1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
|
/* Copyright 2013-2015 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <skiboot.h>
#include <io.h>
#include <timebase.h>
#include <pci.h>
#include <interrupts.h>
#include <npu-regs.h>
#include <npu.h>
#include <xscom.h>
typedef uint32_t (*step)(struct npu_dev *);
struct procedure {
const char *name;
step steps[];
};
#define DEFINE_PROCEDURE(NAME, STEPS...) \
struct procedure procedure_##NAME = \
{.name = #NAME, .steps = {NAME, ##STEPS}}
#define PROCEDURE_INPROGRESS (1 << 31)
#define PROCEDURE_COMPLETE (1 << 30)
#define PROCEDURE_NEXT (1 << 29)
#define PROCEDURE_FAILED 2
#define PROCEDURE_ABORTED 3
#define PROCEDURE_UNSUPPORTED 4
/* Mask defining which status bits we want to expose */
#define PROCEDURE_STATUS_MASK 0xc000000f
/* Accesors for PHY registers. These can be done either via MMIO or SCOM. */
static bool pl_use_scom = 1;
static void phy_write(struct npu_dev *npu_dev, uint64_t addr, uint32_t val)
{
if (pl_use_scom)
xscom_write(npu_dev->npu->chip_id, npu_dev->pl_xscom_base | addr, val);
else
out_be16((void *) npu_dev->pl_base + PL_MMIO_ADDR(addr), val);
}
static uint16_t phy_read(struct npu_dev *npu_dev, uint64_t addr)
{
uint64_t val;
if (pl_use_scom)
xscom_read(npu_dev->npu->chip_id, npu_dev->pl_xscom_base + addr, &val);
else
val = in_be16((void *) npu_dev->pl_base + PL_MMIO_ADDR(addr));
return val & 0xffff;
}
/* The DL registers can be accessed indirectly via the NTL */
static void dl_write(struct npu_dev *npu_dev, uint32_t addr, uint32_t val)
{
xscom_write(npu_dev->npu->chip_id,
npu_dev->xscom + NX_DL_REG_ADDR, addr);
xscom_write(npu_dev->npu->chip_id,
npu_dev->xscom + NX_DL_REG_DATA, val);
}
static uint64_t __unused dl_read(struct npu_dev *npu_dev, uint32_t addr)
{
uint64_t val;
xscom_write(npu_dev->npu->chip_id,
npu_dev->xscom + NX_DL_REG_ADDR, addr);
xscom_read(npu_dev->npu->chip_id,
npu_dev->xscom + NX_DL_REG_DATA, &val);
return val;
}
/* Our hardware bits are backwards here. The lane vectors are 16-bit
* values represented in IBM bit ordering. This means lane 0 is
* represented by bit 15 in most of the registers. Internally we keep
* this sane (ie. npu_dev->lane_mask[0] == lane 0) as we need sane
* numbering for set_lane_reg() anyway. */
static uint32_t phy_lane_mask(struct npu_dev *npu_dev)
{
/* We only train 8 lanes at a time so we don't do a full
* bit-swap */
assert(npu_dev->lane_mask == 0xff00 || npu_dev->lane_mask == 0xff);
return ~npu_dev->lane_mask & 0xffff;
}
static void set_lane_reg(struct npu_dev *npu_dev, uint64_t base_reg,
uint64_t data, uint64_t mask)
{
uint64_t val, i;
uint32_t lane_mask = npu_dev->lane_mask;
for (i = 0; i <= 23; i++) {
if (lane_mask & (1ul << i)) {
uint64_t tx_rxcal_reg = base_reg + (i << 32);
val = phy_read(npu_dev, tx_rxcal_reg);
val = (val & ~mask) | data;
phy_write(npu_dev, tx_rxcal_reg, val);
}
}
}
static uint32_t stop(struct npu_dev *npu_dev __unused)
{
return PROCEDURE_COMPLETE | PROCEDURE_ABORTED;
}
DEFINE_PROCEDURE(stop);
static uint32_t nop(struct npu_dev *npu_dev __unused)
{
return PROCEDURE_COMPLETE;
}
DEFINE_PROCEDURE(nop);
/* Procedure 1.2.1 (RESET_NPU_DL) from opt_programmerguide.odt. Also
* incorporates AT reset. */
static uint32_t reset_npu_dl(struct npu_dev *npu_dev)
{
uint64_t val;
/* Assert NPU reset */
xscom_read(npu_dev->npu->chip_id, npu_dev->xscom + NX_NTL_CONTROL, &val);
val |= NTL_CONTROL_RESET;
xscom_write(npu_dev->npu->chip_id, npu_dev->xscom + NX_NTL_CONTROL, val);
/* Put the Nvidia logic in reset */
dl_write(npu_dev, NDL_CONTROL, 0xe8000000);
/* Release Nvidia logic from reset */
dl_write(npu_dev, NDL_CONTROL, 0);
/* Release NPU from reset */
val &= ~NTL_CONTROL_RESET;
xscom_write(npu_dev->npu->chip_id, npu_dev->xscom + NX_NTL_CONTROL, val);
/* Setup up TL credits */
xscom_write(npu_dev->npu->chip_id, npu_dev->xscom + NX_TL_CMD_CR, PPC_BIT(0));
xscom_write(npu_dev->npu->chip_id, npu_dev->xscom + NX_TL_CMD_D_CR, PPC_BIT(0));
xscom_write(npu_dev->npu->chip_id, npu_dev->xscom + NX_TL_RSP_CR, PPC_BIT(15));
xscom_write(npu_dev->npu->chip_id, npu_dev->xscom + NX_TL_RSP_D_CR, PPC_BIT(15));
/* Reset error registers. TODO: are there more we should clear here? */
npu_ioda_sel(npu_dev->npu, NPU_IODA_TBL_PESTB, 0, true);
for (val = 0; val < NPU_NUM_OF_PES; val++)
out_be64(npu_dev->npu->at_regs + NPU_IODA_DATA0, 0);
return PROCEDURE_COMPLETE;
}
DEFINE_PROCEDURE(reset_npu_dl);
/* Procedures 1.2.3 (reset_lanes) & 1.2.4
* (io_register_write_reset_values) */
static uint32_t phy_reset(struct npu_dev *npu_dev)
{
uint16_t val;
/* Lower run_lane inputs for lanes to be reset */
val = phy_read(npu_dev, RX_RUN_LANE_VEC_0_15);
val &= ~phy_lane_mask(npu_dev);
phy_write(npu_dev, RX_RUN_LANE_VEC_0_15, val);
return PROCEDURE_NEXT;
}
static uint32_t phy_reset_wait(struct npu_dev *npu_dev)
{
uint16_t val;
/* Wait for lane busy outputs to go to zero for lanes to be
* reset */
val = phy_read(npu_dev, RX_LANE_BUSY_VEC_0_15);
if (val & phy_lane_mask(npu_dev))
return PROCEDURE_INPROGRESS;
return PROCEDURE_NEXT;
}
static uint32_t phy_reset_complete(struct npu_dev *npu_dev)
{
uint16_t val;
uint32_t lane_mask = phy_lane_mask(npu_dev);
/* Set ioreset_vec for the desired lanes bit positions */
val = phy_read(npu_dev, RX_IORESET_VEC_0_15);
phy_write(npu_dev, RX_IORESET_VEC_0_15, val | lane_mask);
val = phy_read(npu_dev, TX_IORESET_VEC_0_15);
phy_write(npu_dev, TX_IORESET_VEC_0_15, val | lane_mask);
/* Clear ioreset_vec */
val = phy_read(npu_dev, RX_IORESET_VEC_0_15);
phy_write(npu_dev, RX_IORESET_VEC_0_15, val & ~lane_mask);
val = phy_read(npu_dev, TX_IORESET_VEC_0_15);
phy_write(npu_dev, TX_IORESET_VEC_0_15, val & ~lane_mask);
/* Reset RX phase rotators */
set_lane_reg(npu_dev, RX_PR_CNTL_PL, RX_PR_RESET, RX_PR_RESET);
set_lane_reg(npu_dev, RX_PR_CNTL_PL, 0, RX_PR_RESET);
/* Restore registers from scominit that may have changed */
set_lane_reg(npu_dev, RX_PR_MODE, 0x8, RX_PR_PHASE_STEP);
set_lane_reg(npu_dev, RX_A_DAC_CNTL,
0x7 << MASK_TO_LSH(RX_PR_IQ_RES_SEL),
RX_PR_IQ_RES_SEL);
set_lane_reg(npu_dev, TX_MODE1_PL, 0, TX_LANE_PDWN);
set_lane_reg(npu_dev, RX_BANK_CONTROLS, 0, RX_LANE_ANA_PDWN);
set_lane_reg(npu_dev, RX_MODE, 0, RX_LANE_DIG_PDWN);
return PROCEDURE_COMPLETE;
}
DEFINE_PROCEDURE(phy_reset, phy_reset_wait, phy_reset_complete);
/* Round a fixed decimal number. Frac is the number of fractional
* bits */
static uint32_t round(uint32_t val, int frac)
{
if (val >> (frac - 1) & 0x1)
return (val >> frac) + 1;
else
return val >> frac;
}
#define ZCAL_MIN (10 << 3)
#define ZCAL_MAX (40 << 3)
#define ZCAL_K0 0x0
#define ZCAL_M 128
/* TODO: add a test case for the following values:
Initial values:
zcal_n = 0xda;
zcal_p = 0xc7;
Results:
pre_p = 0x0
pre_n = 0x0
margin_p = 0x0
margin_n = 0x0
total_en_p = 0x32
total_en_n = 0x37
*/
static uint32_t phy_tx_zcal(struct npu_dev *npu_dev)
{
uint64_t val;
if (npu_dev->index < 2 && npu_dev->npu->tx_zcal_complete[0])
return PROCEDURE_COMPLETE;
if (npu_dev->index >= 2 && npu_dev->npu->tx_zcal_complete[1])
return PROCEDURE_COMPLETE;
/* Start calibration */
val = phy_read(npu_dev, TX_IMPCAL_SWO1_PB);
val &= TX_ZCAL_SWO_EN;
phy_write(npu_dev, TX_IMPCAL_SWO1_PB, val);
phy_write(npu_dev, TX_IMPCAL_SWO2_PB, 0x50 << 2);
val = phy_read(npu_dev, TX_IMPCAL_PB);
val |= TX_ZCAL_REQ;
phy_write(npu_dev, TX_IMPCAL_PB, val);
return PROCEDURE_NEXT;
}
static uint32_t phy_tx_zcal_wait(struct npu_dev *npu_dev)
{
uint64_t val;
val = phy_read(npu_dev, TX_IMPCAL_PB);
if (!(val & TX_ZCAL_DONE))
return PROCEDURE_INPROGRESS;
if (val & TX_ZCAL_ERROR)
return PROCEDURE_COMPLETE | PROCEDURE_FAILED;
return PROCEDURE_NEXT;
}
static uint32_t phy_tx_zcal_calculate(struct npu_dev *npu_dev)
{
uint64_t val;
uint64_t zcal_n;
uint64_t zcal_p;
uint64_t margin_n;
uint64_t margin_p;
uint64_t pre_n;
uint64_t pre_p;
uint64_t total_en_n;
uint64_t total_en_p;
val = phy_read(npu_dev, TX_IMPCAL_NVAL_PB);
zcal_n = GETFIELD(TX_ZCAL_N, val);
val = phy_read(npu_dev, TX_IMPCAL_PVAL_PB);
zcal_p = GETFIELD(TX_ZCAL_P, val);
if ((zcal_n < ZCAL_MIN) || (zcal_n > ZCAL_MAX) ||
(zcal_p < ZCAL_MIN) || (zcal_p > ZCAL_MAX))
return PROCEDURE_COMPLETE | PROCEDURE_FAILED;
margin_n = (0x80 - ZCAL_M) * zcal_n / 2;
margin_p = (0x80 - ZCAL_M) * zcal_p / 2;
pre_n = (((0x80 * zcal_n) - (2 * margin_n)) * ZCAL_K0) / 0x80;
pre_p = (((0x80 * zcal_p) - (2 * margin_p)) * ZCAL_K0) / 0x80;
total_en_n = 0x80 * zcal_n - (2 * margin_n) - (pre_n & 1023);
total_en_p = 0x80 * zcal_p - (2 * margin_p) - (pre_p & 1023);
pre_p = round(pre_p, 9);
pre_n = round(pre_n, 9);
margin_p = round(margin_p, 9);
margin_n = round(margin_n, 9);
total_en_p = round(total_en_p, 9);
total_en_n = round(total_en_n, 9);
val = SETFIELD(TX_FFE_TOTAL_ENABLE_N_ENC, 0, total_en_n);
val = SETFIELD(TX_FFE_TOTAL_ENABLE_P_ENC, val, total_en_p);
phy_write(npu_dev, TX_FFE_TOTAL_2RSTEP_EN, val);
val = SETFIELD(TX_FFE_PRE_N_SEL_ENC, 0, pre_n);
val = SETFIELD(TX_FFE_PRE_P_SEL_ENC, val, pre_p);
phy_write(npu_dev, TX_FFE_PRE_2RSTEP_SEL, val);
val = SETFIELD(TX_FFE_MARGIN_PD_N_SEL_ENC, 0, margin_n);
val = SETFIELD(TX_FFE_MARGIN_PU_P_SEL_ENC, val, margin_p);
phy_write(npu_dev, TX_FFE_MARGIN_2RSTEP_SEL, val);
if (npu_dev->index < 2)
npu_dev->npu->tx_zcal_complete[0] = true;
else
npu_dev->npu->tx_zcal_complete[1] = true;
return PROCEDURE_COMPLETE;
}
DEFINE_PROCEDURE(phy_tx_zcal, phy_tx_zcal_wait, phy_tx_zcal_calculate);
static uint32_t phy_enable_tx_rxcal(struct npu_dev *npu_dev)
{
/* Turn common mode on */
set_lane_reg(npu_dev, TX_MODE2_PL, TX_RXCAL, TX_RXCAL);
return PROCEDURE_COMPLETE;
}
DEFINE_PROCEDURE(phy_enable_tx_rxcal);
static uint32_t phy_disable_tx_rxcal(struct npu_dev *npu_dev)
{
/* Turn common mode off */
set_lane_reg(npu_dev, TX_MODE2_PL, 0, TX_RXCAL);
return PROCEDURE_COMPLETE;
}
DEFINE_PROCEDURE(phy_disable_tx_rxcal);
static uint32_t phy_rx_dccal(struct npu_dev *npu_dev)
{
if (phy_read(npu_dev, RX_LANE_BUSY_VEC_0_15)
& ~phy_read(npu_dev, RX_INIT_DONE_VEC_0_15))
return PROCEDURE_INPROGRESS;
return PROCEDURE_NEXT;
}
static uint32_t phy_rx_dccal_start(struct npu_dev *npu_dev)
{
uint64_t val;
/* Save EO step control */
val = phy_read(npu_dev, RX_EO_STEP_CNTL_PG);
npu_dev->procedure_data = val;
phy_write(npu_dev, RX_EO_STEP_CNTL_PG,
RX_EO_ENABLE_LATCH_OFFSET_CAL
| RX_EO_ENABLE_CM_COARSE_CAL);
val = phy_read(npu_dev, RX_RECAL_ABORT_VEC_0_15);
val |= phy_lane_mask(npu_dev);
phy_write(npu_dev, RX_RECAL_ABORT_VEC_0_15, val);
val = phy_read(npu_dev, RX_RUN_LANE_VEC_0_15);
val |= phy_lane_mask(npu_dev);
phy_write(npu_dev, RX_RUN_LANE_VEC_0_15, val);
return PROCEDURE_NEXT;
}
static uint32_t phy_rx_dccal_complete(struct npu_dev *npu_dev)
{
/* Poll for completion on relevant lanes */
if ((phy_read(npu_dev, RX_INIT_DONE_VEC_0_15) & phy_lane_mask(npu_dev))
!= phy_lane_mask(npu_dev))
return PROCEDURE_INPROGRESS;
return PROCEDURE_NEXT;
}
static uint32_t phy_rx_dccal_fifo_init(struct npu_dev *npu_dev)
{
uint64_t val;
val = phy_read(npu_dev, RX_RUN_LANE_VEC_0_15);
val &= ~phy_lane_mask(npu_dev);
phy_write(npu_dev, RX_RUN_LANE_VEC_0_15, val);
/* Turn off recal abort */
val = phy_read(npu_dev, RX_RECAL_ABORT_VEC_0_15);
val &= ~phy_lane_mask(npu_dev);
phy_write(npu_dev, RX_RECAL_ABORT_VEC_0_15, val);
/* Restore original settings */
phy_write(npu_dev, RX_EO_STEP_CNTL_PG, npu_dev->procedure_data);
/* FIFO Init */
set_lane_reg(npu_dev, TX_MODE2_PL, 0, TX_UNLOAD_CLK_DISABLE);
set_lane_reg(npu_dev, TX_CNTL_STAT2, TX_FIFO_INIT, TX_FIFO_INIT);
set_lane_reg(npu_dev, TX_MODE2_PL, TX_UNLOAD_CLK_DISABLE,
TX_UNLOAD_CLK_DISABLE);
return PROCEDURE_COMPLETE;
}
DEFINE_PROCEDURE(phy_rx_dccal, phy_rx_dccal_start, phy_rx_dccal_complete,
phy_rx_dccal_fifo_init);
static uint32_t phy_rx_training(struct npu_dev *npu_dev)
{
uint16_t val;
if (!npu_dev->procedure_data) {
val = phy_read(npu_dev, RX_RUN_LANE_VEC_0_15);
val |= phy_lane_mask(npu_dev);
phy_write(npu_dev, RX_RUN_LANE_VEC_0_15, val);
}
npu_dev->procedure_data++;
if (npu_dev->procedure_data >= 1000000)
return PROCEDURE_COMPLETE | PROCEDURE_FAILED;
val = phy_read(npu_dev, RX_RUN_LANE_VEC_0_15);
if ((val & phy_lane_mask(npu_dev)) != phy_lane_mask(npu_dev))
return PROCEDURE_INPROGRESS;
return PROCEDURE_COMPLETE;
}
DEFINE_PROCEDURE(phy_rx_training);
static struct procedure *npu_procedures[] = {
&procedure_stop,
&procedure_nop,
NULL,
NULL,
&procedure_phy_reset,
&procedure_phy_tx_zcal,
&procedure_phy_rx_dccal,
&procedure_phy_enable_tx_rxcal,
&procedure_phy_disable_tx_rxcal,
&procedure_phy_rx_training,
&procedure_reset_npu_dl,
/* Place holders for pre-terminate and terminate procedures */
&procedure_nop,
&procedure_nop};
/* Run a procedure step(s) and return status */
static uint32_t get_procedure_status(struct npu_dev *dev)
{
uint32_t result;
uint16_t procedure = dev->procedure_number;
uint16_t step = dev->procedure_step;
const char *name = npu_procedures[procedure]->name;
do {
result = npu_procedures[procedure]->steps[step](dev);
if (result & PROCEDURE_NEXT) {
step++;
NPUDEVINF(dev, "Running procedure %s step %d\n", name, step);
}
} while (result & PROCEDURE_NEXT);
dev->procedure_step = step;
if (result & PROCEDURE_COMPLETE)
NPUDEVINF(dev, "Procedure %s complete\n", name);
else if (mftb() > dev->procedure_tb + msecs_to_tb(100)) {
NPUDEVINF(dev, "Procedure %s timed out\n", name);
result = PROCEDURE_COMPLETE | PROCEDURE_FAILED;
}
/* Mask off internal state bits */
dev->procedure_status = result & PROCEDURE_STATUS_MASK;
return dev->procedure_status;
}
int64_t npu_dev_procedure_read(struct npu_dev_trap *trap,
uint32_t offset,
uint32_t size,
uint32_t *data)
{
struct npu_dev *dev = trap->dev;
int64_t rc = OPAL_SUCCESS;
if (size != 4) {
/* Short config reads are not supported */
NPUDEVERR(dev, "Short read of procedure register\n");
return OPAL_PARAMETER;
}
offset -= trap->start;
*data = 0;
switch (offset) {
case 0:
/* Only run the procedure if not already complete */
if (dev->procedure_status & PROCEDURE_COMPLETE)
*data = dev->procedure_status;
else
*data = get_procedure_status(dev);
break;
case 4:
*data = dev->procedure_number;
break;
default:
NPUDEVERR(dev, "Invalid vendor specific offset 0x%08x\n",
offset);
rc = OPAL_PARAMETER;
}
return rc;
}
int64_t npu_dev_procedure_write(struct npu_dev_trap *trap,
uint32_t offset,
uint32_t size,
uint32_t data)
{
struct npu_dev *dev = trap->dev;
const char *name;
int64_t rc = OPAL_SUCCESS;
if (size != 4) {
/* Short config writes are not supported */
NPUDEVERR(dev, "Short read of procedure register\n");
return OPAL_PARAMETER;
}
offset -= trap->start;
switch (offset) {
case 0:
/* We ignore writes to the status register */
NPUDEVINF(dev, "Ignoring writes to status register\n");
break;
case 4:
if (data >= ARRAY_SIZE(npu_procedures) ||
!npu_procedures[data]) {
NPUDEVINF(dev, "Unsupported procedure number %d\n", data);
dev->procedure_status = PROCEDURE_COMPLETE
| PROCEDURE_UNSUPPORTED;
break;
}
name = npu_procedures[data]->name;
if (dev->procedure_number == data
&& !(dev->procedure_status & PROCEDURE_COMPLETE))
NPUDEVINF(dev, "Restarting procuedure %s\n", name);
else
NPUDEVINF(dev, "Starting procedure %s\n", name);
dev->procedure_status = PROCEDURE_INPROGRESS;
dev->procedure_number = data;
dev->procedure_step = 0;
dev->procedure_data = 0;
dev->procedure_tb = mftb();
break;
default:
NPUDEVINF(dev, "Invalid vendor specific offset 0x%08x\n", offset);
rc = OPAL_PARAMETER;
}
return rc;
}
|