/* Copyright 2013-2017 IBM Corp. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "../ecc.c" #include "../blocklevel.c" #define __unused __attribute__((unused)) #define ERR(fmt...) fprintf(stderr, fmt) bool libflash_debug; static int bl_test_bad_read(struct blocklevel_device *bl __unused, uint64_t pos __unused, void *buf __unused, uint64_t len __unused) { return FLASH_ERR_PARM_ERROR; } static int bl_test_read(struct blocklevel_device *bl, uint64_t pos, void *buf, uint64_t len) { if (pos + len > 0x1000) return FLASH_ERR_PARM_ERROR; memcpy(buf, bl->priv + pos, len); return 0; } static int bl_test_bad_write(struct blocklevel_device *bl __unused, uint64_t pos __unused, const void *buf __unused, uint64_t len __unused) { return FLASH_ERR_PARM_ERROR; } static int bl_test_write(struct blocklevel_device *bl, uint64_t pos, const void *buf, uint64_t len) { if (pos + len > 0x1000) return FLASH_ERR_PARM_ERROR; memcpy(bl->priv + pos, buf, len); return 0; } static int bl_test_erase(struct blocklevel_device *bl, uint64_t pos, uint64_t len) { if (pos + len > 0x1000) return FLASH_ERR_PARM_ERROR; memset(bl->priv + pos, 0xff, len); return 0; } static void dump_buf(uint8_t *buf, int start, int end, int miss) { int i; printf("pos: value\n"); for (i = start; i < end; i++) printf("%04x: %c%s\n", i, buf[i] == 0xff ? '-' : buf[i], i == miss ? " <- First missmatch" : ""); } /* * Returns zero if the buffer is ok. Otherwise returns the position of * the mismatch. If the mismatch is at zero -1 is returned */ static int check_buf(uint8_t *buf, int zero_start, int zero_end) { int i; for (i = 0; i < 0x1000; i++) { if (i >= zero_start && i < zero_end && buf[i] != 0xff) return i == 0 ? -1 : i; if ((i < zero_start || i >= zero_end) && buf[i] != (i % 26) + 'a') return i == 0 ? -1 : i; } return 0; } static void reset_buf(uint8_t *buf) { int i; for (i = 0; i < 0x1000; i++) { /* This gives repeating a - z which will be nice to visualise */ buf[i] = (i % 26) + 'a'; } } int main(void) { int i, miss; char *buf; struct blocklevel_device bl_mem = { 0 }; struct blocklevel_device *bl = &bl_mem; if (blocklevel_ecc_protect(bl, 0, 0x1000)) { ERR("Failed to blocklevel_ecc_protect!\n"); return 1; } /* 0x1000 -> 0x3000 should remain unprotected */ if (blocklevel_ecc_protect(bl, 0x3000, 0x1000)) { ERR("Failed to blocklevel_ecc_protect(0x3000, 0x1000)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x2f00, 0x1100)) { ERR("Failed to blocklevel_ecc_protect(0x2f00, 0x1100)\n"); return 1; } /* Zero length protection */ if (!blocklevel_ecc_protect(bl, 0x4000, 0)) { ERR("Shouldn't have succeeded blocklevel_ecc_protect(0x4000, 0)\n"); return 1; } /* Minimum creatable size */ if (blocklevel_ecc_protect(bl, 0x4000, BYTES_PER_ECC)) { ERR("Failed to blocklevel_ecc_protect(0x4000, BYTES_PER_ECC)\n"); return 1; } /* Deal with overlapping protections */ if (blocklevel_ecc_protect(bl, 0x100, 0x1000)) { ERR("Failed to protect overlaping region blocklevel_ecc_protect(0x100, 0x1000)\n"); return 1; } /* Deal with overflow */ if (!blocklevel_ecc_protect(bl, 1, 0xFFFFFFFF)) { ERR("Added an 'overflow' protection blocklevel_ecc_protect(1, 0xFFFFFFFF)\n"); return 1; } /* Protect everything */ if (blocklevel_ecc_protect(bl, 0, 0xFFFFFFFF)) { ERR("Couldn't protect everything blocklevel_ecc_protect(0, 0xFFFFFFFF)\n"); return 1; } if (ecc_protected(bl, 0, 1) != 1) { ERR("Invaid result for ecc_protected(0, 1)\n"); return 1; } if (ecc_protected(bl, 0, 0x1000) != 1) { ERR("Invalid result for ecc_protected(0, 0x1000)\n"); return 1; } if (ecc_protected(bl, 0x100, 0x100) != 1) { ERR("Invalid result for ecc_protected(0x0100, 0x100)\n"); return 1; } /* Clear the protections */ bl->ecc_prot.n_prot = 0; /* Reprotect */ if (blocklevel_ecc_protect(bl, 0x3000, 0x1000)) { ERR("Failed to blocklevel_ecc_protect(0x3000, 0x1000)\n"); return 1; } /* Deal with overlapping protections */ if (blocklevel_ecc_protect(bl, 0x100, 0x1000)) { ERR("Failed to protect overlaping region blocklevel_ecc_protect(0x100, 0x1000)\n"); return 1; } if (ecc_protected(bl, 0x1000, 0) != 1) { ERR("Invalid result for ecc_protected(0x1000, 0)\n"); return 1; } if (ecc_protected(bl, 0x1000, 0x1000) != -1) { ERR("Invalid result for ecc_protected(0x1000, 0x1000)\n"); return 1; } if (ecc_protected(bl, 0x1000, 0x100) != 1) { ERR("Invalid result for ecc_protected(0x1000, 0x100)\n"); return 1; } if (ecc_protected(bl, 0x2000, 0) != 0) { ERR("Invalid result for ecc_protected(0x2000, 0)\n"); return 1; } if (ecc_protected(bl, 0x4000, 1) != 0) { ERR("Invalid result for ecc_protected(0x4000, 1)\n"); return 1; } /* Check for asking for a region with mixed protection */ if (ecc_protected(bl, 0x100, 0x2000) != -1) { ERR("Invalid result for ecc_protected(0x100, 0x2000)\n"); return 1; } /* Test the auto extending of regions */ if (blocklevel_ecc_protect(bl, 0x5000, 0x100)) { ERR("Failed to blocklevel_ecc_protect(0x5000, 0x100)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x5100, 0x100)) { ERR("Failed to blocklevel_ecc_protect(0x5100, 0x100)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x5200, 0x100)) { ERR("Failed to blocklevel_ecc_protect(0x5200, 0x100)\n"); return 1; } if (ecc_protected(bl, 0x5120, 0x10) != 1) { ERR("Invalid result for ecc_protected(0x5120, 0x10)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x4f00, 0x100)) { ERR("Failed to blocklevel_ecc_protected(0x4900, 0x100)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x4900, 0x100)) { ERR("Failed to blocklevel_ecc_protected(0x4900, 0x100)\n"); return 1; } if (ecc_protected(bl, 0x4920, 0x10) != 1) { ERR("Invalid result for ecc_protected(0x4920, 0x10)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x5290, 0x10)) { ERR("Failed to blocklevel_ecc_protect(0x5290, 0x10)\n"); return 1; } /* Test the auto extending of regions */ if (blocklevel_ecc_protect(bl, 0x6000, 0x100)) { ERR("Failed to blocklevel_ecc_protect(0x6000, 0x100)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x6200, 0x100)) { ERR("Failed to blocklevel_ecc_protect(0x6200, 0x100)\n"); return 1; } /*This addition should cause this one to merge the other two together*/ if (blocklevel_ecc_protect(bl, 0x6100, 0x100)) { ERR("Failed to blocklevel_ecc_protect(0x6100, 0x100)\n"); return 1; } /* Make sure we trigger the merging code */ for (i = bl->ecc_prot.n_prot; i < bl->ecc_prot.total_prot; i++) blocklevel_ecc_protect(bl, 0x10000 + i * 0x200, 0x10); /* Check that the region merging works */ for (i = 0; i < bl->ecc_prot.n_prot - 1; i++) { if (bl->ecc_prot.prot[i].start + bl->ecc_prot.prot[i].len == bl->ecc_prot.prot[i + 1].start || bl->ecc_prot.prot[i + 1].start + bl->ecc_prot.prot[i + 1].len == bl->ecc_prot.prot[i].start) { ERR("Problem with protection range merge code, region starting at 0x%08lx for 0x%08lx appears " "to touch region 0x%lx for 0x%lx\n", bl->ecc_prot.prot[i].start, bl->ecc_prot.prot[i].len, bl->ecc_prot.prot[i + 1].start, bl->ecc_prot.prot[i + 1].len); return 1; } } /* * Test blocklevel_smart_erase() * Probably safe to zero the blocklevel we've got */ buf = malloc(0x1000); if (!buf) { ERR("Malloc failed\n"); return 1; } memset(bl, 0, sizeof(*bl)); bl_mem.read = &bl_test_read; bl_mem.write = &bl_test_write; bl_mem.erase = &bl_test_erase; bl_mem.erase_mask = 0xff; bl_mem.priv = buf; reset_buf(buf); /* * Test 1: One full and exact erase block, this shouldn't call * read or write, ensure this fails if it does. */ bl_mem.write = &bl_test_bad_write; bl_mem.read = &bl_test_bad_read; if (blocklevel_smart_erase(bl, 0x100, 0x100)) { ERR("Failed to blocklevel_smart_erase(0x100, 0x100)\n"); return 1; } miss = check_buf(buf, 0x100, 0x200); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x100, 0x100) at 0x%0x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0xfc, 0x105, miss == -1 ? 0 : miss); dump_buf(buf, 0x1fc, 0x205, miss == -1 ? 0 : miss); return 1; } bl_mem.read = &bl_test_read; bl_mem.write = &bl_test_write; reset_buf(buf); /* Test 2: Only touch one erase block */ if (blocklevel_smart_erase(bl, 0x20, 0x40)) { ERR("Failed to blocklevel_smart_erase(0x20, 0x40)\n"); return 1; } miss = check_buf(buf, 0x20, 0x60); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x20, 0x40) at 0x%x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0x1c, 0x65, miss == -1 ? 0 : miss); return 1; } reset_buf(buf); /* Test 3: Start aligned but finish somewhere in it */ if (blocklevel_smart_erase(bl, 0x100, 0x50)) { ERR("Failed to blocklevel_smart_erase(0x100, 0x50)\n"); return 1; } miss = check_buf(buf, 0x100, 0x150); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x100, 0x50) at 0x%0x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0xfc, 0x105, miss == -1 ? 0 : miss); dump_buf(buf, 0x14c, 0x155, miss == -1 ? 0 : miss); return 1; } reset_buf(buf); /* Test 4: Start somewhere in it, finish aligned */ if (blocklevel_smart_erase(bl, 0x50, 0xb0)) { ERR("Failed to blocklevel_smart_erase(0x50, 0xb0)\n"); return 1; } miss = check_buf(buf, 0x50, 0x100); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x50, 0xb0) at 0x%x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0x4c, 0x55, miss == -1 ? 0 : miss); dump_buf(buf, 0x100, 0x105, miss == -1 ? 0 : miss); return 1; } reset_buf(buf); /* Test 5: Cover two erase blocks exactly */ if (blocklevel_smart_erase(bl, 0x100, 0x200)) { ERR("Failed to blocklevel_smart_erase(0x100, 0x200)\n"); return 1; } miss = check_buf(buf, 0x100, 0x300); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x100, 0x200) at 0x%x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0xfc, 0x105, miss == -1 ? 0 : miss); dump_buf(buf, 0x2fc, 0x305, miss == -1 ? 0 : miss); return 1; } reset_buf(buf); /* Test 6: Erase 1.5 blocks (start aligned) */ if (blocklevel_smart_erase(bl, 0x100, 0x180)) { ERR("Failed to blocklevel_smart_erase(0x100, 0x180)\n"); return 1; } miss = check_buf(buf, 0x100, 0x280); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x100, 0x180) at 0x%x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0xfc, 0x105, miss == -1 ? 0 : miss); dump_buf(buf, 0x27c, 0x285, miss == -1 ? 0 : miss); return 1; } reset_buf(buf); /* Test 7: Erase 1.5 blocks (end aligned) */ if (blocklevel_smart_erase(bl, 0x80, 0x180)) { ERR("Failed to blocklevel_smart_erase(0x80, 0x180)\n"); return 1; } miss = check_buf(buf, 0x80, 0x200); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x80, 0x180) at 0x%x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0x7c, 0x85, miss == -1 ? 0 : miss); dump_buf(buf, 0x1fc, 0x205, miss == -1 ? 0 : miss); return 1; } reset_buf(buf); /* Test 8: Erase a big section, not aligned */ if (blocklevel_smart_erase(bl, 0x120, 0x544)) { ERR("Failed to blocklevel_smart_erase(0x120, 0x544)\n"); return 1; } miss = check_buf(buf, 0x120, 0x664); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x120, 0x544) at 0x%x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0x11c, 0x125, miss == -1 ? 0 : miss); dump_buf(buf, 0x65f, 0x669, miss == -1 ? 0 : miss); return 1; } free(buf); return 0; }