// SPDX-License-Identifier: Apache-2.0 /* * Copyright 2019 Wistron Corp. * Copyright 2017 IBM Corp. */ #include #include #include #include #include #include #include #include #include #include #include #include "astbmc.h" /* IPMI message code for Riser-F query (OEM). */ #define IPMI_RISERF_QUERY IPMI_CODE(0x32, 0x01) static bool mihawk_riserF_found = false; static bool bmc_query_waiting = false; #define OPAL_ID_SLOT2 0x01 #define OPAL_ID_SLOT4 0x03 #define OPAL_ID_SLOT7 0x31 #define OPAL_ID_SLOT9 0x33 /* nvme backplane slots */ static const struct slot_table_entry hdd_bay_s2_slots[] = { SW_PLUGGABLE("nvme13", 0x0), SW_PLUGGABLE("nvme14", 0x1), SW_PLUGGABLE("nvme15", 0x2), SW_PLUGGABLE("nvme16", 0x3), { .etype = st_end }, }; static const struct slot_table_entry hdd_bay_s4_slots[] = { SW_PLUGGABLE("nvme17", 0x0), SW_PLUGGABLE("nvme18", 0x1), SW_PLUGGABLE("nvme19", 0x2), SW_PLUGGABLE("nvme20", 0x3), SW_PLUGGABLE("nvme21", 0x4), SW_PLUGGABLE("nvme22", 0x5), SW_PLUGGABLE("nvme23", 0x6), SW_PLUGGABLE("nvme24", 0x7), { .etype = st_end }, }; static const struct slot_table_entry hdd_bay_s7_slots[] = { SW_PLUGGABLE("nvme9", 0x0), SW_PLUGGABLE("nvme10", 0x1), SW_PLUGGABLE("nvme11", 0x2), SW_PLUGGABLE("nvme12", 0x3), { .etype = st_end }, }; static const struct slot_table_entry hdd_bay_s9_slots[] = { SW_PLUGGABLE("nvme1", 0x0), SW_PLUGGABLE("nvme2", 0x1), SW_PLUGGABLE("nvme3", 0x2), SW_PLUGGABLE("nvme4", 0x3), SW_PLUGGABLE("nvme5", 0x4), SW_PLUGGABLE("nvme6", 0x5), SW_PLUGGABLE("nvme7", 0x6), SW_PLUGGABLE("nvme8", 0x7), { .etype = st_end }, }; static void mihawk_get_slot_info(struct phb *phb, struct pci_device *pd) { const struct slot_table_entry *ent = NULL; if (!pd || pd->slot) return; /* * If we find a 8533 or c012 switch then assume it's the NVMe Rack. * This might break if we have another switch with the same vdid in * the system for some reason. This is a really dumb hack, but until * we get query the BMC about wether we have a HDD rack or not we * don't have much of a choice. */ if (pd->dev_type == PCIE_TYPE_SWITCH_DNPORT) { if (pd->vdid == 0x853311f8) { // for microsemi controller for (ent = hdd_bay_s9_slots; ent->etype != st_end; ent++) if (ent->location == (pd->bdfn & 0xff)) break; } else if (pd->vdid == 0xc0121000) { // for broadcom nvme hba switch (phb->opal_id) { case OPAL_ID_SLOT2: ent = hdd_bay_s2_slots; break; case OPAL_ID_SLOT4: ent = hdd_bay_s4_slots; break; case OPAL_ID_SLOT7: ent = hdd_bay_s7_slots; break; case OPAL_ID_SLOT9: default: ent = hdd_bay_s9_slots; break; } for (; ent->etype != st_end; ent++) if (ent->location == (pd->bdfn & 0xff)) break; } } if (ent) slot_table_add_slot_info(pd, ent); else slot_table_get_slot_info(phb, pd); } static const char *mihawk_ocapi_slot_label(uint32_t chip_id, uint32_t brick_index) { const char *name = NULL; if (chip_id == 0) { if (brick_index == 2) name = "JP90NVB1"; else name = "JP90NVT1"; } else { if (brick_index == 2) name = "JP91NVB1"; else name = "JP91NVT1"; } return name; } static const struct ocapi_phy_setup mihawk_phy = { .tx_ffe_pre_coeff = 0x3, .tx_ffe_post_coeff = 0x14, .tx_ffe_boost_en = 0, }; static const struct platform_ocapi mihawk_ocapi = { .i2c_engine = 1, .i2c_port = 4, .i2c_reset_addr = 0x20, .i2c_reset_brick2 = (1 << 1), .i2c_reset_brick3 = (1 << 6), .i2c_reset_brick4 = 0, /* unused */ .i2c_reset_brick5 = 0, /* unused */ .i2c_presence_addr = 0x20, .i2c_presence_brick2 = (1 << 2), /* bottom connector */ .i2c_presence_brick3 = (1 << 7), /* top connector */ .i2c_presence_brick4 = 0, /* unused */ .i2c_presence_brick5 = 0, /* unused */ .odl_phy_swap = true, .ocapi_slot_label = mihawk_ocapi_slot_label, .phy_setup = &mihawk_phy, }; static const struct slot_table_entry P1E1A_x8_PLX8748_RiserA_down[] = { SW_PLUGGABLE("Slot7", 0x10), SW_PLUGGABLE("Slot8", 0x8), SW_PLUGGABLE("Slot10", 0x9), { .etype = st_end } }; static const struct slot_table_entry P1E1A_x8_PLX8748_RiserA_up[] = { { .etype = st_builtin_dev, .location = ST_LOC_DEVFN(0,0), .children = P1E1A_x8_PLX8748_RiserA_down, }, { .etype = st_end } }; static const struct slot_table_entry p1phb1_rA_slot[] = { { .etype = st_builtin_dev, .location = ST_LOC_DEVFN(0,0), .children = P1E1A_x8_PLX8748_RiserA_up, }, { .etype = st_end }, }; static const struct slot_table_entry P0E1A_x8_PLX8748_RiserA_down[] = { SW_PLUGGABLE("Slot2", 0x10), SW_PLUGGABLE("Slot3", 0x8), SW_PLUGGABLE("Slot5", 0x9), { .etype = st_end } }; static const struct slot_table_entry P0E1A_x8_PLX8748_RiserA_up[] = { { .etype = st_builtin_dev, .location = ST_LOC_DEVFN(0,0), .children = P0E1A_x8_PLX8748_RiserA_down, }, { .etype = st_end } }; static const struct slot_table_entry p0phb1_rA_slot[] = { { .etype = st_builtin_dev, .location = ST_LOC_DEVFN(0,0), .children = P0E1A_x8_PLX8748_RiserA_up, }, { .etype = st_end }, }; static const struct slot_table_entry P1E1A_x8_PLX8748_RiserF_down[] = { SW_PLUGGABLE("Slot7", 0x10), SW_PLUGGABLE("Slot10", 0x9), { .etype = st_end } }; static const struct slot_table_entry P1E1A_x8_PLX8748_RiserF_up[] = { { .etype = st_builtin_dev, .location = ST_LOC_DEVFN(0,0), .children = P1E1A_x8_PLX8748_RiserF_down, }, { .etype = st_end } }; static const struct slot_table_entry p1phb1_rF_slot[] = { { .etype = st_builtin_dev, .location = ST_LOC_DEVFN(0,0), .children = P1E1A_x8_PLX8748_RiserF_up, }, { .etype = st_end }, }; static const struct slot_table_entry P0E1A_x8_PLX8748_RiserF_down[] = { SW_PLUGGABLE("Slot2", 0x10), SW_PLUGGABLE("Slot5", 0x9), { .etype = st_end } }; static const struct slot_table_entry P0E1A_x8_PLX8748_RiserF_up[] = { { .etype = st_builtin_dev, .location = ST_LOC_DEVFN(0,0), .children = P0E1A_x8_PLX8748_RiserF_down, }, { .etype = st_end } }; static const struct slot_table_entry p0phb1_rF_slot[] = { { .etype = st_builtin_dev, .location = ST_LOC_DEVFN(0,0), .children = P0E1A_x8_PLX8748_RiserF_up, }, { .etype = st_end }, }; static const struct slot_table_entry P1E2_x16_Switch_down[] = { SW_PLUGGABLE("Slot8", 0x1), SW_PLUGGABLE("Slot9", 0x0), { .etype = st_end } }; static const struct slot_table_entry P1E2_x16_Switch_up[] = { { .etype = st_builtin_dev, .location = ST_LOC_DEVFN(0,0), .children = P1E2_x16_Switch_down, }, { .etype = st_end } }; static const struct slot_table_entry p1phb3_switch_slot[] = { { .etype = st_builtin_dev, .location = ST_LOC_DEVFN(0,0), .children = P1E2_x16_Switch_up, }, { .etype = st_end }, }; static const struct slot_table_entry P0E2_x16_Switch_down[] = { SW_PLUGGABLE("Slot3", 0x1), SW_PLUGGABLE("Slot4", 0x0), { .etype = st_end } }; static const struct slot_table_entry P0E2_x16_Switch_up[] = { { .etype = st_builtin_dev, .location = ST_LOC_DEVFN(0,0), .children = P0E2_x16_Switch_down, }, { .etype = st_end } }; static const struct slot_table_entry p0phb3_switch_slot[] = { { .etype = st_builtin_dev, .location = ST_LOC_DEVFN(0,0), .children = P0E2_x16_Switch_up, }, { .etype = st_end }, }; ST_PLUGGABLE(p0phb0_slot, "Slot1"); ST_PLUGGABLE(p0phb3_slot, "Slot4"); ST_PLUGGABLE(p1phb0_slot, "Slot6"); ST_PLUGGABLE(p1phb3_slot, "Slot9"); static const struct slot_table_entry mihawk_riserA_phb_table[] = { /* ==== CPU0 ==== */ ST_PHB_ENTRY(0, 0, p0phb0_slot), /* P0E0_x16_Slot1 */ ST_PHB_ENTRY(0, 1, p0phb1_rA_slot), /* P0E1A_x8_PLX8748-1_Slot2-3-5 */ //ST_PHB_ENTRY(0, 2, p0phb2_slot), /* P0E1B_x8_USBTI7340 */ ST_PHB_ENTRY(0, 3, p0phb3_slot), /* P0E2_x16_Slot4 */ /* ==== CPU1 ==== */ ST_PHB_ENTRY(8, 0, p1phb0_slot), /* P1E0_x16_Slot6 */ ST_PHB_ENTRY(8, 1, p1phb1_rA_slot), /* P1E1A_x8_PLX8748-2_Slot7-8-10 */ //ST_PHB_ENTRY(8, 2, p1phb2_slot), /* P1E1B_x8_NA */ ST_PHB_ENTRY(8, 3, p1phb3_slot), /* P1E2_x16_Slot9 */ { .etype = st_end }, }; static const struct slot_table_entry mihawk_riserF_phb_table[] = { /* ==== CPU0 ==== */ ST_PHB_ENTRY(0, 0, p0phb0_slot), /* P0E0_x16_Slot1 */ ST_PHB_ENTRY(0, 1, p0phb1_rF_slot), /* P0E1A_x8_PLX8748-1_Slot2-5 */ //ST_PHB_ENTRY(0, 2, p0phb2_slot), /* P0E1B_x8_USBTI7340 */ ST_PHB_ENTRY(0, 3, p0phb3_switch_slot),/* P0E2_x16_SWITCH_Slot3-4 */ /* ==== CPU1 ==== */ ST_PHB_ENTRY(8, 0, p1phb0_slot), /* P1E0_x16_Slot6 */ ST_PHB_ENTRY(8, 1, p1phb1_rF_slot), /* P1E1A_x8_PLX8748-2_Slot7-10 */ //ST_PHB_ENTRY(8, 2, p1phb2_slot), /* P1E1B_x8_NA */ ST_PHB_ENTRY(8, 3, p1phb3_switch_slot),/* P1E2_x16_SWITCH_Slot8-9 */ { .etype = st_end }, }; #define NPU_BASE 0x5011000 #define NPU_SIZE 0x2c #define NPU_INDIRECT0 0x8000000009010c3fUL /* OB0 - no OB3 on Mihawk */ /* OpenCAPI only */ static void create_link(struct dt_node *npu, int group, int index) { struct dt_node *link; uint32_t lane_mask; char namebuf[32]; snprintf(namebuf, sizeof(namebuf), "link@%x", index); link = dt_new(npu, namebuf); assert(link); dt_add_property_string(link, "compatible", "ibm,npu-link"); dt_add_property_cells(link, "ibm,npu-link-index", index); switch (index) { case 2: lane_mask = 0xf1e000; /* 0-3, 7-10 */ break; case 3: lane_mask = 0x00078f; /* 13-16, 20-23 */ break; default: assert(0); } dt_add_property_u64s(link, "ibm,npu-phy", NPU_INDIRECT0); dt_add_property_cells(link, "ibm,npu-lane-mask", lane_mask); dt_add_property_cells(link, "ibm,npu-group-id", group); dt_add_property_u64s(link, "ibm,link-speed", 25000000000ul); } /* FIXME: Get rid of this after we get NPU information properly via HDAT/MRW */ static void mihawk_create_npu(void) { struct dt_node *xscom, *npu; int npu_index = 0; char namebuf[32]; /* Return if there's already an NPU in the device tree */ if (dt_find_compatible_node(dt_root, NULL, "ibm,power9-npu")) return; prlog(PR_DEBUG, "OCAPI: Adding NPU device nodes\n"); dt_for_each_compatible(dt_root, xscom, "ibm,xscom") { snprintf(namebuf, sizeof(namebuf), "npu@%x", NPU_BASE); npu = dt_new(xscom, namebuf); dt_add_property_cells(npu, "reg", NPU_BASE, NPU_SIZE); dt_add_property_strings(npu, "compatible", "ibm,power9-npu"); dt_add_property_cells(npu, "ibm,npu-index", npu_index++); dt_add_property_cells(npu, "ibm,npu-links", 2); create_link(npu, 1, 2); create_link(npu, 2, 3); } } /* FIXME: Get rid of this after we get NPU information properly via HDAT/MRW */ static void mihawk_create_ocapi_i2c_bus(void) { struct dt_node *xscom, *i2cm, *i2c_bus; prlog(PR_DEBUG, "OCAPI: Adding I2C bus device node for OCAPI reset\n"); dt_for_each_compatible(dt_root, xscom, "ibm,xscom") { i2cm = dt_find_by_name(xscom, "i2cm@a1000"); if (!i2cm) { prlog(PR_ERR, "OCAPI: Failed to get I2C bus device node\n"); continue; } if (dt_find_by_name(i2cm, "i2c-bus@4")) continue; i2c_bus = dt_new_addr(i2cm, "i2c-bus", 4); dt_add_property_cells(i2c_bus, "reg", 4); dt_add_property_cells(i2c_bus, "bus-frequency", 0x61a80); dt_add_property_strings(i2c_bus, "compatible", "ibm,opal-i2c", "ibm,power8-i2c-port", "ibm,power9-i2c-port"); } } /* * HACK: Hostboot doesn't export the correct data for the system VPD EEPROM * for this system. So we need to work around it here. */ static void vpd_dt_fixup(void) { struct dt_node *n = dt_find_by_path(dt_root, "/xscom@603fc00000000/i2cm@a2000/i2c-bus@0/eeprom@50"); if (n) { dt_check_del_prop(n, "compatible"); dt_add_property_string(n, "compatible", "atmel,24c512"); dt_check_del_prop(n, "label"); dt_add_property_string(n, "label", "system-vpd"); } } static bool mihawk_probe(void) { if (!dt_node_is_compatible(dt_root, "ibm,mihawk") && !dt_node_is_compatible(dt_root, "wistron,mihawk")) return false; /* Lot of common early inits here */ astbmc_early_init(); /* Setup UART for use by OPAL (Linux hvc) */ uart_set_console_policy(UART_CONSOLE_OPAL); vpd_dt_fixup(); mihawk_create_npu(); mihawk_create_ocapi_i2c_bus(); return true; } static void mihawk_riser_query_complete(struct ipmi_msg *msg) { uint8_t *riser_state; if (msg->cc != IPMI_CC_NO_ERROR) { prlog(PR_ERR, "Mihawk: IPMI riser query returned error. cmd=0x%02x," " netfn=0x%02x, rc=0x%x\n", msg->cmd, msg->netfn, msg->cc); bmc_query_waiting = false; ipmi_free_msg(msg); return; } prlog(PR_DEBUG, "Mihawk: IPMI Got riser query result. p0:%02x, p1:%02x\n" , msg->data[0], msg->data[1]); riser_state = (uint8_t*)msg->user_data; lwsync(); *riser_state = msg->data[0] << 4 | msg->data[1]; bmc_query_waiting = false; ipmi_free_msg(msg); } static void mihawk_init(void) { struct ipmi_msg *ipmi_msg; uint8_t riser_state = 0; int timeout_ms = 3000; astbmc_init(); /* * We use IPMI to ask BMC if Riser-F is installed and set up the * corresponding slot table. */ ipmi_msg = ipmi_mkmsg(IPMI_DEFAULT_INTERFACE, IPMI_RISERF_QUERY, mihawk_riser_query_complete, &riser_state, NULL, 0, 2); if (!ipmi_msg) { prlog(PR_ERR, "Mihawk: Couldn't create ipmi msg."); } else { ipmi_msg->error = mihawk_riser_query_complete; ipmi_queue_msg(ipmi_msg); bmc_query_waiting = true; prlog(PR_DEBUG, "Mihawk: Requesting IPMI_RISERF_QUERY (netfn " "%02x, cmd %02x)\n", ipmi_msg->netfn, ipmi_msg->cmd); while (bmc_query_waiting) { time_wait_ms(10); timeout_ms -= 10; if (timeout_ms == 0) break; } } prlog(PR_DEBUG, "Mihawk: IPMI_RISERF_QUERY finish. riser_state: %02x" ", waiting: %d\n", riser_state, bmc_query_waiting); if (riser_state != 0) { mihawk_riserF_found = true; slot_table_init(mihawk_riserF_phb_table); prlog(PR_DEBUG, "Mihawk: Detect Riser-F via IPMI\n"); } else { slot_table_init(mihawk_riserA_phb_table); prlog(PR_DEBUG, "Mihawk: No Riser-F found, use Riser-A table\n"); } } DECLARE_PLATFORM(mihawk) = { .name = "Mihawk", .probe = mihawk_probe, .init = mihawk_init, .start_preload_resource = flash_start_preload_resource, .resource_loaded = flash_resource_loaded, .bmc = &bmc_plat_ast2500_openbmc, .pci_get_slot_info = mihawk_get_slot_info, .pci_probe_complete = check_all_slot_table, .cec_power_down = astbmc_ipmi_power_down, .cec_reboot = astbmc_ipmi_reboot, .elog_commit = ipmi_elog_commit, .exit = ipmi_wdt_final_reset, .terminate = ipmi_terminate, .ocapi = &mihawk_ocapi, .npu2_device_detect = npu2_i2c_presence_detect, };