1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
|
/* Copyright 2013-2016 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* PHB4 support
*
*/
/*
*
* FIXME:
* More stuff for EEH support:
* - PBCQ error reporting interrupt
* - I2C-based power management (replacing SHPC)
* - Directly detect fenced PHB through one dedicated HW reg
*/
#undef NO_ASB
#undef LOG_CFG
#include <skiboot.h>
#include <io.h>
#include <timebase.h>
#include <pci.h>
#include <pci-cfg.h>
#include <pci-slot.h>
#include <vpd.h>
#include <interrupts.h>
#include <opal.h>
#include <cpu.h>
#include <device.h>
#include <ccan/str/str.h>
#include <ccan/array_size/array_size.h>
#include <xscom.h>
#include <affinity.h>
#include <phb4.h>
#include <phb4-regs.h>
#include <capp.h>
#include <fsp.h>
#include <chip.h>
#include <chiptod.h>
#include <xive.h>
#include <xscom-p9-regs.h>
#include <phys-map.h>
#include <nvram.h>
/* Enable this to disable error interrupts for debug purposes */
#define DISABLE_ERR_INTS
static void phb4_init_hw(struct phb4 *p, bool first_init);
static bool phb4_init_rc_cfg(struct phb4 *p);
#define PHBDBG(p, fmt, a...) prlog(PR_DEBUG, "PHB#%04x[%d:%d]: " fmt, \
(p)->phb.opal_id, (p)->chip_id, \
(p)->index, ## a)
#define PHBINF(p, fmt, a...) prlog(PR_INFO, "PHB#%04x[%d:%d]: " fmt, \
(p)->phb.opal_id, (p)->chip_id, \
(p)->index, ## a)
#define PHBERR(p, fmt, a...) prlog(PR_ERR, "PHB#%04x[%d:%d]: " fmt, \
(p)->phb.opal_id, (p)->chip_id, \
(p)->index, ## a)
#ifdef LOG_CFG
#define PHBLOGCFG(p, fmt, a...) PHBDBG(p, fmt, ## a)
#else
#define PHBLOGCFG(p, fmt, a...) do {} while (0)
#endif
/* Note: The "ASB" name is historical, practically this means access via
* the XSCOM backdoor
*/
static inline uint64_t phb4_read_reg_asb(struct phb4 *p, uint32_t offset)
{
#ifdef NO_ASB
return in_be64(p->regs + offset);
#else
int64_t rc;
uint64_t addr, val;
/* Address register: must use 4 bytes for built-in config space.
*
* This path isn't usable for outbound configuration space
*/
if ((offset & 0xfffffffc) == PHB_CONFIG_DATA) {
PHBERR(p, "XSCOM access to CONFIG_DATA unsupported\n");
return -1ull;
}
addr = XETU_HV_IND_ADDR_VALID | offset;
if (offset >= 0x1000 && offset < 0x1800)
addr |= XETU_HV_IND_ADDR_4B;
rc = xscom_write(p->chip_id, p->etu_xscom + XETU_HV_IND_ADDRESS, addr);
if (rc != 0) {
PHBERR(p, "XSCOM error addressing register 0x%x\n", offset);
return -1ull;
}
rc = xscom_read(p->chip_id, p->etu_xscom + XETU_HV_IND_DATA, &val);
if (rc != 0) {
PHBERR(p, "XSCOM error reading register 0x%x\n", offset);
return -1ull;
}
return val;
#endif
}
static inline void phb4_write_reg_asb(struct phb4 *p,
uint32_t offset, uint64_t val)
{
#ifdef NO_ASB
out_be64(p->regs + offset, val);
#else
int64_t rc;
uint64_t addr;
/* Address register: must use 4 bytes for built-in config space.
*
* This path isn't usable for outbound configuration space
*/
if ((offset & 0xfffffffc) == PHB_CONFIG_DATA) {
PHBERR(p, "XSCOM access to CONFIG_DATA unsupported\n");
return;
}
addr = XETU_HV_IND_ADDR_VALID | offset;
if (offset >= 0x1000 && offset < 0x1800)
addr |= XETU_HV_IND_ADDR_4B;
rc = xscom_write(p->chip_id, p->etu_xscom + XETU_HV_IND_ADDRESS, addr);
if (rc != 0) {
PHBERR(p, "XSCOM error addressing register 0x%x\n", offset);
return;
}
rc = xscom_write(p->chip_id, p->etu_xscom + XETU_HV_IND_DATA, val);
if (rc != 0) {
PHBERR(p, "XSCOM error writing register 0x%x\n", offset);
return;
}
#endif
}
/* Helper to select an IODA table entry */
static inline void phb4_ioda_sel(struct phb4 *p, uint32_t table,
uint32_t addr, bool autoinc)
{
out_be64(p->regs + PHB_IODA_ADDR,
(autoinc ? PHB_IODA_AD_AUTOINC : 0) |
SETFIELD(PHB_IODA_AD_TSEL, 0ul, table) |
SETFIELD(PHB_IODA_AD_TADR, 0ul, addr));
}
/* Check if AIB is fenced via PBCQ NFIR */
static bool phb4_fenced(struct phb4 *p)
{
uint64_t nfir;
xscom_read(p->chip_id, p->pe_stk_xscom + 0x0, &nfir);
if (nfir & PPC_BIT(16)) {
p->flags |= PHB4_AIB_FENCED;
p->state = PHB4_STATE_FENCED;
return true;
}
return false;
}
/*
* Configuration space access
*
* The PHB lock is assumed to be already held
*/
static int64_t phb4_pcicfg_check(struct phb4 *p, uint32_t bdfn,
uint32_t offset, uint32_t size,
uint8_t *pe)
{
uint32_t sm = size - 1;
if (offset > 0xfff || bdfn > 0xffff)
return OPAL_PARAMETER;
if (offset & sm)
return OPAL_PARAMETER;
/* The root bus only has a device at 0 and we get into an
* error state if we try to probe beyond that, so let's
* avoid that and just return an error to Linux
*/
if ((bdfn >> 8) == 0 && (bdfn & 0xff))
return OPAL_HARDWARE;
/* Check PHB state */
if (p->state == PHB4_STATE_BROKEN)
return OPAL_HARDWARE;
/* Fetch the PE# from cache */
*pe = p->rte_cache[bdfn];
return OPAL_SUCCESS;
}
static int64_t phb4_rc_read(struct phb4 *p, uint32_t offset, uint8_t sz,
void *data)
{
uint32_t reg = offset & ~3;
uint32_t oval;
/* Some registers are handled locally */
switch (reg) {
/* Bridge base/limit registers are cached here as HW
* doesn't implement them (it hard codes values that
* will confuse a proper PCI implementation).
*/
case PCI_CFG_MEM_BASE: /* Includes PCI_CFG_MEM_LIMIT */
oval = p->rc_cache[(reg - 0x20) >> 2] & 0xfff0fff0;
break;
case PCI_CFG_PREF_MEM_BASE: /* Includes PCI_CFG_PREF_MEM_LIMIT */
oval = p->rc_cache[(reg - 0x20) >> 2] & 0xfff0fff0;
oval |= 0x00010001;
break;
case PCI_CFG_IO_BASE_U16: /* Includes PCI_CFG_IO_LIMIT_U16 */
oval = 0;
break;
case PCI_CFG_PREF_MEM_BASE_U32:
case PCI_CFG_PREF_MEM_LIMIT_U32:
oval = p->rc_cache[(reg - 0x20) >> 2];
break;
default:
oval = 0xffffffff; /* default if offset too big */
if (reg < PHB_RC_CONFIG_SIZE)
/* XXX Add ASB support ? */
oval = in_le32(p->regs + PHB_RC_CONFIG_BASE + reg);
}
switch (sz) {
case 1:
offset &= 3;
*((uint8_t *)data) = (oval >> (offset << 3)) & 0xff;
break;
case 2:
offset &= 2;
*((uint16_t *)data) = (oval >> (offset << 3)) & 0xffff;
break;
case 4:
*((uint32_t *)data) = oval;
break;
default:
assert(false);
}
return OPAL_SUCCESS;
}
static int64_t phb4_rc_write(struct phb4 *p, uint32_t offset, uint8_t sz,
uint32_t val)
{
uint32_t reg = offset & ~3;
uint32_t old, mask, shift;
int64_t rc;
if (reg > PHB_RC_CONFIG_SIZE)
return OPAL_SUCCESS;
/* If size isn't 4-bytes, do a RMW cycle
*
* XXX TODO: Filter out registers that do write-1-to-clear !!!
*/
if (sz < 4) {
rc = phb4_rc_read(p, reg, 4, &old);
if (rc != OPAL_SUCCESS)
return rc;
if (sz == 1) {
shift = (offset & 3) << 3;
mask = 0xff << shift;
val = (old & ~mask) | ((val & 0xff) << shift);
} else {
shift = (offset & 2) << 3;
mask = 0xffff << shift;
val = (old & ~mask) | ((val & 0xffff) << shift);
}
}
/* Some registers are handled locally */
switch (reg) {
/* See comment in phb4_rc_read() */
case PCI_CFG_MEM_BASE: /* Includes PCI_CFG_MEM_LIMIT */
case PCI_CFG_PREF_MEM_BASE: /* Includes PCI_CFG_PREF_MEM_LIMIT */
case PCI_CFG_PREF_MEM_BASE_U32:
case PCI_CFG_PREF_MEM_LIMIT_U32:
p->rc_cache[(reg - 0x20) >> 2] = val;
break;
case PCI_CFG_IO_BASE_U16: /* Includes PCI_CFG_IO_LIMIT_U16 */
break;
default:
/* XXX Add ASB support ? */
/* Workaround PHB config space enable */
if ((p->rev == PHB4_REV_NIMBUS_DD10) && (reg == PCI_CFG_CMD))
val |= PCI_CFG_CMD_MEM_EN | PCI_CFG_CMD_BUS_MASTER_EN;
out_le32(p->regs + PHB_RC_CONFIG_BASE + reg, val);
}
return OPAL_SUCCESS;
}
static int64_t phb4_pcicfg_read(struct phb4 *p, uint32_t bdfn,
uint32_t offset, uint32_t size,
void *data)
{
uint64_t addr, val64;
int64_t rc;
uint8_t pe;
bool use_asb = false;
rc = phb4_pcicfg_check(p, bdfn, offset, size, &pe);
if (rc)
return rc;
if (p->flags & PHB4_AIB_FENCED) {
if (!(p->flags & PHB4_CFG_USE_ASB))
return OPAL_HARDWARE;
use_asb = true;
} else if ((p->flags & PHB4_CFG_BLOCKED) && bdfn != 0) {
return OPAL_HARDWARE;
}
/* Handle per-device filters */
rc = pci_handle_cfg_filters(&p->phb, bdfn, offset, size,
(uint32_t *)data, false);
if (rc != OPAL_PARTIAL)
return rc;
/* Handle root complex MMIO based config space */
if (bdfn == 0)
return phb4_rc_read(p, offset, size, data);
addr = PHB_CA_ENABLE;
addr = SETFIELD(PHB_CA_BDFN, addr, bdfn);
addr = SETFIELD(PHB_CA_REG, addr, offset & ~3u);
addr = SETFIELD(PHB_CA_PE, addr, pe);
if (use_asb) {
phb4_write_reg_asb(p, PHB_CONFIG_ADDRESS, addr);
sync();
val64 = bswap_64(phb4_read_reg_asb(p, PHB_CONFIG_DATA));
switch(size) {
case 1:
*((uint8_t *)data) = val64 >> (8 * (offset & 3));
break;
case 2:
*((uint16_t *)data) = val64 >> (8 * (offset & 2));
break;
case 4:
*((uint32_t *)data) = val64;
break;
default:
return OPAL_PARAMETER;
}
} else {
out_be64(p->regs + PHB_CONFIG_ADDRESS, addr);
switch(size) {
case 1:
*((uint8_t *)data) =
in_8(p->regs + PHB_CONFIG_DATA + (offset & 3));
PHBLOGCFG(p, "CFG8 Rd %02x=%02x\n",
offset, *((uint8_t *)data));
break;
case 2:
*((uint16_t *)data) =
in_le16(p->regs + PHB_CONFIG_DATA + (offset & 2));
PHBLOGCFG(p, "CFG16 Rd %02x=%04x\n",
offset, *((uint16_t *)data));
break;
case 4:
*((uint32_t *)data) = in_le32(p->regs + PHB_CONFIG_DATA);
PHBLOGCFG(p, "CFG32 Rd %02x=%08x\n",
offset, *((uint32_t *)data));
break;
default:
return OPAL_PARAMETER;
}
}
return OPAL_SUCCESS;
}
#define PHB4_PCI_CFG_READ(size, type) \
static int64_t phb4_pcicfg_read##size(struct phb *phb, uint32_t bdfn, \
uint32_t offset, type *data) \
{ \
struct phb4 *p = phb_to_phb4(phb); \
\
/* Initialize data in case of error */ \
*data = (type)0xffffffff; \
return phb4_pcicfg_read(p, bdfn, offset, sizeof(type), data); \
}
static int64_t phb4_pcicfg_write(struct phb4 *p, uint32_t bdfn,
uint32_t offset, uint32_t size,
uint32_t data)
{
uint64_t addr;
int64_t rc;
uint8_t pe;
bool use_asb = false;
rc = phb4_pcicfg_check(p, bdfn, offset, size, &pe);
if (rc)
return rc;
if (p->flags & PHB4_AIB_FENCED) {
if (!(p->flags & PHB4_CFG_USE_ASB))
return OPAL_HARDWARE;
use_asb = true;
} else if ((p->flags & PHB4_CFG_BLOCKED) && bdfn != 0) {
return OPAL_HARDWARE;
}
/* Handle per-device filters */
rc = pci_handle_cfg_filters(&p->phb, bdfn, offset, size,
(uint32_t *)&data, true);
if (rc != OPAL_PARTIAL)
return rc;
/* Handle root complex MMIO based config space */
if (bdfn == 0)
return phb4_rc_write(p, offset, size, data);
addr = PHB_CA_ENABLE;
addr = SETFIELD(PHB_CA_BDFN, addr, bdfn);
addr = SETFIELD(PHB_CA_REG, addr, offset & ~3u);
addr = SETFIELD(PHB_CA_PE, addr, pe);
if (use_asb) {
/* We don't support ASB config space writes */
return OPAL_UNSUPPORTED;
} else {
out_be64(p->regs + PHB_CONFIG_ADDRESS, addr);
switch(size) {
case 1:
out_8(p->regs + PHB_CONFIG_DATA + (offset & 3), data);
break;
case 2:
out_le16(p->regs + PHB_CONFIG_DATA + (offset & 2), data);
break;
case 4:
out_le32(p->regs + PHB_CONFIG_DATA, data);
break;
default:
return OPAL_PARAMETER;
}
}
PHBLOGCFG(p, "CFG%d Wr %02x=%08x\n", 8 * size, offset, data);
return OPAL_SUCCESS;
}
#define PHB4_PCI_CFG_WRITE(size, type) \
static int64_t phb4_pcicfg_write##size(struct phb *phb, uint32_t bdfn, \
uint32_t offset, type data) \
{ \
struct phb4 *p = phb_to_phb4(phb); \
\
return phb4_pcicfg_write(p, bdfn, offset, sizeof(type), data); \
}
PHB4_PCI_CFG_READ(8, u8)
PHB4_PCI_CFG_READ(16, u16)
PHB4_PCI_CFG_READ(32, u32)
PHB4_PCI_CFG_WRITE(8, u8)
PHB4_PCI_CFG_WRITE(16, u16)
PHB4_PCI_CFG_WRITE(32, u32)
static uint8_t phb4_choose_bus(struct phb *phb __unused,
struct pci_device *bridge __unused,
uint8_t candidate, uint8_t *max_bus __unused,
bool *use_max)
{
/* Use standard bus number selection */
*use_max = false;
return candidate;
}
static int64_t phb4_get_reserved_pe_number(struct phb *phb)
{
struct phb4 *p = phb_to_phb4(phb);
return PHB4_RESERVED_PE_NUM(p);
}
static void phb4_root_port_init(struct phb *phb, struct pci_device *dev,
int ecap, int aercap)
{
uint16_t bdfn = dev->bdfn;
uint16_t val16;
uint32_t val32;
/*
* Use the PHB's callback so that UTL events will be masked or
* unmasked when the link is down or up.
*/
if (dev->slot && dev->slot->ops.prepare_link_change &&
phb->slot && phb->slot->ops.prepare_link_change)
dev->slot->ops.prepare_link_change =
phb->slot->ops.prepare_link_change;
// FIXME: check recommended init values for phb4
/* Enable SERR and parity checking */
pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16);
val16 |= (PCI_CFG_CMD_SERR_EN | PCI_CFG_CMD_PERR_RESP);
pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16);
/* Enable reporting various errors */
if (!ecap) return;
pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16);
val16 |= (PCICAP_EXP_DEVCTL_CE_REPORT |
PCICAP_EXP_DEVCTL_NFE_REPORT |
PCICAP_EXP_DEVCTL_FE_REPORT |
PCICAP_EXP_DEVCTL_UR_REPORT);
pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16);
if (!aercap) return;
/* Mask various unrecoverable errors */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, &val32);
val32 |= (PCIECAP_AER_UE_MASK_POISON_TLP |
PCIECAP_AER_UE_MASK_COMPL_TIMEOUT |
PCIECAP_AER_UE_MASK_COMPL_ABORT |
PCIECAP_AER_UE_MASK_ECRC);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, val32);
/* Report various unrecoverable errors as fatal errors */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, &val32);
val32 |= (PCIECAP_AER_UE_SEVERITY_DLLP |
PCIECAP_AER_UE_SEVERITY_SURPRISE_DOWN |
PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT |
PCIECAP_AER_UE_SEVERITY_UNEXP_COMPL |
PCIECAP_AER_UE_SEVERITY_RECV_OVFLOW |
PCIECAP_AER_UE_SEVERITY_MALFORMED_TLP);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, val32);
/* Mask various recoverable errors */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, &val32);
val32 |= PCIECAP_AER_CE_MASK_ADV_NONFATAL;
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, val32);
/* Enable ECRC check */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32);
val32 |= (PCIECAP_AER_CAPCTL_ECRCG_EN |
PCIECAP_AER_CAPCTL_ECRCC_EN);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32);
/* Enable all error reporting */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_RERR_CMD, &val32);
val32 |= (PCIECAP_AER_RERR_CMD_FE |
PCIECAP_AER_RERR_CMD_NFE |
PCIECAP_AER_RERR_CMD_CE);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_RERR_CMD, val32);
}
static void phb4_switch_port_init(struct phb *phb,
struct pci_device *dev,
int ecap, int aercap)
{
uint16_t bdfn = dev->bdfn;
uint16_t val16;
uint32_t val32;
// FIXME: update AER settings for phb4
/* Enable SERR and parity checking and disable INTx */
pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16);
val16 |= (PCI_CFG_CMD_PERR_RESP |
PCI_CFG_CMD_SERR_EN |
PCI_CFG_CMD_INTx_DIS);
pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16);
/* Disable partity error and enable system error */
pci_cfg_read16(phb, bdfn, PCI_CFG_BRCTL, &val16);
val16 &= ~PCI_CFG_BRCTL_PERR_RESP_EN;
val16 |= PCI_CFG_BRCTL_SERR_EN;
pci_cfg_write16(phb, bdfn, PCI_CFG_BRCTL, val16);
/* Enable reporting various errors */
if (!ecap) return;
pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16);
val16 |= (PCICAP_EXP_DEVCTL_CE_REPORT |
PCICAP_EXP_DEVCTL_NFE_REPORT |
PCICAP_EXP_DEVCTL_FE_REPORT);
/* HW279570 - Disable reporting of correctable errors */
val16 &= ~PCICAP_EXP_DEVCTL_CE_REPORT;
pci_cfg_write16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, val16);
/* Unmask all unrecoverable errors */
if (!aercap) return;
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_MASK, 0x0);
/* Severity of unrecoverable errors */
if (dev->dev_type == PCIE_TYPE_SWITCH_UPPORT)
val32 = (PCIECAP_AER_UE_SEVERITY_DLLP |
PCIECAP_AER_UE_SEVERITY_SURPRISE_DOWN |
PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT |
PCIECAP_AER_UE_SEVERITY_RECV_OVFLOW |
PCIECAP_AER_UE_SEVERITY_MALFORMED_TLP |
PCIECAP_AER_UE_SEVERITY_INTERNAL);
else
val32 = (PCIECAP_AER_UE_SEVERITY_FLOW_CTL_PROT |
PCIECAP_AER_UE_SEVERITY_INTERNAL);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_UE_SEVERITY, val32);
/*
* Mask various correctable errors
*/
val32 = PCIECAP_AER_CE_MASK_ADV_NONFATAL;
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CE_MASK, val32);
/* Enable ECRC generation and disable ECRC check */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32);
val32 |= PCIECAP_AER_CAPCTL_ECRCG_EN;
val32 &= ~PCIECAP_AER_CAPCTL_ECRCC_EN;
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32);
}
static void phb4_endpoint_init(struct phb *phb,
struct pci_device *dev,
int ecap, int aercap)
{
uint16_t bdfn = dev->bdfn;
uint16_t val16;
uint32_t val32;
/* Enable SERR and parity checking */
pci_cfg_read16(phb, bdfn, PCI_CFG_CMD, &val16);
val16 |= (PCI_CFG_CMD_PERR_RESP |
PCI_CFG_CMD_SERR_EN);
pci_cfg_write16(phb, bdfn, PCI_CFG_CMD, val16);
/* Enable reporting various errors */
if (!ecap) return;
pci_cfg_read16(phb, bdfn, ecap + PCICAP_EXP_DEVCTL, &val16);
val16 &= ~PCICAP_EXP_DEVCTL_CE_REPORT;
val16 |= (PCICAP_EXP_DEVCTL_NFE_REPORT |
PCICAP_EXP_DEVCTL_FE_REPORT |
PCICAP_EXP_DEVCTL_UR_REPORT);
/* Enable ECRC generation and check */
pci_cfg_read32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, &val32);
val32 |= (PCIECAP_AER_CAPCTL_ECRCG_EN |
PCIECAP_AER_CAPCTL_ECRCC_EN);
pci_cfg_write32(phb, bdfn, aercap + PCIECAP_AER_CAPCTL, val32);
}
static int64_t phb4_pcicfg_no_dstate(void *dev,
struct pci_cfg_reg_filter *pcrf,
uint32_t offset, uint32_t len,
uint32_t *data, bool write)
{
uint32_t loff = offset - pcrf->start;
/* Disable D-state change on children of the PHB. For now we
* simply block all writes to the PM control/status
*/
if (write && loff >= 4 && loff < 6)
return OPAL_SUCCESS;
return OPAL_PARTIAL;
}
static void phb4_check_device_quirks(struct phb *phb, struct pci_device *dev)
{
/* Some special adapter tweaks for devices directly under the PHB */
if (dev->primary_bus != 1)
return;
/* PM quirk */
if (!pci_has_cap(dev, PCI_CFG_CAP_ID_PM, false))
return;
pci_add_cfg_reg_filter(dev,
pci_cap(dev, PCI_CFG_CAP_ID_PM, false), 8,
PCI_REG_FLAG_WRITE,
phb4_pcicfg_no_dstate);
}
static int phb4_device_init(struct phb *phb, struct pci_device *dev,
void *data __unused)
{
int ecap, aercap;
/* Setup special device quirks */
phb4_check_device_quirks(phb, dev);
/* Common initialization for the device */
pci_device_init(phb, dev);
ecap = pci_cap(dev, PCI_CFG_CAP_ID_EXP, false);
aercap = pci_cap(dev, PCIECAP_ID_AER, true);
if (dev->dev_type == PCIE_TYPE_ROOT_PORT)
phb4_root_port_init(phb, dev, ecap, aercap);
else if (dev->dev_type == PCIE_TYPE_SWITCH_UPPORT ||
dev->dev_type == PCIE_TYPE_SWITCH_DNPORT)
phb4_switch_port_init(phb, dev, ecap, aercap);
else
phb4_endpoint_init(phb, dev, ecap, aercap);
return 0;
}
static int64_t phb4_pci_reinit(struct phb *phb, uint64_t scope, uint64_t data)
{
struct pci_device *pd;
uint16_t bdfn = data;
int ret;
if (scope != OPAL_REINIT_PCI_DEV)
return OPAL_PARAMETER;
pd = pci_find_dev(phb, bdfn);
if (!pd)
return OPAL_PARAMETER;
ret = phb4_device_init(phb, pd, NULL);
if (ret)
return OPAL_HARDWARE;
return OPAL_SUCCESS;
}
/* Clear IODA cache tables */
static void phb4_init_ioda_cache(struct phb4 *p)
{
uint32_t i;
uint64_t mbt0;
/*
* RTT and PELTV. RTE should be 0xFF's to indicate
* invalid PE# for the corresponding RID.
*
* Note: Instead we set all RTE entries to 0x00 to
* work around a problem where PE lookups might be
* done before Linux has established valid PE's
* (during PCI probing). We can revisit that once/if
* Linux has been fixed to always setup valid PEs.
*
* The value 0x00 corresponds to the default PE# Linux
* uses to check for config space freezes before it
* has assigned PE# to busses.
*
* WARNING: Additionally, we need to be careful, there's
* a HW issue, if we get an MSI on an RTT entry that is
* FF, things will go bad. We need to ensure we don't
* ever let a live FF RTT even temporarily when resetting
* for EEH etc... (HW278969).
*/
for (i = 0; i < ARRAY_SIZE(p->rte_cache); i++)
p->rte_cache[i] = PHB4_RESERVED_PE_NUM(p);
memset(p->peltv_cache, 0x0, sizeof(p->peltv_cache));
memset(p->tve_cache, 0x0, sizeof(p->tve_cache));
/* Since we configure the PHB4 with half the PE's, we need
* to give the illusion that we support only 128/256 segments
* half the segments.
*
* To achieve that, we configure *all* the M64 windows to use
* column 1 of the MDT, which is itself set so that segment 0 and 1
* map to PE0, 2 and 3 to PE1 etc...
*
* Column 0, 2 and 3 are left all 0, column 0 will be used for M32
* and configured by the OS.
*/
mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT);
mbt0 = SETFIELD(IODA3_MBT0_MDT_COLUMN, mbt0, 1);
for (i = 0; i < p->mbt_size; i++) {
p->mbt_cache[i][0] = mbt0;
p->mbt_cache[i][1] = 0;
}
for (i = 0; i < p->max_num_pes; i++)
p->mdt_cache[i] = SETFIELD(IODA3_MDT_PE_B, 0ull, i >> 1);
/* XXX Should we mask them ? */
memset(p->mist_cache, 0x0, sizeof(p->mist_cache));
/* Initialise M32 bar using MDT entry 0 */
p->mbt_cache[0][0] = IODA3_MBT0_TYPE_M32 |
SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT) |
SETFIELD(IODA3_MBT0_MDT_COLUMN, 0ull, 0) |
(p->mm1_base & IODA3_MBT0_BASE_ADDR);
p->mbt_cache[0][1] = IODA3_MBT1_ENABLE |
((~(M32_PCI_SIZE - 1)) & IODA3_MBT1_MASK);
}
static int64_t phb4_wait_bit(struct phb4 *p, uint32_t reg,
uint64_t mask, uint64_t want_val)
{
uint64_t val;
/* Wait for all pending TCE kills to complete
*
* XXX Add timeout...
*/
/* XXX SIMICS is nasty... */
if ((reg == PHB_TCE_KILL || reg == PHB_DMARD_SYNC) &&
chip_quirk(QUIRK_SIMICS))
return OPAL_SUCCESS;
for (;;) {
val = in_be64(p->regs + reg);
if (val == 0xffffffffffffffffull) {
/* XXX Fenced ? */
return OPAL_HARDWARE;
}
if ((val & mask) == want_val)
break;
}
return OPAL_SUCCESS;
}
static int64_t phb4_tce_kill(struct phb *phb, uint32_t kill_type,
uint64_t pe_number, uint32_t tce_size,
uint64_t dma_addr, uint32_t npages)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t val;
int64_t rc;
sync();
switch(kill_type) {
case OPAL_PCI_TCE_KILL_PAGES:
while (npages--) {
/* Wait for a slot in the HW kill queue */
rc = phb4_wait_bit(p, PHB_TCE_KILL,
PHB_TCE_KILL_ALL |
PHB_TCE_KILL_PE |
PHB_TCE_KILL_ONE, 0);
if (rc)
return rc;
val = SETFIELD(PHB_TCE_KILL_PENUM, dma_addr, pe_number);
/* Set appropriate page size */
switch(tce_size) {
case 0x1000:
if (dma_addr & 0xf000000000000fffull)
return OPAL_PARAMETER;
break;
case 0x10000:
if (dma_addr & 0xf00000000000ffffull)
return OPAL_PARAMETER;
val |= PHB_TCE_KILL_PSEL | PHB_TCE_KILL_64K;
break;
case 0x200000:
if (dma_addr & 0xf0000000001fffffull)
return OPAL_PARAMETER;
val |= PHB_TCE_KILL_PSEL | PHB_TCE_KILL_2M;
break;
case 0x40000000:
if (dma_addr & 0xf00000003fffffffull)
return OPAL_PARAMETER;
val |= PHB_TCE_KILL_PSEL | PHB_TCE_KILL_1G;
break;
default:
return OPAL_PARAMETER;
}
/* Perform kill */
out_be64(p->regs + PHB_TCE_KILL, PHB_TCE_KILL_ONE | val);
/* Next page */
dma_addr += tce_size;
}
break;
case OPAL_PCI_TCE_KILL_PE:
/* Wait for a slot in the HW kill queue */
rc = phb4_wait_bit(p, PHB_TCE_KILL,
PHB_TCE_KILL_ALL |
PHB_TCE_KILL_PE |
PHB_TCE_KILL_ONE, 0);
if (rc)
return rc;
/* Perform kill */
out_be64(p->regs + PHB_TCE_KILL, PHB_TCE_KILL_PE |
SETFIELD(PHB_TCE_KILL_PENUM, 0ull, pe_number));
break;
case OPAL_PCI_TCE_KILL_ALL:
/* Wait for a slot in the HW kill queue */
rc = phb4_wait_bit(p, PHB_TCE_KILL,
PHB_TCE_KILL_ALL |
PHB_TCE_KILL_PE |
PHB_TCE_KILL_ONE, 0);
if (rc)
return rc;
/* Perform kill */
out_be64(p->regs + PHB_TCE_KILL, PHB_TCE_KILL_ALL);
break;
default:
return OPAL_PARAMETER;
}
/* Start DMA sync process */
out_be64(p->regs + PHB_DMARD_SYNC, PHB_DMARD_SYNC_START);
/* Wait for kill to complete */
rc = phb4_wait_bit(p, PHB_Q_DMA_R, PHB_Q_DMA_R_TCE_KILL_STATUS, 0);
if (rc)
return rc;
/* Wait for DMA sync to complete */
return phb4_wait_bit(p, PHB_DMARD_SYNC,
PHB_DMARD_SYNC_COMPLETE,
PHB_DMARD_SYNC_COMPLETE);
}
/* phb4_ioda_reset - Reset the IODA tables
*
* @purge: If true, the cache is cleared and the cleared values
* are applied to HW. If false, the cached values are
* applied to HW
*
* This reset the IODA tables in the PHB. It is called at
* initialization time, on PHB reset, and can be called
* explicitly from OPAL
*/
static int64_t phb4_ioda_reset(struct phb *phb, bool purge)
{
struct phb4 *p = phb_to_phb4(phb);
uint32_t i;
uint64_t val;
if (purge) {
PHBDBG(p, "Purging all IODA tables...\n");
phb4_init_ioda_cache(p);
}
/* Init_29..30 - Errata workaround, clear PEST */
/* ... We do that further down as part of our normal IODA reset */
/* Init_31..32 - MIST */
phb4_ioda_sel(p, IODA3_TBL_MIST, 0, true);
val = in_be64(p->regs + PHB_IODA_ADDR);
val = SETFIELD(PHB_IODA_AD_MIST_PWV, val, 0xf);
out_be64(p->regs + PHB_IODA_ADDR, val);
for (i = 0; i < (p->num_irqs/4); i++)
out_be64(p->regs + PHB_IODA_DATA0, p->mist_cache[i]);
/* Init_33..34 - MRT */
phb4_ioda_sel(p, IODA3_TBL_MRT, 0, true);
for (i = 0; i < p->mrt_size; i++)
out_be64(p->regs + PHB_IODA_DATA0, 0);
/* Init_35..36 - TVT */
phb4_ioda_sel(p, IODA3_TBL_TVT, 0, true);
for (i = 0; i < p->tvt_size; i++)
out_be64(p->regs + PHB_IODA_DATA0, p->tve_cache[i]);
/* Init_37..38 - MBT */
phb4_ioda_sel(p, IODA3_TBL_MBT, 0, true);
for (i = 0; i < p->mbt_size; i++) {
out_be64(p->regs + PHB_IODA_DATA0, p->mbt_cache[i][0]);
out_be64(p->regs + PHB_IODA_DATA0, p->mbt_cache[i][1]);
}
/* Init_39..40 - MDT */
phb4_ioda_sel(p, IODA3_TBL_MDT, 0, true);
for (i = 0; i < p->max_num_pes; i++)
out_be64(p->regs + PHB_IODA_DATA0, p->mdt_cache[i]);
/* Clear RTT and PELTV */
if (p->tbl_rtt)
memcpy((void *)p->tbl_rtt, p->rte_cache, RTT_TABLE_SIZE);
if (p->tbl_peltv)
memcpy((void *)p->tbl_peltv, p->peltv_cache, p->tbl_peltv_size);
/* Clear PEST & PEEV */
for (i = 0; i < p->max_num_pes; i++) {
phb4_ioda_sel(p, IODA3_TBL_PESTA, i, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
phb4_ioda_sel(p, IODA3_TBL_PESTB, i, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
}
phb4_ioda_sel(p, IODA3_TBL_PEEV, 0, true);
for (i = 0; i < p->max_num_pes/64; i++)
out_be64(p->regs + PHB_IODA_DATA0, 0);
/* Invalidate RTE, TCE cache */
out_be64(p->regs + PHB_RTC_INVALIDATE, PHB_RTC_INVALIDATE_ALL);
return phb4_tce_kill(&p->phb, OPAL_PCI_TCE_KILL_ALL, 0, 0, 0, 0);
}
/*
* Clear anything we have in PAPR Error Injection registers. Though
* the spec says the PAPR error injection should be one-shot without
* the "sticky" bit. However, that's false according to the experiments
* I had. So we have to clear it at appropriate point in kernel to
* avoid endless frozen PE.
*/
static int64_t phb4_papr_errinjct_reset(struct phb *phb)
{
struct phb4 *p = phb_to_phb4(phb);
out_be64(p->regs + PHB_PAPR_ERR_INJ_CTL, 0x0ul);
out_be64(p->regs + PHB_PAPR_ERR_INJ_ADDR, 0x0ul);
out_be64(p->regs + PHB_PAPR_ERR_INJ_MASK, 0x0ul);
return OPAL_SUCCESS;
}
static int64_t phb4_set_phb_mem_window(struct phb *phb,
uint16_t window_type,
uint16_t window_num,
uint64_t addr,
uint64_t pci_addr,
uint64_t size)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mbt0, mbt1;
/*
* We have a unified MBT for all BARs on PHB4. However we
* also have a current limitation that only half of the PEs
* are available (in order to have 2 TVT entries per PE).
*
* So we use it as follow:
*
* - M32 is hard wired to be MBT[0] and uses MDT column 0
* for remapping.
*
* - MBT[1..n] are available to the OS, currently only as
* fully segmented or single PE (we don't yet expose the
* new segmentation modes).
*
* - In order to deal with the above PE# limitations, since
* the OS assumes the segmentation is done with as many
* segments as PEs, we effectively fake it by mapping all
* MBT[1..n] to NDT column 1 which has been configured to
* give 2 adjacent segments the same PE# (see comment in
* ioda cache init). We don't expose the other columns to
* the OS.
*/
switch (window_type) {
case OPAL_IO_WINDOW_TYPE:
case OPAL_M32_WINDOW_TYPE:
return OPAL_UNSUPPORTED;
case OPAL_M64_WINDOW_TYPE:
if (window_num == 0 || window_num >= p->mbt_size) {
PHBERR(p, "%s: Invalid window %d\n",
__func__, window_num);
return OPAL_PARAMETER;
}
mbt0 = p->mbt_cache[window_num][0];
mbt1 = p->mbt_cache[window_num][1];
/* XXX For now we assume the 4K minimum alignment,
* todo: check with the HW folks what the exact limits
* are based on the segmentation model.
*/
if ((addr & 0xFFFul) || (size & 0xFFFul)) {
PHBERR(p, "%s: Bad addr/size alignment %llx/%llx\n",
__func__, addr, size);
return OPAL_PARAMETER;
}
/* size should be 2^N */
if (!size || size & (size-1)) {
PHBERR(p, "%s: size not a power of 2: %llx\n",
__func__, size);
return OPAL_PARAMETER;
}
/* address should be size aligned */
if (addr & (size - 1)) {
PHBERR(p, "%s: addr not size aligned %llx/%llx\n",
__func__, addr, size);
return OPAL_PARAMETER;
}
break;
default:
return OPAL_PARAMETER;
}
/* The BAR shouldn't be enabled yet */
if (mbt0 & IODA3_MBT0_ENABLE)
return OPAL_PARTIAL;
/* Apply the settings */
mbt0 = SETFIELD(IODA3_MBT0_BASE_ADDR, mbt0, addr >> 12);
mbt1 = SETFIELD(IODA3_MBT1_MASK, mbt1, ~((size >> 12) -1));
p->mbt_cache[window_num][0] = mbt0;
p->mbt_cache[window_num][1] = mbt1;
return OPAL_SUCCESS;
}
/*
* For one specific M64 BAR, it can be shared by all PEs,
* or owned by single PE exclusively.
*/
static int64_t phb4_phb_mmio_enable(struct phb __unused *phb,
uint16_t window_type,
uint16_t window_num,
uint16_t enable)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mbt0, mbt1, base, mask;
/*
* By design, PHB4 doesn't support IODT any more.
* Besides, we can't enable M32 BAR as well. So
* the function is used to do M64 mapping and each
* BAR is supposed to be shared by all PEs.
*
* TODO: Add support for some of the new PHB4 split modes
*/
switch (window_type) {
case OPAL_IO_WINDOW_TYPE:
case OPAL_M32_WINDOW_TYPE:
return OPAL_UNSUPPORTED;
case OPAL_M64_WINDOW_TYPE:
/* Window 0 is reserved for M32 */
if (window_num == 0 || window_num >= p->mbt_size ||
enable > OPAL_ENABLE_M64_NON_SPLIT)
return OPAL_PARAMETER;
break;
default:
return OPAL_PARAMETER;
}
/*
* We need check the base/mask while enabling
* the M64 BAR. Otherwise, invalid base/mask
* might cause fenced AIB unintentionally
*/
mbt0 = p->mbt_cache[window_num][0];
mbt1 = p->mbt_cache[window_num][1];
if (enable == OPAL_DISABLE_M64) {
/* Reset the window to disabled & MDT mode */
mbt0 = SETFIELD(IODA3_MBT0_MODE, 0ull, IODA3_MBT0_MODE_MDT);
mbt1 = 0;
} else {
/* Verify that the mode is valid and consistent */
if (enable == OPAL_ENABLE_M64_SPLIT) {
if (GETFIELD(IODA3_MBT0_MODE, mbt0) !=
IODA3_MBT0_MODE_MDT)
return OPAL_PARAMETER;
} else if (enable == OPAL_ENABLE_M64_NON_SPLIT) {
if (GETFIELD(IODA3_MBT0_MODE, mbt0) !=
IODA3_MBT0_MODE_SINGLE_PE)
return OPAL_PARAMETER;
} else
return OPAL_PARAMETER;
base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbt0);
base = (base << 12);
mask = GETFIELD(IODA3_MBT1_MASK, mbt1);
if (base < p->mm0_base || !mask)
return OPAL_PARTIAL;
mbt0 |= IODA3_MBT0_ENABLE;
mbt1 |= IODA3_MBT1_ENABLE;
}
/* Update HW and cache */
p->mbt_cache[window_num][0] = mbt0;
p->mbt_cache[window_num][1] = mbt1;
phb4_ioda_sel(p, IODA3_TBL_MBT, window_num << 1, true);
out_be64(p->regs + PHB_IODA_DATA0, mbt0);
out_be64(p->regs + PHB_IODA_DATA0, mbt1);
return OPAL_SUCCESS;
}
static int64_t phb4_map_pe_mmio_window(struct phb *phb,
uint64_t pe_number,
uint16_t window_type,
uint16_t window_num,
uint16_t segment_num)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mbt0, mbt1, mdt0, mdt1;
if (pe_number >= p->num_pes)
return OPAL_PARAMETER;
/*
* We support a combined MDT that has 4 columns. We let the OS
* use kernel 0 for now, and we configure column1 ourselves
* to handle the "half PEs" problem and thus simulate having
* smaller segments. columns 2 and 3 are currently unused. We
* might later on find a way to let the OS exploit them.
*/
switch(window_type) {
case OPAL_IO_WINDOW_TYPE:
return OPAL_UNSUPPORTED;
case OPAL_M32_WINDOW_TYPE:
if (window_num != 0 || segment_num >= p->max_num_pes)
return OPAL_PARAMETER;
mdt0 = p->mdt_cache[segment_num << 1];
mdt1 = p->mdt_cache[(segment_num << 1) + 1];
mdt0 = SETFIELD(IODA3_MDT_PE_A, mdt0, pe_number);
mdt1 = SETFIELD(IODA3_MDT_PE_A, mdt1, pe_number);
p->mdt_cache[segment_num << 1] = mdt0;
p->mdt_cache[(segment_num << 1) + 1] = mdt1;
phb4_ioda_sel(p, IODA3_TBL_MDT, segment_num << 1, true);
out_be64(p->regs + PHB_IODA_DATA0, mdt0);
out_be64(p->regs + PHB_IODA_DATA0, mdt1);
break;
case OPAL_M64_WINDOW_TYPE:
if (window_num == 0 || window_num >= p->mbt_size)
return OPAL_PARAMETER;
mbt0 = p->mbt_cache[window_num][0];
mbt1 = p->mbt_cache[window_num][1];
/* The BAR shouldn't be enabled yet */
if (mbt0 & IODA3_MBT0_ENABLE)
return OPAL_PARTIAL;
/* Set to single PE mode and configure the PE */
mbt0 = SETFIELD(IODA3_MBT0_MODE, mbt0,
IODA3_MBT0_MODE_SINGLE_PE);
mbt1 = SETFIELD(IODA3_MBT1_SINGLE_PE_NUM, mbt1, pe_number);
p->mbt_cache[window_num][0] = mbt0;
p->mbt_cache[window_num][1] = mbt1;
break;
default:
return OPAL_PARAMETER;
}
return OPAL_SUCCESS;
}
static int64_t phb4_map_pe_dma_window(struct phb *phb,
uint64_t pe_number,
uint16_t window_id,
uint16_t tce_levels,
uint64_t tce_table_addr,
uint64_t tce_table_size,
uint64_t tce_page_size)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t tts_encoded;
uint64_t data64 = 0;
/*
* We configure the PHB in 2 TVE per PE mode to match phb3.
* Current Linux implementation *requires* the two windows per
* PE.
*/
/*
* Sanity check. We currently only support "2 window per PE" mode
* ie, only bit 59 of the PCI address is used to select the window
*/
if (pe_number >= p->num_pes || (window_id >> 1) != pe_number)
return OPAL_PARAMETER;
/*
* tce_table_size == 0 is used to disable an entry, in this case
* we ignore other arguments
*/
if (tce_table_size == 0) {
phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
p->tve_cache[window_id] = 0;
return OPAL_SUCCESS;
}
/* Additional arguments validation */
if (tce_levels < 1 || tce_levels > 5 ||
!is_pow2(tce_table_size) ||
tce_table_size < 0x1000)
return OPAL_PARAMETER;
/* Encode TCE table size */
data64 = SETFIELD(IODA3_TVT_TABLE_ADDR, 0ul, tce_table_addr >> 12);
tts_encoded = ilog2(tce_table_size) - 11;
if (tts_encoded > 31)
return OPAL_PARAMETER;
data64 = SETFIELD(IODA3_TVT_TCE_TABLE_SIZE, data64, tts_encoded);
/* Encode TCE page size */
switch (tce_page_size) {
case 0x1000: /* 4K */
data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 1);
break;
case 0x10000: /* 64K */
data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 5);
break;
case 0x1000000: /* 16M */
data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 13);
break;
case 0x10000000: /* 256M */
data64 = SETFIELD(IODA3_TVT_IO_PSIZE, data64, 17);
break;
default:
return OPAL_PARAMETER;
}
/* Encode number of levels */
data64 = SETFIELD(IODA3_TVT_NUM_LEVELS, data64, tce_levels - 1);
phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false);
out_be64(p->regs + PHB_IODA_DATA0, data64);
p->tve_cache[window_id] = data64;
return OPAL_SUCCESS;
}
static int64_t phb4_map_pe_dma_window_real(struct phb *phb,
uint64_t pe_number,
uint16_t window_id,
uint64_t pci_start_addr,
uint64_t pci_mem_size)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t end = pci_start_addr + pci_mem_size;
uint64_t tve;
if (pe_number >= p->num_pes ||
(window_id >> 1) != pe_number)
return OPAL_PARAMETER;
if (pci_mem_size) {
/* Enable */
/*
* Check that the start address has the right TVE index,
* we only support the 1 bit mode where each PE has 2
* TVEs
*/
if ((pci_start_addr >> 59) != (window_id & 1))
return OPAL_PARAMETER;
pci_start_addr &= ((1ull << 59) - 1);
end = pci_start_addr + pci_mem_size;
/* We have to be 16M aligned */
if ((pci_start_addr & 0x00ffffff) ||
(pci_mem_size & 0x00ffffff))
return OPAL_PARAMETER;
/*
* It *looks* like this is the max we can support (we need
* to verify this. Also we are not checking for rollover,
* but then we aren't trying too hard to protect ourselves
* againt a completely broken OS.
*/
if (end > 0x0003ffffffffffffull)
return OPAL_PARAMETER;
/*
* Put start address bits 49:24 into TVE[52:53]||[0:23]
* and end address bits 49:24 into TVE[54:55]||[24:47]
* and set TVE[51]
*/
tve = (pci_start_addr << 16) & (0xffffffull << 40);
tve |= (pci_start_addr >> 38) & (3ull << 10);
tve |= (end >> 8) & (0xfffffful << 16);
tve |= (end >> 40) & (3ull << 8);
tve |= PPC_BIT(51) | IODA3_TVT_NON_TRANSLATE_50;
} else {
/* Disable */
tve = 0;
}
phb4_ioda_sel(p, IODA3_TBL_TVT, window_id, false);
out_be64(p->regs + PHB_IODA_DATA0, tve);
p->tve_cache[window_id] = tve;
return OPAL_SUCCESS;
}
static int64_t phb4_set_ive_pe(struct phb *phb,
uint64_t pe_number,
uint32_t ive_num)
{
struct phb4 *p = phb_to_phb4(phb);
uint32_t mist_idx;
uint32_t mist_quad;
uint32_t mist_shift;
uint64_t val;
if (pe_number >= p->num_pes || ive_num >= (p->num_irqs - 8))
return OPAL_PARAMETER;
mist_idx = ive_num >> 2;
mist_quad = ive_num & 3;
mist_shift = (3 - mist_quad) << 4;
p->mist_cache[mist_idx] &= ~(0x0fffull << mist_shift);
p->mist_cache[mist_idx] |= ((uint64_t)pe_number) << mist_shift;
/* Note: This has the side effect of clearing P/Q, so this
* shouldn't be called while the interrupt is "hot"
*/
phb4_ioda_sel(p, IODA3_TBL_MIST, mist_idx, false);
/* We need to inject the appropriate MIST write enable bit
* in the IODA table address register
*/
val = in_be64(p->regs + PHB_IODA_ADDR);
val = SETFIELD(PHB_IODA_AD_MIST_PWV, val, 8 >> mist_quad);
out_be64(p->regs + PHB_IODA_ADDR, val);
/* Write entry */
out_be64(p->regs + PHB_IODA_DATA0, p->mist_cache[mist_idx]);
return OPAL_SUCCESS;
}
static int64_t phb4_get_msi_32(struct phb *phb,
uint64_t pe_number,
uint32_t ive_num,
uint8_t msi_range,
uint32_t *msi_address,
uint32_t *message_data)
{
struct phb4 *p = phb_to_phb4(phb);
/*
* Sanity check. We needn't check on mve_number (PE#)
* on PHB3 since the interrupt source is purely determined
* by its DMA address and data, but the check isn't
* harmful.
*/
if (pe_number >= p->num_pes ||
ive_num >= (p->num_irqs - 8) ||
msi_range != 1 || !msi_address|| !message_data)
return OPAL_PARAMETER;
/*
* DMA address and data will form the IVE index.
* For more details, please refer to IODA2 spec.
*/
*msi_address = 0xFFFF0000 | ((ive_num << 4) & 0xFFFFFE0F);
*message_data = ive_num & 0x1F;
return OPAL_SUCCESS;
}
static int64_t phb4_get_msi_64(struct phb *phb,
uint64_t pe_number,
uint32_t ive_num,
uint8_t msi_range,
uint64_t *msi_address,
uint32_t *message_data)
{
struct phb4 *p = phb_to_phb4(phb);
/* Sanity check */
if (pe_number >= p->num_pes ||
ive_num >= (p->num_irqs - 8) ||
msi_range != 1 || !msi_address || !message_data)
return OPAL_PARAMETER;
/*
* DMA address and data will form the IVE index.
* For more details, please refer to IODA2 spec.
*/
*msi_address = (0x1ul << 60) | ((ive_num << 4) & 0xFFFFFFFFFFFFFE0Ful);
*message_data = ive_num & 0x1F;
return OPAL_SUCCESS;
}
/*
* The function can be called during error recovery for all classes of
* errors. This is new to PHB4; previous revisions had separate
* sequences for INF/ER/Fatal errors.
*
* "Rec #" in this function refer to "Recov_#" steps in the
* PHB4 INF recovery sequence.
*/
static void phb4_err_clear(struct phb4 *p)
{
uint64_t val64;
uint64_t fir = in_be64(p->regs + PHB_LEM_FIR_ACCUM);
/* Rec 1: Acquire the PCI config lock (we don't need to do this) */
/* Rec 2...15: Clear error status in RC config space */
/* Reset steps are the same as the init sequence */
phb4_init_rc_cfg(p);
/* Rec 16/17: Clear PBL errors */
val64 = in_be64(p->regs + PHB_PBL_ERR_STATUS);
out_be64(p->regs + PHB_PBL_ERR_STATUS, val64);
/* Rec 18/19: Clear REGB errors */
val64 = in_be64(p->regs + PHB_REGB_ERR_STATUS);
out_be64(p->regs + PHB_REGB_ERR_STATUS, val64);
/* Rec 20...59: Clear PHB error trap */
val64 = in_be64(p->regs + PHB_TXE_ERR_STATUS);
out_be64(p->regs + PHB_TXE_ERR_STATUS, val64);
out_be64(p->regs + PHB_TXE_ERR1_STATUS, 0x0ul);
out_be64(p->regs + PHB_TXE_ERR_LOG_0, 0x0ul);
out_be64(p->regs + PHB_TXE_ERR_LOG_1, 0x0ul);
val64 = in_be64(p->regs + PHB_RXE_ARB_ERR_STATUS);
out_be64(p->regs + PHB_RXE_ARB_ERR_STATUS, val64);
out_be64(p->regs + PHB_RXE_ARB_ERR1_STATUS, 0x0ul);
out_be64(p->regs + PHB_RXE_ARB_ERR_LOG_0, 0x0ul);
out_be64(p->regs + PHB_RXE_ARB_ERR_LOG_1, 0x0ul);
val64 = in_be64(p->regs + PHB_RXE_MRG_ERR_STATUS);
out_be64(p->regs + PHB_RXE_MRG_ERR_STATUS, val64);
out_be64(p->regs + PHB_RXE_MRG_ERR1_STATUS, 0x0ul);
out_be64(p->regs + PHB_RXE_MRG_ERR_LOG_0, 0x0ul);
out_be64(p->regs + PHB_RXE_MRG_ERR_LOG_1, 0x0ul);
val64 = in_be64(p->regs + PHB_RXE_TCE_ERR_STATUS);
out_be64(p->regs + PHB_RXE_TCE_ERR_STATUS, val64);
out_be64(p->regs + PHB_RXE_TCE_ERR1_STATUS, 0x0ul);
out_be64(p->regs + PHB_RXE_TCE_ERR_LOG_0, 0x0ul);
out_be64(p->regs + PHB_RXE_TCE_ERR_LOG_1, 0x0ul);
val64 = in_be64(p->regs + PHB_ERR_STATUS);
out_be64(p->regs + PHB_ERR_STATUS, val64);
out_be64(p->regs + PHB_ERR1_STATUS, 0x0ul);
out_be64(p->regs + PHB_ERR_LOG_0, 0x0ul);
out_be64(p->regs + PHB_ERR_LOG_1, 0x0ul);
/* Rec 61/62: Clear FIR/WOF */
out_be64(p->regs + PHB_LEM_FIR_AND_MASK, ~fir);
out_be64(p->regs + PHB_LEM_WOF, 0x0ul);
/* Rec 63: Update LEM mask to its initial value */
out_be64(p->regs + PHB_LEM_ERROR_MASK, 0x0ul);
/* Rec 64: Clear the PCI config lock (we don't need to do this) */
}
static void phb4_read_phb_status(struct phb4 *p,
struct OpalIoPhb4ErrorData *stat)
{
uint16_t val = 0;
uint32_t i;
uint64_t val64 = 0;
uint64_t *pPEST;
memset(stat, 0, sizeof(struct OpalIoPhb4ErrorData));
/* Error data common part */
stat->common.version = OPAL_PHB_ERROR_DATA_VERSION_1;
stat->common.ioType = OPAL_PHB_ERROR_DATA_TYPE_PHB4;
stat->common.len = sizeof(struct OpalIoPhb4ErrorData);
/*
* TODO: investigate reading registers through ASB instead of AIB.
*
* Until this is implemented, some registers may be unreadable through
* a fence.
*/
/* Grab RC bridge control, make it 32-bit */
phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &val);
stat->brdgCtl = val;
/* XXX: No UTL registers on PHB4? */
/*
* Grab various RC PCIe capability registers. All device, slot
* and link status are 16-bit, so we grab the pair control+status
* for each of them
*/
phb4_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_DEVCTL,
&stat->deviceStatus);
phb4_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_SLOTCTL,
&stat->slotStatus);
phb4_pcicfg_read32(&p->phb, 0, p->ecap + PCICAP_EXP_LCTL,
&stat->linkStatus);
/*
* I assume those are the standard config space header, cmd & status
* together makes 32-bit. Secondary status is 16-bit so I'll clear
* the top on that one
*/
phb4_pcicfg_read32(&p->phb, 0, PCI_CFG_CMD, &stat->devCmdStatus);
phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_SECONDARY_STATUS, &val);
stat->devSecStatus = val;
/* Grab a bunch of AER regs */
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_RERR_STA,
&stat->rootErrorStatus);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_UE_STATUS,
&stat->uncorrErrorStatus);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_CE_STATUS,
&stat->corrErrorStatus);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG0,
&stat->tlpHdr1);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG1,
&stat->tlpHdr2);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG2,
&stat->tlpHdr3);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_HDR_LOG3,
&stat->tlpHdr4);
phb4_pcicfg_read32(&p->phb, 0, p->aercap + PCIECAP_AER_SRCID,
&stat->sourceId);
/* PEC NFIR, same as P8/PHB3 */
xscom_read(p->chip_id, p->pe_stk_xscom + 0x0, &stat->nFir);
xscom_read(p->chip_id, p->pe_stk_xscom + 0x3, &stat->nFirMask);
xscom_read(p->chip_id, p->pe_stk_xscom + 0x8, &stat->nFirWOF);
/* PHB4 inbound and outbound error Regs */
stat->phbPlssr = phb4_read_reg_asb(p, PHB_CPU_LOADSTORE_STATUS);
stat->phbCsr = phb4_read_reg_asb(p, PHB_DMA_CHAN_STATUS);
stat->lemFir = phb4_read_reg_asb(p, PHB_LEM_FIR_ACCUM);
stat->lemErrorMask = phb4_read_reg_asb(p, PHB_LEM_ERROR_MASK);
stat->lemWOF = phb4_read_reg_asb(p, PHB_LEM_WOF);
stat->phbErrorStatus = phb4_read_reg_asb(p, PHB_ERR_STATUS);
stat->phbFirstErrorStatus = phb4_read_reg_asb(p, PHB_ERR1_STATUS);
stat->phbErrorLog0 = phb4_read_reg_asb(p, PHB_ERR_LOG_0);
stat->phbErrorLog1 = phb4_read_reg_asb(p, PHB_ERR_LOG_1);
stat->phbTxeErrorStatus = phb4_read_reg_asb(p, PHB_TXE_ERR_STATUS);
stat->phbTxeFirstErrorStatus = phb4_read_reg_asb(p, PHB_TXE_ERR1_STATUS);
stat->phbTxeErrorLog0 = phb4_read_reg_asb(p, PHB_TXE_ERR_LOG_0);
stat->phbTxeErrorLog1 = phb4_read_reg_asb(p, PHB_TXE_ERR_LOG_1);
stat->phbRxeArbErrorStatus = phb4_read_reg_asb(p, PHB_RXE_ARB_ERR_STATUS);
stat->phbRxeArbFirstErrorStatus = phb4_read_reg_asb(p, PHB_RXE_ARB_ERR1_STATUS);
stat->phbRxeArbErrorLog0 = phb4_read_reg_asb(p, PHB_RXE_ARB_ERR_LOG_0);
stat->phbRxeArbErrorLog1 = phb4_read_reg_asb(p, PHB_RXE_ARB_ERR_LOG_1);
stat->phbRxeMrgErrorStatus = phb4_read_reg_asb(p, PHB_RXE_MRG_ERR_STATUS);
stat->phbRxeMrgFirstErrorStatus = phb4_read_reg_asb(p, PHB_RXE_MRG_ERR1_STATUS);
stat->phbRxeMrgErrorLog0 = phb4_read_reg_asb(p, PHB_RXE_MRG_ERR_LOG_0);
stat->phbRxeMrgErrorLog1 = phb4_read_reg_asb(p, PHB_RXE_MRG_ERR_LOG_1);
stat->phbRxeTceErrorStatus = phb4_read_reg_asb(p, PHB_RXE_TCE_ERR_STATUS);
stat->phbRxeTceFirstErrorStatus = phb4_read_reg_asb(p, PHB_RXE_TCE_ERR1_STATUS);
stat->phbRxeTceErrorLog0 = phb4_read_reg_asb(p, PHB_RXE_TCE_ERR_LOG_0);
stat->phbRxeTceErrorLog1 = phb4_read_reg_asb(p, PHB_RXE_TCE_ERR_LOG_1);
/* PHB4 REGB error registers */
stat->phbPblErrorStatus = phb4_read_reg_asb(p, PHB_PBL_ERR_STATUS);
stat->phbPblFirstErrorStatus = phb4_read_reg_asb(p, PHB_PBL_ERR1_STATUS);
stat->phbPblErrorLog0 = phb4_read_reg_asb(p, PHB_PBL_ERR_LOG_0);
stat->phbPblErrorLog1 = phb4_read_reg_asb(p, PHB_PBL_ERR_LOG_0);
stat->phbPcieDlpErrorStatus = phb4_read_reg_asb(p, PHB_PCIE_DLP_ERR_STATUS);
stat->phbPcieDlpErrorLog1 = phb4_read_reg_asb(p, PHB_PCIE_DLP_ERRLOG1);
stat->phbPcieDlpErrorLog2 = phb4_read_reg_asb(p, PHB_PCIE_DLP_ERRLOG2);
stat->phbRegbErrorStatus = phb4_read_reg_asb(p, PHB_REGB_ERR_STATUS);
stat->phbRegbFirstErrorStatus = phb4_read_reg_asb(p, PHB_REGB_ERR1_STATUS);
stat->phbRegbErrorLog0 = phb4_read_reg_asb(p, PHB_REGB_ERR_LOG_0);
stat->phbRegbErrorLog1 = phb4_read_reg_asb(p, PHB_REGB_ERR_LOG_1);
/*
* Grab PESTA & B content. The error bit (bit#0) should
* be fetched from IODA and the left content from memory
* resident tables.
*/
pPEST = (uint64_t *)p->tbl_pest;
val64 = PHB_IODA_AD_AUTOINC;
val64 = SETFIELD(PHB_IODA_AD_TSEL, val64, IODA3_TBL_PESTA);
phb4_write_reg_asb(p, PHB_IODA_ADDR, val64);
for (i = 0; i < OPAL_PHB4_NUM_PEST_REGS; i++) {
stat->pestA[i] = phb4_read_reg_asb(p, PHB_IODA_DATA0);
stat->pestA[i] |= pPEST[2 * i];
}
val64 = PHB_IODA_AD_AUTOINC;
val64 = SETFIELD(PHB_IODA_AD_TSEL, val64, IODA3_TBL_PESTB);
phb4_write_reg_asb(p, PHB_IODA_ADDR, val64);
for (i = 0; i < OPAL_PHB4_NUM_PEST_REGS; i++) {
stat->pestB[i] = phb4_read_reg_asb(p, PHB_IODA_DATA0);
stat->pestB[i] |= pPEST[2 * i + 1];
}
}
static int64_t phb4_set_pe(struct phb *phb,
uint64_t pe_number,
uint64_t bdfn,
uint8_t bcompare,
uint8_t dcompare,
uint8_t fcompare,
uint8_t action)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t mask, val, tmp, idx;
int32_t all = 0;
uint16_t *rte;
/* Sanity check */
if (!p->tbl_rtt)
return OPAL_HARDWARE;
if (action != OPAL_MAP_PE && action != OPAL_UNMAP_PE)
return OPAL_PARAMETER;
if (pe_number >= p->num_pes || bdfn > 0xffff ||
bcompare > OpalPciBusAll ||
dcompare > OPAL_COMPARE_RID_DEVICE_NUMBER ||
fcompare > OPAL_COMPARE_RID_FUNCTION_NUMBER)
return OPAL_PARAMETER;
/* Figure out the RID range */
if (bcompare == OpalPciBusAny) {
mask = 0x0;
val = 0x0;
all = 0x1;
} else {
tmp = ((0x1 << (bcompare + 1)) - 1) << (15 - bcompare);
mask = tmp;
val = bdfn & tmp;
}
if (dcompare == OPAL_IGNORE_RID_DEVICE_NUMBER)
all = (all << 1) | 0x1;
else {
mask |= 0xf8;
val |= (bdfn & 0xf8);
}
if (fcompare == OPAL_IGNORE_RID_FUNCTION_NUMBER)
all = (all << 1) | 0x1;
else {
mask |= 0x7;
val |= (bdfn & 0x7);
}
/* Map or unmap the RTT range */
if (all == 0x7) {
if (action == OPAL_MAP_PE) {
for (idx = 0; idx < RTT_TABLE_ENTRIES; idx++)
p->rte_cache[idx] = pe_number;
} else {
for ( idx = 0; idx < ARRAY_SIZE(p->rte_cache); idx++)
p->rte_cache[idx] = PHB4_RESERVED_PE_NUM(p);
}
memcpy((void *)p->tbl_rtt, p->rte_cache, RTT_TABLE_SIZE);
} else {
rte = (uint16_t *)p->tbl_rtt;
for (idx = 0; idx < RTT_TABLE_ENTRIES; idx++, rte++) {
if ((idx & mask) != val)
continue;
if (action == OPAL_MAP_PE)
p->rte_cache[idx] = pe_number;
else
p->rte_cache[idx] = PHB4_RESERVED_PE_NUM(p);
*rte = p->rte_cache[idx];
}
}
/* Invalidate the entire RTC */
out_be64(p->regs + PHB_RTC_INVALIDATE, PHB_RTC_INVALIDATE_ALL);
return OPAL_SUCCESS;
}
static int64_t phb4_set_peltv(struct phb *phb,
uint32_t parent_pe,
uint32_t child_pe,
uint8_t state)
{
struct phb4 *p = phb_to_phb4(phb);
uint8_t *peltv;
uint32_t idx, mask;
/* Sanity check */
if (!p->tbl_peltv)
return OPAL_HARDWARE;
if (parent_pe >= p->num_pes || child_pe >= p->num_pes)
return OPAL_PARAMETER;
/* Find index for parent PE */
idx = parent_pe * (p->max_num_pes / 8);
idx += (child_pe / 8);
mask = 0x1 << (7 - (child_pe % 8));
peltv = (uint8_t *)p->tbl_peltv;
peltv += idx;
if (state) {
*peltv |= mask;
p->peltv_cache[idx] |= mask;
} else {
*peltv &= ~mask;
p->peltv_cache[idx] &= ~mask;
}
return OPAL_SUCCESS;
}
static void phb4_prepare_link_change(struct pci_slot *slot, bool is_up)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint32_t reg32;
p->has_link = is_up;
if (is_up) {
/* Clear AER receiver error status */
phb4_pcicfg_write32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_STATUS,
PCIECAP_AER_CE_RECVR_ERR);
/* Unmask receiver error status in AER */
phb4_pcicfg_read32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_MASK, ®32);
reg32 &= ~PCIECAP_AER_CE_RECVR_ERR;
phb4_pcicfg_write32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_MASK, reg32);
/* Don't block PCI-CFG */
p->flags &= ~PHB4_CFG_BLOCKED;
/* Clear error link enable & error link down kill enable */
out_be64(p->regs + PHB_PCIE_MISC_STRAP, 0);
/* Disable all error status indicators that trigger irqs */
out_be64(p->regs + PHB_REGB_ERR_INF_ENABLE, 0);
out_be64(p->regs + PHB_REGB_ERR_ERC_ENABLE, 0);
out_be64(p->regs + PHB_REGB_ERR_FAT_ENABLE, 0);
/*
* We might lose the bus numbers during the reset operation
* and we need to restore them. Otherwise, some adapters (e.g.
* IPR) can't be probed properly by the kernel. We don't need
* to restore bus numbers for every kind of reset, however,
* it's not harmful to always restore the bus numbers, which
* simplifies the logic.
*/
pci_restore_bridge_buses(slot->phb, slot->pd);
if (slot->phb->ops->device_init)
pci_walk_dev(slot->phb, slot->pd,
slot->phb->ops->device_init, NULL);
} else {
/* Mask AER receiver error */
phb4_pcicfg_read32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_MASK, ®32);
reg32 |= PCIECAP_AER_CE_RECVR_ERR;
phb4_pcicfg_write32(&p->phb, 0, p->aercap +
PCIECAP_AER_CE_MASK, reg32);
/* Block PCI-CFG access */
p->flags |= PHB4_CFG_BLOCKED;
}
}
static int64_t phb4_get_presence_state(struct pci_slot *slot, uint8_t *val)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint64_t hps, dtctl;
/* Test for PHB in error state ? */
if (p->state == PHB4_STATE_BROKEN)
return OPAL_HARDWARE;
/* Read hotplug status */
hps = in_be64(p->regs + PHB_PCIE_HOTPLUG_STATUS);
/* Read link status */
dtctl = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
PHBDBG(p, "hp_status=0x%016llx, dlp_train_ctl=0x%016llx\n",
hps, dtctl);
*val = OPAL_PCI_SLOT_PRESENT;
/* Check presence detect */
if (hps & PHB_PCIE_HPSTAT_PRESENCE) {
/* If it says not present but link is up, then we assume
* we are on a broken simulation environment and still
* return a valid presence. Otherwise, not present.
*/
if (dtctl & PHB_PCIE_DLP_TL_LINKACT) {
PHBERR(p, "Presence detect 0 but link set !\n");
return OPAL_SHPC_DEV_PRESENT;
}
*val = OPAL_PCI_SLOT_EMPTY;
return OPAL_SHPC_DEV_NOT_PRESENT;
}
/*
* Anything else, we assume device present, the link state
* machine will perform an early bail out if no electrical
* signaling is established after a second.
*/
return OPAL_SHPC_DEV_PRESENT;
}
static int64_t phb4_get_link_state(struct pci_slot *slot, uint8_t *val)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint64_t reg;
uint16_t state;
int64_t rc;
/* Link is up, let's find the actual speed */
reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (!(reg & PHB_PCIE_DLP_TL_LINKACT)) {
*val = 0;
return OPAL_SUCCESS;
}
rc = phb4_pcicfg_read16(&p->phb, 0,
p->ecap + PCICAP_EXP_LSTAT, &state);
if (rc != OPAL_SUCCESS) {
PHBERR(p, "%s: Error %lld getting link state\n", __func__, rc);
return OPAL_HARDWARE;
}
if (state & PCICAP_EXP_LSTAT_DLLL_ACT)
*val = ((state & PCICAP_EXP_LSTAT_WIDTH) >> 4);
else
*val = 0;
return OPAL_SUCCESS;
}
static int64_t phb4_retry_state(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
if (slot->retry_state == PCI_SLOT_STATE_NORMAL)
return OPAL_WRONG_STATE;
PHBDBG(p, "Retry state %08x\n", slot->retry_state);
slot->delay_tgt_tb = 0;
pci_slot_set_state(slot, slot->retry_state);
slot->retry_state = PCI_SLOT_STATE_NORMAL;
return slot->ops.run_sm(slot);
}
static int64_t phb4_poll_link(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint64_t reg;
int64_t rc;
switch (slot->state) {
case PHB4_SLOT_NORMAL:
case PHB4_SLOT_LINK_START:
PHBDBG(p, "LINK: Start polling\n");
slot->retries = PHB4_LINK_ELECTRICAL_RETRIES;
pci_slot_set_state(slot, PHB4_SLOT_LINK_WAIT_ELECTRICAL);
return pci_slot_set_sm_timeout(slot, msecs_to_tb(100));
case PHB4_SLOT_LINK_WAIT_ELECTRICAL:
/*
* Wait for the link electrical connection to be
* established (shorter timeout). This allows us to
* workaround spurrious presence detect on some machines
* without waiting 10s each time
*
* Note: We *also* check for the full link up bit here
* because simics doesn't seem to implement the electrical
* link bit at all
*/
reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (reg & (PHB_PCIE_DLP_INBAND_PRESENCE |
PHB_PCIE_DLP_TL_LINKACT)) {
PHBDBG(p, "LINK: Electrical link detected\n");
pci_slot_set_state(slot, PHB4_SLOT_LINK_WAIT);
slot->retries = PHB4_LINK_WAIT_RETRIES;
return pci_slot_set_sm_timeout(slot, msecs_to_tb(100));
}
if (slot->retries-- == 0) {
PHBDBG(p, "LINK: Timeout waiting for electrical link\n");
PHBDBG(p, "LINK: DLP train control: 0x%016llx\n", reg);
rc = phb4_retry_state(slot);
if (rc >= OPAL_SUCCESS)
return rc;
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_SUCCESS;
}
return pci_slot_set_sm_timeout(slot, msecs_to_tb(100));
case PHB4_SLOT_LINK_WAIT:
reg = in_be64(p->regs + PHB_PCIE_DLP_TRAIN_CTL);
if (reg & PHB_PCIE_DLP_TL_LINKACT) {
PHBDBG(p, "LINK: Link is up\n");
if (slot->ops.prepare_link_change)
slot->ops.prepare_link_change(slot, true);
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_SUCCESS;
}
if (slot->retries-- == 0) {
PHBDBG(p, "LINK: Timeout waiting for link up\n");
PHBDBG(p, "LINK: DLP train control: 0x%016llx\n", reg);
rc = phb4_retry_state(slot);
if (rc >= OPAL_SUCCESS)
return rc;
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_SUCCESS;
}
return pci_slot_set_sm_timeout(slot, msecs_to_tb(100));
default:
PHBERR(p, "LINK: Unexpected slot state %08x\n",
slot->state);
}
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_HARDWARE;
}
static int64_t phb4_hreset(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint16_t brctl;
uint8_t presence = 1;
switch (slot->state) {
case PHB4_SLOT_NORMAL:
PHBDBG(p, "HRESET: Starts\n");
if (slot->ops.get_presence_state)
slot->ops.get_presence_state(slot, &presence);
if (!presence) {
PHBDBG(p, "HRESET: No device\n");
return OPAL_SUCCESS;
}
PHBDBG(p, "HRESET: Prepare for link down\n");
if (slot->ops.prepare_link_change)
slot->ops.prepare_link_change(slot, false);
/* fall through */
case PHB4_SLOT_HRESET_START:
PHBDBG(p, "HRESET: Assert\n");
phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &brctl);
brctl |= PCI_CFG_BRCTL_SECONDARY_RESET;
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_BRCTL, brctl);
pci_slot_set_state(slot, PHB4_SLOT_HRESET_DELAY);
return pci_slot_set_sm_timeout(slot, secs_to_tb(1));
case PHB4_SLOT_HRESET_DELAY:
PHBDBG(p, "HRESET: Deassert\n");
phb4_pcicfg_read16(&p->phb, 0, PCI_CFG_BRCTL, &brctl);
brctl &= ~PCI_CFG_BRCTL_SECONDARY_RESET;
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_BRCTL, brctl);
/*
* Due to some oddball adapters bouncing the link
* training a couple of times, we wait for a full second
* before we start checking the link status, otherwise
* we can get a spurrious link down interrupt which
* causes us to EEH immediately.
*/
pci_slot_set_state(slot, PHB4_SLOT_HRESET_DELAY2);
return pci_slot_set_sm_timeout(slot, secs_to_tb(1));
case PHB4_SLOT_HRESET_DELAY2:
pci_slot_set_state(slot, PHB4_SLOT_LINK_START);
return slot->ops.poll_link(slot);
default:
PHBERR(p, "Unexpected slot state %08x\n", slot->state);
}
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_HARDWARE;
}
static int64_t phb4_freset(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint8_t presence = 1;
uint64_t reg;
switch(slot->state) {
case PHB4_SLOT_NORMAL:
PHBDBG(p, "FRESET: Starts\n");
/* Nothing to do without adapter connected */
if (slot->ops.get_presence_state)
slot->ops.get_presence_state(slot, &presence);
if (!presence) {
PHBDBG(p, "FRESET: No device\n");
return OPAL_SUCCESS;
}
PHBDBG(p, "FRESET: Prepare for link down\n");
slot->retry_state = PHB4_SLOT_FRESET_START;
if (slot->ops.prepare_link_change)
slot->ops.prepare_link_change(slot, false);
/* fall through */
case PHB4_SLOT_FRESET_START:
if (!p->skip_perst) {
PHBDBG(p, "FRESET: Assert\n");
reg = in_be64(p->regs + PHB_PCIE_CRESET);
reg &= ~PHB_PCIE_CRESET_PERST_N;
out_be64(p->regs + PHB_PCIE_CRESET, reg);
pci_slot_set_state(slot,
PHB4_SLOT_FRESET_ASSERT_DELAY);
return pci_slot_set_sm_timeout(slot, secs_to_tb(1));
}
/* To skip the assert during boot time */
PHBDBG(p, "FRESET: Assert skipped\n");
pci_slot_set_state(slot, PHB4_SLOT_FRESET_ASSERT_DELAY);
p->skip_perst = false;
/* fall through */
case PHB4_SLOT_FRESET_ASSERT_DELAY:
PHBDBG(p, "FRESET: Deassert\n");
reg = in_be64(p->regs + PHB_PCIE_CRESET);
reg |= PHB_PCIE_CRESET_PERST_N;
out_be64(p->regs + PHB_PCIE_CRESET, reg);
pci_slot_set_state(slot,
PHB4_SLOT_FRESET_DEASSERT_DELAY);
/* CAPP FPGA requires 1s to flash before polling link */
return pci_slot_set_sm_timeout(slot, secs_to_tb(1));
case PHB4_SLOT_FRESET_DEASSERT_DELAY:
pci_slot_set_state(slot, PHB4_SLOT_LINK_START);
return slot->ops.poll_link(slot);
default:
PHBERR(p, "Unexpected slot state %08x\n", slot->state);
}
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return OPAL_HARDWARE;
}
static int64_t phb4_creset(struct pci_slot *slot)
{
struct phb4 *p = phb_to_phb4(slot->phb);
uint64_t pbcq_status;
switch (slot->state) {
case PHB4_SLOT_NORMAL:
case PHB4_SLOT_CRESET_START:
PHBDBG(p, "CRESET: Starts\n");
/* do steps 3-5 of capp recovery procedure */
#if 0
if (p->flags & PHB4_CAPP_RECOVERY)
do_capp_recovery_scoms(p);
#endif
/* Clear error inject register, preventing recursive errors */
xscom_write(p->chip_id, p->pe_xscom + 0x2, 0x0);
/* Force fence on the PHB to work around a non-existent PE */
if (!phb4_fenced(p))
xscom_write(p->chip_id, p->pe_stk_xscom + 0x2,
0x000000f000000000);
/* Clear errors, following the proper sequence */
phb4_err_clear(p);
/* Clear errors in NFIR and raise ETU reset */
xscom_read(p->chip_id, p->pe_stk_xscom + 0x0, &p->nfir_cache);
xscom_read(p->chip_id, p->pci_stk_xscom + 0x0, &p->pfir_cache);
xscom_write(p->chip_id, p->pci_stk_xscom + 0x0,
0x8000000000000000);
/* DD1 errata: write to PEST to force update */
phb4_ioda_sel(p, IODA3_TBL_PESTA, PHB4_RESERVED_PE_NUM(p), false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
pci_slot_set_state(slot, PHB4_SLOT_CRESET_WAIT_CQ);
slot->retries = 500;
return pci_slot_set_sm_timeout(slot, msecs_to_tb(10));
case PHB4_SLOT_CRESET_WAIT_CQ:
// Wait until operations are complete
xscom_read(p->chip_id, p->pe_stk_xscom + 0xc, &pbcq_status);
if (!(pbcq_status & 0xC000000000000000)) {
PHBDBG(p, "CRESET: No pending transactions\n");
xscom_write(p->chip_id, p->pe_stk_xscom + 0x1,
~p->nfir_cache);
xscom_write(p->chip_id, p->pci_stk_xscom + 0x1,
~p->pfir_cache);
// Clear PHB from reset
xscom_write(p->chip_id, p->pci_stk_xscom + 0x0, 0x0);
pci_slot_set_state(slot, PHB4_SLOT_CRESET_REINIT);
return pci_slot_set_sm_timeout(slot, msecs_to_tb(100));
}
if (slot->retries-- == 0) {
PHBERR(p, "Timeout waiting for pending transaction\n");
goto error;
}
pci_slot_set_state(slot, PHB4_SLOT_CRESET_REINIT);
return pci_slot_set_sm_timeout(slot, msecs_to_tb(100));
case PHB4_SLOT_CRESET_REINIT:
PHBDBG(p, "CRESET: Reinitialization\n");
p->flags &= ~PHB4_AIB_FENCED;
p->flags &= ~PHB4_CAPP_RECOVERY;
phb4_init_hw(p, false);
pci_slot_set_state(slot, PHB4_SLOT_CRESET_FRESET);
return pci_slot_set_sm_timeout(slot, msecs_to_tb(100));
case PHB4_SLOT_CRESET_FRESET:
pci_slot_set_state(slot, PHB4_SLOT_NORMAL);
return slot->ops.freset(slot);
default:
PHBERR(p, "CRESET: Unexpected slot state %08x\n",
slot->state);
}
error:
/* Mark the PHB as dead and expect it to be removed */
p->state = PHB4_STATE_BROKEN;
return OPAL_HARDWARE;
}
/*
* Initialize root complex slot, which is mainly used to
* do fundamental reset before PCI enumeration in PCI core.
* When probing root complex and building its real slot,
* the operations will be copied over.
*/
static struct pci_slot *phb4_slot_create(struct phb *phb)
{
struct pci_slot *slot;
slot = pci_slot_alloc(phb, NULL);
if (!slot)
return slot;
/* Elementary functions */
slot->ops.get_presence_state = phb4_get_presence_state;
slot->ops.get_link_state = phb4_get_link_state;
slot->ops.get_power_state = NULL;
slot->ops.get_attention_state = NULL;
slot->ops.get_latch_state = NULL;
slot->ops.set_power_state = NULL;
slot->ops.set_attention_state = NULL;
/*
* For PHB slots, we have to split the fundamental reset
* into 2 steps. We might not have the first step which
* is to power off/on the slot, or it's controlled by
* individual platforms.
*/
slot->ops.prepare_link_change = phb4_prepare_link_change;
slot->ops.poll_link = phb4_poll_link;
slot->ops.hreset = phb4_hreset;
slot->ops.freset = phb4_freset;
slot->ops.creset = phb4_creset;
return slot;
}
static int64_t phb4_eeh_freeze_status(struct phb *phb, uint64_t pe_number,
uint8_t *freeze_state,
uint16_t *pci_error_type,
uint16_t *severity,
uint64_t *phb_status)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t peev_bit = PPC_BIT(pe_number & 0x3f);
uint64_t peev, pesta, pestb;
/* Defaults: not frozen */
*freeze_state = OPAL_EEH_STOPPED_NOT_FROZEN;
*pci_error_type = OPAL_EEH_NO_ERROR;
/* Check dead */
if (p->state == PHB4_STATE_BROKEN) {
*freeze_state = OPAL_EEH_STOPPED_MMIO_DMA_FREEZE;
*pci_error_type = OPAL_EEH_PHB_ERROR;
if (severity)
*severity = OPAL_EEH_SEV_PHB_DEAD;
return OPAL_HARDWARE;
}
/* Check fence and CAPP recovery */
if (phb4_fenced(p) || (p->flags & PHB4_CAPP_RECOVERY)) {
*freeze_state = OPAL_EEH_STOPPED_MMIO_DMA_FREEZE;
*pci_error_type = OPAL_EEH_PHB_ERROR;
if (severity)
*severity = OPAL_EEH_SEV_PHB_FENCED;
goto bail;
}
/* Check the PEEV */
phb4_ioda_sel(p, IODA3_TBL_PEEV, pe_number / 64, false);
peev = in_be64(p->regs + PHB_IODA_DATA0);
if (!(peev & peev_bit))
return OPAL_SUCCESS;
/* Indicate that we have an ER pending */
phb4_set_err_pending(p, true);
if (severity)
*severity = OPAL_EEH_SEV_PE_ER;
/* Read the PESTA & PESTB */
phb4_ioda_sel(p, IODA3_TBL_PESTA, pe_number, false);
pesta = in_be64(p->regs + PHB_IODA_DATA0);
phb4_ioda_sel(p, IODA3_TBL_PESTB, pe_number, false);
pestb = in_be64(p->regs + PHB_IODA_DATA0);
/* Convert them */
if (pesta & IODA3_PESTA_MMIO_FROZEN)
*freeze_state |= OPAL_EEH_STOPPED_MMIO_FREEZE;
if (pestb & IODA3_PESTB_DMA_STOPPED)
*freeze_state |= OPAL_EEH_STOPPED_DMA_FREEZE;
bail:
if (phb_status)
PHBERR(p, "%s: deprecated PHB status\n", __func__);
return OPAL_SUCCESS;
}
static int64_t phb4_eeh_freeze_clear(struct phb *phb, uint64_t pe_number,
uint64_t eeh_action_token)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t err, peev;
int32_t i;
bool frozen_pe = false;
if (p->state == PHB4_STATE_BROKEN)
return OPAL_HARDWARE;
/* Summary. If nothing, move to clearing the PESTs which can
* contain a freeze state from a previous error or simply set
* explicitely by the user
*/
err = in_be64(p->regs + PHB_ETU_ERR_SUMMARY);
if (err == 0xffffffffffffffff) {
if (phb4_fenced(p)) {
PHBERR(p, "eeh_freeze_clear on fenced PHB\n");
return OPAL_HARDWARE;
}
}
if (err != 0)
phb4_err_clear(p);
/*
* We have PEEV in system memory. It would give more performance
* to access that directly.
*/
if (eeh_action_token & OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO) {
phb4_ioda_sel(p, IODA3_TBL_PESTA, pe_number, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
}
if (eeh_action_token & OPAL_EEH_ACTION_CLEAR_FREEZE_DMA) {
phb4_ioda_sel(p, IODA3_TBL_PESTB, pe_number, false);
out_be64(p->regs + PHB_IODA_DATA0, 0);
}
/* Update ER pending indication */
phb4_ioda_sel(p, IODA3_TBL_PEEV, 0, true);
for (i = 0; i < p->num_pes/64; i++) {
peev = in_be64(p->regs + PHB_IODA_DATA0);
if (peev) {
frozen_pe = true;
break;
}
}
if (frozen_pe) {
p->err.err_src = PHB4_ERR_SRC_PHB;
p->err.err_class = PHB4_ERR_CLASS_ER;
p->err.err_bit = -1;
phb4_set_err_pending(p, true);
} else
phb4_set_err_pending(p, false);
return OPAL_SUCCESS;
}
static int64_t phb4_eeh_freeze_set(struct phb *phb, uint64_t pe_number,
uint64_t eeh_action_token)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t data;
if (p->state == PHB4_STATE_BROKEN)
return OPAL_HARDWARE;
if (pe_number >= p->num_pes)
return OPAL_PARAMETER;
if (eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_MMIO &&
eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_DMA &&
eeh_action_token != OPAL_EEH_ACTION_SET_FREEZE_ALL)
return OPAL_PARAMETER;
if (eeh_action_token & OPAL_EEH_ACTION_SET_FREEZE_MMIO) {
phb4_ioda_sel(p, IODA3_TBL_PESTA, pe_number, false);
data = in_be64(p->regs + PHB_IODA_DATA0);
data |= IODA3_PESTA_MMIO_FROZEN;
out_be64(p->regs + PHB_IODA_DATA0, data);
}
if (eeh_action_token & OPAL_EEH_ACTION_SET_FREEZE_DMA) {
phb4_ioda_sel(p, IODA3_TBL_PESTB, pe_number, false);
data = in_be64(p->regs + PHB_IODA_DATA0);
data |= IODA3_PESTB_DMA_STOPPED;
out_be64(p->regs + PHB_IODA_DATA0, data);
}
return OPAL_SUCCESS;
}
static int64_t phb4_eeh_next_error(struct phb *phb,
uint64_t *first_frozen_pe,
uint16_t *pci_error_type,
uint16_t *severity)
{
struct phb4 *p = phb_to_phb4(phb);
uint64_t peev;
uint32_t peev_size = p->num_pes/64;
int32_t i, j;
/* If the PHB is broken, we needn't go forward */
if (p->state == PHB4_STATE_BROKEN) {
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_PHB_DEAD;
return OPAL_SUCCESS;
}
if ((p->flags & PHB4_CAPP_RECOVERY)) {
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_PHB_FENCED;
return OPAL_SUCCESS;
}
/*
* Check if we already have pending errors. If that's
* the case, then to get more information about the
* pending errors. Here we try PBCQ prior to PHB.
*/
if (phb4_err_pending(p) /*&&
!phb4_err_check_pbcq(p) &&
!phb4_err_check_lem(p) */)
phb4_set_err_pending(p, false);
/* Clear result */
*pci_error_type = OPAL_EEH_NO_ERROR;
*severity = OPAL_EEH_SEV_NO_ERROR;
*first_frozen_pe = (uint64_t)-1;
/* Check frozen PEs */
if (!phb4_err_pending(p)) {
phb4_ioda_sel(p, IODA3_TBL_PEEV, 0, true);
for (i = 0; i < peev_size; i++) {
peev = in_be64(p->regs + PHB_IODA_DATA0);
if (peev) {
p->err.err_src = PHB4_ERR_SRC_PHB;
p->err.err_class = PHB4_ERR_CLASS_ER;
p->err.err_bit = -1;
phb4_set_err_pending(p, true);
break;
}
}
}
/* Mapping errors */
if (phb4_err_pending(p)) {
/*
* If the frozen PE is caused by a malfunctioning TLP, we
* need reset the PHB. So convert ER to PHB-fatal error
* for the case.
*/
if (p->err.err_class == PHB4_ERR_CLASS_ER) {
#if 0
// FIXME XXXXX
fir = phb4_read_reg_asb(p, PHB_LEM_FIR_ACCUM);
if (fir & PPC_BIT(60)) {
phb4_pcicfg_read32(&p->phb, 0,
p->aercap + PCIECAP_AER_UE_STATUS, &cfg32);
if (cfg32 & PCIECAP_AER_UE_MALFORMED_TLP)
p->err.err_class = PHB4_ERR_CLASS_FENCED;
}
#endif
}
switch (p->err.err_class) {
case PHB4_ERR_CLASS_DEAD:
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_PHB_DEAD;
break;
case PHB4_ERR_CLASS_FENCED:
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_PHB_FENCED;
break;
case PHB4_ERR_CLASS_ER:
*pci_error_type = OPAL_EEH_PE_ERROR;
*severity = OPAL_EEH_SEV_PE_ER;
for (i = peev_size - 1; i >= 0; i--) {
phb4_ioda_sel(p, IODA3_TBL_PEEV, i, false);
peev = in_be64(p->regs + PHB_IODA_DATA0);
for (j = 0; j < 64; j++) {
if (peev & PPC_BIT(j)) {
*first_frozen_pe = i * 64 + j;
break;
}
}
if (*first_frozen_pe != (uint64_t)(-1))
break;
}
/* No frozen PE ? */
if (*first_frozen_pe == (uint64_t)-1) {
*pci_error_type = OPAL_EEH_NO_ERROR;
*severity = OPAL_EEH_SEV_NO_ERROR;
phb4_set_err_pending(p, false);
}
break;
case PHB4_ERR_CLASS_INF:
*pci_error_type = OPAL_EEH_PHB_ERROR;
*severity = OPAL_EEH_SEV_INF;
break;
default:
*pci_error_type = OPAL_EEH_NO_ERROR;
*severity = OPAL_EEH_SEV_NO_ERROR;
phb4_set_err_pending(p, false);
}
}
return OPAL_SUCCESS;
}
static int64_t phb4_err_inject_finalize(struct phb4 *phb, uint64_t addr,
uint64_t mask, uint64_t ctrl,
bool is_write)
{
if (is_write)
ctrl |= PHB_PAPR_ERR_INJ_CTL_WR;
else
ctrl |= PHB_PAPR_ERR_INJ_CTL_RD;
out_be64(phb->regs + PHB_PAPR_ERR_INJ_ADDR, addr);
out_be64(phb->regs + PHB_PAPR_ERR_INJ_MASK, mask);
out_be64(phb->regs + PHB_PAPR_ERR_INJ_CTL, ctrl);
return OPAL_SUCCESS;
}
static int64_t phb4_err_inject_mem32(struct phb4 *phb, uint64_t pe_number,
uint64_t addr, uint64_t mask,
bool is_write)
{
return OPAL_UNSUPPORTED;
}
static int64_t phb4_err_inject_mem64(struct phb4 *phb, uint64_t pe_number,
uint64_t addr, uint64_t mask,
bool is_write)
{
return OPAL_UNSUPPORTED;
}
static int64_t phb4_err_inject_cfg(struct phb4 *phb, uint64_t pe_number,
uint64_t addr, uint64_t mask,
bool is_write)
{
uint64_t a, m, prefer, ctrl;
int bdfn;
bool is_bus_pe = false;
a = 0xffffull;
prefer = 0xffffull;
m = PHB_PAPR_ERR_INJ_MASK_CFG_ALL;
ctrl = PHB_PAPR_ERR_INJ_CTL_CFG;
for (bdfn = 0; bdfn < RTT_TABLE_ENTRIES; bdfn++) {
if (phb->rte_cache[bdfn] != pe_number)
continue;
/* The PE can be associated with PCI bus or device */
is_bus_pe = false;
if ((bdfn + 8) < RTT_TABLE_ENTRIES &&
phb->rte_cache[bdfn + 8] == pe_number)
is_bus_pe = true;
/* Figure out the PCI config address */
if (prefer == 0xffffull) {
if (is_bus_pe) {
m = PHB_PAPR_ERR_INJ_MASK_CFG;
prefer = SETFIELD(m, 0x0ull, (bdfn >> 8));
} else {
m = PHB_PAPR_ERR_INJ_MASK_CFG_ALL;
prefer = SETFIELD(m, 0x0ull, bdfn);
}
}
/* Check the input address is valid or not */
if (!is_bus_pe &&
GETFIELD(PHB_PAPR_ERR_INJ_MASK_CFG_ALL, addr) == bdfn) {
a = addr;
break;
}
if (is_bus_pe &&
GETFIELD(PHB_PAPR_ERR_INJ_MASK_CFG, addr) == (bdfn >> 8)) {
a = addr;
break;
}
}
/* Invalid PE number */
if (prefer == 0xffffull)
return OPAL_PARAMETER;
/* Specified address is out of range */
if (a == 0xffffull)
a = prefer;
else
m = mask;
return phb4_err_inject_finalize(phb, a, m, ctrl, is_write);
}
static int64_t phb4_err_inject_dma(struct phb4 *phb, uint64_t pe_number,
uint64_t addr, uint64_t mask,
bool is_write, bool is_64bits)
{
return OPAL_UNSUPPORTED;
}
static int64_t phb4_err_inject_dma32(struct phb4 *phb, uint64_t pe_number,
uint64_t addr, uint64_t mask,
bool is_write)
{
return phb4_err_inject_dma(phb, pe_number, addr, mask, is_write, false);
}
static int64_t phb4_err_inject_dma64(struct phb4 *phb, uint64_t pe_number,
uint64_t addr, uint64_t mask,
bool is_write)
{
return phb4_err_inject_dma(phb, pe_number, addr, mask, is_write, true);
}
static int64_t phb4_err_inject(struct phb *phb, uint64_t pe_number,
uint32_t type, uint32_t func,
uint64_t addr, uint64_t mask)
{
struct phb4 *p = phb_to_phb4(phb);
int64_t (*handler)(struct phb4 *p, uint64_t pe_number,
uint64_t addr, uint64_t mask, bool is_write);
bool is_write;
/* How could we get here without valid RTT? */
if (!p->tbl_rtt)
return OPAL_HARDWARE;
/* We can't inject error to the reserved PE */
if (pe_number == PHB4_RESERVED_PE_NUM(p) || pe_number >= p->num_pes)
return OPAL_PARAMETER;
/* Clear leftover from last time */
out_be64(p->regs + PHB_PAPR_ERR_INJ_CTL, 0x0ul);
switch (func) {
case OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_DATA:
is_write = false;
if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64)
handler = phb4_err_inject_mem64;
else
handler = phb4_err_inject_mem32;
break;
case OPAL_ERR_INJECT_FUNC_IOA_ST_MEM_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_ST_MEM_DATA:
is_write = true;
if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64)
handler = phb4_err_inject_mem64;
else
handler = phb4_err_inject_mem32;
break;
case OPAL_ERR_INJECT_FUNC_IOA_LD_CFG_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_LD_CFG_DATA:
is_write = false;
handler = phb4_err_inject_cfg;
break;
case OPAL_ERR_INJECT_FUNC_IOA_ST_CFG_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_ST_CFG_DATA:
is_write = true;
handler = phb4_err_inject_cfg;
break;
case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_DATA:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_MASTER:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_RD_TARGET:
is_write = false;
if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64)
handler = phb4_err_inject_dma64;
else
handler = phb4_err_inject_dma32;
break;
case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_ADDR:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_DATA:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_MASTER:
case OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET:
is_write = true;
if (type == OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64)
handler = phb4_err_inject_dma64;
else
handler = phb4_err_inject_dma32;
break;
default:
return OPAL_PARAMETER;
}
return handler(p, pe_number, addr, mask, is_write);
}
static int64_t phb4_get_diag_data(struct phb *phb,
void *diag_buffer,
uint64_t diag_buffer_len)
{
struct phb4 *p = phb_to_phb4(phb);
struct OpalIoPhb4ErrorData *data = diag_buffer;
if (diag_buffer_len < sizeof(struct OpalIoPhb4ErrorData))
return OPAL_PARAMETER;
if (p->state == PHB4_STATE_BROKEN)
return OPAL_HARDWARE;
/*
* Dummy check for fence so that phb4_read_phb_status knows
* whether to use ASB or AIB
*/
phb4_fenced(p);
phb4_read_phb_status(p, data);
/*
* We're running to here probably because of errors
* (INF class). For that case, we need clear the error
* explicitly.
*/
if (phb4_err_pending(p) &&
p->err.err_class == PHB4_ERR_CLASS_INF &&
p->err.err_src == PHB4_ERR_SRC_PHB) {
phb4_err_clear(p);
phb4_set_err_pending(p, false);
}
return OPAL_SUCCESS;
}
static const struct phb_ops phb4_ops = {
.cfg_read8 = phb4_pcicfg_read8,
.cfg_read16 = phb4_pcicfg_read16,
.cfg_read32 = phb4_pcicfg_read32,
.cfg_write8 = phb4_pcicfg_write8,
.cfg_write16 = phb4_pcicfg_write16,
.cfg_write32 = phb4_pcicfg_write32,
.choose_bus = phb4_choose_bus,
.get_reserved_pe_number = phb4_get_reserved_pe_number,
.device_init = phb4_device_init,
.device_remove = NULL,
.ioda_reset = phb4_ioda_reset,
.papr_errinjct_reset = phb4_papr_errinjct_reset,
.pci_reinit = phb4_pci_reinit,
.set_phb_mem_window = phb4_set_phb_mem_window,
.phb_mmio_enable = phb4_phb_mmio_enable,
.map_pe_mmio_window = phb4_map_pe_mmio_window,
.map_pe_dma_window = phb4_map_pe_dma_window,
.map_pe_dma_window_real = phb4_map_pe_dma_window_real,
.set_xive_pe = phb4_set_ive_pe,
.get_msi_32 = phb4_get_msi_32,
.get_msi_64 = phb4_get_msi_64,
.set_pe = phb4_set_pe,
.set_peltv = phb4_set_peltv,
.eeh_freeze_status = phb4_eeh_freeze_status,
.eeh_freeze_clear = phb4_eeh_freeze_clear,
.eeh_freeze_set = phb4_eeh_freeze_set,
.next_error = phb4_eeh_next_error,
.err_inject = phb4_err_inject,
.get_diag_data = NULL,
.get_diag_data2 = phb4_get_diag_data,
.tce_kill = phb4_tce_kill,
};
static void phb4_init_ioda3(struct phb4 *p)
{
/* Init_17 - Interrupt Notify Base Address */
out_be64(p->regs + PHB_INT_NOTIFY_ADDR, p->irq_port);
/* Init_18 - Interrupt Notify Base Index */
out_be64(p->regs + PHB_INT_NOTIFY_INDEX,
xive_get_notify_base(p->base_msi));
/* Init_xx - Not in spec: Initialize source ID */
PHBDBG(p, "Reset state SRC_ID: %016llx\n",
in_be64(p->regs + PHB_LSI_SOURCE_ID));
out_be64(p->regs + PHB_LSI_SOURCE_ID,
SETFIELD(PHB_LSI_SRC_ID, 0ull, (p->num_irqs - 1) >> 3));
/* Init_19 - RTT BAR */
out_be64(p->regs + PHB_RTT_BAR, p->tbl_rtt | PHB_RTT_BAR_ENABLE);
/* Init_20 - PELT-V BAR */
out_be64(p->regs + PHB_PELTV_BAR, p->tbl_peltv | PHB_PELTV_BAR_ENABLE);
/* Init_21 - Setup M32 starting address */
out_be64(p->regs + PHB_M32_START_ADDR, M32_PCI_START);
/* Init_22 - Setup PEST BAR */
out_be64(p->regs + PHB_PEST_BAR,
p->tbl_pest | PHB_PEST_BAR_ENABLE);
/* Init_23 - CRW Base Address Reg */
// XXX FIXME learn CAPI :-(
/* Init_24 - ASN Compare/Mask */
// XXX FIXME learn CAPI :-(
/* Init_25 - CAPI Compare/Mask */
// XXX FIXME learn CAPI :-(
/* Init_26 - PCIE Outbound upper address */
out_be64(p->regs + PHB_M64_UPPER_BITS, 0);
/* Init_27 - PHB4 Configuration */
out_be64(p->regs + PHB_PHB4_CONFIG,
PHB_PHB4C_32BIT_MSI_EN |
PHB_PHB4C_64BIT_MSI_EN);
/* Init_28 - At least 256ns delay according to spec. Do a dummy
* read first to flush posted writes
*/
in_be64(p->regs + PHB_PHB4_CONFIG);
time_wait_us(2);
/* Init_29..40 - On-chip IODA tables init */
phb4_ioda_reset(&p->phb, false);
}
/* phb4_init_rc - Initialize the Root Complex config space
*/
static bool phb4_init_rc_cfg(struct phb4 *p)
{
int64_t ecap, aercap;
/* XXX Handle errors ? */
/* Init_45:
*
* Set primary bus to 0, secondary to 1 and subordinate to 0xff
*/
phb4_pcicfg_write32(&p->phb, 0, PCI_CFG_PRIMARY_BUS, 0x00ff0100);
/* Init_46 - Clear errors */
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_SECONDARY_STATUS, 0xffff);
/* Init_47
*
* PCIE Device control/status, enable error reporting, disable relaxed
* ordering, set MPS to 128 (see note), clear errors.
*
* Note: The doc recommends to set MPS to 512. This has proved to have
* some issues as it requires specific claming of MRSS on devices and
* we've found devices in the field that misbehave when doing that.
*
* We currently leave it all to 128 bytes (minimum setting) at init
* time. The generic PCIe probing later on might apply a different
* value, or the kernel will, but we play it safe at early init
*/
if (p->ecap <= 0) {
ecap = pci_find_cap(&p->phb, 0, PCI_CFG_CAP_ID_EXP);
if (ecap < 0) {
PHBERR(p, "Can't locate PCI-E capability\n");
return false;
}
p->ecap = ecap;
} else {
ecap = p->ecap;
}
phb4_pcicfg_write16(&p->phb, 0, ecap + PCICAP_EXP_DEVSTAT,
PCICAP_EXP_DEVSTAT_CE |
PCICAP_EXP_DEVSTAT_NFE |
PCICAP_EXP_DEVSTAT_FE |
PCICAP_EXP_DEVSTAT_UE);
phb4_pcicfg_write16(&p->phb, 0, ecap + PCICAP_EXP_DEVCTL,
PCICAP_EXP_DEVCTL_CE_REPORT |
PCICAP_EXP_DEVCTL_NFE_REPORT |
PCICAP_EXP_DEVCTL_FE_REPORT |
PCICAP_EXP_DEVCTL_UR_REPORT |
SETFIELD(PCICAP_EXP_DEVCTL_MPS, 0, PCIE_MPS_128B));
/* Init_48 - Device Control/Status 2 */
phb4_pcicfg_write16(&p->phb, 0, ecap + PCICAP_EXP_DCTL2,
SETFIELD(PCICAP_EXP_DCTL2_CMPTOUT, 0, 0x5) |
PCICAP_EXP_DCTL2_ARI_FWD);
/* Init_49..53
*
* AER inits
*/
if (p->aercap <= 0) {
aercap = pci_find_ecap(&p->phb, 0, PCIECAP_ID_AER, NULL);
if (aercap < 0) {
PHBERR(p, "Can't locate AER capability\n");
return false;
}
p->aercap = aercap;
} else {
aercap = p->aercap;
}
/* Clear all UE status */
phb4_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_UE_STATUS,
0xffffffff);
/* Disable some error reporting as per the PHB4 spec */
phb4_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_UE_MASK,
PCIECAP_AER_UE_POISON_TLP |
PCIECAP_AER_UE_COMPL_TIMEOUT |
PCIECAP_AER_UE_COMPL_ABORT);
/* Clear all CE status */
phb4_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_CE_STATUS,
0xffffffff);
/* Enable ECRC generation & checking */
phb4_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_CAPCTL,
PCIECAP_AER_CAPCTL_ECRCG_EN |
PCIECAP_AER_CAPCTL_ECRCC_EN);
/* Clear root error status */
phb4_pcicfg_write32(&p->phb, 0, aercap + PCIECAP_AER_RERR_STA,
0xffffffff);
return true;
}
static void phb4_init_errors(struct phb4 *p)
{
/* Init_54..62 - PBL errors */
out_be64(p->regs + 0x1900, 0xffffffffffffffffull);
out_be64(p->regs + 0x1908, 0x0000000000000000ull);
out_be64(p->regs + 0x1920, 0x000000004d1780f8ull);
out_be64(p->regs + 0x1928, 0x0000000000000000ull);
out_be64(p->regs + 0x1930, 0xffffffffb2e87f07ull);
out_be64(p->regs + 0x1940, 0x0000000000000000ull);
out_be64(p->regs + 0x1948, 0x0000000000000000ull);
out_be64(p->regs + 0x1950, 0x0000000000000000ull);
out_be64(p->regs + 0x1958, 0x0000000000000000ull);
/* Init_63..71 - REGB errors */
out_be64(p->regs + 0x1c00, 0xffffffffffffffffull);
out_be64(p->regs + 0x1c08, 0x0000000000000000ull);
out_be64(p->regs + 0x1c20, 0x2130006efca8bc00ull);
out_be64(p->regs + 0x1c28, 0x0000000000000000ull);
out_be64(p->regs + 0x1c30, 0xde8fff91035743ffull);
out_be64(p->regs + 0x1c40, 0x0000000000000000ull);
out_be64(p->regs + 0x1c48, 0x0000000000000000ull);
out_be64(p->regs + 0x1c50, 0x0000000000000000ull);
out_be64(p->regs + 0x1c58, 0x0000000000000000ull);
/* Init_72..80 - TXE errors */
out_be64(p->regs + 0x0d00, 0xffffffffffffffffull);
out_be64(p->regs + 0x0d08, 0x0000000000000000ull);
out_be64(p->regs + 0x0d18, 0xffffffffffffffffull);
out_be64(p->regs + 0x0d28, 0x0000400a00000000ull);
out_be64(p->regs + 0x0d30, 0xdff7fd01f7ddfff0ull); /* XXX CAPI has diff. value */
out_be64(p->regs + 0x0d40, 0x0000000000000000ull);
out_be64(p->regs + 0x0d48, 0x0000000000000000ull);
out_be64(p->regs + 0x0d50, 0x0000000000000000ull);
out_be64(p->regs + 0x0d58, 0x0000000000000000ull);
/* Init_81..89 - RXE_ARB errors */
out_be64(p->regs + 0x0d80, 0xffffffffffffffffull);
out_be64(p->regs + 0x0d88, 0x0000000000000000ull);
out_be64(p->regs + 0x0d98, 0xffffffffffffffffull);
if (p->rev == PHB4_REV_NIMBUS_DD10)
out_be64(p->regs + 0x0da8, 0xc00000b801000060ull);
else
out_be64(p->regs + 0x0da8, 0xc00008b801000060ull);
out_be64(p->regs + 0x0db0, 0x3bffd703fe7fbf8full); /* XXX CAPI has diff. value */
out_be64(p->regs + 0x0dc0, 0x0000000000000000ull);
out_be64(p->regs + 0x0dc8, 0x0000000000000000ull);
out_be64(p->regs + 0x0dd0, 0x0000000000000000ull);
out_be64(p->regs + 0x0dd8, 0x0000000000000000ull);
/* Init_90..98 - RXE_MRG errors */
out_be64(p->regs + 0x0e00, 0xffffffffffffffffull);
out_be64(p->regs + 0x0e08, 0x0000000000000000ull);
out_be64(p->regs + 0x0e18, 0xffffffffffffffffull);
out_be64(p->regs + 0x0e28, 0x0000600000000000ull);
out_be64(p->regs + 0x0e30, 0xffff9effff7fff57ull); /* XXX CAPI has diff. value */
out_be64(p->regs + 0x0e40, 0x0000000000000000ull);
out_be64(p->regs + 0x0e48, 0x0000000000000000ull);
out_be64(p->regs + 0x0e50, 0x0000000000000000ull);
out_be64(p->regs + 0x0e58, 0x0000000000000000ull);
/* Init_99..107 - RXE_TCE errors */
out_be64(p->regs + 0x0e80, 0xffffffffffffffffull);
out_be64(p->regs + 0x0e88, 0x0000000000000000ull);
out_be64(p->regs + 0x0e98, 0xffffffffffffffffull);
if (p->rev == PHB4_REV_NIMBUS_DD10)
out_be64(p->regs + 0x0ea8, 0x6000000000000000ull);
else
out_be64(p->regs + 0x0ea8, 0x60000000c0000000ull);
out_be64(p->regs + 0x0eb0, 0x9faeffaf3fffffffull); /* XXX CAPI has diff. value */
out_be64(p->regs + 0x0ec0, 0x0000000000000000ull);
out_be64(p->regs + 0x0ec8, 0x0000000000000000ull);
out_be64(p->regs + 0x0ed0, 0x0000000000000000ull);
out_be64(p->regs + 0x0ed8, 0x0000000000000000ull);
/* Init_108..116 - RXPHB errors */
out_be64(p->regs + 0x0c80, 0xffffffffffffffffull);
out_be64(p->regs + 0x0c88, 0x0000000000000000ull);
out_be64(p->regs + 0x0c98, 0xffffffffffffffffull);
out_be64(p->regs + 0x0ca8, 0x0000004000000000ull);
out_be64(p->regs + 0x0cb0, 0x35777033ff000000ull); /* XXX CAPI has diff. value */
out_be64(p->regs + 0x0cc0, 0x0000000000000000ull);
out_be64(p->regs + 0x0cc8, 0x0000000000000000ull);
out_be64(p->regs + 0x0cd0, 0x0000000000000000ull);
out_be64(p->regs + 0x0cd8, 0x0000000000000000ull);
/* Init_117..120 - LEM */
out_be64(p->regs + 0x0c00, 0x0000000000000000ull);
out_be64(p->regs + 0x0c30, 0xffffffffffffffffull);
out_be64(p->regs + 0x0c38, 0xffffffffffffffffull);
out_be64(p->regs + 0x0c40, 0x0000000000000000ull);
}
static void phb4_init_hw(struct phb4 *p, bool first_init)
{
uint64_t val, creset;
PHBDBG(p, "Initializing PHB4...\n");
/* Init_1 - Async reset
*
* At this point we assume the PHB has already been reset.
*/
/* Init_2 - Mask FIRs */
out_be64(p->regs + 0xc18, 0xffffffffffffffffull);
/* Init_3 - TCE tag enable */
out_be64(p->regs + 0x868, 0xffffffffffffffffull);
/* Init_4 - PCIE System Configuration Register
*
* Adjust max speed based on system config
*/
val = in_be64(p->regs + PHB_PCIE_SCR);
PHBDBG(p, "Default system config: 0x%016llx\n", val);
val = SETFIELD(PHB_PCIE_SCR_MAXLINKSPEED, val, p->max_link_speed);
out_be64(p->regs + PHB_PCIE_SCR, val);
PHBDBG(p, "New system config : 0x%016llx\n",
in_be64(p->regs + PHB_PCIE_SCR));
/* Init_5 - deassert CFG reset */
creset = in_be64(p->regs + PHB_PCIE_CRESET);
PHBDBG(p, "Initial PHB CRESET is 0x%016llx\n", creset);
creset &= ~PHB_PCIE_CRESET_CFG_CORE;
out_be64(p->regs + PHB_PCIE_CRESET, creset);
/* Init_6..13 - PCIE DLP Lane EQ control */
if (p->lane_eq) {
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL0, be64_to_cpu(p->lane_eq[0]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL1, be64_to_cpu(p->lane_eq[1]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL2, be64_to_cpu(p->lane_eq[2]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL3, be64_to_cpu(p->lane_eq[3]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL20, be64_to_cpu(p->lane_eq[4]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL21, be64_to_cpu(p->lane_eq[5]));
if (p->rev == PHB4_REV_NIMBUS_DD10) {
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL22,
be64_to_cpu(p->lane_eq[6]));
out_be64(p->regs + PHB_PCIE_LANE_EQ_CNTL23,
be64_to_cpu(p->lane_eq[7]));
}
}
/* Init_14 - Clear link training */
phb4_pcicfg_write32(&p->phb, 0, 0x78,
0x07FE0000 | p->max_link_speed);
/* Init_15 - deassert cores reset */
/*
* Lift the PHB resets but not PERST, this will be lifted
* later by the initial PERST state machine
*/
creset &= ~(PHB_PCIE_CRESET_TLDLP | PHB_PCIE_CRESET_PBL);
creset |= PHB_PCIE_CRESET_PIPE_N;
out_be64(p->regs + PHB_PCIE_CRESET, creset);
/* Init_16 - PHB Control */
val = PHB_CTRLR_IRQ_PGSZ_64K |
SETFIELD(PHB_CTRLR_TVT_ADDR_SEL, 0ull, TVT_2_PER_PE);
if (nvram_query_eq("pci-eeh-mmio", "disabled"))
val |= PHB_CTRLR_MMIO_EEH_DISABLE;
out_be64(p->regs + PHB_CTRLR, val);
/* Init_17..40 - Architected IODA3 inits */
phb4_init_ioda3(p);
/* Init_41..44 - Clear DLP error logs */
out_be64(p->regs + 0x1aa0, 0xffffffffffffffffull);
out_be64(p->regs + 0x1aa8, 0xffffffffffffffffull);
out_be64(p->regs + 0x1ab0, 0xffffffffffffffffull);
out_be64(p->regs + 0x1ab8, 0x0);
/* Init_45..53 : Init root complex config space */
if (!phb4_init_rc_cfg(p))
goto failed;
/* Init_54..120 : Setup error registers */
phb4_init_errors(p);
/* Init_121..122 : Wait for link
* NOTE: At this point the spec waits for the link to come up. We
* don't bother as we are doing a PERST soon.
*/
/* Init_123 : NBW. XXX TODO */
// XXX FIXME learn CAPI :-(
/* Init_124 : Setup PCI command/status on root complex
* I don't know why the spec does this now and not earlier, so
* to be sure to get it right we might want to move it to the freset
* state machine, though the generic PCI layer will probably do
* this anyway (ie, enable MEM, etc... in the RC)
*/
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_CMD,
PCI_CFG_CMD_MEM_EN |
PCI_CFG_CMD_BUS_MASTER_EN);
/* Clear errors */
phb4_pcicfg_write16(&p->phb, 0, PCI_CFG_STAT,
PCI_CFG_STAT_SENT_TABORT |
PCI_CFG_STAT_RECV_TABORT |
PCI_CFG_STAT_RECV_MABORT |
PCI_CFG_STAT_SENT_SERR |
PCI_CFG_STAT_RECV_PERR);
/* Init_125..130 - Re-enable error interrupts */
/* XXX TODO along with EEH/error interrupts support */
/* Init_131 - Enable DMA address speculation */
out_be64(p->regs + PHB_TCE_SPEC_CTL, 0xf000000000000000ull);
/* Init_132 - Timeout Control Register 1 */
out_be64(p->regs + PHB_TIMEOUT_CTRL1, 0x0018150000200000ull);
/* Init_133 - Timeout Control Register 2 */
out_be64(p->regs + PHB_TIMEOUT_CTRL2, 0x0000181700000000ull);
/* Init_134 - PBL Timeout Control Register */
out_be64(p->regs + PHB_PBL_TIMEOUT_CTRL, 0x2015000000000000ull);
/* Mark the PHB as functional which enables all the various sequences */
p->state = PHB4_STATE_FUNCTIONAL;
PHBDBG(p, "Initialization complete\n");
return;
failed:
PHBERR(p, "Initialization failed\n");
p->state = PHB4_STATE_BROKEN;
}
/* FIXME: Use scoms rather than MMIO incase we are fenced */
static bool phb4_read_capabilities(struct phb4 *p)
{
uint64_t val;
/* XXX Should make sure ETU is out of reset ! */
/* Grab version and fit it in an int */
val = phb4_read_reg_asb(p, PHB_VERSION);
if (val == 0 || val == 0xffffffffffffffff) {
PHBERR(p, "Failed to read version, PHB appears broken\n");
return false;
}
p->rev = ((val >> 16) & 0x00ff0000) | (val & 0xffff);
PHBDBG(p, "Core revision 0x%x\n", p->rev);
/* Read EEH capabilities */
val = in_be64(p->regs + PHB_PHB4_EEH_CAP);
p->max_num_pes = val >> 52;
if (p->max_num_pes >= 512) {
p->mrt_size = 16;
p->mbt_size = 32;
p->tvt_size = 512;
} else {
p->mrt_size = 8;
p->mbt_size = 16;
p->tvt_size = 256;
}
val = in_be64(p->regs + PHB_PHB4_IRQ_CAP);
p->num_irqs = val & 0xffff;
/* This works for 512 PEs. FIXME calculate for any hardware
* size returned above
*/
p->tbl_peltv_size = PELTV_TABLE_SIZE_MAX;
p->tbl_pest_size = p->max_num_pes*16;
PHBDBG(p, "Found %d max PEs and %d IRQs \n",
p->max_num_pes, p->num_irqs);
return true;
}
static void phb4_allocate_tables(struct phb4 *p)
{
uint16_t *rte;
uint32_t i;
/* XXX Our current memalign implementation sucks,
*
* It will do the job, however it doesn't support freeing
* the memory and wastes space by always allocating twice
* as much as requested (size + alignment)
*/
p->tbl_rtt = (uint64_t)local_alloc(p->chip_id, RTT_TABLE_SIZE, RTT_TABLE_SIZE);
assert(p->tbl_rtt);
rte = (uint16_t *)(p->tbl_rtt);
for (i = 0; i < RTT_TABLE_ENTRIES; i++, rte++)
*rte = PHB4_RESERVED_PE_NUM(p);
p->tbl_peltv = (uint64_t)local_alloc(p->chip_id, p->tbl_peltv_size, p->tbl_peltv_size);
assert(p->tbl_peltv);
memset((void *)p->tbl_peltv, 0, p->tbl_peltv_size);
p->tbl_pest = (uint64_t)local_alloc(p->chip_id, p->tbl_pest_size, p->tbl_pest_size);
assert(p->tbl_pest);
memset((void *)p->tbl_pest, 0, p->tbl_pest_size);
}
static void phb4_add_properties(struct phb4 *p)
{
struct dt_node *np = p->phb.dt_node;
uint32_t lsibase, icsp = get_ics_phandle();
uint64_t m32b, m64b, m64s;
/* Add various properties that HB doesn't have to
* add, some of them simply because they result from
* policy decisions made in skiboot rather than in HB
* such as the MMIO windows going to PCI, interrupts,
* etc...
*/
dt_add_property_cells(np, "#address-cells", 3);
dt_add_property_cells(np, "#size-cells", 2);
dt_add_property_cells(np, "#interrupt-cells", 1);
dt_add_property_cells(np, "bus-range", 0, 0xff);
dt_add_property_cells(np, "clock-frequency", 0x200, 0); /* ??? */
dt_add_property_cells(np, "interrupt-parent", icsp);
/* XXX FIXME: add slot-name */
//dt_property_cell("bus-width", 8); /* Figure it out from VPD ? */
/* "ranges", we only expose M32 (PHB4 doesn't do IO)
*
* Note: The kernel expects us to have chopped of 64k from the
* M32 size (for the 32-bit MSIs). If we don't do that, it will
* get confused (OPAL does it)
*/
m32b = cleanup_addr(p->mm1_base);
m64b = cleanup_addr(p->mm0_base);
m64s = p->mm0_size;
dt_add_property_cells(np, "ranges",
/* M32 space */
0x02000000, 0x00000000, M32_PCI_START,
hi32(m32b), lo32(m32b), 0, M32_PCI_SIZE - 0x10000);
/* XXX FIXME: add opal-memwin32, dmawins, etc... */
dt_add_property_u64s(np, "ibm,opal-m64-window", m64b, m64b, m64s);
dt_add_property(np, "ibm,opal-single-pe", NULL, 0);
dt_add_property_cells(np, "ibm,opal-num-pes", p->num_pes);
dt_add_property_cells(np, "ibm,opal-reserved-pe",
PHB4_RESERVED_PE_NUM(p));
dt_add_property_cells(np, "ibm,opal-msi-ranges",
p->base_msi, p->num_irqs - 8);
/* M64 ranges start at 1 as MBT0 is used for M32 */
dt_add_property_cells(np, "ibm,opal-available-m64-ranges",
1, p->mbt_size - 1);
/* Tell Linux about alignment limits for segment splits.
*
* XXX We currently only expose splits of 1 and "num PEs",
*/
dt_add_property_cells(np, "ibm,opal-m64-segment-splits",
/* Full split, number of segments: */
p->num_pes,
/* Encoding passed to the enable call */
OPAL_ENABLE_M64_SPLIT,
/* Alignement/size restriction in #bits*/
/* XXX VERIFY VALUE */
12,
/* Unused */
0,
/* single PE, number of segments: */
1,
/* Encoding passed to the enable call */
OPAL_ENABLE_M64_NON_SPLIT,
/* Alignement/size restriction in #bits*/
/* XXX VERIFY VALUE */
12,
/* Unused */
0);
/* The interrupt maps will be generated in the RC node by the
* PCI code based on the content of this structure:
*/
lsibase = p->base_lsi;
p->phb.lstate.int_size = 2;
p->phb.lstate.int_val[0][0] = lsibase + PHB4_LSI_PCIE_INTA;
p->phb.lstate.int_val[0][1] = 1;
p->phb.lstate.int_val[1][0] = lsibase + PHB4_LSI_PCIE_INTB;
p->phb.lstate.int_val[1][1] = 1;
p->phb.lstate.int_val[2][0] = lsibase + PHB4_LSI_PCIE_INTC;
p->phb.lstate.int_val[2][1] = 1;
p->phb.lstate.int_val[3][0] = lsibase + PHB4_LSI_PCIE_INTD;
p->phb.lstate.int_val[3][1] = 1;
p->phb.lstate.int_parent[0] = icsp;
p->phb.lstate.int_parent[1] = icsp;
p->phb.lstate.int_parent[2] = icsp;
p->phb.lstate.int_parent[3] = icsp;
/* Indicators for variable tables */
dt_add_property_cells(np, "ibm,opal-rtt-table",
hi32(p->tbl_rtt), lo32(p->tbl_rtt), RTT_TABLE_SIZE);
dt_add_property_cells(np, "ibm,opal-peltv-table",
hi32(p->tbl_peltv), lo32(p->tbl_peltv), p->tbl_peltv_size);
dt_add_property_cells(np, "ibm,opal-pest-table",
hi32(p->tbl_pest), lo32(p->tbl_pest), p->tbl_pest_size);
dt_add_property_cells(np, "ibm,phb-diag-data-size",
sizeof(struct OpalIoPhb4ErrorData));
}
static bool phb4_calculate_windows(struct phb4 *p)
{
const struct dt_property *prop;
/* Get PBCQ MMIO windows from device-tree */
prop = dt_require_property(p->phb.dt_node,
"ibm,mmio-windows", -1);
assert(prop->len >= (2 * sizeof(uint64_t)));
p->mm0_base = ((const uint64_t *)prop->prop)[0];
p->mm0_size = ((const uint64_t *)prop->prop)[1];
if (prop->len > 16) {
p->mm1_base = ((const uint64_t *)prop->prop)[2];
p->mm1_size = ((const uint64_t *)prop->prop)[3];
}
/* Sort them so that 0 is big and 1 is small */
if (p->mm1_size && p->mm1_size > p->mm0_size) {
uint64_t b = p->mm0_base;
uint64_t s = p->mm0_size;
p->mm0_base = p->mm1_base;
p->mm0_size = p->mm1_size;
p->mm1_base = b;
p->mm1_size = s;
}
/* If 1 is too small, ditch it */
if (p->mm1_size < M32_PCI_SIZE)
p->mm1_size = 0;
/* If 1 doesn't exist, carve it out of 0 */
if (p->mm1_size == 0) {
p->mm0_size /= 2;
p->mm1_base = p->mm0_base + p->mm0_size;
p->mm1_size = p->mm0_size;
}
/* Crop mm1 to our desired size */
if (p->mm1_size > M32_PCI_SIZE)
p->mm1_size = M32_PCI_SIZE;
return true;
}
static void phb4_err_interrupt(struct irq_source *is, uint32_t isn)
{
struct phb4 *p = is->data;
PHBDBG(p, "Got interrupt 0x%08x\n", isn);
#if 0
/* Update pending event */
opal_update_pending_evt(OPAL_EVENT_PCI_ERROR,
OPAL_EVENT_PCI_ERROR);
/* If the PHB is broken, go away */
if (p->state == PHB3_STATE_BROKEN)
return;
/*
* Mark the PHB has pending error so that the OS
* can handle it at late point.
*/
phb3_set_err_pending(p, true);
#endif
}
static uint64_t phb4_lsi_attributes(struct irq_source *is __unused,
uint32_t isn __unused)
{
#ifndef DISABLE_ERR_INTS
struct phb3 *p = is->data;
uint32_t idx = isn - p->base_lsi;
if (idx == PHB3_LSI_PCIE_INF || idx == PHB3_LSI_PCIE_ER)
return IRQ_ATTR_TARGET_OPAL | IRQ_ATTR_TARGET_RARE;
#endif
return IRQ_ATTR_TARGET_LINUX;
}
static int64_t phb4_dd1_lsi_set_xive(struct irq_source *is, uint32_t isn,
uint16_t server, uint8_t priority)
{
struct phb4 *p = is->data;
uint32_t idx = isn - p->base_lsi;
if (idx > 8)
return OPAL_PARAMETER;
phb_lock(&p->phb);
phb4_ioda_sel(p, IODA3_TBL_LIST, idx, false);
/* Mask using P=0,Q=1, unmask using P=1,Q=0 followed by EOI */
/* XXX FIXME: A quick mask/umask can make us shoot an interrupt
* more than once to a queue. We need to keep track better.
*
* Thankfully, this is only on DD1 and for LSIs, so will go away
* soon enough.
*/
if (priority == 0xff)
out_be64(p->regs + PHB_IODA_DATA0, IODA3_LIST_Q);
else {
out_be64(p->regs + PHB_IODA_DATA0, IODA3_LIST_P);
__irq_source_eoi(is, isn);
}
phb_unlock(&p->phb);
return 0;
}
static const struct irq_source_ops phb4_dd1_lsi_ops = {
.set_xive = phb4_dd1_lsi_set_xive,
.interrupt = phb4_err_interrupt,
.attributes = phb4_lsi_attributes,
};
static const struct irq_source_ops phb4_lsi_ops = {
.interrupt = phb4_err_interrupt,
.attributes = phb4_lsi_attributes,
};
static void phb4_create(struct dt_node *np)
{
const struct dt_property *prop;
struct phb4 *p = zalloc(sizeof(struct phb4));
struct pci_slot *slot;
size_t lane_eq_len;
struct dt_node *iplp;
char *path;
uint32_t irq_base;
assert(p);
/* Populate base stuff */
p->index = dt_prop_get_u32(np, "ibm,phb-index");
p->chip_id = dt_prop_get_u32(np, "ibm,chip-id");
p->regs = (void *)dt_get_address(np, 0, NULL);
p->int_mmio = (void *)dt_get_address(np, 1, NULL);
p->phb.dt_node = np;
p->phb.ops = &phb4_ops;
p->phb.phb_type = phb_type_pcie_v4;
p->phb.scan_map = 0x1; /* Only device 0 to scan */
p->state = PHB4_STATE_UNINITIALIZED;
if (!phb4_calculate_windows(p))
return;
/* Get the various XSCOM register bases from the device-tree */
prop = dt_require_property(np, "ibm,xscom-bases", 5 * sizeof(uint32_t));
p->pe_xscom = ((const uint32_t *)prop->prop)[0];
p->pe_stk_xscom = ((const uint32_t *)prop->prop)[1];
p->pci_xscom = ((const uint32_t *)prop->prop)[2];
p->pci_stk_xscom = ((const uint32_t *)prop->prop)[3];
p->etu_xscom = ((const uint32_t *)prop->prop)[4];
/*
* We skip the initial PERST assertion requested by the generic code
* when doing a cold boot because we are coming out of cold boot already
* so we save boot time that way. The PERST state machine will still
* handle waiting for the link to come up, it will just avoid actually
* asserting & deasserting the PERST output
*
* For a hot IPL, we still do a PERST
*
* Note: In absence of property (ie, FSP-less), we stick to the old
* behaviour and set skip_perst to true
*/
p->skip_perst = true; /* Default */
iplp = dt_find_by_path(dt_root, "ipl-params/ipl-params");
if (iplp) {
const char *ipl_type = dt_prop_get_def(iplp, "cec-major-type", NULL);
if (ipl_type && (!strcmp(ipl_type, "hot")))
p->skip_perst = false;
}
/* By default link is assumed down */
p->has_link = false;
/* We register the PHB before we initialize it so we
* get a useful OPAL ID for it
*/
pci_register_phb(&p->phb, phb4_get_opal_id(p->chip_id, p->index));
/* Create slot structure */
slot = phb4_slot_create(&p->phb);
if (!slot)
PHBERR(p, "Cannot create PHB slot\n");
/* Hello ! */
path = dt_get_path(np);
PHBINF(p, "Found %s @%p\n", path, p->regs);
PHBINF(p, " M32 [0x%016llx..0x%016llx]\n",
p->mm1_base, p->mm1_base + p->mm1_size - 1);
PHBINF(p, " M64 [0x%016llx..0x%016llx]\n",
p->mm0_base, p->mm0_base + p->mm0_size - 1);
free(path);
/* Find base location code from root node */
p->phb.base_loc_code = dt_prop_get_def(dt_root,
"ibm,io-base-loc-code", NULL);
if (!p->phb.base_loc_code)
PHBERR(p, "Base location code not found !\n");
/*
* Grab CEC IO VPD load info from the root of the device-tree,
* on P8 there's a single such VPD for the whole machine
*/
prop = dt_find_property(dt_root, "ibm,io-vpd");
if (!prop) {
/* LX VPD Lid not already loaded */
vpd_iohub_load(dt_root);
}
/* Obtain informatin about the PHB from the hardware directly */
if (!phb4_read_capabilities(p))
goto failed;
/* Priority order: NVRAM -> dt -> GEN2 dd1 -> GEN4 */
p->max_link_speed = 4;
if (p->rev == PHB4_REV_NIMBUS_DD10)
p->max_link_speed = 2;
if (dt_has_node_property(np, "ibm,max-link-speed", NULL))
p->max_link_speed = dt_prop_get_u32(np, "ibm,max-link-speed");
if (pcie_max_link_speed)
p->max_link_speed = pcie_max_link_speed;
if (p->max_link_speed > 4) /* clamp to 4 */
p->max_link_speed = 4;
PHBINF(p, "Max link speed: GEN%i\n", p->max_link_speed);
/* Check for lane equalization values from HB or HDAT */
p->lane_eq = dt_prop_get_def_size(np, "ibm,lane-eq", NULL, &lane_eq_len);
if (p->lane_eq) {
uint32_t want_len;
if (p->rev == PHB4_REV_NIMBUS_DD10)
want_len = 8 * 8;
else
want_len = 6 * 8;
if (lane_eq_len != want_len) {
PHBERR(p, "Device-tree has ibm,lane-eq with wrong len %ld"
" (want %d)\n", lane_eq_len, want_len);
p->lane_eq = NULL;
}
}
if (p->lane_eq) {
PHBDBG(p, "Override lane equalization settings:\n");
PHBDBG(p, " 0x%016llx 0x%016llx\n",
be64_to_cpu(p->lane_eq[0]), be64_to_cpu(p->lane_eq[1]));
PHBDBG(p, " 0x%016llx 0x%016llx\n",
be64_to_cpu(p->lane_eq[2]), be64_to_cpu(p->lane_eq[3]));
PHBDBG(p, " 0x%016llx 0x%016llx\n",
be64_to_cpu(p->lane_eq[4]), be64_to_cpu(p->lane_eq[5]));
PHBDBG(p, " 0x%016llx 0x%016llx\n",
be64_to_cpu(p->lane_eq[6]), be64_to_cpu(p->lane_eq[7]));
}
/* Allocate a block of interrupts. We need to know if it needs
* 2K or 4K interrupts ... for now we just use 4K but that
* needs to be fixed
*/
irq_base = xive_alloc_hw_irqs(p->chip_id, p->num_irqs, p->num_irqs);
if (irq_base == XIVE_IRQ_ERROR) {
PHBERR(p, "Failed to allocate %d interrupt sources\n",
p->num_irqs);
goto failed;
}
p->base_msi = irq_base;
p->base_lsi = irq_base + p->num_irqs - 8;
p->irq_port = xive_get_notify_port(p->chip_id,
XIVE_HW_SRC_PHBn(p->index));
/*
* XXXX FIXME: figure out how to deal with TVT entry mess
* For now configure for 2 entries per PE and half #PEs.
* WARNING: if changing this, update PHB_CTRLR in Init_16
*/
p->num_pes = p->max_num_pes/2;
/* Allocate the SkiBoot internal in-memory tables for the PHB */
phb4_allocate_tables(p);
phb4_add_properties(p);
/* Clear IODA3 cache */
phb4_init_ioda_cache(p);
/* Get the HW up and running */
phb4_init_hw(p, true);
/* Register all interrupt sources with XIVE */
xive_register_hw_source(p->base_msi, p->num_irqs - 8, 16,
p->int_mmio,
XIVE_SRC_SHIFT_BUG | XIVE_SRC_TRIGGER_PAGE,
NULL, NULL);
xive_register_hw_source(p->base_lsi, 8, 16,
p->int_mmio + ((p->num_irqs - 8) << 16),
XIVE_SRC_LSI | XIVE_SRC_SHIFT_BUG,
p,
(p->rev == PHB4_REV_NIMBUS_DD10) ?
&phb4_dd1_lsi_ops : &phb4_lsi_ops);
/* Platform additional setup */
if (platform.pci_setup_phb)
platform.pci_setup_phb(&p->phb, p->index);
dt_add_property_string(np, "status", "okay");
return;
failed:
p->state = PHB4_STATE_BROKEN;
/* Tell Linux it's broken */
dt_add_property_string(np, "status", "error");
}
static void phb4_probe_stack(struct dt_node *stk_node, uint32_t pec_index,
uint32_t nest_base, uint32_t pci_base)
{
uint32_t pci_stack, nest_stack, etu_base, gcid, phb_num, stk_index;
uint64_t val, phb_bar = 0, irq_bar = 0, bar_en;
uint64_t mmio0_bar = 0, mmio0_bmask, mmio0_sz;
uint64_t mmio1_bar, mmio1_bmask, mmio1_sz;
uint64_t reg[4];
void *foo;
uint64_t mmio_win[4];
unsigned int mmio_win_sz;
struct dt_node *np;
struct proc_chip *chip;
char *path;
uint64_t capp_ucode_base;
unsigned int max_link_speed;
gcid = dt_get_chip_id(stk_node);
chip = get_chip(gcid);
stk_index = dt_prop_get_u32(stk_node, "reg");
phb_num = dt_prop_get_u32(stk_node, "ibm,phb-index");
path = dt_get_path(stk_node);
prlog(PR_NOTICE, "PHB: Chip %d Found PHB4 PBCQ%d Stack %d at %s\n",
gcid, pec_index, stk_index, path);
free(path);
pci_stack = pci_base + 0x40 * (stk_index + 1);
nest_stack = nest_base + 0x40 * (stk_index + 1);
etu_base = pci_base + 0x100 + 0x40 * stk_index;
prlog(PR_DEBUG, "PHB[%d:%d] X[PE]=0x%08x/0x%08x X[PCI]=0x%08x/0x%08x X[ETU]=0x%08x\n",
gcid, phb_num, nest_base, nest_stack, pci_base, pci_stack, etu_base);
/* Default BAR enables */
bar_en = 0;
/* Initialize PHB register BAR */
phys_map_get(chip, PHB4_REG_SPC, phb_num, &phb_bar, NULL);
xscom_write(gcid, nest_stack + XPEC_NEST_STK_PHB_REG_BAR, phb_bar << 8);
bar_en |= XPEC_NEST_STK_BAR_EN_PHB;
/* Same with INT BAR (ESB) */
phys_map_get(chip, PHB4_XIVE_ESB, phb_num, &irq_bar, NULL);
xscom_write(gcid, nest_stack + XPEC_NEST_STK_IRQ_BAR, irq_bar << 8);
bar_en |= XPEC_NEST_STK_BAR_EN_INT;
/* Same with MMIO windows */
phys_map_get(chip, PHB4_64BIT_MMIO, phb_num, &mmio0_bar, &mmio0_sz);
mmio0_bmask = (~(mmio0_sz - 1)) & 0x00FFFFFFFFFFFFFFULL;
xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR0, mmio0_bar << 8);
xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR0_MASK, mmio0_bmask << 8);
phys_map_get(chip, PHB4_32BIT_MMIO, phb_num, &mmio1_bar, &mmio1_sz);
mmio1_bmask = (~(mmio1_sz - 1)) & 0x00FFFFFFFFFFFFFFULL;
xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR1, mmio1_bar << 8);
xscom_write(gcid, nest_stack + XPEC_NEST_STK_MMIO_BAR1_MASK, mmio1_bmask << 8);
bar_en |= XPEC_NEST_STK_BAR_EN_MMIO0 | XPEC_NEST_STK_BAR_EN_MMIO1;
prlog(PR_ERR, "PHB[%d:%d] PHB@0x%016llx IRQ@0x%016llx\n",
gcid, phb_num, phb_bar, irq_bar);
prlog(PR_ERR, "PHB[%d:%d] MMIO0@0x%016llx MMIO1@0x%016llx \n",
gcid, phb_num, mmio0_bar, mmio1_bar);
/* Build MMIO windows list */
mmio_win_sz = 0;
if (mmio0_bar) {
mmio_win[mmio_win_sz++] = mmio0_bar;
mmio_win[mmio_win_sz++] = mmio0_sz;
bar_en |= XPEC_NEST_STK_BAR_EN_MMIO0;
}
if (mmio1_bar) {
mmio_win[mmio_win_sz++] = mmio1_bar;
mmio_win[mmio_win_sz++] = mmio1_sz;
bar_en |= XPEC_NEST_STK_BAR_EN_MMIO1;
}
/* Set the appropriate enables */
xscom_read(gcid, nest_stack + XPEC_NEST_STK_BAR_EN, &val);
val |= bar_en;
xscom_write(gcid, nest_stack + XPEC_NEST_STK_BAR_EN, val);
/* No MMIO windows ? Barf ! */
if (mmio_win_sz == 0) {
prerror("PHB[%d:%d] No MMIO windows enabled !\n", gcid, phb_num);
return;
}
/* Check ETU reset */
xscom_read(gcid, pci_stack + XPEC_PCI_STK_ETU_RESET, &val);
prlog_once(PR_ERR, "ETU reset: %llx\n", val);
xscom_write(gcid, pci_stack + XPEC_PCI_STK_ETU_RESET, 0);
time_wait_ms(1);
// show we can read phb mmio space
foo = (void *)(phb_bar + 0x800); // phb version register
prlog_once(PR_ERR, "Version reg: 0x%016llx\n", in_be64(foo));
/* Create PHB node */
reg[0] = phb_bar;
reg[1] = 0x1000;
reg[2] = irq_bar;
reg[3] = 0x10000000;
np = dt_new_addr(dt_root, "pciex", reg[0]);
if (!np)
return;
dt_add_property_strings(np, "compatible", "ibm,power9-pciex", "ibm,ioda3-phb");
dt_add_property_strings(np, "device_type", "pciex");
dt_add_property(np, "reg", reg, sizeof(reg));
/* Everything else is handled later by skiboot, we just
* stick a few hints here
*/
dt_add_property_cells(np, "ibm,xscom-bases",
nest_base, nest_stack, pci_base, pci_stack, etu_base);
dt_add_property(np, "ibm,mmio-windows", mmio_win, 8 * mmio_win_sz);
dt_add_property_cells(np, "ibm,phb-index", phb_num);
dt_add_property_cells(np, "ibm,phb-stack", stk_node->phandle);
dt_add_property_cells(np, "ibm,phb-stack-index", stk_index);
dt_add_property_cells(np, "ibm,chip-id", gcid);
if (dt_has_node_property(stk_node, "ibm,hub-id", NULL))
dt_add_property_cells(np, "ibm,hub-id",
dt_prop_get_u32(stk_node, "ibm,hub-id"));
if (dt_has_node_property(stk_node, "ibm,loc-code", NULL)) {
const char *lc = dt_prop_get(stk_node, "ibm,loc-code");
dt_add_property_string(np, "ibm,loc-code", lc);
}
if (dt_has_node_property(stk_node, "ibm,lane-eq", NULL)) {
size_t leq_size;
const void *leq = dt_prop_get_def_size(stk_node, "ibm,lane-eq",
NULL, &leq_size);
if (leq != NULL && leq_size == 4 * 8)
dt_add_property(np, "ibm,lane-eq", leq, leq_size);
}
if (dt_has_node_property(stk_node, "ibm,capp-ucode", NULL)) {
capp_ucode_base = dt_prop_get_u32(stk_node, "ibm,capp-ucode");
dt_add_property_cells(np, "ibm,capp-ucode", capp_ucode_base);
}
if (dt_has_node_property(stk_node, "ibm,max-link-speed", NULL)) {
max_link_speed = dt_prop_get_u32(stk_node, "ibm,max-link-speed");
dt_add_property_cells(np, "ibm,max-link-speed", max_link_speed);
}
dt_add_property_cells(np, "ibm,capi-flags",
OPAL_PHB_CAPI_FLAG_SNOOP_CONTROL);
add_chip_dev_associativity(np);
}
static void phb4_probe_pbcq(struct dt_node *pbcq)
{
uint32_t nest_base, pci_base, pec_index;
struct dt_node *stk;
nest_base = dt_get_address(pbcq, 0, NULL);
pci_base = dt_get_address(pbcq, 1, NULL);
pec_index = dt_prop_get_u32(pbcq, "ibm,pec-index");
dt_for_each_child(pbcq, stk) {
if (dt_node_is_enabled(stk))
phb4_probe_stack(stk, pec_index, nest_base, pci_base);
}
}
void phb4_preload_vpd(void)
{
const struct dt_property *prop;
prop = dt_find_property(dt_root, "ibm,io-vpd");
if (!prop) {
/* LX VPD Lid not already loaded */
vpd_preload(dt_root);
}
}
void probe_phb4(void)
{
struct dt_node *np;
/* Look for PBCQ XSCOM nodes */
dt_for_each_compatible(dt_root, np, "ibm,power9-pbcq")
phb4_probe_pbcq(np);
/* Look for newly created PHB nodes */
dt_for_each_compatible(dt_root, np, "ibm,power9-pciex")
phb4_create(np);
}
|