1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
|
/* Copyright 2013-2014 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Handle ChipTOD chip & configure core timebases
*/
#include <skiboot.h>
#include <chiptod.h>
#include <chip.h>
#include <xscom.h>
#include <io.h>
#include <cpu.h>
#include <timebase.h>
#include <opal-api.h>
/* TOD chip XSCOM addresses */
#define TOD_TTYPE_0 0x00040011
#define TOD_TTYPE_1 0x00040012 /* PSS switch */
#define TOD_TTYPE_2 0x00040013 /* Enable step checkers */
#define TOD_TTYPE_3 0x00040014 /* Request TOD */
#define TOD_TTYPE_4 0x00040015 /* Send TOD */
#define TOD_TTYPE_5 0x00040016 /* Invalidate TOD */
#define TOD_CHIPTOD_TO_TB 0x00040017
#define TOD_LOAD_TOD_MOD 0x00040018
#define TOD_CHIPTOD_VALUE 0x00040020
#define TOD_CHIPTOD_LOAD_TB 0x00040021
#define TOD_CHIPTOD_FSM 0x00040024
/* -- TOD PIB Master reg -- */
#define TOD_PIB_MASTER 0x00040027
#define TOD_PIBM_ADDR_CFG_MCAST PPC_BIT(25)
#define TOD_PIBM_ADDR_CFG_SLADDR PPC_BITMASK(26,31)
/* -- TOD Error interrupt register -- */
#define TOD_ERROR 0x00040030
/* SYNC errors */
#define TOD_ERR_CRMO_PARITY PPC_BIT(0)
#define TOD_ERR_OSC0_PARITY PPC_BIT(1)
#define TOD_ERR_OSC1_PARITY PPC_BIT(2)
#define TOD_ERR_CRITC_PARITY PPC_BIT(13)
#define TOD_ERR_PSS_HAMMING_DISTANCE PPC_BIT(18)
#define TOD_ERR_DELAY_COMPL_PARITY PPC_BIT(22)
/* CNTR errors */
#define TOD_ERR_CTCR_PARITY PPC_BIT(32)
#define TOD_ERR_TOD_SYNC_CHECK PPC_BIT(33)
#define TOD_ERR_TOD_FSM_PARITY PPC_BIT(34)
#define TOD_ERR_TOD_REGISTER_PARITY PPC_BIT(35)
#define TOD_ERR_OVERFLOW_YR2042 PPC_BIT(36)
#define TOD_ERR_TOD_WOF_LSTEP_PARITY PPC_BIT(37)
#define TOD_ERR_TTYPE0_RECVD PPC_BIT(38)
#define TOD_ERR_TTYPE1_RECVD PPC_BIT(39)
#define TOD_ERR_TTYPE2_RECVD PPC_BIT(40)
#define TOD_ERR_TTYPE3_RECVD PPC_BIT(41)
#define TOD_ERR_TTYPE4_RECVD PPC_BIT(42)
#define TOD_ERR_TTYPE5_RECVD PPC_BIT(43)
/* Magic TB value. One step cycle ahead of sync */
#define INIT_TB 0x000000000001ff0
/* Number of iterations for the various timeouts */
#define TIMEOUT_LOOPS 20000000
/* Timebase State Machine error state */
#define TBST_STATE_ERROR 9
static enum chiptod_type {
chiptod_unknown,
chiptod_p7,
chiptod_p8
} chiptod_type;
static int32_t chiptod_primary = -1;
static int32_t chiptod_secondary = -1;
/* The base TFMR value is the same for the whole machine
* for now as far as I can tell
*/
static uint64_t base_tfmr;
/*
* For now, we use a global lock for runtime chiptod operations,
* eventually make this a per-core lock for wakeup rsync and
* take all of them for RAS cases.
*/
static struct lock chiptod_lock = LOCK_UNLOCKED;
static void chiptod_setup_base_tfmr(void)
{
struct dt_node *cpu = this_cpu()->node;
uint64_t core_freq, tod_freq;
uint64_t mcbs;
base_tfmr = SPR_TFMR_TB_ECLIPZ;
/* Get CPU and TOD freqs in Hz */
if (dt_has_node_property(cpu,"ibm,extended-clock-frequency", NULL))
core_freq = dt_prop_get_u64(cpu,"ibm,extended-clock-frequency");
else
core_freq = dt_prop_get_u32(cpu, "clock-frequency");
tod_freq = 32000000;
/* Calculate the "Max Cycles Between Steps" value according
* to the magic formula:
*
* mcbs = (core_freq * max_jitter_factor) / (4 * tod_freq) / 100;
*
* The max jitter factor is set to 240 based on what pHyp uses.
*/
mcbs = (core_freq * 240) / (4 * tod_freq) / 100;
prlog(PR_INFO, "CHIPTOD: Calculated MCBS is 0x%llx"
" (Cfreq=%lld Tfreq=%lld)\n",
mcbs, core_freq, tod_freq);
/* Bake that all into TFMR */
base_tfmr = SETFIELD(SPR_TFMR_MAX_CYC_BET_STEPS, base_tfmr, mcbs);
base_tfmr = SETFIELD(SPR_TFMR_N_CLKS_PER_STEP, base_tfmr, 0);
base_tfmr = SETFIELD(SPR_TFMR_SYNC_BIT_SEL, base_tfmr, 4);
}
static bool chiptod_mod_tb(void)
{
uint64_t tfmr = base_tfmr;
uint64_t timeout = 0;
/* Switch timebase to "Not Set" state */
mtspr(SPR_TFMR, tfmr | SPR_TFMR_LOAD_TOD_MOD);
do {
if (++timeout >= (TIMEOUT_LOOPS*2)) {
prerror("CHIPTOD: TB \"Not Set\" timeout\n");
return false;
}
tfmr = mfspr(SPR_TFMR);
if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
prerror("CHIPTOD: TB \"Not Set\" TFMR corrupt\n");
return false;
}
if (GETFIELD(SPR_TFMR_TBST_ENCODED, tfmr) == 9) {
prerror("CHIPTOD: TB \"Not Set\" TOD in error state\n");
return false;
}
} while(tfmr & SPR_TFMR_LOAD_TOD_MOD);
return true;
}
static bool chiptod_interrupt_check(void)
{
uint64_t tfmr = mfspr(SPR_TFMR);
uint64_t timeout = 0;
do {
if (++timeout >= TIMEOUT_LOOPS) {
prerror("CHIPTOD: Interrupt check fail\n");
return false;
}
tfmr = mfspr(SPR_TFMR);
if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
prerror("CHIPTOD: Interrupt check TFMR corrupt !\n");
return false;
}
} while(tfmr & SPR_TFMR_CHIP_TOD_INTERRUPT);
return true;
}
static bool chiptod_running_check(void)
{
uint64_t tval;
if (xscom_readme(TOD_CHIPTOD_FSM, &tval) != 0) {
prerror("CHIPTOD: XSCOM error polling run\n");
return false;
}
if (tval & 0x0800000000000000UL)
return true;
else
return false;
}
static bool chiptod_poll_running(void)
{
uint64_t timeout = 0;
uint64_t tval;
/* Chip TOD running check */
do {
if (++timeout >= TIMEOUT_LOOPS) {
prerror("CHIPTOD: Running check fail timeout\n");
return false;
}
if (xscom_readme(TOD_CHIPTOD_FSM, &tval) != 0) {
prerror("CHIPTOD: XSCOM error polling run\n");
return false;
}
} while(!(tval & 0x0800000000000000UL));
return true;
}
static bool chiptod_to_tb(void)
{
uint64_t tval, tfmr, tvbits;
uint64_t timeout = 0;
/* Tell the ChipTOD about our fabric address
*
* The pib_master value is calculated from the CPU core ID, given in
* the PIR. Because we have different core/thread arrangements in the
* PIR between p7 and p8, we need to do the calculation differently.
*
* p7: 0b00001 || 3-bit core id
* p8: 0b0001 || 4-bit core id
*/
if (xscom_readme(TOD_PIB_MASTER, &tval) != 0) {
prerror("CHIPTOD: XSCOM error reading PIB_MASTER\n");
return false;
}
if (chiptod_type == chiptod_p8) {
tvbits = (this_cpu()->pir >> 3) & 0xf;
tvbits |= 0x10;
} else {
tvbits = (this_cpu()->pir >> 2) & 0x7;
tvbits |= 0x08;
}
tval &= ~TOD_PIBM_ADDR_CFG_MCAST;
tval = SETFIELD(TOD_PIBM_ADDR_CFG_SLADDR, tval, tvbits);
if (xscom_writeme(TOD_PIB_MASTER, tval) != 0) {
prerror("CHIPTOD: XSCOM error writing PIB_MASTER\n");
return false;
}
/* Make us ready to get the TB from the chipTOD */
mtspr(SPR_TFMR, base_tfmr | SPR_TFMR_MOVE_CHIP_TOD_TO_TB);
/* Tell the ChipTOD to send it */
if (xscom_writeme(TOD_CHIPTOD_TO_TB, (1ULL << 63)) != 0) {
prerror("CHIPTOD: XSCOM error writing CHIPTOD_TO_TB\n");
return false;
}
/* Wait for it to complete */
timeout = 0;
do {
if (++timeout >= TIMEOUT_LOOPS) {
prerror("CHIPTOD: Chip to TB timeout\n");
return false;
}
tfmr = mfspr(SPR_TFMR);
if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
prerror("CHIPTOD: MoveToTB: corrupt TFMR !\n");
return false;
}
} while(tfmr & SPR_TFMR_MOVE_CHIP_TOD_TO_TB);
return true;
}
static bool chiptod_check_tb_running(void)
{
/* We used to wait for two SYNC pulses in TFMR but that
* doesn't seem to occur in sim, so instead we use a
* method similar to what pHyp does which is to check for
* TFMR SPR_TFMR_TB_VALID and not SPR_TFMR_TFMR_CORRUPT
*/
#if 0
uint64_t tfmr, timeout;
unsigned int i;
for (i = 0; i < 2; i++) {
tfmr = mfspr(SPR_TFMR);
tfmr &= ~SPR_TFMR_TB_SYNC_OCCURED;
mtspr(SPR_TFMR, tfmr);
timeout = 0;
do {
if (++timeout >= TIMEOUT_LOOPS) {
prerror("CHIPTOD: No sync pulses\n");
return false;
}
tfmr = mfspr(SPR_TFMR);
} while(!(tfmr & SPR_TFMR_TB_SYNC_OCCURED));
}
#else
uint64_t tfmr = mfspr(SPR_TFMR);
return (tfmr & SPR_TFMR_TB_VALID) &&
!(tfmr & SPR_TFMR_TFMR_CORRUPT);
#endif
return true;
}
static bool chiptod_reset_tb_errors(void)
{
uint64_t tfmr;
unsigned long timeout = 0;
/* Ask for automatic clear of errors */
tfmr = base_tfmr | SPR_TFMR_CLEAR_TB_ERRORS;
/* Additionally pHyp sets these (write-1-to-clear ?) */
tfmr |= SPR_TFMR_TB_MISSING_SYNC;
tfmr |= SPR_TFMR_TB_MISSING_STEP;
tfmr |= SPR_TFMR_TB_RESIDUE_ERR;
mtspr(SPR_TFMR, tfmr);
/* We have to write "Clear TB Errors" again */
tfmr = base_tfmr | SPR_TFMR_CLEAR_TB_ERRORS;
mtspr(SPR_TFMR, tfmr);
do {
if (++timeout >= TIMEOUT_LOOPS) {
/* Don't actually do anything on error for
* now ... not much we can do, panic maybe ?
*/
prerror("CHIPTOD: TB error reset timeout !\n");
return false;
}
tfmr = mfspr(SPR_TFMR);
if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
prerror("CHIPTOD: TB error reset: corrupt TFMR !\n");
return false;
}
} while(tfmr & SPR_TFMR_CLEAR_TB_ERRORS);
return true;
}
static void chiptod_cleanup_thread_tfmr(void)
{
uint64_t tfmr = base_tfmr;
tfmr |= SPR_TFMR_PURR_PARITY_ERR;
tfmr |= SPR_TFMR_SPURR_PARITY_ERR;
tfmr |= SPR_TFMR_DEC_PARITY_ERR;
tfmr |= SPR_TFMR_TFMR_CORRUPT;
tfmr |= SPR_TFMR_PURR_OVERFLOW;
tfmr |= SPR_TFMR_SPURR_OVERFLOW;
mtspr(SPR_TFMR, tfmr);
}
static void chiptod_reset_tod_errors(void)
{
uint64_t terr;
/*
* At boot, we clear the errors that the firmware is
* supposed to handle. List provided by the pHyp folks.
*/
terr = TOD_ERR_CRITC_PARITY;
terr |= TOD_ERR_PSS_HAMMING_DISTANCE;
terr |= TOD_ERR_DELAY_COMPL_PARITY;
terr |= TOD_ERR_CTCR_PARITY;
terr |= TOD_ERR_TOD_SYNC_CHECK;
terr |= TOD_ERR_TOD_FSM_PARITY;
terr |= TOD_ERR_TOD_REGISTER_PARITY;
if (xscom_writeme(TOD_ERROR, terr) != 0) {
prerror("CHIPTOD: XSCOM error writing TOD_ERROR !\n");
/* Not much we can do here ... abort ? */
}
}
static void chiptod_sync_master(void *data)
{
bool *result = data;
prlog(PR_DEBUG, "CHIPTOD: Master sync on CPU PIR 0x%04x...\n",
this_cpu()->pir);
/* Apply base tfmr */
mtspr(SPR_TFMR, base_tfmr);
/* From recipe provided by pHyp folks, reset various errors
* before attempting the sync
*/
chiptod_reset_tb_errors();
/* Cleanup thread tfmr bits */
chiptod_cleanup_thread_tfmr();
/* Reset errors in the chiptod itself */
chiptod_reset_tod_errors();
/* Switch timebase to "Not Set" state */
if (!chiptod_mod_tb())
goto error;
prlog(PR_INSANE, "SYNC MASTER Step 2 TFMR=0x%016lx\n", mfspr(SPR_TFMR));
/* Chip TOD step checkers enable */
if (xscom_writeme(TOD_TTYPE_2, (1UL << 63)) != 0) {
prerror("CHIPTOD: XSCOM error enabling steppers\n");
goto error;
}
prlog(PR_INSANE, "SYNC MASTER Step 3 TFMR=0x%016lx\n", mfspr(SPR_TFMR));
/* Chip TOD interrupt check */
if (!chiptod_interrupt_check())
goto error;
prlog(PR_INSANE, "SYNC MASTER Step 4 TFMR=0x%016lx\n", mfspr(SPR_TFMR));
/* Switch local chiptod to "Not Set" state */
if (xscom_writeme(TOD_LOAD_TOD_MOD, (1UL << 63)) != 0) {
prerror("CHIPTOD: XSCOM error sending LOAD_TOD_MOD\n");
goto error;
}
/* Switch all remote chiptod to "Not Set" state */
if (xscom_writeme(TOD_TTYPE_5, (1UL << 63)) != 0) {
prerror("CHIPTOD: XSCOM error sending TTYPE_5\n");
goto error;
}
/* Chip TOD load initial value */
if (xscom_writeme(TOD_CHIPTOD_LOAD_TB, INIT_TB) != 0) {
prerror("CHIPTOD: XSCOM error setting init TB\n");
goto error;
}
prlog(PR_INSANE, "SYNC MASTER Step 5 TFMR=0x%016lx\n", mfspr(SPR_TFMR));
if (!chiptod_poll_running())
goto error;
prlog(PR_INSANE, "SYNC MASTER Step 6 TFMR=0x%016lx\n", mfspr(SPR_TFMR));
/* Move chiptod value to core TB */
if (!chiptod_to_tb())
goto error;
prlog(PR_INSANE, "SYNC MASTER Step 7 TFMR=0x%016lx\n", mfspr(SPR_TFMR));
/* Send local chip TOD to all chips TOD */
if (xscom_writeme(TOD_TTYPE_4, (1ULL << 63)) != 0) {
prerror("CHIPTOD: XSCOM error sending TTYPE_4\n");
goto error;
}
/* Check if TB is running */
if (!chiptod_check_tb_running())
goto error;
prlog(PR_INSANE, "Master sync completed, TB=%lx\n", mfspr(SPR_TBRL));
/*
* A little delay to make sure the remote chips get up to
* speed before we start syncing them.
*
* We have to do it here because we know our TB is running
* while the boot thread TB might not yet.
*/
time_wait_ms(1);
*result = true;
return;
error:
prerror("CHIPTOD: Master sync failed! TFMR=0x%016lx\n",
mfspr(SPR_TFMR));
*result = false;
}
static void chiptod_sync_slave(void *data)
{
bool *result = data;
/* Only get primaries, not threads */
if (this_cpu()->is_secondary) {
/* On secondaries we just cleanup the TFMR */
chiptod_cleanup_thread_tfmr();
*result = true;
return;
}
prlog(PR_DEBUG, "CHIPTOD: Slave sync on CPU PIR 0x%04x...\n",
this_cpu()->pir);
/* Apply base tfmr */
mtspr(SPR_TFMR, base_tfmr);
/* From recipe provided by pHyp folks, reset various errors
* before attempting the sync
*/
chiptod_reset_tb_errors();
/* Cleanup thread tfmr bits */
chiptod_cleanup_thread_tfmr();
/* Switch timebase to "Not Set" state */
if (!chiptod_mod_tb())
goto error;
prlog(PR_INSANE, "SYNC SLAVE Step 2 TFMR=0x%016lx\n", mfspr(SPR_TFMR));
/* Chip TOD running check */
if (!chiptod_poll_running())
goto error;
prlog(PR_INSANE, "SYNC SLAVE Step 3 TFMR=0x%016lx\n", mfspr(SPR_TFMR));
/* Chip TOD interrupt check */
if (!chiptod_interrupt_check())
goto error;
prlog(PR_INSANE, "SYNC SLAVE Step 4 TFMR=0x%016lx\n", mfspr(SPR_TFMR));
/* Move chiptod value to core TB */
if (!chiptod_to_tb())
goto error;
prlog(PR_INSANE, "SYNC SLAVE Step 5 TFMR=0x%016lx\n", mfspr(SPR_TFMR));
/* Check if TB is running */
if (!chiptod_check_tb_running())
goto error;
prlog(PR_INSANE, "Slave sync completed, TB=%lx\n", mfspr(SPR_TBRL));
*result = true;
return;
error:
prerror("CHIPTOD: Slave sync failed ! TFMR=0x%016lx\n",
mfspr(SPR_TFMR));
*result = false;
}
bool chiptod_wakeup_resync(void)
{
if (chiptod_primary < 0)
return 0;
lock(&chiptod_lock);
/* Apply base tfmr */
mtspr(SPR_TFMR, base_tfmr);
/* From recipe provided by pHyp folks, reset various errors
* before attempting the sync
*/
chiptod_reset_tb_errors();
/* Cleanup thread tfmr bits */
chiptod_cleanup_thread_tfmr();
/* Switch timebase to "Not Set" state */
if (!chiptod_mod_tb())
goto error;
/* Move chiptod value to core TB */
if (!chiptod_to_tb())
goto error;
unlock(&chiptod_lock);
return true;
error:
prerror("CHIPTOD: Resync failed ! TFMR=0x%16lx\n", mfspr(SPR_TFMR));
unlock(&chiptod_lock);
return false;
}
static int chiptod_recover_tod_errors(void)
{
uint64_t terr;
/* Read TOD error register */
if (xscom_readme(TOD_ERROR, &terr) != 0) {
prerror("CHIPTOD: XSCOM error reading TOD_ERROR reg\n");
return 0;
}
/* Check for sync check error and recover */
if ((terr & TOD_ERR_TOD_SYNC_CHECK) ||
(terr & TOD_ERR_TOD_FSM_PARITY) ||
(terr & TOD_ERR_CTCR_PARITY) ||
(terr & TOD_ERR_PSS_HAMMING_DISTANCE) ||
(terr & TOD_ERR_DELAY_COMPL_PARITY) ||
(terr & TOD_ERR_TOD_REGISTER_PARITY)) {
chiptod_reset_tod_errors();
return 1;
}
return 0;
}
/*
* Sync up TOD with other chips and get TOD in running state.
* For non-master, we request TOD value from another chip.
* For master chip, Switch the topology to recover.
*/
static int chiptod_start_tod(void)
{
/* Handle TOD recovery on master chip. */
if (this_cpu()->chip_id == chiptod_primary) {
/*
* TOD is not running on master chip. We need to sync with
* secondary chip TOD. But before we do that we need to
* switch topology to make backup master as the new
* active master. Once we switch the topology we can
* then request TOD value from new master chip TOD.
* But make sure we move local chiptod to Not Set before
* request TOD value.
*/
if (xscom_writeme(TOD_TTYPE_1, (1UL << 63)) != 0) {
prerror("CHIPTOD: XSCOM error switching primary/secondary\n");
return 0;
}
chiptod_primary = chiptod_secondary;
chiptod_secondary = this_cpu()->chip_id;
}
/* Switch local chiptod to "Not Set" state */
if (xscom_writeme(TOD_LOAD_TOD_MOD, (1UL << 63)) != 0) {
prerror("CHIPTOD: XSCOM error sending LOAD_TOD_MOD\n");
return 0;
}
/*
* Request the current TOD value from another chip.
* This will move TOD in running state
*/
if (xscom_writeme(TOD_TTYPE_3, (1UL << 63)) != 0) {
prerror("CHIPTOD: XSCOM error sending TTYPE_3\n");
return 0;
}
/* Check if chip TOD is running. */
if (!chiptod_poll_running())
return 0;
return 1;
}
static bool tfmr_recover_tb_errors(uint64_t tfmr)
{
uint64_t tfmr_reset_error;
unsigned long timeout = 0;
/* Ask for automatic clear of errors */
tfmr_reset_error = base_tfmr | SPR_TFMR_CLEAR_TB_ERRORS;
/* Additionally pHyp sets these (write-1-to-clear ?) */
if (tfmr & SPR_TFMR_TB_MISSING_SYNC)
tfmr_reset_error |= SPR_TFMR_TB_MISSING_SYNC;
if (tfmr & SPR_TFMR_TB_MISSING_STEP)
tfmr_reset_error |= SPR_TFMR_TB_MISSING_STEP;
/*
* write 1 to bit 45 to clear TB residue the error.
* TB register has already been reset to zero as part pre-recovery.
*/
if (tfmr & SPR_TFMR_TB_RESIDUE_ERR)
tfmr_reset_error |= SPR_TFMR_TB_RESIDUE_ERR;
if (tfmr & SPR_TFMR_FW_CONTROL_ERR)
tfmr_reset_error |= SPR_TFMR_FW_CONTROL_ERR;
if (tfmr & SPR_TFMR_TBST_CORRUPT)
tfmr_reset_error |= SPR_TFMR_TBST_CORRUPT;
mtspr(SPR_TFMR, tfmr_reset_error);
/* We have to write "Clear TB Errors" again */
tfmr_reset_error = base_tfmr | SPR_TFMR_CLEAR_TB_ERRORS;
mtspr(SPR_TFMR, tfmr_reset_error);
do {
if (++timeout >= TIMEOUT_LOOPS) {
prerror("CHIPTOD: TB error reset timeout !\n");
return false;
}
tfmr = mfspr(SPR_TFMR);
if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
prerror("CHIPTOD: TB error reset: corrupt TFMR !\n");
return false;
}
} while (tfmr & SPR_TFMR_CLEAR_TB_ERRORS);
return true;
}
static bool tfmr_recover_non_tb_errors(uint64_t tfmr)
{
uint64_t tfmr_reset_errors = 0;
/*
* write 1 to bit 26 to clear TFMR HDEC parity error.
* HDEC register has already been reset to zero as part pre-recovery.
*/
if (tfmr & SPR_TFMR_HDEC_PARITY_ERROR)
tfmr_reset_errors |= SPR_TFMR_HDEC_PARITY_ERROR;
if (tfmr & SPR_TFMR_DEC_PARITY_ERR) {
/* Set DEC with all ones */
mtspr(SPR_DEC, ~0);
/* set bit 59 to clear TFMR DEC parity error. */
tfmr_reset_errors |= SPR_TFMR_DEC_PARITY_ERR;
}
/*
* Reset PURR/SPURR to recover. We also need help from KVM
* layer to handle this change in PURR/SPURR. That needs
* to be handled in kernel KVM layer. For now, to recover just
* reset it.
*/
if (tfmr & SPR_TFMR_PURR_PARITY_ERR) {
/* set PURR register with sane value or reset it. */
mtspr(SPR_PURR, 0);
/* set bit 57 to clear TFMR PURR parity error. */
tfmr_reset_errors |= SPR_TFMR_PURR_PARITY_ERR;
}
if (tfmr & SPR_TFMR_SPURR_PARITY_ERR) {
/* set PURR register with sane value or reset it. */
mtspr(SPR_SPURR, 0);
/* set bit 58 to clear TFMR PURR parity error. */
tfmr_reset_errors |= SPR_TFMR_SPURR_PARITY_ERR;
}
/* Write TFMR twice to clear the error */
mtspr(SPR_TFMR, base_tfmr | tfmr_reset_errors);
mtspr(SPR_TFMR, base_tfmr | tfmr_reset_errors);
/* Get fresh copy of TFMR */
tfmr = mfspr(SPR_TFMR);
/* Check if TFMR non-TB errors still present. */
if (tfmr & tfmr_reset_errors) {
prerror(
"CHIPTOD: TFMR non-TB error recovery failed! TFMR=0x%016lx\n",
mfspr(SPR_TFMR));
return false;
}
return true;
}
/*
* TFMR parity error recovery as per pc_workbook:
* MT(TFMR) bits 11 and 60 are b’1’
* MT(HMER) all bits 1 except for bits 4,5
*/
static bool chiptod_recover_tfmr_error(void)
{
uint64_t tfmr;
/* Get the base TFMR */
tfmr = base_tfmr;
/* Set bit 60 to clear TFMR parity error. */
tfmr |= SPR_TFMR_TFMR_CORRUPT;
mtspr(SPR_TFMR, tfmr);
/* Write twice to clear the error */
mtspr(SPR_TFMR, tfmr);
/* Get fresh copy of TFMR */
tfmr = mfspr(SPR_TFMR);
/* Check if TFMR parity error still present. */
if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
prerror("CHIPTOD: TFMR error recovery: corrupt TFMR !\n");
return false;
}
/*
* Now that we have sane value in TFMR, check if Timebase machine
* state is in ERROR state. If yes, clear TB errors so that
* Timebase machine state changes to RESET state. Once in RESET state
* then we can then load TB with TOD value.
*/
if (GETFIELD(SPR_TFMR_TBST_ENCODED, tfmr) == TBST_STATE_ERROR) {
if (!chiptod_reset_tb_errors())
return false;
}
return true;
}
/*
* Recover from TB and TOD errors.
* Timebase register is per core and first thread that gets chance to
* handle interrupt would fix actual TFAC errors and rest of the threads
* from same core would see no errors. Return -1 if no errors have been
* found. The caller (handle_hmi_exception) of this function would not
* send an HMI event to host if return value is -1.
*
* Return values:
* 0 <= Failed to recover from errors
* 1 <= Successfully recovered from errors
* -1 <= No errors found. Errors are already been fixed.
*/
int chiptod_recover_tb_errors(void)
{
uint64_t tfmr;
int rc = -1;
if (chiptod_primary < 0)
return 0;
lock(&chiptod_lock);
/* Get fresh copy of TFMR */
tfmr = mfspr(SPR_TFMR);
/*
* Check for TFMR parity error and recover from it.
* We can not trust any other bits in TFMR If it is corrupt. Fix this
* before we do anything.
*/
if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
if (!chiptod_recover_tfmr_error()) {
rc = 0;
goto error_out;
}
}
/* Get fresh copy of TFMR */
tfmr = mfspr(SPR_TFMR);
/*
* Check for TB errors.
* On Sync check error, bit 44 of TFMR is set. Check for it and
* clear it.
*/
if ((tfmr & SPR_TFMR_TB_MISSING_STEP) ||
(tfmr & SPR_TFMR_TB_RESIDUE_ERR) ||
(tfmr & SPR_TFMR_FW_CONTROL_ERR) ||
(tfmr & SPR_TFMR_TBST_CORRUPT) ||
(tfmr & SPR_TFMR_TB_MISSING_SYNC)) {
if (!tfmr_recover_tb_errors(tfmr)) {
rc = 0;
goto error_out;
}
}
/*
* Check for TOD sync check error.
* On TOD errors, bit 51 of TFMR is set. If this bit is on then we
* need to fetch TOD error register and recover from TOD errors.
* Bit 33 of TOD error register indicates sync check error.
*/
if (tfmr & SPR_TFMR_CHIP_TOD_INTERRUPT)
rc = chiptod_recover_tod_errors();
/* Check if TB is running. If not then we need to get it running. */
if (!(tfmr & SPR_TFMR_TB_VALID)) {
rc = 0;
/* Place TB in Notset state. */
if (!chiptod_mod_tb())
goto error_out;
/*
* Before we move TOD to core TB check if TOD is running.
* If not, then get TOD in running state.
*/
if (!chiptod_running_check())
if (!chiptod_start_tod())
goto error_out;
/* Move chiptod value to core TB */
if (!chiptod_to_tb())
goto error_out;
/* We have successfully able to get TB running. */
rc = 1;
}
/*
* Now that TB is running, check for TFMR non-TB errors.
*/
if ((tfmr & SPR_TFMR_HDEC_PARITY_ERROR) ||
(tfmr & SPR_TFMR_PURR_PARITY_ERR) ||
(tfmr & SPR_TFMR_SPURR_PARITY_ERR) ||
(tfmr & SPR_TFMR_DEC_PARITY_ERR)) {
if (!tfmr_recover_non_tb_errors(tfmr)) {
rc = 0;
goto error_out;
}
rc = 1;
}
error_out:
unlock(&chiptod_lock);
return rc;
}
static int64_t opal_resync_timebase(void)
{
if (!chiptod_wakeup_resync()) {
prerror("OPAL: Resync timebase failed on CPU 0x%04x\n",
this_cpu()->pir);
return OPAL_HARDWARE;
}
return OPAL_SUCCESS;
}
opal_call(OPAL_RESYNC_TIMEBASE, opal_resync_timebase, 0);
static void chiptod_print_tb(void *data __unused)
{
prlog(PR_DEBUG, "CHIPTOD: PIR 0x%04x TB=%lx\n",
this_cpu()->pir, mfspr(SPR_TBRL));
}
static bool chiptod_probe(void)
{
struct dt_node *np;
dt_for_each_compatible(dt_root, np, "ibm,power-chiptod") {
uint32_t chip;
/* Old DT has chip-id in chiptod node, newer only in the
* parent xscom bridge
*/
chip = dt_get_chip_id(np);
if (dt_has_node_property(np, "primary", NULL)) {
chiptod_primary = chip;
if (dt_node_is_compatible(np,"ibm,power7-chiptod"))
chiptod_type = chiptod_p7;
if (dt_node_is_compatible(np,"ibm,power8-chiptod"))
chiptod_type = chiptod_p8;
}
if (dt_has_node_property(np, "secondary", NULL))
chiptod_secondary = chip;
}
if (chiptod_type == chiptod_unknown) {
prerror("CHIPTOD: Unknown TOD type !\n");
return false;
}
return true;
}
void chiptod_init(void)
{
struct cpu_thread *cpu0, *cpu;
bool sres;
/* Mambo and qemu doesn't simulate the chiptod */
if (chip_quirk(QUIRK_NO_CHIPTOD))
return;
op_display(OP_LOG, OP_MOD_CHIPTOD, 0);
if (!chiptod_probe()) {
prerror("CHIPTOD: Failed ChipTOD detection !\n");
op_display(OP_FATAL, OP_MOD_CHIPTOD, 0);
abort();
}
op_display(OP_LOG, OP_MOD_CHIPTOD, 1);
/* Pick somebody on the primary */
cpu0 = find_cpu_by_chip_id(chiptod_primary);
/* Calculate the base TFMR value used for everybody */
chiptod_setup_base_tfmr();
prlog(PR_DEBUG, "CHIPTOD: Base TFMR=0x%016llx\n", base_tfmr);
/* Schedule master sync */
sres = false;
cpu_wait_job(cpu_queue_job(cpu0, "chiptod_sync_master",
chiptod_sync_master, &sres), true);
if (!sres) {
op_display(OP_FATAL, OP_MOD_CHIPTOD, 2);
abort();
}
op_display(OP_LOG, OP_MOD_CHIPTOD, 2);
/* Schedule slave sync */
for_each_available_cpu(cpu) {
/* Skip master */
if (cpu == cpu0)
continue;
/* Queue job */
sres = false;
cpu_wait_job(cpu_queue_job(cpu, "chiptod_sync_slave",
chiptod_sync_slave, &sres),
true);
if (!sres) {
op_display(OP_WARN, OP_MOD_CHIPTOD, 3|(cpu->pir << 8));
/* Disable threads */
cpu_disable_all_threads(cpu);
}
op_display(OP_LOG, OP_MOD_CHIPTOD, 3|(cpu->pir << 8));
}
/* Display TBs */
for_each_available_cpu(cpu) {
/* Only do primaries, not threads */
if (cpu->is_secondary)
continue;
cpu_wait_job(cpu_queue_job(cpu, "chiptod_print_tb",
chiptod_print_tb, NULL), true);
}
op_display(OP_LOG, OP_MOD_CHIPTOD, 4);
}
|