// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later /* Copyright 2013-2018 IBM Corp. */ #include #include #include #include #include #include "../ecc.c" #include "../blocklevel.c" #define __unused __attribute__((unused)) #define ERR(fmt...) fprintf(stderr, fmt) bool libflash_debug; static int bl_test_bad_read(struct blocklevel_device *bl __unused, uint64_t pos __unused, void *buf __unused, uint64_t len __unused) { return FLASH_ERR_PARM_ERROR; } static int bl_test_read(struct blocklevel_device *bl, uint64_t pos, void *buf, uint64_t len) { if (pos + len > 0x1000) return FLASH_ERR_PARM_ERROR; memcpy(buf, bl->priv + pos, len); return 0; } static int bl_test_bad_write(struct blocklevel_device *bl __unused, uint64_t pos __unused, const void *buf __unused, uint64_t len __unused) { return FLASH_ERR_PARM_ERROR; } static int bl_test_write(struct blocklevel_device *bl, uint64_t pos, const void *buf, uint64_t len) { if (pos + len > 0x1000) return FLASH_ERR_PARM_ERROR; memcpy(bl->priv + pos, buf, len); return 0; } static int bl_test_erase(struct blocklevel_device *bl, uint64_t pos, uint64_t len) { if (pos + len > 0x1000) return FLASH_ERR_PARM_ERROR; memset(bl->priv + pos, 0xff, len); return 0; } static void dump_buf(uint8_t *buf, int start, int end, int miss) { int i; printf("pos: value\n"); for (i = start; i < end; i++) printf("%04x: %c%s\n", i, buf[i] == 0xff ? '-' : buf[i], i == miss ? " <- First missmatch" : ""); } /* * Returns zero if the buffer is ok. Otherwise returns the position of * the mismatch. If the mismatch is at zero -1 is returned */ static int check_buf(uint8_t *buf, int zero_start, int zero_end) { int i; for (i = 0; i < 0x1000; i++) { if (i >= zero_start && i < zero_end && buf[i] != 0xff) return i == 0 ? -1 : i; if ((i < zero_start || i >= zero_end) && buf[i] != (i % 26) + 'a') return i == 0 ? -1 : i; } return 0; } static void reset_buf(uint8_t *buf) { int i; for (i = 0; i < 0x1000; i++) { /* This gives repeating a - z which will be nice to visualise */ buf[i] = (i % 26) + 'a'; } } static void print_ptr(void *ptr, int len) { int i; char *p = ptr; printf("0x"); for (i = 0; i < len; i++) { putchar(*p); if (i && i % 8 == 0) { putchar('\n'); if (len - i) printf("0x"); } } putchar('\n'); } int main(void) { struct blocklevel_device bl_mem = { 0 }; struct blocklevel_device *bl = &bl_mem; uint64_t with_ecc[10], without_ecc[10]; char *buf = NULL, *data = NULL; int i, rc, miss; if (blocklevel_ecc_protect(bl, 0, 0x1000)) { ERR("Failed to blocklevel_ecc_protect!\n"); return 1; } /* 0x1000 -> 0x3000 should remain unprotected */ if (blocklevel_ecc_protect(bl, 0x3000, 0x1000)) { ERR("Failed to blocklevel_ecc_protect(0x3000, 0x1000)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x2f00, 0x1100)) { ERR("Failed to blocklevel_ecc_protect(0x2f00, 0x1100)\n"); return 1; } /* Zero length protection */ if (!blocklevel_ecc_protect(bl, 0x4000, 0)) { ERR("Shouldn't have succeeded blocklevel_ecc_protect(0x4000, 0)\n"); return 1; } /* Minimum creatable size */ if (blocklevel_ecc_protect(bl, 0x4000, BYTES_PER_ECC)) { ERR("Failed to blocklevel_ecc_protect(0x4000, BYTES_PER_ECC)\n"); return 1; } /* Deal with overlapping protections */ if (blocklevel_ecc_protect(bl, 0x100, 0x1000)) { ERR("Failed to protect overlaping region blocklevel_ecc_protect(0x100, 0x1000)\n"); return 1; } /* Deal with overflow */ if (!blocklevel_ecc_protect(bl, 1, 0xFFFFFFFF)) { ERR("Added an 'overflow' protection blocklevel_ecc_protect(1, 0xFFFFFFFF)\n"); return 1; } /* Protect everything */ if (blocklevel_ecc_protect(bl, 0, 0xFFFFFFFF)) { ERR("Couldn't protect everything blocklevel_ecc_protect(0, 0xFFFFFFFF)\n"); return 1; } if (ecc_protected(bl, 0, 1, NULL) != 1) { ERR("Invaid result for ecc_protected(0, 1)\n"); return 1; } if (ecc_protected(bl, 0, 0x1000, NULL) != 1) { ERR("Invalid result for ecc_protected(0, 0x1000)\n"); return 1; } if (ecc_protected(bl, 0x100, 0x100, NULL) != 1) { ERR("Invalid result for ecc_protected(0x0100, 0x100)\n"); return 1; } /* Clear the protections */ bl->ecc_prot.n_prot = 0; /* Reprotect */ if (blocklevel_ecc_protect(bl, 0x3000, 0x1000)) { ERR("Failed to blocklevel_ecc_protect(0x3000, 0x1000)\n"); return 1; } /* Deal with overlapping protections */ if (blocklevel_ecc_protect(bl, 0x100, 0x1000)) { ERR("Failed to protect overlaping region blocklevel_ecc_protect(0x100, 0x1000)\n"); return 1; } if (ecc_protected(bl, 0x1000, 0, NULL) != 1) { ERR("Invalid result for ecc_protected(0x1000, 0)\n"); return 1; } if (ecc_protected(bl, 0x1000, 0x1000, NULL) != -1) { ERR("Invalid result for ecc_protected(0x1000, 0x1000)\n"); return 1; } if (ecc_protected(bl, 0x1000, 0x100, NULL) != 1) { ERR("Invalid result for ecc_protected(0x1000, 0x100)\n"); return 1; } if (ecc_protected(bl, 0x2000, 0, NULL) != 0) { ERR("Invalid result for ecc_protected(0x2000, 0)\n"); return 1; } if (ecc_protected(bl, 0x4000, 1, NULL) != 0) { ERR("Invalid result for ecc_protected(0x4000, 1)\n"); return 1; } /* Check for asking for a region with mixed protection */ if (ecc_protected(bl, 0x100, 0x2000, NULL) != -1) { ERR("Invalid result for ecc_protected(0x100, 0x2000)\n"); return 1; } /* Test the auto extending of regions */ if (blocklevel_ecc_protect(bl, 0x5000, 0x100)) { ERR("Failed to blocklevel_ecc_protect(0x5000, 0x100)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x5100, 0x100)) { ERR("Failed to blocklevel_ecc_protect(0x5100, 0x100)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x5200, 0x100)) { ERR("Failed to blocklevel_ecc_protect(0x5200, 0x100)\n"); return 1; } if (ecc_protected(bl, 0x5120, 0x10, NULL) != 1) { ERR("Invalid result for ecc_protected(0x5120, 0x10)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x4f00, 0x100)) { ERR("Failed to blocklevel_ecc_protected(0x4900, 0x100)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x4900, 0x100)) { ERR("Failed to blocklevel_ecc_protected(0x4900, 0x100)\n"); return 1; } if (ecc_protected(bl, 0x4920, 0x10, NULL) != 1) { ERR("Invalid result for ecc_protected(0x4920, 0x10)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x5290, 0x10)) { ERR("Failed to blocklevel_ecc_protect(0x5290, 0x10)\n"); return 1; } /* Test the auto extending of regions */ if (blocklevel_ecc_protect(bl, 0x6000, 0x100)) { ERR("Failed to blocklevel_ecc_protect(0x6000, 0x100)\n"); return 1; } if (blocklevel_ecc_protect(bl, 0x6200, 0x100)) { ERR("Failed to blocklevel_ecc_protect(0x6200, 0x100)\n"); return 1; } /* Test ECC reading and writing being 100% transparent to the * caller */ buf = malloc(0x1000); data = malloc(0x100); if (!buf || !data) { ERR("Malloc failed\n"); rc = 1; goto out; } memset(bl, 0, sizeof(*bl)); bl_mem.read = &bl_test_read; bl_mem.write = &bl_test_write; bl_mem.erase = &bl_test_erase; bl_mem.erase_mask = 0xff; bl_mem.priv = buf; reset_buf(buf); /* * Test 1: One full and exact erase block, this shouldn't call * read or write, ensure this fails if it does. */ bl_mem.write = &bl_test_bad_write; bl_mem.read = &bl_test_bad_read; if (blocklevel_smart_erase(bl, 0x100, 0x100)) { ERR("Failed to blocklevel_smart_erase(0x100, 0x100)\n"); goto out; } miss = check_buf(buf, 0x100, 0x200); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x100, 0x100) at 0x%0x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0xfc, 0x105, miss == -1 ? 0 : miss); dump_buf(buf, 0x1fc, 0x205, miss == -1 ? 0 : miss); goto out; } bl_mem.read = &bl_test_read; bl_mem.write = &bl_test_write; reset_buf(buf); /* Test 2: Only touch one erase block */ if (blocklevel_smart_erase(bl, 0x20, 0x40)) { ERR("Failed to blocklevel_smart_erase(0x20, 0x40)\n"); goto out; } miss = check_buf(buf, 0x20, 0x60); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x20, 0x40) at 0x%x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0x1c, 0x65, miss == -1 ? 0 : miss); goto out; } reset_buf(buf); /* Test 3: Start aligned but finish somewhere in it */ if (blocklevel_smart_erase(bl, 0x100, 0x50)) { ERR("Failed to blocklevel_smart_erase(0x100, 0x50)\n"); goto out; } miss = check_buf(buf, 0x100, 0x150); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x100, 0x50) at 0x%0x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0xfc, 0x105, miss == -1 ? 0 : miss); dump_buf(buf, 0x14c, 0x155, miss == -1 ? 0 : miss); goto out; } reset_buf(buf); /* Test 4: Start somewhere in it, finish aligned */ if (blocklevel_smart_erase(bl, 0x50, 0xb0)) { ERR("Failed to blocklevel_smart_erase(0x50, 0xb0)\n"); goto out; } miss = check_buf(buf, 0x50, 0x100); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x50, 0xb0) at 0x%x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0x4c, 0x55, miss == -1 ? 0 : miss); dump_buf(buf, 0x100, 0x105, miss == -1 ? 0 : miss); goto out; } reset_buf(buf); /* Test 5: Cover two erase blocks exactly */ if (blocklevel_smart_erase(bl, 0x100, 0x200)) { ERR("Failed to blocklevel_smart_erase(0x100, 0x200)\n"); goto out; } miss = check_buf(buf, 0x100, 0x300); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x100, 0x200) at 0x%x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0xfc, 0x105, miss == -1 ? 0 : miss); dump_buf(buf, 0x2fc, 0x305, miss == -1 ? 0 : miss); goto out; } reset_buf(buf); /* Test 6: Erase 1.5 blocks (start aligned) */ if (blocklevel_smart_erase(bl, 0x100, 0x180)) { ERR("Failed to blocklevel_smart_erase(0x100, 0x180)\n"); goto out; } miss = check_buf(buf, 0x100, 0x280); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x100, 0x180) at 0x%x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0xfc, 0x105, miss == -1 ? 0 : miss); dump_buf(buf, 0x27c, 0x285, miss == -1 ? 0 : miss); goto out; } reset_buf(buf); /* Test 7: Erase 1.5 blocks (end aligned) */ if (blocklevel_smart_erase(bl, 0x80, 0x180)) { ERR("Failed to blocklevel_smart_erase(0x80, 0x180)\n"); goto out; } miss = check_buf(buf, 0x80, 0x200); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x80, 0x180) at 0x%x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0x7c, 0x85, miss == -1 ? 0 : miss); dump_buf(buf, 0x1fc, 0x205, miss == -1 ? 0 : miss); goto out; } reset_buf(buf); /* Test 8: Erase a big section, not aligned */ if (blocklevel_smart_erase(bl, 0x120, 0x544)) { ERR("Failed to blocklevel_smart_erase(0x120, 0x544)\n"); goto out; } miss = check_buf(buf, 0x120, 0x664); if (miss) { ERR("Buffer mismatch after blocklevel_smart_erase(0x120, 0x544) at 0x%x\n", miss == -1 ? 0 : miss); dump_buf(buf, 0x11c, 0x125, miss == -1 ? 0 : miss); dump_buf(buf, 0x65f, 0x669, miss == -1 ? 0 : miss); goto out; } bl_mem.priv = buf; reset_buf(buf); for (i = 0; i < 0x100; i++) data[i] = i; /* This really shouldn't fail */ rc = blocklevel_ecc_protect(bl, 0, 0x100); if (rc) { ERR("Couldn't blocklevel_ecc_protect(0, 0x100)\n"); goto out; } rc = blocklevel_write(bl, 0, data, 0x100); if (rc) { ERR("Couldn't blocklevel_write(0, 0x100)\n"); goto out; } rc = blocklevel_write(bl, 0x200, data, 0x100); if (rc) { ERR("Couldn't blocklevel_write(0x200, 0x100)\n"); goto out; } /* * 0x50 once adjusted for the presence of ECC becomes 0x5a which * is ECC aligned. */ rc = blocklevel_read(bl, 0x50, with_ecc, 8); if (rc) { ERR("Couldn't blocklevel_read(0x50, 8) with ecc rc=%d\n", rc); goto out; } rc = blocklevel_read(bl, 0x250, without_ecc, 8); if (rc) { ERR("Couldn't blocklevel_read(0x250, 8) without ecc rc=%d\n", rc); goto out; } if (memcmp(with_ecc, without_ecc, 8) || memcmp(with_ecc, &data[0x50], 8)) { ERR("ECC read and non-ECC read don't match or are wrong line: %d\n", __LINE__); print_ptr(with_ecc, 8); print_ptr(without_ecc, 8); print_ptr(&data[50], 8); rc = 1; goto out; } /* * 0x50 once adjusted for the presence of ECC becomes 0x5a which * is ECC aligned. * So 0x4f won't be aligned! */ rc = blocklevel_read(bl, 0x4f, with_ecc, 8); if (rc) { ERR("Couldn't blocklevel_read(0x4f, 8) with ecc %d\n", rc); goto out; } rc = blocklevel_read(bl, 0x24f, without_ecc, 8); if (rc) { ERR("Couldn't blocklevel_read(0x24f, 8) without ecc %d\n", rc); goto out; } if (memcmp(with_ecc, without_ecc, 8) || memcmp(with_ecc, &data[0x4f], 8)) { ERR("ECC read and non-ECC read don't match or are wrong line: %d\n", __LINE__); print_ptr(with_ecc, 8); print_ptr(without_ecc, 8); print_ptr(&data[0x4f], 8); rc = 1; goto out; } /* * 0x50 once adjusted for the presence of ECC becomes 0x5a which * is ECC aligned. */ rc = blocklevel_read(bl, 0x50, with_ecc, 16); if (rc) { ERR("Couldn't blocklevel_read(0x50, 16) with ecc %d\n", rc); goto out; } rc = blocklevel_read(bl, 0x250, without_ecc, 16); if (rc) { ERR("Couldn't blocklevel_read(0x250, 16) without ecc %d\n", rc); goto out; } if (memcmp(with_ecc, without_ecc, 16)|| memcmp(with_ecc, &data[0x50], 16)) { ERR("(long read )ECC read and non-ECC read don't match or are wrong line: %d\n", __LINE__); print_ptr(with_ecc, 16); print_ptr(without_ecc, 16); print_ptr(&data[0x50], 16); rc = 1; goto out; } /* * 0x50 once adjusted for the presence of ECC becomes 0x5a which * is ECC aligned. So 4f won't be. */ rc = blocklevel_read(bl, 0x4f, with_ecc, 24); if (rc) { ERR("Couldn't blocklevel_read(0x4f, 24) with ecc %d\n", rc); goto out; } rc = blocklevel_read(bl, 0x24f, without_ecc, 24); if (rc) { ERR("Couldn't blocklevel_read(0x24f, 24) without ecc %d\n", rc); goto out; } if (memcmp(with_ecc, without_ecc, 24)|| memcmp(with_ecc, &data[0x4f], 24)) { ERR("(long read )ECC read and non-ECC read don't match or are wrong: %d\n", __LINE__); print_ptr(with_ecc, 24); print_ptr(without_ecc, 24); print_ptr(&data[0x4f], 24); rc = 1; goto out; } /* * Now lets try to write at non ECC aligned positions * Go easy first, 0x50 becomes 0x5a which is ECC byte aligned but * not aligned to the start of the partition */ rc = blocklevel_write(bl, 0x50, data, 0xb0); if (rc) { ERR("Couldn't blocklevel_write()\n"); goto out; } /* Read 8 bytes before to make sure we didn't ruin that */ rc = blocklevel_read(bl, 0x48, with_ecc, 24); if (rc) { ERR("Couldn't blocklevel_read() with ecc %d\n", rc); goto out; } if (memcmp(with_ecc, data + 0x48, 8) || memcmp(with_ecc + 1, data, 16)) { rc = 1; ERR("Couldn't read back what we thought we wrote line: %d\n", __LINE__); print_ptr(with_ecc, 24); print_ptr(&data[0x48], 8); print_ptr(data, 16); goto out; } /* Ok lets get tricky */ rc = blocklevel_write(bl, 0x31, data, 0xcf); if (rc) { ERR("Couldn't blocklevel_write(0x31, 0xcf)\n"); goto out; } /* Read 8 bytes before to make sure we didn't ruin that */ rc = blocklevel_read(bl, 0x29, with_ecc, 24); if (rc) { ERR("Couldn't blocklevel_read(0x29, 24) with ecc rc=%d\n", rc); goto out; } if (memcmp(with_ecc, &data[0x29], 8) || memcmp(with_ecc + 1, data, 16)) { ERR("Couldn't read back what we thought we wrote line: %d\n", __LINE__); print_ptr(with_ecc, 24); print_ptr(&data[0x29], 8); print_ptr(data, 16); rc = 1; goto out; } /* * Rewrite the pattern that we've messed up */ rc = blocklevel_write(bl, 0, data, 0x100); if (rc) { ERR("Couldn't blocklevel_write(0, 0x100) to reset\n"); goto out; } /* Be unalignmed as possible from now on, starting somewhat easy */ rc = blocklevel_read(bl, 0, with_ecc, 5); if (rc) { ERR("Couldn't blocklevel_write(0, 5)\n"); goto out; } if (memcmp(with_ecc, data, 5)) { ERR("blocklevel_read 5, 0) didn't match line: %d\n", __LINE__); print_ptr(with_ecc, 5); print_ptr(data, 5); rc = 1; goto out; } /* 39 is neither divisible by 8 or by 9 */ rc = blocklevel_read(bl, 39, with_ecc, 5); if (rc) { ERR("Couldn't blocklevel_write(39, 5)\n"); goto out; } if (memcmp(with_ecc, &data[39], 5)) { ERR("blocklevel_read(5, 39() didn't match line: %d\n", __LINE__); print_ptr(with_ecc, 5); print_ptr(&data[39], 5); rc = 1; goto out; } rc = blocklevel_read(bl, 0xb, &with_ecc, 39); if (rc) { ERR("Couldn't blocklevel_read(0xb, 39)\n"); goto out; } if (memcmp(with_ecc, &data[0xb], 39)) { ERR("Strange sized and positioned read failed, blocklevel_read(0xb, 39) line: %d\n", __LINE__); print_ptr(with_ecc, 39); print_ptr(&data[0xb], 39); rc = 1; goto out; } rc = blocklevel_write(bl, 39, data, 50); if (rc) { ERR("Couldn't blocklevel_write(39, 50)\n"); goto out; } rc = blocklevel_read(bl, 32, with_ecc, 39); if (rc) { ERR("Couldn't blocklevel_read(32, 39)\n"); goto out; } if (memcmp(with_ecc, &data[32], 7) || memcmp(((char *)with_ecc) + 7, data, 32)) { ERR("Read back of odd placed/odd sized write failed, blocklevel_read(32, 39) line: %d\n", __LINE__); print_ptr(with_ecc, 39); print_ptr(&data[32], 7); print_ptr(data, 32); rc = 1; goto out; } out: free(buf); free(data); return rc; }