opal_xive_donate_page, 2);
opal_register(OPAL_XIVE_ALLOCATE_IRQ, opal_xive_allocate_irq, 1);
opal_register(OPAL_XIVE_FREE_IRQ, opal_xive_free_irq, 1);
opal_register(OPAL_XIVE_ALLOCATE_VP_BLOCK, opal_xive_alloc_vp_block, 1);
opal_register(OPAL_XIVE_FREE_VP_BLOCK, opal_xive_free_vp_block, 1);
opal_register(OPAL_XIVE_GET_VP_INFO, opal_xive_get_vp_info, 5);
opal_register(OPAL_XIVE_SET_VP_INFO, opal_xive_set_vp_info, 3);
opal_register(OPAL_XIVE_SYNC, opal_xive_sync, 2);
opal_register(OPAL_XIVE_DUMP, opal_xive_dump, 2);
opal_register(OPAL_XIVE_GET_QUEUE_STATE, opal_xive_get_queue_state, 4);
opal_register(OPAL_XIVE_SET_QUEUE_STATE, opal_xive_set_queue_state, 4);
opal_register(OPAL_XIVE_GET_VP_STATE, opal_xive_get_vp_state, 2);
}
|