aboutsummaryrefslogtreecommitdiff
path: root/core/direct-controls.c
blob: 65cf122c1e4eb4b9814d3757f129953f004ec101 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
// SPDX-License-Identifier: Apache-2.0
/*
 * Directly control CPU cores/threads. SRESET, special wakeup, etc
 *
 * Copyright 2017-2019 IBM Corp.
 */

#include <direct-controls.h>
#include <skiboot.h>
#include <opal.h>
#include <cpu.h>
#include <xscom.h>
#include <xscom-p8-regs.h>
#include <xscom-p9-regs.h>
#include <timebase.h>
#include <chip.h>


/**************** mambo direct controls ****************/

extern unsigned long callthru_tcl(const char *str, int len);

static void mambo_sreset_cpu(struct cpu_thread *cpu)
{
	uint32_t chip_id = pir_to_chip_id(cpu->pir);
	uint32_t core_id = pir_to_core_id(cpu->pir);
	uint32_t thread_id = pir_to_thread_id(cpu->pir);
	char tcl_cmd[50];

	snprintf(tcl_cmd, sizeof(tcl_cmd),
			"mysim cpu %i:%i:%i start_thread 0x100",
			chip_id, core_id, thread_id);
	callthru_tcl(tcl_cmd, strlen(tcl_cmd));
}

static void mambo_stop_cpu(struct cpu_thread *cpu)
{
	uint32_t chip_id = pir_to_chip_id(cpu->pir);
	uint32_t core_id = pir_to_core_id(cpu->pir);
	uint32_t thread_id = pir_to_thread_id(cpu->pir);
	char tcl_cmd[50];

	snprintf(tcl_cmd, sizeof(tcl_cmd),
			"mysim cpu %i:%i:%i stop_thread",
			chip_id, core_id, thread_id);
	callthru_tcl(tcl_cmd, strlen(tcl_cmd));
}

/**************** POWER8 direct controls ****************/

static int p8_core_set_special_wakeup(struct cpu_thread *cpu)
{
	uint64_t val, poll_target, stamp;
	uint32_t core_id;
	int rc;

	/*
	 * Note: HWP checks for checkstops, but I assume we don't need to
	 * as we wouldn't be running if one was present
	 */

	/* Grab core ID once */
	core_id = pir_to_core_id(cpu->pir);

	prlog(PR_DEBUG, "RESET Waking up core 0x%x\n", core_id);

	/*
	 * The original HWp reads the XSCOM first but ignores the result
	 * and error, let's do the same until I know for sure that is
	 * not necessary
	 */
	xscom_read(cpu->chip_id,
		   XSCOM_ADDR_P8_EX_SLAVE(core_id, EX_PM_SPECIAL_WAKEUP_PHYP),
		   &val);

	/* Then we write special wakeup */
	rc = xscom_write(cpu->chip_id,
			 XSCOM_ADDR_P8_EX_SLAVE(core_id,
						EX_PM_SPECIAL_WAKEUP_PHYP),
			 PPC_BIT(0));
	if (rc) {
		prerror("RESET: XSCOM error %d asserting special"
			" wakeup on 0x%x\n", rc, cpu->pir);
		return rc;
	}

	/*
	 * HWP uses the history for Perf register here, dunno why it uses
	 * that one instead of the pHyp one, maybe to avoid clobbering it...
	 *
	 * In any case, it does that to check for run/nap vs.sleep/winkle/other
	 * to decide whether to poll on checkstop or not. Since we don't deal
	 * with checkstop conditions here, we ignore that part.
	 */

	/*
	 * Now poll for completion of special wakeup. The HWP is nasty here,
	 * it will poll at 5ms intervals for up to 200ms. This is not quite
	 * acceptable for us at runtime, at least not until we have the
	 * ability to "context switch" HBRT. In practice, because we don't
	 * winkle, it will never take that long, so we increase the polling
	 * frequency to 1us per poll. However we do have to keep the same
	 * timeout.
	 *
	 * We don't use time_wait_ms() either for now as we don't want to
	 * poll the FSP here.
	 */
	stamp = mftb();
	poll_target = stamp + msecs_to_tb(200);
	val = 0;
	while (!(val & EX_PM_GP0_SPECIAL_WAKEUP_DONE)) {
		/* Wait 1 us */
		time_wait_us(1);

		/* Read PM state */
		rc = xscom_read(cpu->chip_id,
				XSCOM_ADDR_P8_EX_SLAVE(core_id, EX_PM_GP0),
				&val);
		if (rc) {
			prerror("RESET: XSCOM error %d reading PM state on"
				" 0x%x\n", rc, cpu->pir);
			return rc;
		}
		/* Check timeout */
		if (mftb() > poll_target)
			break;
	}

	/* Success ? */
	if (val & EX_PM_GP0_SPECIAL_WAKEUP_DONE) {
		uint64_t now = mftb();
		prlog(PR_TRACE, "RESET: Special wakeup complete after %ld us\n",
		      tb_to_usecs(now - stamp));
		return 0;
	}

	/*
	 * We timed out ...
	 *
	 * HWP has a complex workaround for HW255321 which affects
	 * Murano DD1 and Venice DD1. Ignore that for now
	 *
	 * Instead we just dump some XSCOMs for error logging
	 */
	prerror("RESET: Timeout on special wakeup of 0x%0x\n", cpu->pir);
	prerror("RESET:      PM0 = 0x%016llx\n", val);
	val = -1;
	xscom_read(cpu->chip_id,
		   XSCOM_ADDR_P8_EX_SLAVE(core_id, EX_PM_SPECIAL_WAKEUP_PHYP),
		   &val);
	prerror("RESET: SPC_WKUP = 0x%016llx\n", val);
	val = -1;
	xscom_read(cpu->chip_id,
		   XSCOM_ADDR_P8_EX_SLAVE(core_id,
					  EX_PM_IDLE_STATE_HISTORY_PHYP),
		   &val);
	prerror("RESET:  HISTORY = 0x%016llx\n", val);

	return OPAL_HARDWARE;
}

static int p8_core_clear_special_wakeup(struct cpu_thread *cpu)
{
	uint64_t val;
	uint32_t core_id;
	int rc;

	/*
	 * Note: HWP checks for checkstops, but I assume we don't need to
	 * as we wouldn't be running if one was present
	 */

	/* Grab core ID once */
	core_id = pir_to_core_id(cpu->pir);

	prlog(PR_DEBUG, "RESET: Releasing core 0x%x wakeup\n", core_id);

	/*
	 * The original HWp reads the XSCOM first but ignores the result
	 * and error, let's do the same until I know for sure that is
	 * not necessary
	 */
	xscom_read(cpu->chip_id,
		   XSCOM_ADDR_P8_EX_SLAVE(core_id, EX_PM_SPECIAL_WAKEUP_PHYP),
		   &val);

	/* Then we write special wakeup */
	rc = xscom_write(cpu->chip_id,
			 XSCOM_ADDR_P8_EX_SLAVE(core_id,
						EX_PM_SPECIAL_WAKEUP_PHYP), 0);
	if (rc) {
		prerror("RESET: XSCOM error %d deasserting"
			" special wakeup on 0x%x\n", rc, cpu->pir);
		return rc;
	}

	/*
	 * The original HWp reads the XSCOM again with the comment
	 * "This puts an inherent delay in the propagation of the reset
	 * transition"
	 */
	xscom_read(cpu->chip_id,
		   XSCOM_ADDR_P8_EX_SLAVE(core_id, EX_PM_SPECIAL_WAKEUP_PHYP),
		   &val);

	return 0;
}

static int p8_stop_thread(struct cpu_thread *cpu)
{
	uint32_t core_id = pir_to_core_id(cpu->pir);
	uint32_t chip_id = pir_to_chip_id(cpu->pir);
	uint32_t thread_id = pir_to_thread_id(cpu->pir);
	uint32_t xscom_addr;

	xscom_addr = XSCOM_ADDR_P8_EX(core_id,
				      P8_EX_TCTL_DIRECT_CONTROLS(thread_id));

	if (xscom_write(chip_id, xscom_addr, P8_DIRECT_CTL_STOP)) {
		prlog(PR_ERR, "Could not stop thread %u:%u:%u:"
				" Unable to write EX_TCTL_DIRECT_CONTROLS.\n",
				chip_id, core_id, thread_id);
		return OPAL_HARDWARE;
	}

	return OPAL_SUCCESS;
}

static int p8_sreset_thread(struct cpu_thread *cpu)
{
	uint32_t core_id = pir_to_core_id(cpu->pir);
	uint32_t chip_id = pir_to_chip_id(cpu->pir);
	uint32_t thread_id = pir_to_thread_id(cpu->pir);
	uint32_t xscom_addr;

	xscom_addr = XSCOM_ADDR_P8_EX(core_id,
				      P8_EX_TCTL_DIRECT_CONTROLS(thread_id));

	if (xscom_write(chip_id, xscom_addr, P8_DIRECT_CTL_PRENAP)) {
		prlog(PR_ERR, "Could not prenap thread %u:%u:%u:"
				" Unable to write EX_TCTL_DIRECT_CONTROLS.\n",
				chip_id, core_id, thread_id);
		return OPAL_HARDWARE;
	}
	if (xscom_write(chip_id, xscom_addr, P8_DIRECT_CTL_SRESET)) {
		prlog(PR_ERR, "Could not sreset thread %u:%u:%u:"
				" Unable to write EX_TCTL_DIRECT_CONTROLS.\n",
				chip_id, core_id, thread_id);
		return OPAL_HARDWARE;
	}

	return OPAL_SUCCESS;
}


/**************** POWER9 direct controls ****************/

/* Long running instructions may take time to complete. Timeout 100ms */
#define P9_QUIESCE_POLL_INTERVAL	100
#define P9_QUIESCE_TIMEOUT		100000

/* Waking may take up to 5ms for deepest sleep states. Set timeout to 100ms */
#define P9_SPWKUP_POLL_INTERVAL		100
#define P9_SPWKUP_TIMEOUT		100000

/*
 * This implements direct control facilities of processor cores and threads
 * using scom registers.
 */

static int p9_core_set_special_wakeup(struct cpu_thread *cpu)
{
	uint32_t chip_id = pir_to_chip_id(cpu->pir);
	uint32_t core_id = pir_to_core_id(cpu->pir);
	uint32_t swake_addr;
	uint32_t sshhyp_addr;
	uint64_t val;
	int i;

	swake_addr = XSCOM_ADDR_P9_EC_SLAVE(core_id, EC_PPM_SPECIAL_WKUP_HYP);
	sshhyp_addr = XSCOM_ADDR_P9_EC_SLAVE(core_id, P9_EC_PPM_SSHHYP);

	if (xscom_write(chip_id, swake_addr, P9_SPWKUP_SET)) {
		prlog(PR_ERR, "Could not set special wakeup on %u:%u:"
				" Unable to write PPM_SPECIAL_WKUP_HYP.\n",
				chip_id, core_id);
		goto out_fail;
	}

	for (i = 0; i < P9_SPWKUP_TIMEOUT / P9_SPWKUP_POLL_INTERVAL; i++) {
		if (xscom_read(chip_id, sshhyp_addr, &val)) {
			prlog(PR_ERR, "Could not set special wakeup on %u:%u:"
					" Unable to read PPM_SSHHYP.\n",
					chip_id, core_id);
			goto out_fail;
		}
		if (val & P9_SPECIAL_WKUP_DONE) {
			/*
			 * CORE_GATED will be unset on a successful special
			 * wakeup of the core which indicates that the core is
			 * out of stop state. If CORE_GATED is still set then
			 * raise error.
			 */
			if (dctl_core_is_gated(cpu)) {
				prlog(PR_ERR, "Failed special wakeup on %u:%u"
						" as CORE_GATED is set\n",
						chip_id, core_id);
				goto out_fail;
			} else {
				return 0;
			}
		}
		time_wait_us(P9_SPWKUP_POLL_INTERVAL);
	}

	prlog(PR_ERR, "Could not set special wakeup on %u:%u:"
			" timeout waiting for SPECIAL_WKUP_DONE.\n",
			chip_id, core_id);

out_fail:
	/*
	 * As per the special wakeup protocol we should not de-assert
	 * the special wakeup on the core until WAKEUP_DONE is set.
	 * So even on error do not de-assert.
	 */
	return OPAL_HARDWARE;
}

static int p9_core_clear_special_wakeup(struct cpu_thread *cpu)
{
	uint32_t chip_id = pir_to_chip_id(cpu->pir);
	uint32_t core_id = pir_to_core_id(cpu->pir);
	uint32_t swake_addr;

	swake_addr = XSCOM_ADDR_P9_EC_SLAVE(core_id, EC_PPM_SPECIAL_WKUP_HYP);

	/*
	 * De-assert special wakeup after a small delay.
	 * The delay may help avoid problems setting and clearing special
	 * wakeup back-to-back. This should be confirmed.
	 */
	time_wait_us(1);
	if (xscom_write(chip_id, swake_addr, 0)) {
		prlog(PR_ERR, "Could not clear special wakeup on %u:%u:"
				" Unable to write PPM_SPECIAL_WKUP_HYP.\n",
				chip_id, core_id);
		return OPAL_HARDWARE;
	}

	/*
	 * Don't wait for de-assert to complete as other components
	 * could have requested for special wkeup. Wait for 10ms to
	 * avoid back-to-back asserts
	 */
	time_wait_us(10000);
	return 0;
}

static int p9_thread_quiesced(struct cpu_thread *cpu)
{
	uint32_t chip_id = pir_to_chip_id(cpu->pir);
	uint32_t core_id = pir_to_core_id(cpu->pir);
	uint32_t thread_id = pir_to_thread_id(cpu->pir);
	uint32_t ras_addr;
	uint64_t ras_status;

	ras_addr = XSCOM_ADDR_P9_EC(core_id, P9_RAS_STATUS);
	if (xscom_read(chip_id, ras_addr, &ras_status)) {
		prlog(PR_ERR, "Could not check thread state on %u:%u:"
				" Unable to read RAS_STATUS.\n",
				chip_id, core_id);
		return OPAL_HARDWARE;
	}

	/*
	 * This returns true when the thread is quiesced and all
	 * instructions completed. For sreset this may not be necessary,
	 * but we may want to use instruction ramming or stepping
	 * direct controls where it is important.
	 */
	if ((ras_status & P9_THREAD_QUIESCED(thread_id))
			== P9_THREAD_QUIESCED(thread_id))
		return 1;

	return 0;
}

static int p9_cont_thread(struct cpu_thread *cpu)
{
	uint32_t chip_id = pir_to_chip_id(cpu->pir);
	uint32_t core_id = pir_to_core_id(cpu->pir);
	uint32_t thread_id = pir_to_thread_id(cpu->pir);
	uint32_t cts_addr;
	uint32_t ti_addr;
	uint32_t dctl_addr;
	uint64_t core_thread_state;
	uint64_t thread_info;
	bool active, stop;
	int rc;

	rc = p9_thread_quiesced(cpu);
	if (rc < 0)
		return rc;
	if (!rc) {
		prlog(PR_ERR, "Could not cont thread %u:%u:%u:"
				" Thread is not quiesced.\n",
				chip_id, core_id, thread_id);
		return OPAL_BUSY;
	}

	cts_addr = XSCOM_ADDR_P9_EC(core_id, P9_CORE_THREAD_STATE);
	ti_addr = XSCOM_ADDR_P9_EC(core_id, P9_THREAD_INFO);
	dctl_addr = XSCOM_ADDR_P9_EC(core_id, P9_EC_DIRECT_CONTROLS);

	if (xscom_read(chip_id, cts_addr, &core_thread_state)) {
		prlog(PR_ERR, "Could not resume thread %u:%u:%u:"
				" Unable to read CORE_THREAD_STATE.\n",
				chip_id, core_id, thread_id);
		return OPAL_HARDWARE;
	}
	if (core_thread_state & PPC_BIT(56 + thread_id))
		stop = true;
	else
		stop = false;

	if (xscom_read(chip_id, ti_addr, &thread_info)) {
		prlog(PR_ERR, "Could not resume thread %u:%u:%u:"
				" Unable to read THREAD_INFO.\n",
				chip_id, core_id, thread_id);
		return OPAL_HARDWARE;
	}
	if (thread_info & PPC_BIT(thread_id))
		active = true;
	else
		active = false;

	if (!active || stop) {
		if (xscom_write(chip_id, dctl_addr, P9_THREAD_CLEAR_MAINT(thread_id))) {
			prlog(PR_ERR, "Could not resume thread %u:%u:%u:"
				      " Unable to write EC_DIRECT_CONTROLS.\n",
				      chip_id, core_id, thread_id);
		}
	} else {
		if (xscom_write(chip_id, dctl_addr, P9_THREAD_CONT(thread_id))) {
			prlog(PR_ERR, "Could not resume thread %u:%u:%u:"
				      " Unable to write EC_DIRECT_CONTROLS.\n",
				      chip_id, core_id, thread_id);
		}
	}

	return 0;
}

static int p9_stop_thread(struct cpu_thread *cpu)
{
	uint32_t chip_id = pir_to_chip_id(cpu->pir);
	uint32_t core_id = pir_to_core_id(cpu->pir);
	uint32_t thread_id = pir_to_thread_id(cpu->pir);
	uint32_t dctl_addr;
	int rc;
	int i;

	dctl_addr = XSCOM_ADDR_P9_EC(core_id, P9_EC_DIRECT_CONTROLS);

	rc = p9_thread_quiesced(cpu);
	if (rc < 0)
		return rc;
	if (rc) {
		prlog(PR_ERR, "Could not stop thread %u:%u:%u:"
				" Thread is quiesced already.\n",
				chip_id, core_id, thread_id);
		return OPAL_BUSY;
	}

	if (xscom_write(chip_id, dctl_addr, P9_THREAD_STOP(thread_id))) {
		prlog(PR_ERR, "Could not stop thread %u:%u:%u:"
				" Unable to write EC_DIRECT_CONTROLS.\n",
				chip_id, core_id, thread_id);
		return OPAL_HARDWARE;
	}

	for (i = 0; i < P9_QUIESCE_TIMEOUT / P9_QUIESCE_POLL_INTERVAL; i++) {
		int rc = p9_thread_quiesced(cpu);
		if (rc < 0)
			break;
		if (rc)
			return 0;

		time_wait_us(P9_QUIESCE_POLL_INTERVAL);
	}

	prlog(PR_ERR, "Could not stop thread %u:%u:%u:"
			" Unable to quiesce thread.\n",
			chip_id, core_id, thread_id);

	return OPAL_HARDWARE;
}

static int p9_sreset_thread(struct cpu_thread *cpu)
{
	uint32_t chip_id = pir_to_chip_id(cpu->pir);
	uint32_t core_id = pir_to_core_id(cpu->pir);
	uint32_t thread_id = pir_to_thread_id(cpu->pir);
	uint32_t dctl_addr;

	dctl_addr = XSCOM_ADDR_P9_EC(core_id, P9_EC_DIRECT_CONTROLS);

	if (xscom_write(chip_id, dctl_addr, P9_THREAD_SRESET(thread_id))) {
		prlog(PR_ERR, "Could not sreset thread %u:%u:%u:"
				" Unable to write EC_DIRECT_CONTROLS.\n",
				chip_id, core_id, thread_id);
		return OPAL_HARDWARE;
	}

	return 0;
}

/**************** generic direct controls ****************/

int dctl_set_special_wakeup(struct cpu_thread *t)
{
	struct cpu_thread *c = t->ec_primary;
	int rc = OPAL_SUCCESS;

	if (proc_gen == proc_gen_unknown)
		return OPAL_UNSUPPORTED;

	lock(&c->dctl_lock);
	if (c->special_wakeup_count == 0) {
		if (proc_gen == proc_gen_p9)
			rc = p9_core_set_special_wakeup(c);
		else /* (proc_gen == proc_gen_p8) */
			rc = p8_core_set_special_wakeup(c);
	}
	if (!rc)
		c->special_wakeup_count++;
	unlock(&c->dctl_lock);

	return rc;
}

int dctl_clear_special_wakeup(struct cpu_thread *t)
{
	struct cpu_thread *c = t->ec_primary;
	int rc = OPAL_SUCCESS;

	if (proc_gen == proc_gen_unknown)
		return OPAL_UNSUPPORTED;

	lock(&c->dctl_lock);
	if (!c->special_wakeup_count)
		goto out;
	if (c->special_wakeup_count == 1) {
		if (proc_gen == proc_gen_p9)
			rc = p9_core_clear_special_wakeup(c);
		else /* (proc_gen == proc_gen_p8) */
			rc = p8_core_clear_special_wakeup(c);
	}
	if (!rc)
		c->special_wakeup_count--;
out:
	unlock(&c->dctl_lock);

	return rc;
}

int dctl_core_is_gated(struct cpu_thread *t)
{
	struct cpu_thread *c = t->primary;
	uint32_t chip_id = pir_to_chip_id(c->pir);
	uint32_t core_id = pir_to_core_id(c->pir);
	uint32_t sshhyp_addr;
	uint64_t val;

	if (proc_gen != proc_gen_p9)
		return OPAL_UNSUPPORTED;

	sshhyp_addr = XSCOM_ADDR_P9_EC_SLAVE(core_id, P9_EC_PPM_SSHHYP);

	if (xscom_read(chip_id, sshhyp_addr, &val)) {
		prlog(PR_ERR, "Could not query core gated on %u:%u:"
				" Unable to read PPM_SSHHYP.\n",
				chip_id, core_id);
		return OPAL_HARDWARE;
	}

	return !!(val & P9_CORE_GATED);
}

static int dctl_stop(struct cpu_thread *t)
{
	struct cpu_thread *c = t->ec_primary;
	int rc;

	lock(&c->dctl_lock);
	if (t->dctl_stopped) {
		unlock(&c->dctl_lock);
		return OPAL_BUSY;
	}
	if (proc_gen == proc_gen_p9)
		rc = p9_stop_thread(t);
	else /* (proc_gen == proc_gen_p8) */
		rc = p8_stop_thread(t);
	if (!rc)
		t->dctl_stopped = true;
	unlock(&c->dctl_lock);

	return rc;
}

static int dctl_cont(struct cpu_thread *t)
{
	struct cpu_thread *c = t->primary;
	int rc;

	if (proc_gen != proc_gen_p9)
		return OPAL_UNSUPPORTED;

	lock(&c->dctl_lock);
	if (!t->dctl_stopped) {
		unlock(&c->dctl_lock);
		return OPAL_BUSY;
	}
	rc = p9_cont_thread(t);
	if (!rc)
		t->dctl_stopped = false;
	unlock(&c->dctl_lock);

	return rc;
}

/*
 * NOTE:
 * The POWER8 sreset does not provide SRR registers, so it can be used
 * for fast reboot, but not OPAL_SIGNAL_SYSTEM_RESET or anywhere that is
 * expected to return. For now, callers beware.
 */
static int dctl_sreset(struct cpu_thread *t)
{
	struct cpu_thread *c = t->ec_primary;
	int rc;

	lock(&c->dctl_lock);
	if (!t->dctl_stopped) {
		unlock(&c->dctl_lock);
		return OPAL_BUSY;
	}
	if (proc_gen == proc_gen_p9)
		rc = p9_sreset_thread(t);
	else /* (proc_gen == proc_gen_p8) */
		rc = p8_sreset_thread(t);
	if (!rc)
		t->dctl_stopped = false;
	unlock(&c->dctl_lock);

	return rc;
}


/**************** fast reboot API ****************/

int sreset_all_prepare(void)
{
	struct cpu_thread *cpu;

	if (proc_gen == proc_gen_unknown)
		return OPAL_UNSUPPORTED;

	prlog(PR_DEBUG, "RESET: Resetting from cpu: 0x%x (core 0x%x)\n",
	      this_cpu()->pir, pir_to_core_id(this_cpu()->pir));

	if (chip_quirk(QUIRK_MAMBO_CALLOUTS)) {
		for_each_ungarded_cpu(cpu) {
			if (cpu == this_cpu())
				continue;
			mambo_stop_cpu(cpu);
		}
		return OPAL_SUCCESS;
	}

	/* Assert special wakup on all cores. Only on operational cores. */
	for_each_ungarded_primary(cpu) {
		if (dctl_set_special_wakeup(cpu) != OPAL_SUCCESS)
			return OPAL_HARDWARE;
	}

	prlog(PR_DEBUG, "RESET: Stopping the world...\n");

	/* Put everybody in stop except myself */
	for_each_ungarded_cpu(cpu) {
		if (cpu == this_cpu())
			continue;
		if (dctl_stop(cpu) != OPAL_SUCCESS)
			return OPAL_HARDWARE;

	}

	return OPAL_SUCCESS;
}

void sreset_all_finish(void)
{
	struct cpu_thread *cpu;

	if (chip_quirk(QUIRK_MAMBO_CALLOUTS))
		return;

	for_each_ungarded_primary(cpu)
		dctl_clear_special_wakeup(cpu);
}

int sreset_all_others(void)
{
	struct cpu_thread *cpu;

	prlog(PR_DEBUG, "RESET: Resetting all threads but self...\n");

	/*
	 * mambo should actually implement stop as well, and implement
	 * the dctl_ helpers properly. Currently it's racy just sresetting.
	 */
	if (chip_quirk(QUIRK_MAMBO_CALLOUTS)) {
		for_each_ungarded_cpu(cpu) {
			if (cpu == this_cpu())
				continue;
			mambo_sreset_cpu(cpu);
		}
		return OPAL_SUCCESS;
	}

	for_each_ungarded_cpu(cpu) {
		if (cpu == this_cpu())
			continue;
		if (dctl_sreset(cpu) != OPAL_SUCCESS)
			return OPAL_HARDWARE;
	}

	return OPAL_SUCCESS;
}


/**************** OPAL_SIGNAL_SYSTEM_RESET API ****************/

/*
 * This provides a way for the host to raise system reset exceptions
 * on other threads using direct control scoms on POWER9.
 *
 * We assert special wakeup on the core first.
 * Then stop target thread and wait for it to quiesce.
 * Then sreset the target thread, which resumes execution on that thread.
 * Then de-assert special wakeup on the core.
 */
static int64_t p9_sreset_cpu(struct cpu_thread *cpu)
{
	int rc;

	if (this_cpu() == cpu) {
		prlog(PR_ERR, "SRESET: Unable to reset self\n");
		return OPAL_PARAMETER;
	}

	rc = dctl_set_special_wakeup(cpu);
	if (rc)
		return rc;

	rc = dctl_stop(cpu);
	if (rc)
		goto out_spwk;

	rc = dctl_sreset(cpu);
	if (rc)
		goto out_cont;

	dctl_clear_special_wakeup(cpu);

	return 0;

out_cont:
	dctl_cont(cpu);
out_spwk:
	dctl_clear_special_wakeup(cpu);

	return rc;
}

static struct lock sreset_lock = LOCK_UNLOCKED;

int64_t opal_signal_system_reset(int cpu_nr)
{
	struct cpu_thread *cpu;
	int64_t ret;

	if (proc_gen != proc_gen_p9)
		return OPAL_UNSUPPORTED;

	/*
	 * Broadcasts unsupported. Not clear what threads should be
	 * signaled, so it's better for the OS to perform one-at-a-time
	 * for now.
	 */
	if (cpu_nr < 0)
		return OPAL_CONSTRAINED;

	/* Reset a single CPU */
	cpu = find_cpu_by_server(cpu_nr);
	if (!cpu) {
		prlog(PR_ERR, "SRESET: could not find cpu by server %d\n", cpu_nr);
		return OPAL_PARAMETER;
	}

	lock(&sreset_lock);
	ret = p9_sreset_cpu(cpu);
	unlock(&sreset_lock);

	return ret;
}

void direct_controls_init(void)
{
	if (chip_quirk(QUIRK_MAMBO_CALLOUTS))
		return;

	if (proc_gen != proc_gen_p9)
		return;

	opal_register(OPAL_SIGNAL_SYSTEM_RESET, opal_signal_system_reset, 1);
}