aboutsummaryrefslogtreecommitdiff
path: root/hw/chiptod.c
blob: 22cc310461fa6a1ead1422cfe43ae6b8d3a6efef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
/* Copyright 2013-2014 IBM Corp.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * 	http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* Handle ChipTOD chip & configure core and CAPP timebases */

#define pr_fmt(fmt)	"CHIPTOD: " fmt

#include <skiboot.h>
#include <xscom.h>
#include <pci.h>
#include <chiptod.h>
#include <chip.h>
#include <io.h>
#include <cpu.h>
#include <timebase.h>
#include <opal-api.h>

/* TOD chip XSCOM addresses */
#define TOD_MASTER_PATH_CTRL		0x00040000 /* Master Path ctrl reg */
#define TOD_PRI_PORT0_CTRL		0x00040001 /* Primary port0 ctrl reg */
#define TOD_PRI_PORT1_CTRL		0x00040002 /* Primary port1 ctrl reg */
#define TOD_SEC_PORT0_CTRL		0x00040003 /* Secondary p0 ctrl reg */
#define TOD_SEC_PORT1_CTRL		0x00040004 /* Secondary p1 ctrl reg */
#define TOD_SLAVE_PATH_CTRL		0x00040005 /* Slave Path ctrl reg */
#define TOD_INTERNAL_PATH_CTRL		0x00040006 /* Internal Path ctrl reg */

/* -- TOD primary/secondary master/slave control register -- */
#define TOD_PSMS_CTRL			0x00040007
#define  TOD_PSMSC_PM_TOD_SELECT	PPC_BIT(1)  /* Primary Master TOD */
#define  TOD_PSMSC_PM_DRAW_SELECT	PPC_BIT(2)  /* Primary Master Drawer */
#define  TOD_PSMSC_SM_TOD_SELECT	PPC_BIT(9)  /* Secondary Master TOD */
#define  TOD_PSMSC_SM_DRAW_SELECT	PPC_BIT(10) /* Secondary Master Draw */

/* -- TOD primary/secondary master/slave status register -- */
#define TOD_STATUS			0x00040008
#define   TOD_ST_TOPOLOGY_SELECT	PPC_BITMASK(0, 2)
#define   TOD_ST_MPATH0_STEP_VALID	PPC_BIT(6)  /* MasterPath0 step valid */
#define   TOD_ST_MPATH1_STEP_VALID	PPC_BIT(7)  /* MasterPath1 step valid */
#define   TOD_ST_SPATH0_STEP_VALID	PPC_BIT(8)  /* SlavePath0 step valid */
#define   TOD_ST_SPATH1_STEP_VALID	PPC_BIT(10) /* SlavePath1 step valid */
/* Primary master/slave path select (0 = PATH_0, 1 = PATH_1) */
#define   TOD_ST_PRI_MPATH_SELECT	PPC_BIT(12) /* Primary MPath Select */
#define   TOD_ST_PRI_SPATH_SELECT	PPC_BIT(15) /* Primary SPath Select */
/* Secondary master/slave path select (0 = PATH_0, 1 = PATH_1) */
#define   TOD_ST_SEC_MPATH_SELECT	PPC_BIT(16) /* Secondary MPath Select */
#define   TOD_ST_SEC_SPATH_SELECT	PPC_BIT(19) /* Secondary SPath Select */
#define   TOD_ST_ACTIVE_MASTER		PPC_BIT(23)
#define   TOD_ST_BACKUP_MASTER		PPC_BIT(24)

/* TOD chip XSCOM addresses */
#define TOD_CHIP_CTRL			0x00040010 /* Chip control register */
#define TOD_TTYPE_0			0x00040011
#define TOD_TTYPE_1			0x00040012 /* PSS switch */
#define TOD_TTYPE_2			0x00040013 /* Enable step checkers */
#define TOD_TTYPE_3			0x00040014 /* Request TOD */
#define TOD_TTYPE_4			0x00040015 /* Send TOD */
#define TOD_TTYPE_5			0x00040016 /* Invalidate TOD */
#define TOD_CHIPTOD_TO_TB		0x00040017
#define TOD_LOAD_TOD_MOD		0x00040018
#define TOD_CHIPTOD_VALUE		0x00040020
#define TOD_CHIPTOD_LOAD_TB		0x00040021
#define TOD_CHIPTOD_FSM			0x00040024

/* -- TOD PIB Master reg -- */
#define TOD_PIB_MASTER			0x00040027
#define   TOD_PIBM_ADDR_CFG_MCAST	PPC_BIT(25)
#define   TOD_PIBM_ADDR_CFG_SLADDR	PPC_BITMASK(26,31)
#define   TOD_PIBM_TTYPE4_SEND_MODE	PPC_BIT(32)
#define   TOD_PIBM_TTYPE4_SEND_ENBL	PPC_BIT(33)

/* -- TOD Error interrupt register -- */
#define TOD_ERROR			0x00040030
/* SYNC errors */
#define   TOD_ERR_CRMO_PARITY		PPC_BIT(0)
#define   TOD_ERR_OSC0_PARITY		PPC_BIT(1)
#define   TOD_ERR_OSC1_PARITY		PPC_BIT(2)
#define   TOD_ERR_PPORT0_CREG_PARITY	PPC_BIT(3)
#define   TOD_ERR_PPORT1_CREG_PARITY	PPC_BIT(4)
#define   TOD_ERR_SPORT0_CREG_PARITY	PPC_BIT(5)
#define   TOD_ERR_SPORT1_CREG_PARITY	PPC_BIT(6)
#define   TOD_ERR_SPATH_CREG_PARITY	PPC_BIT(7)
#define   TOD_ERR_IPATH_CREG_PARITY	PPC_BIT(8)
#define   TOD_ERR_PSMS_CREG_PARITY	PPC_BIT(9)
#define   TOD_ERR_CRITC_PARITY		PPC_BIT(13)
#define   TOD_ERR_MP0_STEP_CHECK	PPC_BIT(14)
#define   TOD_ERR_MP1_STEP_CHECK	PPC_BIT(15)
#define   TOD_ERR_PSS_HAMMING_DISTANCE	PPC_BIT(18)
#define	  TOD_ERR_DELAY_COMPL_PARITY	PPC_BIT(22)
/* CNTR errors */
#define   TOD_ERR_CTCR_PARITY		PPC_BIT(32)
#define   TOD_ERR_TOD_SYNC_CHECK	PPC_BIT(33)
#define   TOD_ERR_TOD_FSM_PARITY	PPC_BIT(34)
#define   TOD_ERR_TOD_REGISTER_PARITY	PPC_BIT(35)
#define   TOD_ERR_OVERFLOW_YR2042	PPC_BIT(36)
#define   TOD_ERR_TOD_WOF_LSTEP_PARITY	PPC_BIT(37)
#define   TOD_ERR_TTYPE0_RECVD		PPC_BIT(38)
#define   TOD_ERR_TTYPE1_RECVD		PPC_BIT(39)
#define   TOD_ERR_TTYPE2_RECVD		PPC_BIT(40)
#define   TOD_ERR_TTYPE3_RECVD		PPC_BIT(41)
#define   TOD_ERR_TTYPE4_RECVD		PPC_BIT(42)
#define   TOD_ERR_TTYPE5_RECVD		PPC_BIT(43)

/* -- TOD Error interrupt register -- */
#define TOD_ERROR_INJECT		0x00040031

/* Local FIR EH.TPCHIP.TPC.LOCAL_FIR */
#define LOCAL_CORE_FIR		0x0104000C
#define LFIR_SWITCH_COMPLETE	PPC_BIT(18)

/* Magic TB value. One step cycle ahead of sync */
#define INIT_TB	0x000000000001ff0

/* Number of iterations for the various timeouts */
#define TIMEOUT_LOOPS		20000000

/* TOD active Primary/secondary configuration */
#define TOD_PRI_CONF_IN_USE	0	/* Tod using primary topology*/
#define TOD_SEC_CONF_IN_USE	7	/* Tod using secondary topo */

/* Timebase State Machine error state */
#define TBST_STATE_ERROR	9

static enum chiptod_type {
	chiptod_unknown,
	chiptod_p7,
	chiptod_p8,
	chiptod_p9
} chiptod_type;

enum chiptod_chip_role {
	chiptod_chip_role_UNKNOWN = -1,
	chiptod_chip_role_MDMT = 0,	/* Master Drawer Master TOD */
	chiptod_chip_role_MDST,		/* Master Drawer Slave TOD */
	chiptod_chip_role_SDMT,		/* Slave Drawer Master TOD */
	chiptod_chip_role_SDST,		/* Slave Drawer Slave TOD */
};

enum chiptod_chip_status {
	chiptod_active_master = 0,	/* Chip TOD is Active master */
	chiptod_backup_master = 1,	/* Chip TOD is backup master */
	chiptod_backup_disabled,	/* Chip TOD is backup but disabled */
};

struct chiptod_chip_config_info {
	int32_t id;				/* chip id */
	enum chiptod_chip_role role;		/* Chip role */
	enum chiptod_chip_status status;	/* active/backup/disabled */
};

static int32_t chiptod_primary = -1;
static int32_t chiptod_secondary = -1;
static enum chiptod_topology current_topology = chiptod_topo_unknown;

/*
 * chiptod_topology_info holds primary/secondary chip configuration info.
 * This info is initialized during chiptod_init(). This is an array of two:
 *	[0] = [chiptod_topo_primary] = Primary topology config info
 *	[1] = [chiptod_topo_secondary] = Secondary topology config info
 */
static struct chiptod_chip_config_info chiptod_topology_info[2];

/*
 * Array of TOD control registers that holds last known valid values.
 *
 * Cache chiptod control register values at following instances:
 * 1. Chiptod initialization
 * 2. After topology switch is complete.
 * 3. Upon receiving enable/disable topology request from FSP.
 *
 * Cache following chip TOD control registers:
 *   - Master Path control register (0x00040000)
 *   - Primary Port-0 control register (0x00040001)
 *   - Primary Port-1 control register (0x00040002)
 *   - Secondary Port-0 control register (0x00040003)
 *   - Secondary Port-1 control register (0x00040004)
 *   - Slave Path control register (0x00040005)
 *   - Internal Path control register (0x00040006)
 *   - Primary/secondary master/slave control register (0x00040007)
 *   - Chip control register (0x00040010)
 *
 * This data is used for restoring respective TOD registers to sane values
 * whenever parity errors are reported on these registers (through HMI).
 * The error_bit maps to corresponding bit from TOD error register that
 * reports parity error on respective TOD registers.
 */
static struct chiptod_tod_regs {
	/* error bit from TOD Error reg */
	const uint64_t	error_bit;

	/* xscom address of TOD register to be restored. */
	const uint64_t	xscom_addr;
	/* per chip cached value of TOD control registers to be restored. */
	struct {
		uint64_t	data;
		bool		valid;
	} val[MAX_CHIPS];
} chiptod_tod_regs[] = {
	{ TOD_ERR_CRMO_PARITY, TOD_MASTER_PATH_CTRL, { } },
	{ TOD_ERR_PPORT0_CREG_PARITY, TOD_PRI_PORT0_CTRL,  { } },
	{ TOD_ERR_PPORT1_CREG_PARITY, TOD_PRI_PORT1_CTRL, { } },
	{ TOD_ERR_SPORT0_CREG_PARITY, TOD_SEC_PORT0_CTRL, { } },
	{ TOD_ERR_SPORT1_CREG_PARITY, TOD_SEC_PORT1_CTRL, { } },
	{ TOD_ERR_SPATH_CREG_PARITY, TOD_SLAVE_PATH_CTRL, { } },
	{ TOD_ERR_IPATH_CREG_PARITY, TOD_INTERNAL_PATH_CTRL, { } },
	{ TOD_ERR_PSMS_CREG_PARITY, TOD_PSMS_CTRL, { } },
	{ TOD_ERR_CTCR_PARITY, TOD_CHIP_CTRL, { } },
};

/* The base TFMR value is the same for the whole machine
 * for now as far as I can tell
 */
static uint64_t base_tfmr;

/*
 * For now, we use a global lock for runtime chiptod operations,
 * eventually make this a per-core lock for wakeup rsync and
 * take all of them for RAS cases.
 */
static struct lock chiptod_lock = LOCK_UNLOCKED;

static void _chiptod_cache_tod_regs(int32_t chip_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(chiptod_tod_regs); i++) {
		if (xscom_read(chip_id, chiptod_tod_regs[i].xscom_addr,
			&(chiptod_tod_regs[i].val[chip_id].data))) {
			prerror("XSCOM error reading 0x%08llx reg.\n",
					chiptod_tod_regs[i].xscom_addr);
			/* Invalidate this record and continue */
			chiptod_tod_regs[i].val[chip_id].valid = 0;
			continue;
		}
		chiptod_tod_regs[i].val[chip_id].valid = 1;
	}
}

static void chiptod_cache_tod_registers(void)
{
	struct proc_chip *chip;

	for_each_chip(chip)
		_chiptod_cache_tod_regs(chip->id);
}

static void print_topo_info(enum chiptod_topology topo)
{
	const char *role[] = { "Unknown", "MDMT", "MDST", "SDMT", "SDST" };
	const char *status[] = { "Unknown",
		"Active Master", "Backup Master", "Backup Master Disabled" };

	prlog(PR_DEBUG, "  Chip id: %d, Role: %s, Status: %s\n",
				chiptod_topology_info[topo].id,
				role[chiptod_topology_info[topo].role + 1],
				status[chiptod_topology_info[topo].status + 1]);
}

static void print_topology_info(void)
{
	const char *topo[] = { "Unknown", "Primary", "Secondary" };

	if (current_topology < 0)
		return;

	prlog(PR_DEBUG, "TOD Topology in Use: %s\n",
						topo[current_topology+1]);
	prlog(PR_DEBUG, "  Primary configuration:\n");
	print_topo_info(chiptod_topo_primary);
	prlog(PR_DEBUG, "  Secondary configuration:\n");
	print_topo_info(chiptod_topo_secondary);
}

static enum chiptod_topology query_current_topology(void)
{
	uint64_t tod_status;

	if (xscom_readme(TOD_STATUS, &tod_status)) {
		prerror("XSCOM error reading TOD_STATUS reg\n");
		return chiptod_topo_unknown;
	}

	/*
	 * Tod status register bit [0-2] tells configuration in use.
	 *	000 <= primary configuration in use
	 *	111 <= secondary configuration in use
	 */
	if ((tod_status & TOD_ST_TOPOLOGY_SELECT) == TOD_PRI_CONF_IN_USE)
		return chiptod_topo_primary;
	else
		return chiptod_topo_secondary;
}

static enum chiptod_chip_role
chiptod_get_chip_role(enum chiptod_topology topology, int32_t chip_id)
{
	uint64_t tod_ctrl;
	enum chiptod_chip_role role = chiptod_chip_role_UNKNOWN;

	if (chip_id < 0)
		return role;

	if (xscom_read(chip_id, TOD_PSMS_CTRL, &tod_ctrl)) {
		prerror("XSCOM error reading TOD_PSMS_CTRL\n");
		return chiptod_chip_role_UNKNOWN;
	}

	switch (topology) {
	case chiptod_topo_primary:
		if (tod_ctrl & TOD_PSMSC_PM_DRAW_SELECT) {
			if (tod_ctrl & TOD_PSMSC_PM_TOD_SELECT)
				role = chiptod_chip_role_MDMT;
			else
				role = chiptod_chip_role_MDST;
		} else {
			if (tod_ctrl & TOD_PSMSC_PM_TOD_SELECT)
				role = chiptod_chip_role_SDMT;
			else
				role = chiptod_chip_role_SDST;
		}
		break;
	case chiptod_topo_secondary:
		if (tod_ctrl & TOD_PSMSC_SM_DRAW_SELECT) {
			if (tod_ctrl & TOD_PSMSC_SM_TOD_SELECT)
				role = chiptod_chip_role_MDMT;
			else
				role = chiptod_chip_role_MDST;
		} else {
			if (tod_ctrl & TOD_PSMSC_SM_TOD_SELECT)
				role = chiptod_chip_role_SDMT;
			else
				role = chiptod_chip_role_SDST;
		}
		break;
	case chiptod_topo_unknown:
	default:
		break;
	}
	return role;
}

/*
 * Check and return the status of sync step network for a given
 * topology configuration.
 * Return values:
 *	true:	Sync Step network is running
 *	false:	Sync Step network is not running
 */
static bool chiptod_sync_step_check_running(enum chiptod_topology topology)
{
	uint64_t tod_status;
	enum chiptod_chip_role role;
	bool running = false;
	int32_t chip_id = chiptod_topology_info[topology].id;

	/* Sanity check */
	if (chip_id < 0)
		return false;

	if (xscom_read(chip_id, TOD_STATUS, &tod_status)) {
		prerror("XSCOM error reading TOD_STATUS reg\n");
		return false;
	}

	switch (topology) {
	case chiptod_topo_primary:
		/* Primary configuration */
		role = chiptod_topology_info[topology].role;
		if (role == chiptod_chip_role_MDMT) {
			/*
			 * Chip is using Master path.
			 * Check if it is using path_0/path_1 and then
			 * validity of that path.
			 *
			 * TOD_STATUS[12]: 0 = PATH_0, 1 = PATH_1
			 */
			if (tod_status & TOD_ST_PRI_MPATH_SELECT) {
				if (tod_status & TOD_ST_MPATH1_STEP_VALID)
					running = true;
			} else {
				if (tod_status & TOD_ST_MPATH0_STEP_VALID)
					running = true;
			}
		} else {
			/*
			 * Chip is using Slave path.
			 *
			 * TOD_STATUS[15]: 0 = PATH_0, 1 = PATH_1
			 */
			if (tod_status & TOD_ST_PRI_SPATH_SELECT) {
				if (tod_status & TOD_ST_SPATH1_STEP_VALID)
					running = true;
			} else {
				if (tod_status & TOD_ST_SPATH0_STEP_VALID)
					running = true;
			}
		}
		break;
	case chiptod_topo_secondary:
		/* Secondary configuration */
		role = chiptod_topology_info[topology].role;
		if (role == chiptod_chip_role_MDMT) {
			/*
			 * Chip is using Master path.
			 * Check if it is using path_0/path_1 and then
			 * validity of that path.
			 *
			 * TOD_STATUS[12]: 0 = PATH_0, 1 = PATH_1
			 */
			if (tod_status & TOD_ST_SEC_MPATH_SELECT) {
				if (tod_status & TOD_ST_MPATH1_STEP_VALID)
					running = true;
			} else {
				if (tod_status & TOD_ST_MPATH0_STEP_VALID)
					running = true;
			}
		} else {
			/*
			 * Chip is using Slave path.
			 *
			 * TOD_STATUS[15]: 0 = PATH_0, 1 = PATH_1
			 */
			if (tod_status & TOD_ST_SEC_SPATH_SELECT) {
				if (tod_status & TOD_ST_SPATH1_STEP_VALID)
					running = true;
			} else {
				if (tod_status & TOD_ST_SPATH0_STEP_VALID)
					running = true;
			}
		}
		break;
	default:
		break;
	}
	return running;
}

static enum chiptod_chip_status _chiptod_get_chip_status(int32_t chip_id)
{
	uint64_t tod_status;
	enum chiptod_chip_status status = -1;

	if (chip_id < 0)
		return chiptod_backup_disabled;

	if (xscom_read(chip_id, TOD_STATUS, &tod_status)) {
		prerror("XSCOM error reading TOD_STATUS reg\n");
		return status;
	}

	if (tod_status & TOD_ST_ACTIVE_MASTER)
		status = chiptod_active_master;
	else if (tod_status & TOD_ST_BACKUP_MASTER)
		status = chiptod_backup_master;

	return status;
}

static enum chiptod_chip_status
chiptod_get_chip_status(enum chiptod_topology topology)
{
	return _chiptod_get_chip_status(chiptod_topology_info[topology].id);
}

static void chiptod_update_topology(enum chiptod_topology topo)
{
	int32_t chip_id = chiptod_topology_info[topo].id;

	if (chip_id < 0)
		return;

	chiptod_topology_info[topo].role = chiptod_get_chip_role(topo, chip_id);
	chiptod_topology_info[topo].status = chiptod_get_chip_status(topo);

	/*
	 * If chip TOD on this topology is a backup master then check if
	 * sync/step network is running on this topology. If not,
	 * then mark status as backup not valid.
	 */
	if ((chiptod_topology_info[topo].status == chiptod_backup_master) &&
			!chiptod_sync_step_check_running(topo))
		chiptod_topology_info[topo].status = chiptod_backup_disabled;
}

static void chiptod_setup_base_tfmr(void)
{
	struct dt_node *cpu = this_cpu()->node;
	uint64_t core_freq, tod_freq;
	uint64_t mcbs;

	base_tfmr = SPR_TFMR_TB_ECLIPZ;

	/* Get CPU and TOD freqs in Hz */
	if (dt_has_node_property(cpu,"ibm,extended-clock-frequency", NULL))
		core_freq = dt_prop_get_u64(cpu,"ibm,extended-clock-frequency");
	else
		core_freq = dt_prop_get_u32(cpu, "clock-frequency");
	tod_freq = 32000000;

	/* Calculate the "Max Cycles Between Steps" value according
	 * to the magic formula:
	 *
	 * mcbs = (core_freq * max_jitter_factor) / (4 * tod_freq) / 100;
	 *
	 * The max jitter factor is set to 240 based on what pHyp uses.
	 */
	mcbs = (core_freq * 240) / (4 * tod_freq) / 100;
	prlog(PR_INFO, "Calculated MCBS is 0x%llx"
	      " (Cfreq=%lld Tfreq=%lld)\n",
	      mcbs, core_freq, tod_freq);

	/* Bake that all into TFMR */
	base_tfmr = SETFIELD(SPR_TFMR_MAX_CYC_BET_STEPS, base_tfmr, mcbs);
	base_tfmr = SETFIELD(SPR_TFMR_N_CLKS_PER_STEP, base_tfmr, 0);
	base_tfmr = SETFIELD(SPR_TFMR_SYNC_BIT_SEL, base_tfmr, 4);
}

static bool chiptod_mod_tb(void)
{
	uint64_t tfmr = base_tfmr;
	uint64_t timeout = 0;

	/* Switch timebase to "Not Set" state */
	mtspr(SPR_TFMR, tfmr | SPR_TFMR_LOAD_TOD_MOD);
	do {
		if (++timeout >= (TIMEOUT_LOOPS*2)) {
			prerror("TB \"Not Set\" timeout\n");
			return false;
		}
		tfmr = mfspr(SPR_TFMR);
		if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
			prerror("TB \"Not Set\" TFMR corrupt\n");
			return false;
		}
		if (GETFIELD(SPR_TFMR_TBST_ENCODED, tfmr) == 9) {
			prerror("TB \"Not Set\" TOD in error state\n");
			return false;
		}
	} while(tfmr & SPR_TFMR_LOAD_TOD_MOD);

	return true;
}

static bool chiptod_interrupt_check(void)
{
	uint64_t tfmr;
	uint64_t timeout = 0;

	do {
		if (++timeout >= TIMEOUT_LOOPS) {
			prerror("Interrupt check fail\n");
			return false;
		}
		tfmr = mfspr(SPR_TFMR);
		if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
			prerror("Interrupt check TFMR corrupt !\n");
			return false;
		}
	} while(tfmr & SPR_TFMR_CHIP_TOD_INTERRUPT);

	return true;
}

static bool chiptod_running_check(uint32_t chip_id)
{
	uint64_t tval;

	if (xscom_read(chip_id, TOD_CHIPTOD_FSM, &tval)) {
		prerror("XSCOM error polling run\n");
		return false;
	}
	if (tval & 0x0800000000000000UL)
		return true;
	else
		return false;
}

static bool chiptod_poll_running(void)
{
	uint64_t timeout = 0;
	uint64_t tval;

	/* Chip TOD running check */
	do {
		if (++timeout >= TIMEOUT_LOOPS) {
			prerror("Running check fail timeout\n");
			return false;
		}
		if (xscom_readme(TOD_CHIPTOD_FSM, &tval)) {
			prerror("XSCOM error polling run\n");
			return false;
		}
	} while(!(tval & 0x0800000000000000UL));

	return true;
}

static bool chiptod_to_tb(void)
{
	uint64_t tval, tfmr, tvbits;
	uint64_t timeout = 0;

	/* Tell the ChipTOD about our fabric address
	 *
	 * The pib_master value is calculated from the CPU core ID, given in
	 * the PIR. Because we have different core/thread arrangements in the
	 * PIR between p7 and p8, we need to do the calculation differently.
	 *
	 * p7: 0b00001 || 3-bit core id
	 * p8: 0b0001 || 4-bit core id
	 */

	if (xscom_readme(TOD_PIB_MASTER, &tval)) {
		prerror("XSCOM error reading PIB_MASTER\n");
		return false;
	}
	if (chiptod_type == chiptod_p9) {
		tvbits = (this_cpu()->pir >> 2) & 0x1f;
		tvbits |= 0x20;
	} else if (chiptod_type == chiptod_p8) {
		tvbits = (this_cpu()->pir >> 3) & 0xf;
		tvbits |= 0x10;
	} else {
		tvbits = (this_cpu()->pir >> 2) & 0x7;
		tvbits |= 0x08;
	}
	tval &= ~TOD_PIBM_ADDR_CFG_MCAST;
	tval = SETFIELD(TOD_PIBM_ADDR_CFG_SLADDR, tval, tvbits);
	if (xscom_writeme(TOD_PIB_MASTER, tval)) {
		prerror("XSCOM error writing PIB_MASTER\n");
		return false;
	}

	/* Make us ready to get the TB from the chipTOD */
	mtspr(SPR_TFMR, base_tfmr | SPR_TFMR_MOVE_CHIP_TOD_TO_TB);

	/* Tell the ChipTOD to send it */
	if (xscom_writeme(TOD_CHIPTOD_TO_TB, PPC_BIT(0))) {
		prerror("XSCOM error writing CHIPTOD_TO_TB\n");
		return false;
	}

	/* Wait for it to complete */
	timeout = 0;
	do {
		if (++timeout >= TIMEOUT_LOOPS) {
			prerror("Chip to TB timeout\n");
			return false;
		}
		tfmr = mfspr(SPR_TFMR);
		if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
			prerror("MoveToTB: corrupt TFMR !\n");
			return false;
		}
	} while(tfmr & SPR_TFMR_MOVE_CHIP_TOD_TO_TB);

	return true;
}

static bool chiptod_check_tb_running(void)
{
	/* We used to wait for two SYNC pulses in TFMR but that
	 * doesn't seem to occur in sim, so instead we use a
	 * method similar to what pHyp does which is to check for
	 * TFMR SPR_TFMR_TB_VALID and not SPR_TFMR_TFMR_CORRUPT
	 */
#if 0
	uint64_t tfmr, timeout;
	unsigned int i;

	for (i = 0; i < 2; i++) {
		tfmr = mfspr(SPR_TFMR);
		tfmr &= ~SPR_TFMR_TB_SYNC_OCCURED;
		mtspr(SPR_TFMR, tfmr);
		timeout = 0;
		do {
			if (++timeout >= TIMEOUT_LOOPS) {
				prerror("CHIPTOD: No sync pulses\n");
				return false;
			}
			tfmr = mfspr(SPR_TFMR);
		} while(!(tfmr & SPR_TFMR_TB_SYNC_OCCURED));
	}
#else
	uint64_t tfmr = mfspr(SPR_TFMR);

	return (tfmr & SPR_TFMR_TB_VALID) &&
		!(tfmr & SPR_TFMR_TFMR_CORRUPT);
#endif
	return true;
}

static bool chiptod_reset_tb_errors(void)
{
	uint64_t tfmr;
	unsigned long timeout = 0;

	/* Ask for automatic clear of errors */
	tfmr = base_tfmr | SPR_TFMR_CLEAR_TB_ERRORS;

	/* Additionally pHyp sets these (write-1-to-clear ?) */
	tfmr |= SPR_TFMR_TB_MISSING_SYNC;
	tfmr |= SPR_TFMR_TB_MISSING_STEP;
	tfmr |= SPR_TFMR_TB_RESIDUE_ERR;
	mtspr(SPR_TFMR, tfmr);

	/* We have to write "Clear TB Errors" again */
	tfmr = base_tfmr | SPR_TFMR_CLEAR_TB_ERRORS;
	mtspr(SPR_TFMR, tfmr);

	do {
		if (++timeout >= TIMEOUT_LOOPS) {
			/* Don't actually do anything on error for
			 * now ... not much we can do, panic maybe ?
			 */
			prerror("TB error reset timeout !\n");
			return false;
		}
		tfmr = mfspr(SPR_TFMR);
		if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
			prerror("TB error reset: corrupt TFMR !\n");
			return false;
		}
	} while(tfmr & SPR_TFMR_CLEAR_TB_ERRORS);
	return true;
}

static void chiptod_cleanup_thread_tfmr(void)
{
	uint64_t tfmr = base_tfmr;

	tfmr |= SPR_TFMR_PURR_PARITY_ERR;
	tfmr |= SPR_TFMR_SPURR_PARITY_ERR;
	tfmr |= SPR_TFMR_DEC_PARITY_ERR;
	tfmr |= SPR_TFMR_TFMR_CORRUPT;
	tfmr |= SPR_TFMR_PURR_OVERFLOW;
	tfmr |= SPR_TFMR_SPURR_OVERFLOW;
	mtspr(SPR_TFMR, tfmr);
}

static void chiptod_reset_tod_errors(void)
{
	uint64_t terr;

	/*
	 * At boot, we clear the errors that the firmware is
	 * supposed to handle. List provided by the pHyp folks.
	 */

	terr = TOD_ERR_CRITC_PARITY;
	terr |= TOD_ERR_PSS_HAMMING_DISTANCE;
	terr |= TOD_ERR_DELAY_COMPL_PARITY;
	terr |= TOD_ERR_CTCR_PARITY;
	terr |= TOD_ERR_TOD_SYNC_CHECK;
	terr |= TOD_ERR_TOD_FSM_PARITY;
	terr |= TOD_ERR_TOD_REGISTER_PARITY;

	if (xscom_writeme(TOD_ERROR, terr)) {
		prerror("XSCOM error writing TOD_ERROR !\n");
		/* Not much we can do here ... abort ? */
	}
}

static void chiptod_sync_master(void *data)
{
	bool *result = data;

	prlog(PR_DEBUG, "Master sync on CPU PIR 0x%04x...\n",
	      this_cpu()->pir);

	/* Apply base tfmr */
	mtspr(SPR_TFMR, base_tfmr);

	/* From recipe provided by pHyp folks, reset various errors
	 * before attempting the sync
	 */
	chiptod_reset_tb_errors();

	/* Cleanup thread tfmr bits */
	chiptod_cleanup_thread_tfmr();

	/* Reset errors in the chiptod itself */
	chiptod_reset_tod_errors();

	/* Switch timebase to "Not Set" state */
	if (!chiptod_mod_tb())
		goto error;
	prlog(PR_INSANE, "SYNC MASTER Step 2 TFMR=0x%016lx\n", mfspr(SPR_TFMR));

	/* Chip TOD step checkers enable */
	if (xscom_writeme(TOD_TTYPE_2, PPC_BIT(0))) {
		prerror("XSCOM error enabling steppers\n");
		goto error;
	}

	prlog(PR_INSANE, "SYNC MASTER Step 3 TFMR=0x%016lx\n", mfspr(SPR_TFMR));

	/* Chip TOD interrupt check */
	if (!chiptod_interrupt_check())
		goto error;
	prlog(PR_INSANE, "SYNC MASTER Step 4 TFMR=0x%016lx\n", mfspr(SPR_TFMR));

	/* Switch local chiptod to "Not Set" state */
	if (xscom_writeme(TOD_LOAD_TOD_MOD, PPC_BIT(0))) {
		prerror("XSCOM error sending LOAD_TOD_MOD\n");
		goto error;
	}

	/* Switch all remote chiptod to "Not Set" state */
	if (xscom_writeme(TOD_TTYPE_5, PPC_BIT(0))) {
		prerror("XSCOM error sending TTYPE_5\n");
		goto error;
	}

	/* Chip TOD load initial value */
	if (xscom_writeme(TOD_CHIPTOD_LOAD_TB, INIT_TB)) {
		prerror("XSCOM error setting init TB\n");
		goto error;
	}

	prlog(PR_INSANE, "SYNC MASTER Step 5 TFMR=0x%016lx\n", mfspr(SPR_TFMR));

	if (!chiptod_poll_running())
		goto error;
	prlog(PR_INSANE, "SYNC MASTER Step 6 TFMR=0x%016lx\n", mfspr(SPR_TFMR));

	/* Move chiptod value to core TB */
	if (!chiptod_to_tb())
		goto error;
	prlog(PR_INSANE, "SYNC MASTER Step 7 TFMR=0x%016lx\n", mfspr(SPR_TFMR));

	/* Send local chip TOD to all chips TOD */
	if (xscom_writeme(TOD_TTYPE_4, PPC_BIT(0))) {
		prerror("XSCOM error sending TTYPE_4\n");
		goto error;
	}

	/* Check if TB is running */
	if (!chiptod_check_tb_running())
		goto error;

	prlog(PR_INSANE, "Master sync completed, TB=%lx\n", mfspr(SPR_TBRL));

	/*
	 * A little delay to make sure the remote chips get up to
	 * speed before we start syncing them.
	 *
	 * We have to do it here because we know our TB is running
	 * while the boot thread TB might not yet.
	 */
	time_wait_ms(1);

	*result = true;
	return;
 error:
	prerror("Master sync failed! TFMR=0x%016lx\n", mfspr(SPR_TFMR));
	*result = false;
}

static void chiptod_sync_slave(void *data)
{
	bool *result = data;

	/* Only get primaries, not threads */
	if (this_cpu()->is_secondary) {
		/* On secondaries we just cleanup the TFMR */
		chiptod_cleanup_thread_tfmr();
		*result = true;
		return;
	}

	prlog(PR_DEBUG, "Slave sync on CPU PIR 0x%04x...\n",
	      this_cpu()->pir);

	/* Apply base tfmr */
	mtspr(SPR_TFMR, base_tfmr);

	/* From recipe provided by pHyp folks, reset various errors
	 * before attempting the sync
	 */
	chiptod_reset_tb_errors();

	/* Cleanup thread tfmr bits */
	chiptod_cleanup_thread_tfmr();

	/* Switch timebase to "Not Set" state */
	if (!chiptod_mod_tb())
		goto error;
	prlog(PR_INSANE, "SYNC SLAVE Step 2 TFMR=0x%016lx\n", mfspr(SPR_TFMR));

	/* Chip TOD running check */
	if (!chiptod_poll_running())
		goto error;
	prlog(PR_INSANE, "SYNC SLAVE Step 3 TFMR=0x%016lx\n", mfspr(SPR_TFMR));

	/* Chip TOD interrupt check */
	if (!chiptod_interrupt_check())
		goto error;
	prlog(PR_INSANE, "SYNC SLAVE Step 4 TFMR=0x%016lx\n", mfspr(SPR_TFMR));

	/* Move chiptod value to core TB */
	if (!chiptod_to_tb())
		goto error;
	prlog(PR_INSANE, "SYNC SLAVE Step 5 TFMR=0x%016lx\n", mfspr(SPR_TFMR));

	/* Check if TB is running */
	if (!chiptod_check_tb_running())
		goto error;

	prlog(PR_INSANE, "Slave sync completed, TB=%lx\n", mfspr(SPR_TBRL));

	*result = true;
	return;
 error:
	prerror("Slave sync failed ! TFMR=0x%016lx\n", mfspr(SPR_TFMR));
	*result = false;
}

bool chiptod_wakeup_resync(void)
{
	if (chiptod_primary < 0)
		return 0;

	lock(&chiptod_lock);

	/* Apply base tfmr */
	mtspr(SPR_TFMR, base_tfmr);

	/* From recipe provided by pHyp folks, reset various errors
	 * before attempting the sync
	 */
	chiptod_reset_tb_errors();

	/* Cleanup thread tfmr bits */
	chiptod_cleanup_thread_tfmr();

	/* Switch timebase to "Not Set" state */
	if (!chiptod_mod_tb())
		goto error;

	/* Move chiptod value to core TB */
	if (!chiptod_to_tb())
		goto error;

	unlock(&chiptod_lock);

	return true;
 error:
	prerror("Resync failed ! TFMR=0x%16lx\n", mfspr(SPR_TFMR));
	unlock(&chiptod_lock);
	return false;
}

static int chiptod_recover_tod_errors(void)
{
	uint64_t terr;
	uint64_t treset = 0;
	int i;
	int32_t chip_id = this_cpu()->chip_id;

	/* Read TOD error register */
	if (xscom_readme(TOD_ERROR, &terr)) {
		prerror("XSCOM error reading TOD_ERROR reg\n");
		return 0;
	}
	/* Check for sync check error and recover */
	if ((terr & TOD_ERR_TOD_SYNC_CHECK) ||
		(terr & TOD_ERR_TOD_FSM_PARITY) ||
		(terr & TOD_ERR_CTCR_PARITY) ||
		(terr & TOD_ERR_PSS_HAMMING_DISTANCE) ||
		(terr & TOD_ERR_DELAY_COMPL_PARITY) ||
		(terr & TOD_ERR_TOD_REGISTER_PARITY)) {
		chiptod_reset_tod_errors();
	}

	/*
	 * Check for TOD control register parity errors and restore those
	 * registers with last saved valid values.
	 */
	for (i = 0; i < ARRAY_SIZE(chiptod_tod_regs); i++) {
		if (!(terr & chiptod_tod_regs[i].error_bit))
			continue;

		/* Check if we have valid last saved register value. */
		if (!chiptod_tod_regs[i].val[chip_id].valid) {
			prerror("Failed to restore TOD register: %08llx",
					chiptod_tod_regs[i].xscom_addr);
			return 0;
		}

		prlog(PR_DEBUG, "Parity error, Restoring TOD register: "
				"%08llx\n", chiptod_tod_regs[i].xscom_addr);
		if (xscom_writeme(chiptod_tod_regs[i].xscom_addr,
			chiptod_tod_regs[i].val[chip_id].data)) {
			prerror("XSCOM error writing 0x%08llx reg.\n",
					chiptod_tod_regs[i].xscom_addr);
			return 0;
		}
		treset |= chiptod_tod_regs[i].error_bit;
	}

	if (treset && (xscom_writeme(TOD_ERROR, treset))) {
		prerror("XSCOM error writing TOD_ERROR !\n");
		return 0;
	}
	/* We have handled all the TOD errors routed to hypervisor */
	return 1;
}

static int32_t chiptod_get_active_master(void)
{
	if (current_topology < 0)
		return -1;

	if (chiptod_topology_info[current_topology].status ==
							chiptod_active_master)
		return chiptod_topology_info[current_topology].id;
	return -1;
}

/* Return true if Active master TOD is running. */
static bool chiptod_master_running(void)
{
	int32_t active_master_chip;

	active_master_chip = chiptod_get_active_master();
	if (active_master_chip != -1) {
		if (chiptod_running_check(active_master_chip))
			return true;
	}
	return false;
}

static bool chiptod_set_ttype4_mode(struct proc_chip *chip, bool enable)
{
	uint64_t tval;

	/* Sanity check */
	if (!chip)
		return false;

	if (xscom_read(chip->id, TOD_PIB_MASTER, &tval)) {
		prerror("XSCOM error reading PIB_MASTER\n");
		return false;
	}

	if (enable) {
		/*
		 * Enable TTYPE4 send mode. This allows TOD to respond to
		 * TTYPE3 request.
		 */
		tval |= TOD_PIBM_TTYPE4_SEND_MODE;
		tval |= TOD_PIBM_TTYPE4_SEND_ENBL;
	} else {
		/* Disable TTYPE4 send mode. */
		tval &= ~TOD_PIBM_TTYPE4_SEND_MODE;
		tval &= ~TOD_PIBM_TTYPE4_SEND_ENBL;
	}

	if (xscom_write(chip->id, TOD_PIB_MASTER, tval)) {
		prerror("XSCOM error writing PIB_MASTER\n");
		return false;
	}
	return true;
}

/* Stop TODs on slave chips in backup topology. */
static void chiptod_stop_slave_tods(void)
{
	struct proc_chip *chip = NULL;
	enum chiptod_topology backup_topo;
	uint64_t terr = 0;

	/* Inject TOD sync check error on salve TODs to stop them. */
	terr |= TOD_ERR_TOD_SYNC_CHECK;

	if (current_topology == chiptod_topo_primary)
		backup_topo = chiptod_topo_secondary;
	else
		backup_topo = chiptod_topo_primary;

	for_each_chip(chip) {
		enum chiptod_chip_role role;

		/* Current chip TOD is already in stooped state */
		if (chip->id == this_cpu()->chip_id)
			continue;

		role = chiptod_get_chip_role(backup_topo, chip->id);

		/* Skip backup master chip TOD. */
		if (role == chiptod_chip_role_MDMT)
			continue;

		if (xscom_write(chip->id, TOD_ERROR_INJECT, terr))
			prerror("XSCOM error writing TOD_ERROR_INJ\n");

		if (chiptod_running_check(chip->id)) {
			prlog(PR_DEBUG,
			"Failed to stop TOD on slave CHIP [%d]\n",
								chip->id);
		}
	}
}

static bool is_topology_switch_required(void)
{
	int32_t active_master_chip;
	uint64_t tod_error;

	active_master_chip = chiptod_get_active_master();

	/* Check if TOD is running on Active master. */
	if (chiptod_master_running())
		return false;

	/*
	 * Check if sync/step network is running.
	 *
	 * If sync/step network is not running on current active topology
	 * then we need switch topology to recover from TOD error.
	 */
	if (!chiptod_sync_step_check_running(current_topology)) {
		prlog(PR_DEBUG, "Sync/Step network not running\n");
		return true;
	}

	/*
	 * Check if there is a step check error reported on
	 * Active master.
	 */
	if (xscom_read(active_master_chip, TOD_ERROR, &tod_error)) {
		prerror("XSCOM error reading TOD_ERROR reg\n");
		/*
		 * Can't do anything here. But we already found that
		 * sync/step network is running. Hence return false.
		 */
		return false;
	}

	if (tod_error & TOD_ERR_MP0_STEP_CHECK) {
		prlog(PR_DEBUG, "TOD step check error\n");
		return true;
	}

	return false;
}

static bool chiptod_backup_valid(void)
{
	enum chiptod_topology backup_topo;

	if (current_topology < 0)
		return false;

	if (current_topology == chiptod_topo_primary)
		backup_topo = chiptod_topo_secondary;
	else
		backup_topo = chiptod_topo_primary;

	if (chiptod_topology_info[backup_topo].status == chiptod_backup_master)
		return chiptod_sync_step_check_running(backup_topo);

	return false;
}

static void chiptod_topology_switch_complete(void)
{
	/*
	 * After the topology switch, we may have a non-functional backup
	 * topology, and we won't be able to recover from future TOD errors
	 * that requires topology switch. Someone needs to either fix it OR
	 * configure new functional backup topology.
	 *
	 * Bit 18 of the Pervasive FIR is used to signal that TOD error
	 * analysis needs to be performed. This allows FSP/PRD to
	 * investigate and re-configure new backup topology if required.
	 * Once new backup topology is configured and ready, FSP sends a
	 * mailbox command xE6, s/c 0x06, mod 0, to enable the backup
	 * topology.
	 *
	 * This isn't documented anywhere. This info is provided by FSP
	 * folks.
	 */
	if (xscom_writeme(LOCAL_CORE_FIR, LFIR_SWITCH_COMPLETE)) {
		prerror("XSCOM error writing LOCAL_CORE_FIR\n");
		return;
	}

	/* Save TOD control registers values. */
	chiptod_cache_tod_registers();

	prlog(PR_DEBUG, "Topology switch complete\n");
	print_topology_info();
}

/*
 * Sync up TOD with other chips and get TOD in running state.
 * Check if current topology is active and running. If not, then
 * trigger a topology switch.
 */
static int chiptod_start_tod(void)
{
	struct proc_chip *chip = NULL;
	int rc = 1;

	/*  Do a topology switch if required. */
	if (is_topology_switch_required()) {
		int32_t mchip = chiptod_get_active_master();

		prlog(PR_DEBUG, "Need topology switch to recover\n");
		/*
		 * There is a failure in StepSync network in current
		 * active topology. TOD is not running on active master chip.
		 * We need to sync with backup master chip TOD.
		 * But before we do that we need to switch topology to make
		 * backup master as the new active master. Once we switch the
		 * topology we can then request TOD value from new active
		 * master. But make sure we move local chiptod to Not Set
		 * before requesting TOD value.
		 *
		 * Before triggering a topology switch, check if backup
		 * is valid and stop all slave TODs in backup topology.
		 */
		if (!chiptod_backup_valid()) {
			prerror("Backup master is not enabled. "
				"Can not do a topology switch.\n");
			return 0;
		}

		chiptod_stop_slave_tods();

		if (xscom_write(mchip, TOD_TTYPE_1, PPC_BIT(0))) {
			prerror("XSCOM error switching primary/secondary\n");
			return 0;
		}

		/* Update topology info. */
		current_topology = query_current_topology();
		chiptod_update_topology(chiptod_topo_primary);
		chiptod_update_topology(chiptod_topo_secondary);

		/*
		 * We just switched topologies to recover.
		 * Check if new master TOD is running.
		 */
		if (!chiptod_master_running()) {
			prerror("TOD is not running on new master.\n");
			return 0;
		}

		/*
		 * Enable step checkers on all Chip TODs
		 *
		 * During topology switch, step checkers are disabled
		 * on all Chip TODs by default. Enable them.
		 */
		if (xscom_writeme(TOD_TTYPE_2, PPC_BIT(0))) {
			prerror("XSCOM error enabling steppers\n");
			return 0;
		}

		chiptod_topology_switch_complete();
	}

	if (!chiptod_master_running()) {
		/*
		 * Active Master TOD is not running, which means it won't
		 * respond to TTYPE_3 request.
		 *
		 * Find a chip that has TOD in running state and configure
		 * it to respond to TTYPE_3 request.
		 */
		for_each_chip(chip) {
			if (chiptod_running_check(chip->id)) {
				if (chiptod_set_ttype4_mode(chip, true))
					break;
			}
		}
	}

	/* Switch local chiptod to "Not Set" state */
	if (xscom_writeme(TOD_LOAD_TOD_MOD, PPC_BIT(0))) {
		prerror("XSCOM error sending LOAD_TOD_MOD\n");
		return 0;
	}

	/*
	 * Request the current TOD value from another chip.
	 * This will move TOD in running state
	 */
	if (xscom_writeme(TOD_TTYPE_3, PPC_BIT(0))) {
		prerror("XSCOM error sending TTYPE_3\n");
		return 0;
	}

	/* Check if chip TOD is running. */
	if (!chiptod_poll_running())
		rc = 0;

	/* Restore the ttype4_mode. */
	chiptod_set_ttype4_mode(chip, false);
	return rc;
}

static bool tfmr_recover_tb_errors(uint64_t tfmr)
{
	uint64_t tfmr_reset_error;
	unsigned long timeout = 0;

	/* Ask for automatic clear of errors */
	tfmr_reset_error = base_tfmr | SPR_TFMR_CLEAR_TB_ERRORS;

	/* Additionally pHyp sets these (write-1-to-clear ?) */
	if (tfmr & SPR_TFMR_TB_MISSING_SYNC)
		tfmr_reset_error |= SPR_TFMR_TB_MISSING_SYNC;

	if (tfmr & SPR_TFMR_TB_MISSING_STEP)
		tfmr_reset_error |= SPR_TFMR_TB_MISSING_STEP;

	/*
	 * write 1 to bit 45 to clear TB residue the error.
	 * TB register has already been reset to zero as part pre-recovery.
	 */
	if (tfmr & SPR_TFMR_TB_RESIDUE_ERR)
		tfmr_reset_error |= SPR_TFMR_TB_RESIDUE_ERR;

	if (tfmr & SPR_TFMR_FW_CONTROL_ERR)
		tfmr_reset_error |= SPR_TFMR_FW_CONTROL_ERR;

	if (tfmr & SPR_TFMR_TBST_CORRUPT)
		tfmr_reset_error |= SPR_TFMR_TBST_CORRUPT;

	mtspr(SPR_TFMR, tfmr_reset_error);

	/* We have to write "Clear TB Errors" again */
	tfmr_reset_error = base_tfmr | SPR_TFMR_CLEAR_TB_ERRORS;
	mtspr(SPR_TFMR, tfmr_reset_error);

	do {
		if (++timeout >= TIMEOUT_LOOPS) {
			prerror("TB error reset timeout !\n");
			return false;
		}
		tfmr = mfspr(SPR_TFMR);
		if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
			prerror("TB error reset: corrupt TFMR !\n");
			return false;
		}
	} while (tfmr & SPR_TFMR_CLEAR_TB_ERRORS);
	return true;
}

static bool tfmr_recover_non_tb_errors(uint64_t tfmr)
{
	uint64_t tfmr_reset_errors = 0;

	/*
	 * write 1 to bit 26 to clear TFMR HDEC parity error.
	 * HDEC register has already been reset to zero as part pre-recovery.
	 */
	if (tfmr & SPR_TFMR_HDEC_PARITY_ERROR)
		tfmr_reset_errors |= SPR_TFMR_HDEC_PARITY_ERROR;

	if (tfmr & SPR_TFMR_DEC_PARITY_ERR) {
		/* Set DEC with all ones */
		mtspr(SPR_DEC, ~0);

		/* set bit 59 to clear TFMR DEC parity error. */
		tfmr_reset_errors |= SPR_TFMR_DEC_PARITY_ERR;
	}

	/*
	 * Reset PURR/SPURR to recover. We also need help from KVM
	 * layer to handle this change in PURR/SPURR. That needs
	 * to be handled in kernel KVM layer. For now, to recover just
	 * reset it.
	 */
	if (tfmr & SPR_TFMR_PURR_PARITY_ERR) {
		/* set PURR register with sane value or reset it. */
		mtspr(SPR_PURR, 0);

		/* set bit 57 to clear TFMR PURR parity error. */
		tfmr_reset_errors |= SPR_TFMR_PURR_PARITY_ERR;
	}

	if (tfmr & SPR_TFMR_SPURR_PARITY_ERR) {
		/* set PURR register with sane value or reset it. */
		mtspr(SPR_SPURR, 0);

		/* set bit 58 to clear TFMR PURR parity error. */
		tfmr_reset_errors |= SPR_TFMR_SPURR_PARITY_ERR;
	}

	/* Write TFMR twice to clear the error */
	mtspr(SPR_TFMR, base_tfmr | tfmr_reset_errors);
	mtspr(SPR_TFMR, base_tfmr | tfmr_reset_errors);

	/* Get fresh copy of TFMR */
	tfmr = mfspr(SPR_TFMR);

	/* Check if TFMR non-TB errors still present. */
	if (tfmr & tfmr_reset_errors) {
		prerror("TFMR non-TB error recovery failed! "
			"TFMR=0x%016lx\n", mfspr(SPR_TFMR));
		return false;
	}
	return true;
}

/*
 * TFMR parity error recovery as per pc_workbook:
 *	MT(TFMR) bits 11 and 60 are b’1’
 *	MT(HMER) all bits 1 except for bits 4,5
 */
static bool chiptod_recover_tfmr_error(void)
{
	uint64_t tfmr;

	/* Get the base TFMR */
	tfmr = base_tfmr;

	/* Set bit 60 to clear TFMR parity error. */
	tfmr |= SPR_TFMR_TFMR_CORRUPT;
	mtspr(SPR_TFMR, tfmr);

	/* Write twice to clear the error */
	mtspr(SPR_TFMR, tfmr);

	/* Get fresh copy of TFMR */
	tfmr = mfspr(SPR_TFMR);

	/* Check if TFMR parity error still present. */
	if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
		prerror("TFMR error recovery: corrupt TFMR !\n");
		return false;
	}

	/*
	 * Now that we have sane value in TFMR, check if Timebase machine
	 * state is in ERROR state. If yes, clear TB errors so that
	 * Timebase machine state changes to RESET state. Once in RESET state
	 * then we can then load TB with TOD value.
	 */
	if (GETFIELD(SPR_TFMR_TBST_ENCODED, tfmr) == TBST_STATE_ERROR) {
		if (!chiptod_reset_tb_errors())
			return false;
	}
	return true;
}

/*
 * Recover from TB and TOD errors.
 * Timebase register is per core and first thread that gets chance to
 * handle interrupt would fix actual TFAC errors and rest of the threads
 * from same core would see no errors. Return -1 if no errors have been
 * found. The caller (handle_hmi_exception) of this function would not
 * send an HMI event to host if return value is -1.
 *
 * Return values:
 *	0	<= Failed to recover from errors
 *	1	<= Successfully recovered from errors
 *	-1	<= No errors found. Errors are already been fixed.
 */
int chiptod_recover_tb_errors(void)
{
	uint64_t tfmr;
	int rc = -1;

	if (chiptod_primary < 0)
		return 0;

	lock(&chiptod_lock);

	/* Get fresh copy of TFMR */
	tfmr = mfspr(SPR_TFMR);

	/*
	 * Check for TFMR parity error and recover from it.
	 * We can not trust any other bits in TFMR If it is corrupt. Fix this
	 * before we do anything.
	 */
	if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
		if (!chiptod_recover_tfmr_error()) {
			rc = 0;
			goto error_out;
		}
	}

	/* Get fresh copy of TFMR */
	tfmr = mfspr(SPR_TFMR);

	/*
	 * Check for TB errors.
	 * On Sync check error, bit 44 of TFMR is set. Check for it and
	 * clear it.
	 *
	 * In some rare situations we may have all TB errors already cleared,
	 * but TB stuck in waiting for new value from TOD with TFMR bit 18
	 * set to '1'. This uncertain state of TB would fail the process
	 * of getting TB back into running state. Get TB in clean initial
	 * state by clearing TB errors if TFMR[18] is set.
	 */
	if ((tfmr & SPR_TFMR_TB_MISSING_STEP) ||
		(tfmr & SPR_TFMR_TB_RESIDUE_ERR) ||
		(tfmr & SPR_TFMR_FW_CONTROL_ERR) ||
		(tfmr & SPR_TFMR_TBST_CORRUPT) ||
		(tfmr & SPR_TFMR_MOVE_CHIP_TOD_TO_TB) ||
		(tfmr & SPR_TFMR_TB_MISSING_SYNC)) {
		if (!tfmr_recover_tb_errors(tfmr)) {
			rc = 0;
			goto error_out;
		}
	}

	/*
	 * Check for TOD sync check error.
	 * On TOD errors, bit 51 of TFMR is set. If this bit is on then we
	 * need to fetch TOD error register and recover from TOD errors.
	 * Bit 33 of TOD error register indicates sync check error.
	 */
	if (tfmr & SPR_TFMR_CHIP_TOD_INTERRUPT)
		rc = chiptod_recover_tod_errors();

	/* Check if TB is running. If not then we need to get it running. */
	if (!(tfmr & SPR_TFMR_TB_VALID)) {
		rc = 0;

		/* Place TB in Notset state. */
		if (!chiptod_mod_tb())
			goto error_out;

		/*
		 * Before we move TOD to core TB check if TOD is running.
		 * If not, then get TOD in running state.
		 */
		if (!chiptod_running_check(this_cpu()->chip_id))
			if (!chiptod_start_tod())
				goto error_out;

		/* Move chiptod value to core TB */
		if (!chiptod_to_tb())
			goto error_out;

		/* We have successfully able to get TB running. */
		rc = 1;
	}

	/*
	 * Now that TB is running, check for TFMR non-TB errors.
	 */
	if ((tfmr & SPR_TFMR_HDEC_PARITY_ERROR) ||
		(tfmr & SPR_TFMR_PURR_PARITY_ERR) ||
		(tfmr & SPR_TFMR_SPURR_PARITY_ERR) ||
		(tfmr & SPR_TFMR_DEC_PARITY_ERR)) {
		if (!tfmr_recover_non_tb_errors(tfmr)) {
			rc = 0;
			goto error_out;
		}
		rc = 1;
	}

error_out:
	unlock(&chiptod_lock);
	return rc;
}

static int64_t opal_resync_timebase(void)
{
       if (!chiptod_wakeup_resync()) {
               prerror("OPAL: Resync timebase failed on CPU 0x%04x\n",
		      this_cpu()->pir);
               return OPAL_HARDWARE;
       }
       return OPAL_SUCCESS;
}
opal_call(OPAL_RESYNC_TIMEBASE, opal_resync_timebase, 0);

static void chiptod_print_tb(void *data __unused)
{
	prlog(PR_DEBUG, "PIR 0x%04x TB=%lx\n", this_cpu()->pir,
				mfspr(SPR_TBRL));
}

static bool chiptod_probe(void)
{
	struct dt_node *np;

	dt_for_each_compatible(dt_root, np, "ibm,power-chiptod") {
		uint32_t chip;

		/* Old DT has chip-id in chiptod node, newer only in the
		 * parent xscom bridge
		 */
		chip = dt_get_chip_id(np);

		if (dt_has_node_property(np, "primary", NULL)) {
		    chiptod_primary = chip;
		    if (dt_node_is_compatible(np,"ibm,power7-chiptod"))
			    chiptod_type = chiptod_p7;
		    if (dt_node_is_compatible(np,"ibm,power8-chiptod"))
			    chiptod_type = chiptod_p8;
		    if (dt_node_is_compatible(np,"ibm,power9-chiptod"))
			    chiptod_type = chiptod_p9;
		}

		if (dt_has_node_property(np, "secondary", NULL))
		    chiptod_secondary = chip;

	}

	if (chiptod_type == chiptod_unknown) {
		prerror("Unknown TOD type !\n");
		return false;
	}

	return true;
}

static void chiptod_discover_new_backup(enum chiptod_topology topo)
{
	struct proc_chip *chip = NULL;

	/* Scan through available chips to find new backup master chip */
	for_each_chip(chip) {
		if (_chiptod_get_chip_status(chip->id) == chiptod_backup_master)
			break;
	}

	/* Found new backup master chip. Update the topology info */
	if (chip) {
		prlog(PR_DEBUG, "New backup master: CHIP [%d]\n",
								chip->id);

		if (topo == chiptod_topo_primary)
			chiptod_primary = chip->id;
		else
			chiptod_secondary = chip->id;
		chiptod_topology_info[topo].id = chip->id;
		chiptod_update_topology(topo);

		prlog(PR_DEBUG,
			"Backup topology configuration changed.\n");
		print_topology_info();
	}

	/*
	 * Topology configuration has changed. Save TOD control registers
	 * values.
	 */
	chiptod_cache_tod_registers();
}

/*
 * Enable/disable backup topology.
 * If request is to enable topology, then discover new backup master
 * chip and update the topology configuration info. If the request is
 * to disable topology, then mark the current backup topology as disabled.
 * Return error (-1) if the action is requested on currenlty active
 * topology.
 *
 * Return values:
 *	true	<= Success
 *	false	<= Topology is active and in use.
 */
bool chiptod_adjust_topology(enum chiptod_topology topo, bool enable)
{
	uint8_t rc = true;
	/*
	 * The FSP can only request that the currently inactive topology
	 * be disabled or enabled. If the requested topology is currently
	 * the active topology, then fail this request with a -1 (TOD
	 * topology in use) status as return code.
	 */
	lock(&chiptod_lock);
	if (topo == current_topology) {
		rc = false;
		goto out;
	}

	if (enable)
		chiptod_discover_new_backup(topo);
	else
		chiptod_topology_info[topo].status = chiptod_backup_disabled;
out:
	unlock(&chiptod_lock);
	return rc;
}

static void chiptod_init_topology_info(void)
{
	/* Find and update current topology in use. */
	current_topology = query_current_topology();

	/* Initialized primary topology chip config info */
	chiptod_topology_info[chiptod_topo_primary].id = chiptod_primary;
	chiptod_update_topology(chiptod_topo_primary);

	/* Initialized secondary topology chip config info */
	chiptod_topology_info[chiptod_topo_secondary].id = chiptod_secondary;
	chiptod_update_topology(chiptod_topo_secondary);

	/* Cache TOD control registers values. */
	chiptod_cache_tod_registers();
	print_topology_info();
}

void chiptod_init(void)
{
	struct cpu_thread *cpu0, *cpu;
	bool sres;

	/* Mambo and qemu doesn't simulate the chiptod */
	if (chip_quirk(QUIRK_NO_CHIPTOD))
		return;

	op_display(OP_LOG, OP_MOD_CHIPTOD, 0);

	if (!chiptod_probe()) {
		prerror("Failed ChipTOD detection !\n");
		op_display(OP_FATAL, OP_MOD_CHIPTOD, 0);
		abort();
	}

	op_display(OP_LOG, OP_MOD_CHIPTOD, 1);

	/* Pick somebody on the primary */
	cpu0 = find_cpu_by_chip_id(chiptod_primary);

	/* Calculate the base TFMR value used for everybody */
	chiptod_setup_base_tfmr();

	prlog(PR_DEBUG, "Base TFMR=0x%016llx\n", base_tfmr);

	/* Schedule master sync */
	sres = false;
	cpu_wait_job(cpu_queue_job(cpu0, "chiptod_sync_master",
				   chiptod_sync_master, &sres), true);
	if (!sres) {
		op_display(OP_FATAL, OP_MOD_CHIPTOD, 2);
		abort();
	}

	op_display(OP_LOG, OP_MOD_CHIPTOD, 2);

	/* Schedule slave sync */
	for_each_available_cpu(cpu) {
		/* Skip master */
		if (cpu == cpu0)
			continue;

		/* Queue job */
		sres = false;
		cpu_wait_job(cpu_queue_job(cpu, "chiptod_sync_slave",
					   chiptod_sync_slave, &sres),
			     true);
		if (!sres) {
			op_display(OP_WARN, OP_MOD_CHIPTOD, 3|(cpu->pir << 8));

			/* Disable threads */
			cpu_disable_all_threads(cpu);
		}
		op_display(OP_LOG, OP_MOD_CHIPTOD, 3|(cpu->pir << 8));
	}

	/* Display TBs */
	for_each_available_cpu(cpu) {
		/* Only do primaries, not threads */
		if (cpu->is_secondary)
			continue;
		cpu_wait_job(cpu_queue_job(cpu, "chiptod_print_tb",
					   chiptod_print_tb, NULL), true);
	}

	chiptod_init_topology_info();
	op_display(OP_LOG, OP_MOD_CHIPTOD, 4);
}

/* CAPP timebase sync */

static bool chiptod_capp_reset_tb_errors(uint32_t chip_id,
					 uint32_t tfmr_addr,
					 uint32_t offset)
{
	uint64_t tfmr;
	unsigned long timeout = 0;

	/* Ask for automatic clear of errors */
	tfmr = base_tfmr | SPR_TFMR_CLEAR_TB_ERRORS;

	/* Additionally pHyp sets these (write-1-to-clear ?) */
	tfmr |= SPR_TFMR_TB_MISSING_SYNC;
	tfmr |= SPR_TFMR_TB_MISSING_STEP;
	tfmr |= SPR_TFMR_TB_RESIDUE_ERR;
	tfmr |= SPR_TFMR_TBST_CORRUPT;
	tfmr |= SPR_TFMR_TFMR_CORRUPT;

	/* Write CAPP TFMR */
	xscom_write(chip_id, tfmr_addr + offset, tfmr);

	/* We have to write "Clear TB Errors" again */
	tfmr = base_tfmr | SPR_TFMR_CLEAR_TB_ERRORS;
	/* Write CAPP TFMR */
	xscom_write(chip_id, tfmr_addr + offset, tfmr);

	do {
		if (++timeout >= TIMEOUT_LOOPS) {
			prerror("CAPP: TB error reset timeout !\n");
			return false;
		}
		/* Read CAPP TFMR */
		xscom_read(chip_id, tfmr_addr + offset, &tfmr);
		if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
			prerror("CAPP: TB error reset: corrupt TFMR!\n");
			return false;
		}
	} while (tfmr & SPR_TFMR_CLEAR_TB_ERRORS);
	return true;
}

static bool chiptod_capp_mod_tb(uint32_t chip_id, uint32_t tfmr_addr,
				uint32_t offset)
{
	uint64_t timeout = 0;
	uint64_t tfmr;

	/* Switch CAPP timebase to "Not Set" state */
	tfmr = base_tfmr | SPR_TFMR_LOAD_TOD_MOD;
	xscom_write(chip_id, tfmr_addr + offset, tfmr);
	do {
		if (++timeout >= (TIMEOUT_LOOPS*2)) {
			prerror("CAPP: TB \"Not Set\" timeout\n");
			return false;
		}
		xscom_read(chip_id, tfmr_addr + offset, &tfmr);
		if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
			prerror("CAPP: TB \"Not Set\" TFMR corrupt\n");
			return false;
		}
		if (GETFIELD(SPR_TFMR_TBST_ENCODED, tfmr) == 9) {
			prerror("CAPP: TB \"Not Set\" TOD in error state\n");
			return false;
		}
	} while (tfmr & SPR_TFMR_LOAD_TOD_MOD);

	return true;
}

static bool chiptod_wait_for_chip_sync(void)
{
	uint64_t tfmr;
	uint64_t timeout = 0;

	/* Read core TFMR, mask bit 42, write core TFMR back */
	tfmr = mfspr(SPR_TFMR);
	tfmr &= ~SPR_TFMR_TB_SYNC_OCCURED;
	mtspr(SPR_TFMR, tfmr);

	/* Read core TFMR until the TB sync occurred */
	do {
		if (++timeout >= TIMEOUT_LOOPS) {
			prerror("No sync pulses\n");
			return false;
		}
		tfmr = mfspr(SPR_TFMR);
	} while (!(tfmr & SPR_TFMR_TB_SYNC_OCCURED));
	return true;
}

static bool chiptod_capp_check_tb_running(uint32_t chip_id,
					  uint32_t tfmr_addr,
					  uint32_t offset)
{
	uint64_t tfmr;
	uint64_t timeout = 0;

	/* Read CAPP TFMR until TB becomes valid */
	do {
		if (++timeout >= (TIMEOUT_LOOPS*2)) {
			prerror("CAPP: TB Invalid!\n");
			return false;
		}
		xscom_read(chip_id, tfmr_addr + offset, &tfmr);
		if (tfmr & SPR_TFMR_TFMR_CORRUPT) {
			prerror("CAPP: TFMR corrupt!\n");
			return false;
		}
	} while (!(tfmr & SPR_TFMR_TB_VALID));
	return true;
}

bool chiptod_capp_timebase_sync(unsigned int chip_id, uint32_t tfmr_addr,
				uint32_t tb_addr, uint32_t offset)
{
	uint64_t tfmr;
	uint64_t capp_tb;
	int64_t delta;
	unsigned int retry = 0;

	/* Set CAPP TFMR to base tfmr value */
	xscom_write(chip_id, tfmr_addr + offset, base_tfmr);

	/* Reset CAPP TB errors before attempting the sync */
	if (!chiptod_capp_reset_tb_errors(chip_id, tfmr_addr, offset))
		return false;

	/* Switch CAPP TB to "Not Set" state */
	if (!chiptod_capp_mod_tb(chip_id, tfmr_addr, offset))
		return false;

	/* Sync CAPP TB with core TB, retry while difference > 16usecs */
	do {
		if (retry++ > 5) {
			prerror("CAPP: TB sync: giving up!\n");
			return false;
		}

		/* Make CAPP ready to get the TB, wait for chip sync */
		tfmr = base_tfmr | SPR_TFMR_MOVE_CHIP_TOD_TO_TB;
		xscom_write(chip_id, tfmr_addr + offset, tfmr);
		if (!chiptod_wait_for_chip_sync())
			return false;

		/* Set CAPP TB from core TB */
		xscom_write(chip_id, tb_addr + offset, mftb());

		/* Wait for CAPP TFMR tb_valid bit */
		if (!chiptod_capp_check_tb_running(chip_id, tfmr_addr, offset))
			return false;

		/* Read CAPP TB, read core TB, compare */
		xscom_read(chip_id, tb_addr + offset, &capp_tb);
		delta = mftb() - capp_tb;
		if (delta < 0)
			delta = -delta;
	} while (tb_to_usecs(delta) > 16);

	return true;
}