aboutsummaryrefslogtreecommitdiff
path: root/hw
diff options
context:
space:
mode:
Diffstat (limited to 'hw')
-rw-r--r--hw/Makefile.inc2
-rw-r--r--hw/psi.c25
-rw-r--r--hw/slw.c12
-rw-r--r--hw/xive.c6
-rw-r--r--hw/xive2.c4443
5 files changed, 4479 insertions, 9 deletions
diff --git a/hw/Makefile.inc b/hw/Makefile.inc
index a7f450c..37256d3 100644
--- a/hw/Makefile.inc
+++ b/hw/Makefile.inc
@@ -9,7 +9,7 @@ HW_OBJS += fake-nvram.o lpc-mbox.o npu2.o npu2-hw-procedures.o
HW_OBJS += npu2-common.o npu2-opencapi.o phys-map.o sbe-p9.o capp.o
HW_OBJS += occ-sensor.o vas.o sbe-p8.o dio-p9.o lpc-port80h.o cache-p9.o
HW_OBJS += npu-opal.o npu3.o npu3-nvlink.o npu3-hw-procedures.o
-HW_OBJS += ocmb.o
+HW_OBJS += ocmb.o xive2.o
HW=hw/built-in.a
include $(SRC)/hw/fsp/Makefile.inc
diff --git a/hw/psi.c b/hw/psi.c
index f95a066..26677a3 100644
--- a/hw/psi.c
+++ b/hw/psi.c
@@ -772,12 +772,12 @@ static void psi_init_p10_interrupts(struct psi *psi)
psi->chip_id, psi->esb_mmio);
/* Grab and configure the notification port */
- val = xive_get_notify_port(psi->chip_id, XIVE_HW_SRC_PSI);
+ val = xive2_get_notify_port(psi->chip_id, XIVE_HW_SRC_PSI);
val |= PSIHB_ESB_NOTIF_VALID;
out_be64(psi->regs + PSIHB_ESB_NOTIF_ADDR, val);
/* Setup interrupt offset */
- val = xive_get_notify_base(psi->interrupt);
+ val = xive2_get_notify_base(psi->interrupt);
val <<= 32;
out_be64(psi->regs + PSIHB_IVT_OFFSET, val);
@@ -786,7 +786,7 @@ static void psi_init_p10_interrupts(struct psi *psi)
"PSI[0x%03x]: Interrupts sources registered for P10 DD%i.%i\n",
psi->chip_id, 0xf & (chip->ec_level >> 4), chip->ec_level & 0xf);
- xive_register_hw_source(psi->interrupt, P9_PSI_NUM_IRQS,
+ xive2_register_hw_source(psi->interrupt, P9_PSI_NUM_IRQS,
esb_shift, psi->esb_mmio, XIVE_SRC_LSI,
psi, &psi_p10_irq_ops);
@@ -956,6 +956,23 @@ static struct psi *psi_probe_p9(struct proc_chip *chip, u64 base)
return psi;
}
+static struct psi *psi_probe_p10(struct proc_chip *chip, u64 base)
+{
+ struct psi *psi = NULL;
+ uint64_t addr;
+
+ phys_map_get(chip->id, PSIHB_REG, 0, &addr, NULL);
+ xscom_write(chip->id, base + PSIHB_XSCOM_P9_BASE,
+ addr | PSIHB_XSCOM_P9_HBBAR_EN);
+
+ psi = alloc_psi(chip, base);
+ if (!psi)
+ return NULL;
+ psi->regs = (void *)addr;
+ psi->interrupt = xive2_alloc_hw_irqs(chip->id, P9_PSI_NUM_IRQS, 16);
+ return psi;
+}
+
static bool psi_init_psihb(struct dt_node *psihb)
{
uint32_t chip_id = dt_get_chip_id(psihb);
@@ -974,6 +991,8 @@ static bool psi_init_psihb(struct dt_node *psihb)
psi = psi_probe_p8(chip, base);
else if (dt_node_is_compatible(psihb, "ibm,power9-psihb-x"))
psi = psi_probe_p9(chip, base);
+ else if (dt_node_is_compatible(psihb, "ibm,power10-psihb-x"))
+ psi = psi_probe_p10(chip, base);
else {
prerror("PSI: Unknown processor type\n");
return false;
diff --git a/hw/slw.c b/hw/slw.c
index 8969096..9e676af 100644
--- a/hw/slw.c
+++ b/hw/slw.c
@@ -965,9 +965,15 @@ void add_cpu_idle_state_properties(void)
}
}
if ((wakeup_engine_state == WAKEUP_ENGINE_PRESENT) && has_deep_states) {
- slw_late_init_p9(chip);
- xive_late_init();
- nx_p9_rng_late_init();
+ if (chip->type == PROC_CHIP_P9_NIMBUS ||
+ chip->type == PROC_CHIP_P9_CUMULUS) {
+ slw_late_init_p9(chip);
+ xive_late_init();
+ nx_p9_rng_late_init();
+ } else if (chip->type == PROC_CHIP_P10) {
+ /* TODO (p10): need P10 stop state engine */
+ xive2_late_init();
+ }
}
if (wakeup_engine_state != WAKEUP_ENGINE_PRESENT)
has_deep_states = false;
diff --git a/hw/xive.c b/hw/xive.c
index c442ea5..51b0354 100644
--- a/hw/xive.c
+++ b/hw/xive.c
@@ -1776,7 +1776,8 @@ static void xive_create_mmio_dt_node(struct xive *x)
dt_add_property_cells(xive_dt_node, "ibm,xive-eq-sizes",
12, 16, 21, 24);
- dt_add_property_cells(xive_dt_node, "ibm,xive-#priorities", 8);
+ dt_add_property_cells(xive_dt_node, "ibm,xive-#priorities",
+ NUM_INT_PRIORITIES);
dt_add_property(xive_dt_node, "single-escalation-support", NULL, 0);
xive_add_provisioning_properties();
@@ -4191,7 +4192,8 @@ static int64_t xive_setup_silent_gather(uint64_t vp_id, bool enable)
if (!memcmp(eq_orig, &eq, sizeof(eq)))
rc = 0;
else
- rc = xive_eqc_cache_update(x, blk, idx + 7, &eq, false);
+ rc = xive_eqc_cache_update(x, blk, idx + XIVE_ESCALATION_PRIO,
+ &eq, false);
if (rc)
return rc;
diff --git a/hw/xive2.c b/hw/xive2.c
new file mode 100644
index 0000000..ab482eb
--- /dev/null
+++ b/hw/xive2.c
@@ -0,0 +1,4443 @@
+// SPDX-License-Identifier: Apache-2.0
+/*
+ * XIVE2: eXternal Interrupt Virtualization Engine. POWER10 interrupt
+ * controller
+ *
+ * Copyright (c) 2016-2019, IBM Corporation.
+ */
+
+#define pr_fmt(fmt) "XIVE: " fmt
+
+#include <skiboot.h>
+#include <xscom.h>
+#include <chip.h>
+#include <io.h>
+#include <xive.h>
+#include <xive2-regs.h>
+#include <xscom-p10-regs.h>
+#include <interrupts.h>
+#include <timebase.h>
+#include <bitmap.h>
+#include <buddy.h>
+#include <phys-map.h>
+
+
+/* Verbose debug */
+#undef XIVE_VERBOSE_DEBUG
+#undef DEBUG
+
+/* Extra debug options used in debug builds */
+#ifdef DEBUG
+#define XIVE_CHECK_LOCKS
+#define XIVE_DEBUG_INIT_CACHE_UPDATES
+#define XIVE_EXTRA_CHECK_INIT_CACHE
+#else
+#undef XIVE_CHECK_LOCKS
+#undef XIVE_DEBUG_INIT_CACHE_UPDATES
+#undef XIVE_EXTRA_CHECK_INIT_CACHE
+#endif
+
+/*
+ * VSDs, blocks, set translation etc...
+ *
+ * For the following data structures, the XIVE use a mechanism called
+ * Virtualization Structure Tables (VST) to manage the memory layout
+ * and access: ESBs (Event State Buffers), EAS (Event assignment
+ * structures), ENDs (Event Notification Descriptors) and NVT/NVP
+ * (Notification Virtual Targets/Processors).
+ *
+ * These structures divide those tables into 16 "blocks". Each XIVE
+ * instance has a definition for all 16 blocks that can either represent
+ * an actual table in memory or a remote XIVE MMIO port to access a
+ * block that is owned by that remote XIVE.
+ *
+ * Our SW design will consist of allocating one block per chip (and thus
+ * per XIVE instance) for now, thus giving us up to 16 supported chips in
+ * the system. We may have to revisit that if we ever support systems with
+ * more than 16 chips but that isn't on our radar at the moment or if we
+ * want to do like pHyp on some machines and dedicate 2 blocks per chip
+ * for some structures.
+ *
+ * Thus we need to be careful that we never expose to Linux the concept
+ * of block and block boundaries, but instead we provide full number ranges
+ * so that consecutive blocks can be supported.
+ *
+ * Similarily, for MMIO access, the BARs support what is called "set
+ * translation" which allows the BAR to be devided into a certain
+ * number of sets. Each "set" can be routed to a specific block and
+ * offset within a block.
+ */
+
+#define XIVE_MAX_BLOCKS 16
+#define XIVE_VSD_SIZE 8
+
+/*
+ * Max number of ESBs. (direct table)
+ *
+ * The max number of ESBs supported in the P10 MMIO space is 1TB/128K: 8M.
+ *
+ * 1M is our current top limit of ESB entries and EAS entries
+ * pre-allocated per chip. That allocates 256KB per chip for the state
+ * bits and 8M per chip for the EAS.
+ */
+
+#define XIVE_INT_ORDER 20 /* 1M interrupts */
+#define XIVE_INT_COUNT (1ul << XIVE_INT_ORDER)
+
+/*
+ * First interrupt number, also the first logical interrupt number
+ * allocated by Linux (maximum ISA interrupt number + 1)
+ */
+#define XIVE_INT_FIRST 0x10
+
+/* Corresponding direct table sizes */
+#define XIVE_ESB_SIZE (XIVE_INT_COUNT / 4)
+#define XIVE_EAT_SIZE (XIVE_INT_COUNT * 8)
+
+/* Use 64K for everything by default */
+#define XIVE_ESB_SHIFT (16 + 1) /* trigger + mgmt pages */
+#define XIVE_ESB_PAGE_SIZE (1ul << XIVE_ESB_SHIFT) /* 2 pages */
+
+/*
+ * Max number of ENDs. (indirect table)
+ *
+ * The max number of ENDs supported in the P10 MMIO space is 2TB/128K: 16M.
+ * Since one END is 32 bytes, a 64K indirect subpage can hold 2K ENDs.
+ * We need 8192 subpages, ie, 64K of memory for the indirect table.
+ */
+#define END_PER_PAGE (PAGE_SIZE / sizeof(struct xive_end))
+
+#define XIVE_END_ORDER 23 /* 8M ENDs */
+#define XIVE_END_COUNT (1ul << XIVE_END_ORDER)
+#define XIVE_END_TABLE_SIZE ((XIVE_END_COUNT / END_PER_PAGE) * XIVE_VSD_SIZE)
+
+#define XIVE_END_SHIFT (16 + 1) /* ESn + ESe pages */
+
+/* One bit per number of priorities configured */
+#define xive_end_bitmap_size(x) (XIVE_END_COUNT >> xive_cfg_vp_prio_shift(x))
+
+/* Number of priorities (and thus ENDs) we allocate for each VP */
+#define xive_cfg_vp_prio_shift(x) GETFIELD(CQ_XIVE_CFG_VP_INT_PRIO, (x)->config)
+#define xive_cfg_vp_prio(x) (1 << xive_cfg_vp_prio_shift(x))
+
+/* Max priority number */
+#define xive_max_prio(x) (xive_cfg_vp_prio(x) - 1)
+
+/* Priority used for gather/silent escalation (KVM) */
+#define xive_escalation_prio(x) xive_max_prio(x)
+
+/*
+ * Max number of VPs. (indirect table)
+ *
+ * The max number of NVPs we support in our MMIO space is 1TB/128K: 8M.
+ * Since one NVP is 32 bytes, a 64K indirect subpage can hold 2K NVPs.
+ * We need 4096 pointers, ie, 32K of memory for the indirect table.
+ *
+ * However, we use 8 priorities (by default) per NVP and the number of
+ * ENDs is configured to 8M. Therefore, our VP space is limited to 1M.
+ */
+#define VP_PER_PAGE (PAGE_SIZE / sizeof(struct xive_nvp))
+
+#define XIVE_VP_ORDER(x) (XIVE_END_ORDER - xive_cfg_vp_prio_shift(x))
+#define XIVE_VP_COUNT(x) (1ul << XIVE_VP_ORDER(x))
+#define XIVE_VP_TABLE_SIZE(x) ((XIVE_VP_COUNT(x) / VP_PER_PAGE) * XIVE_VSD_SIZE)
+
+#define XIVE_NVP_SHIFT 17 /* NVPG BAR: two pages, even NVP, odd NVG */
+
+/* VP Space maximums in Gen1 and Gen2 modes */
+#define VP_SHIFT_GEN1 19 /* in sync with END_W6_VP_OFFSET_GEN1 */
+#define VP_SHIFT_GEN2 24 /* in sync with END_W6_VP_OFFSET */
+
+/*
+ * VP ids for HW threads.
+ *
+ * Depends on the thread id bits configuration of the IC. 8bit is the
+ * default for P10 and 7bit for p9.
+ *
+ * These values are global because they should be common to all chips
+ */
+static uint32_t xive_threadid_shift;
+static uint32_t xive_hw_vp_base;
+static uint32_t xive_hw_vp_count;
+
+/*
+ * The XIVE operation mode indicates the active "API" and corresponds
+ * to the "version/mode" parameter of the opal_xive_reset() call
+ */
+static enum {
+ /* No XICS emulation */
+ XIVE_MODE_EXPL = OPAL_XIVE_MODE_EXPL, /* default */
+ XIVE_MODE_NONE,
+} xive_mode = XIVE_MODE_NONE;
+
+/*
+ * Each source controller has one of these. There's one embedded in
+ * the XIVE struct for IPIs
+ */
+struct xive_src {
+ struct irq_source is;
+ const struct irq_source_ops *orig_ops;
+ struct xive *xive;
+ void *esb_mmio;
+ uint32_t esb_base;
+ uint32_t esb_shift;
+ uint32_t flags;
+};
+
+struct xive_cpu_state {
+ struct xive *xive;
+ void *tm_ring1;
+
+ /* Base HW VP and associated queues */
+ uint32_t vp_blk;
+ uint32_t vp_idx;
+ uint32_t end_blk;
+ uint32_t end_idx; /* Base end index of a block of 8 */
+
+ struct lock lock;
+};
+
+enum xive_generation {
+ XIVE_GEN1 = 1, /* P9 compat mode */
+ XIVE_GEN2 = 2, /* P10 default */
+};
+
+enum xive_quirks {
+ /* HW527671 - 8bits Hardwired Thread Id range not implemented */
+ XIVE_QUIRK_THREADID_7BITS = 0x00000001,
+ /* HW542974 - interrupt command priority checker not working properly */
+ XIVE_QUIRK_BROKEN_PRIO_CHECK = 0x00000002,
+};
+
+struct xive {
+ uint32_t chip_id;
+ uint32_t block_id;
+ struct dt_node *x_node;
+
+ enum xive_generation generation;
+ uint64_t config;
+
+ uint64_t xscom_base;
+
+ /* MMIO regions */
+ void *ic_base;
+ uint64_t ic_size;
+ uint32_t ic_shift;
+ void *ic_tm_direct_base;
+
+ void *tm_base;
+ uint64_t tm_size;
+ uint32_t tm_shift;
+ void *nvp_base;
+ uint64_t nvp_size;
+ void *esb_base;
+ uint64_t esb_size;
+ void *end_base;
+ uint64_t end_size;
+
+ /* Set on XSCOM register access error */
+ bool last_reg_error;
+
+ /* Per-XIVE mutex */
+ struct lock lock;
+
+ /* Pre-allocated tables.
+ *
+ * We setup all the VDS for actual tables (ie, by opposition to
+ * forwarding ports) as either direct pre-allocated or indirect
+ * and partially populated.
+ *
+ * Currently, the ESB and the EAS tables are direct and fully
+ * pre-allocated based on XIVE_INT_COUNT.
+ *
+ * The other tables are indirect, we thus pre-allocate the indirect
+ * table (ie, pages of pointers) and populate enough of the pages
+ * for our basic setup using 64K subpages.
+ *
+ * The size of the indirect tables are driven by XIVE_VP_COUNT
+ * and XIVE_END_COUNT. The number of pre-allocated ones are
+ * driven by xive_hw_vp_count for the HW threads. The number
+ * of END depends on number of VP.
+ */
+
+ /* Direct SBE and EAT tables */
+ void *sbe_base;
+ void *eat_base;
+
+ /* Indirect END table. NULL entries are unallocated, count is
+ * the numbre of pointers (ie, sub page placeholders).
+ */
+ beint64_t *end_ind_base;
+ uint32_t end_ind_count;
+ uint64_t end_ind_size;
+
+ /* END allocation bitmap. Each bit represent #priority ENDs */
+ bitmap_t *end_map;
+
+ /* Indirect NVT/VP table. NULL entries are unallocated, count is
+ * the numbre of pointers (ie, sub page placeholders).
+ */
+ beint64_t *vp_ind_base;
+ uint32_t vp_ind_count;
+ uint64_t vp_ind_size;
+
+ /* VP space size. Depends on Gen1/2 mode */
+ uint32_t vp_shift;
+
+ /* Pool of donated pages for provisioning indirect END and VP pages */
+ struct list_head donated_pages;
+
+ /* To ease a possible change to supporting more than one block of
+ * interrupts per chip, we store here the "base" global number
+ * and max number of interrupts for this chip. The global number
+ * encompass the block number and index.
+ */
+ uint32_t int_base;
+ uint32_t int_count;
+
+ /* Due to the overlap between IPIs and HW sources in the EAS table,
+ * we keep some kind of top-down allocator. It is used for HW sources
+ * to "allocate" interrupt entries and will limit what can be handed
+ * out as IPIs. Of course this assumes we "allocate" all HW sources
+ * before we start handing out IPIs.
+ *
+ * Note: The numbers here are global interrupt numbers so that we can
+ * potentially handle more than one block per chip in the future.
+ */
+ uint32_t int_hw_bot; /* Bottom of HW allocation */
+ uint32_t int_ipi_top; /* Highest IPI handed out so far + 1 */
+
+ /* The IPI allocation bitmap */
+ bitmap_t *ipi_alloc_map;
+
+ /* We keep track of which interrupts were ever enabled to
+ * speed up xive_reset
+ */
+ bitmap_t *int_enabled_map;
+
+ /* Embedded source IPIs */
+ struct xive_src ipis;
+
+ /* Embedded escalation interrupts */
+ struct xive_src esc_irqs;
+
+ /* In memory queue overflow */
+ void *q_ovf;
+
+ /* Cache/sync injection */
+ uint64_t sync_inject_size;
+ void *sync_inject;
+
+ /* INT HW Errata */
+ uint64_t quirks;
+};
+
+#define XIVE_CAN_STORE_EOI(x) XIVE2_STORE_EOI_ENABLED
+
+/* First XIVE unit configured on the system */
+static struct xive *one_xive;
+
+/* Global DT node */
+static struct dt_node *xive_dt_node;
+
+/* Block <-> Chip conversions.
+ *
+ * As chipIDs may not be within the range of 16 block IDs supported by XIVE,
+ * we have a 2 way conversion scheme.
+ *
+ * From block to chip, use the global table below.
+ *
+ * From chip to block, a field in struct proc_chip contains the first block
+ * of that chip. For now we only support one block per chip but that might
+ * change in the future
+ */
+#define XIVE_INVALID_CHIP 0xffffffff
+#define XIVE_MAX_CHIPS 16
+static uint32_t xive_block_to_chip[XIVE_MAX_CHIPS];
+static uint32_t xive_block_count;
+
+static uint32_t xive_chip_to_block(uint32_t chip_id)
+{
+ struct proc_chip *c = get_chip(chip_id);
+
+ assert(c);
+ assert(c->xive);
+ return c->xive->block_id;
+}
+
+/*
+ * Conversion between GIRQ and block/index.
+ *
+ * ------------------------------------
+ * |000E|BLOC| INDEX|
+ * ------------------------------------
+ * 4 4 24
+ *
+ * the E bit indicates that this is an escalation interrupt, in
+ * that case, the BLOC/INDEX represents the END containing the
+ * corresponding escalation descriptor.
+ *
+ * Global interrupt numbers for non-escalation interrupts are thus
+ * limited to 28 bits.
+ */
+
+#define INT_SHIFT 24
+#define INT_ESC_SHIFT (INT_SHIFT + 4) /* 4bits block id */
+
+#if XIVE_INT_ORDER > INT_SHIFT
+#error "Too many ESBs for IRQ encoding"
+#endif
+
+#if XIVE_END_ORDER > INT_SHIFT
+#error "Too many ENDs for escalation IRQ number encoding"
+#endif
+
+#define GIRQ_TO_BLK(__g) (((__g) >> INT_SHIFT) & 0xf)
+#define GIRQ_TO_IDX(__g) ((__g) & ((1 << INT_SHIFT) - 1))
+#define BLKIDX_TO_GIRQ(__b,__i) (((uint32_t)(__b)) << INT_SHIFT | (__i))
+
+#define GIRQ_IS_ESCALATION(__g) ((__g) & (1 << INT_ESC_SHIFT))
+#define MAKE_ESCALATION_GIRQ(__b,__i)(BLKIDX_TO_GIRQ(__b,__i) | (1 << INT_ESC_SHIFT))
+
+
+/* Block/IRQ to chip# conversions */
+#define PC_BLK_TO_CHIP(__b) (xive_block_to_chip[__b])
+#define VC_BLK_TO_CHIP(__b) (xive_block_to_chip[__b])
+#define GIRQ_TO_CHIP(__isn) (VC_BLK_TO_CHIP(GIRQ_TO_BLK(__isn)))
+
+/* Routing of physical processors to VPs */
+#define PIR2VP_IDX( __pir) (xive_hw_vp_base | P10_PIR2LOCALCPU(__pir))
+#define PIR2VP_BLK(__pir) (xive_chip_to_block(P10_PIR2GCID(__pir)))
+#define VP2PIR(__blk, __idx) (P10_PIRFROMLOCALCPU(VC_BLK_TO_CHIP(__blk), (__idx) & 0xff))
+
+/* Decoding of OPAL API VP IDs. The VP IDs are encoded as follow
+ *
+ * Block group mode:
+ *
+ * -----------------------------------
+ * |GVEOOOOO| INDEX|
+ * -----------------------------------
+ * || |
+ * || Order
+ * |Virtual
+ * Group
+ *
+ * G (Group) : Set to 1 for a group VP (not currently supported)
+ * V (Virtual) : Set to 1 for an allocated VP (vs. a physical processor ID)
+ * E (Error) : Should never be 1, used internally for errors
+ * O (Order) : Allocation order of the VP block
+ *
+ * The conversion is thus done as follow (groups aren't implemented yet)
+ *
+ * If V=0, O must be 0 and 24-bit INDEX value is the PIR
+ * If V=1, the order O group is allocated such that if N is the number of
+ * chip bits considered for allocation (*)
+ * then the INDEX is constructed as follow (bit numbers such as 0=LSB)
+ * - bottom O-N bits is the index within the "VP block"
+ * - next N bits is the XIVE blockID of the VP
+ * - the remaining bits is the per-chip "base"
+ * so the conversion consists of "extracting" the block ID and moving
+ * down the upper bits by N bits.
+ *
+ * In non-block-group mode, the difference is that the blockID is
+ * on the left of the index (the entire VP block is in a single
+ * block ID)
+ */
+
+#define VP_GROUP_SHIFT 31
+#define VP_VIRTUAL_SHIFT 30
+#define VP_ERROR_SHIFT 29
+#define VP_ORDER_SHIFT 24
+
+#define vp_group(vp) (((vp) >> VP_GROUP_SHIFT) & 1)
+#define vp_virtual(vp) (((vp) >> VP_VIRTUAL_SHIFT) & 1)
+#define vp_order(vp) (((vp) >> VP_ORDER_SHIFT) & 0x1f)
+#define vp_index(vp) ((vp) & ((1 << VP_ORDER_SHIFT) - 1))
+
+/* VP allocation */
+static uint32_t xive_chips_alloc_bits = 0;
+static struct buddy *xive_vp_buddy;
+static struct lock xive_buddy_lock = LOCK_UNLOCKED;
+
+/* VP# decoding/encoding */
+static bool xive_decode_vp(uint32_t vp, uint32_t *blk, uint32_t *idx,
+ uint8_t *order, bool *group)
+{
+ uint32_t o = vp_order(vp);
+ uint32_t n = xive_chips_alloc_bits;
+ uint32_t index = vp_index(vp);
+ uint32_t imask = (1 << (o - n)) - 1;
+
+ /* Groups not supported yet */
+ if (vp_group(vp))
+ return false;
+ if (group)
+ *group = false;
+
+ /* PIR case */
+ if (!vp_virtual(vp)) {
+ if (find_cpu_by_pir(index) == NULL)
+ return false;
+ if (blk)
+ *blk = PIR2VP_BLK(index);
+ if (idx)
+ *idx = PIR2VP_IDX(index);
+ return true;
+ }
+
+ /* Ensure o > n, we have *at least* 2 VPs per block */
+ if (o <= n)
+ return false;
+
+ /* Combine the index base and index */
+ if (idx)
+ *idx = ((index >> n) & ~imask) | (index & imask);
+ /* Extract block ID */
+ if (blk)
+ *blk = (index >> (o - n)) & ((1 << n) - 1);
+
+ /* Return order as well if asked for */
+ if (order)
+ *order = o;
+
+ return true;
+}
+
+static uint32_t xive_encode_vp(uint32_t blk, uint32_t idx, uint32_t order)
+{
+ uint32_t vp = (1 << VP_VIRTUAL_SHIFT) | (order << VP_ORDER_SHIFT);
+ uint32_t n = xive_chips_alloc_bits;
+ uint32_t imask = (1 << (order - n)) - 1;
+
+ vp |= (idx & ~imask) << n;
+ vp |= blk << (order - n);
+ vp |= idx & imask;
+ return vp;
+}
+
+/*
+ * XSCOM/MMIO helpers
+ */
+#define XIVE_NO_MMIO -1
+
+#define xive_regw(__x, __r, __v) \
+ __xive_regw(__x, __r, X_##__r, __v, #__r)
+#define xive_regr(__x, __r) \
+ __xive_regr(__x, __r, X_##__r, #__r)
+#define xive_regwx(__x, __r, __v) \
+ __xive_regw(__x, XIVE_NO_MMIO, X_##__r, __v, #__r)
+#define xive_regrx(__x, __r) \
+ __xive_regr(__x, XIVE_NO_MMIO, X_##__r, #__r)
+
+#ifdef XIVE_VERBOSE_DEBUG
+#define xive_vdbg(__x,__fmt,...) prlog(PR_DEBUG,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_vdbg(__c,__fmt,...) prlog(PR_DEBUG,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#else
+#define xive_vdbg(x,fmt,...) do { } while(0)
+#define xive_cpu_vdbg(x,fmt,...) do { } while(0)
+#endif
+
+#define xive_dbg(__x,__fmt,...) prlog(PR_DEBUG,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_dbg(__c,__fmt,...) prlog(PR_DEBUG,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#define xive_notice(__x,__fmt,...) prlog(PR_NOTICE,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_notice(__c,__fmt,...) prlog(PR_NOTICE,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#define xive_warn(__x,__fmt,...) prlog(PR_WARNING,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_warn(__c,__fmt,...) prlog(PR_WARNING,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+#define xive_err(__x,__fmt,...) prlog(PR_ERR,"[ IC %02x ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
+#define xive_cpu_err(__c,__fmt,...) prlog(PR_ERR,"[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
+
+/*
+ * The XIVE subengine being accessed can be deduced from the XSCOM
+ * reg, and from there, the page offset in the IC BAR.
+ */
+static void* xive_ic_page(struct xive *x, uint32_t x_reg)
+{
+ uint64_t pgoff = (x_reg >> 8) & 0x3;
+
+ return x->ic_base + (pgoff << x->ic_shift);
+}
+
+static void __xive_regw(struct xive *x, uint32_t m_reg, uint32_t x_reg, uint64_t v,
+ const char *rname)
+{
+ bool use_xscom = (m_reg == XIVE_NO_MMIO) || !x->ic_base;
+ int64_t rc;
+
+ x->last_reg_error = false;
+
+ assert(x_reg != 0);
+
+ if (use_xscom) {
+ rc = xscom_write(x->chip_id, x->xscom_base + x_reg, v);
+ if (rc) {
+ if (!rname)
+ rname = "???";
+ xive_err(x, "Error writing register %s\n", rname);
+ /* Anything else we can do here ? */
+ x->last_reg_error = true;
+ }
+ } else {
+ out_be64(xive_ic_page(x, x_reg) + m_reg, v);
+ }
+}
+
+static uint64_t __xive_regr(struct xive *x, uint32_t m_reg, uint32_t x_reg,
+ const char *rname)
+{
+ bool use_xscom = (m_reg == XIVE_NO_MMIO) || !x->ic_base;
+ int64_t rc;
+ uint64_t val;
+
+ x->last_reg_error = false;
+
+ assert(x_reg != 0);
+
+ if (use_xscom) {
+ rc = xscom_read(x->chip_id, x->xscom_base + x_reg, &val);
+ if (rc) {
+ if (!rname)
+ rname = "???";
+ xive_err(x, "Error reading register %s\n", rname);
+ /* Anything else we can do here ? */
+ x->last_reg_error = true;
+ return -1ull;
+ }
+ } else {
+ val = in_be64(xive_ic_page(x, x_reg) + m_reg);
+ }
+ return val;
+}
+
+/* Locate a controller from an IRQ number */
+static struct xive *xive_from_isn(uint32_t isn)
+{
+ uint32_t chip_id = GIRQ_TO_CHIP(isn);
+ struct proc_chip *c = get_chip(chip_id);
+
+ if (!c)
+ return NULL;
+ return c->xive;
+}
+
+static struct xive *xive_from_pc_blk(uint32_t blk)
+{
+ uint32_t chip_id = PC_BLK_TO_CHIP(blk);
+ struct proc_chip *c = get_chip(chip_id);
+
+ if (!c)
+ return NULL;
+ return c->xive;
+}
+
+static struct xive *xive_from_vc_blk(uint32_t blk)
+{
+ uint32_t chip_id = VC_BLK_TO_CHIP(blk);
+ struct proc_chip *c = get_chip(chip_id);
+
+ if (!c)
+ return NULL;
+ return c->xive;
+}
+
+static struct xive_end *xive_get_end(struct xive *x, unsigned int idx)
+{
+ struct xive_end *p;
+
+ if (idx >= (x->end_ind_count * END_PER_PAGE))
+ return NULL;
+ p = (struct xive_end *)(be64_to_cpu(x->end_ind_base[idx / END_PER_PAGE]) &
+ VSD_ADDRESS_MASK);
+ if (!p)
+ return NULL;
+
+ return &p[idx % END_PER_PAGE];
+}
+
+static struct xive_eas *xive_get_eas(struct xive *x, unsigned int isn)
+{
+ struct xive_eas *eat;
+ uint32_t idx = GIRQ_TO_IDX(isn);
+
+ if (GIRQ_IS_ESCALATION(isn)) {
+ /* Allright, an escalation EAS is buried inside an END, let's
+ * try to find it
+ */
+ struct xive_end *end;
+
+ if (x->chip_id != VC_BLK_TO_CHIP(GIRQ_TO_BLK(isn))) {
+ xive_err(x, "%s, ESC ISN 0x%x not on right chip\n",
+ __func__, isn);
+ return NULL;
+ }
+ end = xive_get_end(x, idx);
+ if (!end) {
+ xive_err(x, "%s, ESC ISN 0x%x END not found\n",
+ __func__, isn);
+ return NULL;
+ }
+
+ /* If using single-escalation, don't let anybody get
+ * to the individual escalation interrupts
+ */
+ if (xive_get_field32(END_W0_UNCOND_ESCALATE, end->w0))
+ return NULL;
+
+ /* Grab the escalation END */
+ return (struct xive_eas *)(char *)&end->w4;
+ } else {
+ /* Check the block matches */
+ if (isn < x->int_base || isn >= x->int_count) {
+ xive_err(x, "%s, ISN 0x%x not on right chip\n",
+ __func__, isn);
+ return NULL;
+ }
+ assert (idx < XIVE_INT_COUNT);
+
+ /* If we support >1 block per chip, this should still
+ * work as we are likely to make the table contiguous
+ * anyway
+ */
+ eat = x->eat_base;
+ assert(eat);
+
+ return eat + idx;
+ }
+}
+
+static struct xive_nvp *xive_get_vp(struct xive *x, unsigned int idx)
+{
+ struct xive_nvp *p;
+
+ assert(idx < (x->vp_ind_count * VP_PER_PAGE));
+ p = (struct xive_nvp *)(be64_to_cpu(x->vp_ind_base[idx / VP_PER_PAGE]) &
+ VSD_ADDRESS_MASK);
+ if (!p)
+ return NULL;
+
+ return &p[idx % VP_PER_PAGE];
+}
+
+/*
+ * Store the END base of the VP in W5, using the new architected field
+ * in P10. Used to be the pressure relief interrupt field on P9.
+ */
+static void xive_vp_set_end_base(struct xive_nvp *vp,
+ uint32_t end_blk, uint32_t end_idx)
+{
+ vp->w5 = xive_set_field32(NVP_W5_VP_END_BLOCK, 0, end_blk) |
+ xive_set_field32(NVP_W5_VP_END_INDEX, 0, end_idx);
+
+ /* This is the criteria to know if a VP was allocated */
+ assert(vp->w5 != 0);
+}
+
+static void xive_init_default_vp(struct xive_nvp *vp,
+ uint32_t end_blk, uint32_t end_idx)
+{
+ memset(vp, 0, sizeof(struct xive_nvp));
+
+ xive_vp_set_end_base(vp, end_blk, end_idx);
+
+ vp->w0 = xive_set_field32(NVP_W0_VALID, 0, 1);
+}
+
+/*
+ * VPs of the HW threads have their own set of ENDs which is allocated
+ * when XIVE is initialized. These are tagged with a FIRMWARE bit so
+ * that they can be identified when the driver is reset (kexec).
+ */
+static void xive_init_hw_end(struct xive_end *end)
+{
+ memset(end, 0, sizeof(struct xive_end));
+ end->w0 = xive_set_field32(END_W0_FIRMWARE1, 0, 1);
+}
+
+static void *xive_get_donated_page(struct xive *x)
+{
+ return (void *)list_pop_(&x->donated_pages, 0);
+}
+
+#define XIVE_ALLOC_IS_ERR(_idx) ((_idx) >= 0xfffffff0)
+
+#define XIVE_ALLOC_NO_SPACE 0xffffffff /* No possible space */
+#define XIVE_ALLOC_NO_IND 0xfffffffe /* Indirect need provisioning */
+#define XIVE_ALLOC_NO_MEM 0xfffffffd /* Local allocation failed */
+
+static uint32_t xive_alloc_end_set(struct xive *x, bool alloc_indirect)
+{
+ uint32_t ind_idx;
+ int idx;
+ int end_base_idx;
+
+ xive_vdbg(x, "Allocating END set...\n");
+
+ assert(x->end_map);
+
+ /* Allocate from the END bitmap. Each bit is 8 ENDs */
+ idx = bitmap_find_zero_bit(*x->end_map, 0, xive_end_bitmap_size(x));
+ if (idx < 0) {
+ xive_dbg(x, "Allocation from END bitmap failed !\n");
+ return XIVE_ALLOC_NO_SPACE;
+ }
+
+ end_base_idx = idx << xive_cfg_vp_prio_shift(x);
+
+ xive_vdbg(x, "Got ENDs 0x%x..0x%x\n", end_base_idx,
+ end_base_idx + xive_max_prio(x));
+
+ /* Calculate the indirect page where the ENDs reside */
+ ind_idx = end_base_idx / END_PER_PAGE;
+
+ /* Is there an indirect page ? If not, check if we can provision it */
+ if (!x->end_ind_base[ind_idx]) {
+ /* Default flags */
+ uint64_t vsd_flags = SETFIELD(VSD_TSIZE, 0ull, 4) |
+ SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
+ void *page;
+
+ /* If alloc_indirect is set, allocate the memory from OPAL own,
+ * otherwise try to provision from the donated pool
+ */
+ if (alloc_indirect) {
+ /* Allocate/provision indirect page during boot only */
+ xive_vdbg(x, "Indirect empty, provisioning from local pool\n");
+ page = local_alloc(x->chip_id, PAGE_SIZE, PAGE_SIZE);
+ if (!page) {
+ xive_dbg(x, "provisioning failed !\n");
+ return XIVE_ALLOC_NO_MEM;
+ }
+ vsd_flags |= VSD_FIRMWARE;
+ } else {
+ xive_vdbg(x, "Indirect empty, provisioning from donated pages\n");
+ page = xive_get_donated_page(x);
+ if (!page) {
+ xive_vdbg(x, "no idirect pages available !\n");
+ return XIVE_ALLOC_NO_IND;
+ }
+ }
+ memset(page, 0, PAGE_SIZE);
+ x->end_ind_base[ind_idx] = cpu_to_be64(vsd_flags |
+ (((uint64_t)page) & VSD_ADDRESS_MASK));
+ /* Any cache scrub needed ? */
+ }
+
+ bitmap_set_bit(*x->end_map, idx);
+ return end_base_idx;
+}
+
+static void xive_free_end_set(struct xive *x, uint32_t ends)
+{
+ uint32_t idx;
+ uint8_t prio_mask = xive_max_prio(x);
+
+ xive_vdbg(x, "Freeing END 0x%x..0x%x\n", ends, ends + xive_max_prio(x));
+
+ assert((ends & prio_mask) == 0);
+ assert(x->end_map);
+
+ idx = ends >> xive_cfg_vp_prio_shift(x);
+ bitmap_clr_bit(*x->end_map, idx);
+}
+
+static bool xive_provision_vp_ind(struct xive *x, uint32_t vp_idx, uint32_t order)
+{
+ uint32_t pbase, pend, i;
+
+ pbase = vp_idx / VP_PER_PAGE;
+ pend = (vp_idx + (1 << order)) / VP_PER_PAGE;
+
+ for (i = pbase; i <= pend; i++) {
+ void *page;
+ u64 vsd;
+
+ /* Already provisioned ? */
+ if (x->vp_ind_base[i])
+ continue;
+
+ /* Try to grab a donated page */
+ page = xive_get_donated_page(x);
+ if (!page)
+ return false;
+
+ /* Install the page */
+ memset(page, 0, PAGE_SIZE);
+ vsd = ((uint64_t)page) & VSD_ADDRESS_MASK;
+ vsd |= SETFIELD(VSD_TSIZE, 0ull, 4);
+ vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
+ x->vp_ind_base[i] = cpu_to_be64(vsd);
+ }
+ return true;
+}
+
+static void xive_init_vp_allocator(void)
+{
+ /* Initialize chip alloc bits */
+ xive_chips_alloc_bits = ilog2(xive_block_count);
+
+ prlog(PR_INFO, "%d chips considered for VP allocations\n",
+ 1 << xive_chips_alloc_bits);
+
+ /* Allocate a buddy big enough for XIVE_VP_ORDER allocations.
+ *
+ * each bit in the buddy represents 1 << xive_chips_alloc_bits
+ * VPs.
+ */
+ xive_vp_buddy = buddy_create(XIVE_VP_ORDER(one_xive));
+ assert(xive_vp_buddy);
+
+ /*
+ * We reserve the whole range of VP ids representing HW threads.
+ */
+ assert(buddy_reserve(xive_vp_buddy, xive_hw_vp_base,
+ xive_threadid_shift));
+}
+
+static uint32_t xive_alloc_vps(uint32_t order)
+{
+ uint32_t local_order, i;
+ int vp;
+
+ /* The minimum order is 2 VPs per chip */
+ if (order < (xive_chips_alloc_bits + 1))
+ order = xive_chips_alloc_bits + 1;
+
+ /* We split the allocation */
+ local_order = order - xive_chips_alloc_bits;
+
+ /* We grab that in the global buddy */
+ assert(xive_vp_buddy);
+ lock(&xive_buddy_lock);
+ vp = buddy_alloc(xive_vp_buddy, local_order);
+ unlock(&xive_buddy_lock);
+ if (vp < 0)
+ return XIVE_ALLOC_NO_SPACE;
+
+ /* Provision on every chip considered for allocation */
+ for (i = 0; i < (1 << xive_chips_alloc_bits); i++) {
+ struct xive *x = xive_from_pc_blk(i);
+ bool success;
+
+ /* Return internal error & log rather than assert ? */
+ assert(x);
+ lock(&x->lock);
+ success = xive_provision_vp_ind(x, vp, local_order);
+ unlock(&x->lock);
+ if (!success) {
+ lock(&xive_buddy_lock);
+ buddy_free(xive_vp_buddy, vp, local_order);
+ unlock(&xive_buddy_lock);
+ return XIVE_ALLOC_NO_IND;
+ }
+ }
+
+ /* Encode the VP number. "blk" is 0 as this represents
+ * all blocks and the allocation always starts at 0
+ */
+ return xive_encode_vp(0, vp, order);
+}
+
+static void xive_free_vps(uint32_t vp)
+{
+ uint32_t idx;
+ uint8_t order, local_order;
+
+ assert(xive_decode_vp(vp, NULL, &idx, &order, NULL));
+
+ /* We split the allocation */
+ local_order = order - xive_chips_alloc_bits;
+
+ /* Free that in the buddy */
+ lock(&xive_buddy_lock);
+ buddy_free(xive_vp_buddy, idx, local_order);
+ unlock(&xive_buddy_lock);
+}
+
+enum xive_cache_type {
+ xive_cache_easc,
+ xive_cache_esbc,
+ xive_cache_endc,
+ xive_cache_nxc,
+};
+
+/*
+ * Cache update
+ */
+
+#define FLUSH_CTRL_POLL_VALID PPC_BIT(0) /* POLL bit is the same for all */
+
+static int64_t __xive_cache_scrub(struct xive *x,
+ enum xive_cache_type ctype,
+ uint64_t block, uint64_t idx,
+ bool want_inval __unused, bool want_disable __unused)
+{
+ uint64_t ctrl_reg, x_ctrl_reg;
+ uint64_t poll_val, ctrl_val;
+
+#ifdef XIVE_CHECK_LOCKS
+ assert(lock_held_by_me(&x->lock));
+#endif
+ switch (ctype) {
+ case xive_cache_easc:
+ poll_val =
+ SETFIELD(VC_EASC_FLUSH_POLL_BLOCK_ID, 0ll, block) |
+ SETFIELD(VC_EASC_FLUSH_POLL_OFFSET, 0ll, idx) |
+ VC_EASC_FLUSH_POLL_BLOCK_ID_MASK |
+ VC_EASC_FLUSH_POLL_OFFSET_MASK;
+ xive_regw(x, VC_EASC_FLUSH_POLL, poll_val);
+ ctrl_reg = VC_EASC_FLUSH_CTRL;
+ x_ctrl_reg = X_VC_EASC_FLUSH_CTRL;
+ break;
+ case xive_cache_esbc:
+ poll_val =
+ SETFIELD(VC_ESBC_FLUSH_POLL_BLOCK_ID, 0ll, block) |
+ SETFIELD(VC_ESBC_FLUSH_POLL_OFFSET, 0ll, idx) |
+ VC_ESBC_FLUSH_POLL_BLOCK_ID_MASK |
+ VC_ESBC_FLUSH_POLL_OFFSET_MASK;
+ xive_regw(x, VC_ESBC_FLUSH_POLL, poll_val);
+ ctrl_reg = VC_ESBC_FLUSH_CTRL;
+ x_ctrl_reg = X_VC_ESBC_FLUSH_CTRL;
+ break;
+ case xive_cache_endc:
+ poll_val =
+ SETFIELD(VC_ENDC_FLUSH_POLL_BLOCK_ID, 0ll, block) |
+ SETFIELD(VC_ENDC_FLUSH_POLL_OFFSET, 0ll, idx) |
+ VC_ENDC_FLUSH_POLL_BLOCK_ID_MASK |
+ VC_ENDC_FLUSH_POLL_OFFSET_MASK;
+ xive_regw(x, VC_ENDC_FLUSH_POLL, poll_val);
+ ctrl_reg = VC_ENDC_FLUSH_CTRL;
+ x_ctrl_reg = X_VC_ENDC_FLUSH_CTRL;
+ break;
+ case xive_cache_nxc:
+ poll_val =
+ SETFIELD(PC_NXC_FLUSH_POLL_BLOCK_ID, 0ll, block) |
+ SETFIELD(PC_NXC_FLUSH_POLL_OFFSET, 0ll, idx) |
+ PC_NXC_FLUSH_POLL_BLOCK_ID_MASK |
+ PC_NXC_FLUSH_POLL_OFFSET_MASK;
+ xive_regw(x, PC_NXC_FLUSH_POLL, poll_val);
+ ctrl_reg = PC_NXC_FLUSH_CTRL;
+ x_ctrl_reg = X_PC_NXC_FLUSH_CTRL;
+ break;
+ default:
+ return OPAL_INTERNAL_ERROR;
+ }
+
+ /* XXX Add timeout !!! */
+ for (;;) {
+ ctrl_val = __xive_regr(x, ctrl_reg, x_ctrl_reg, NULL);
+ if (!(ctrl_val & FLUSH_CTRL_POLL_VALID))
+ break;
+ /* Small delay */
+ time_wait(100);
+ }
+ sync();
+ return 0;
+}
+
+static int64_t xive_easc_scrub(struct xive *x, uint64_t block, uint64_t idx)
+{
+ return __xive_cache_scrub(x, xive_cache_easc, block, idx, false, false);
+}
+
+static int64_t xive_nxc_scrub(struct xive *x, uint64_t block, uint64_t idx)
+{
+ return __xive_cache_scrub(x, xive_cache_nxc, block, idx, false, false);
+}
+
+static int64_t xive_nxc_scrub_clean(struct xive *x, uint64_t block, uint64_t idx)
+{
+ return __xive_cache_scrub(x, xive_cache_nxc, block, idx, true, false);
+}
+
+static int64_t xive_endc_scrub(struct xive *x, uint64_t block, uint64_t idx)
+{
+ return __xive_cache_scrub(x, xive_cache_endc, block, idx, false, false);
+}
+
+#define XIVE_CACHE_WATCH_MAX_RETRIES 10
+
+static int64_t __xive_cache_watch(struct xive *x, enum xive_cache_type ctype,
+ uint64_t block, uint64_t idx,
+ uint32_t start_dword, uint32_t dword_count,
+ beint64_t *new_data, bool light_watch,
+ bool synchronous)
+{
+ uint64_t sreg, sregx, dreg0, dreg0x;
+ uint64_t dval0, sval, status;
+ int64_t i;
+ int retries = 0;
+
+#ifdef XIVE_CHECK_LOCKS
+ assert(lock_held_by_me(&x->lock));
+#endif
+ switch (ctype) {
+ case xive_cache_endc:
+ sreg = VC_ENDC_WATCH0_SPEC;
+ sregx = X_VC_ENDC_WATCH0_SPEC;
+ dreg0 = VC_ENDC_WATCH0_DATA0;
+ dreg0x = X_VC_ENDC_WATCH0_DATA0;
+ sval = SETFIELD(VC_ENDC_WATCH_BLOCK_ID, idx, block);
+ break;
+ case xive_cache_nxc:
+ sreg = PC_NXC_WATCH0_SPEC;
+ sregx = X_PC_NXC_WATCH0_SPEC;
+ dreg0 = PC_NXC_WATCH0_DATA0;
+ dreg0x = X_PC_NXC_WATCH0_DATA0;
+ sval = SETFIELD(PC_NXC_WATCH_BLOCK_ID, idx, block);
+ break;
+ default:
+ return OPAL_INTERNAL_ERROR;
+ }
+
+ /* The full bit is in the same position for ENDC and NXC */
+ if (!light_watch)
+ sval |= VC_ENDC_WATCH_FULL;
+
+ for (;;) {
+ /* Write the cache watch spec */
+ __xive_regw(x, sreg, sregx, sval, NULL);
+
+ /* Load data0 register to populate the watch */
+ dval0 = __xive_regr(x, dreg0, dreg0x, NULL);
+
+ /* If new_data is NULL, this is a dummy watch used as a
+ * workaround for a HW bug
+ */
+ if (!new_data) {
+ __xive_regw(x, dreg0, dreg0x, dval0, NULL);
+ return 0;
+ }
+
+ /* Write the words into the watch facility. We write in reverse
+ * order in case word 0 is part of it as it must be the last
+ * one written.
+ */
+ for (i = start_dword + dword_count - 1; i >= start_dword ;i--) {
+ uint64_t dw = be64_to_cpu(new_data[i - start_dword]);
+ __xive_regw(x, dreg0 + i * 8, dreg0x + i, dw, NULL);
+ }
+
+ /* Write data0 register to trigger the update if word 0 wasn't
+ * written above
+ */
+ if (start_dword > 0)
+ __xive_regw(x, dreg0, dreg0x, dval0, NULL);
+
+ /* This may not be necessary for light updates (it's possible
+ * that a sync in sufficient, TBD). Ensure the above is
+ * complete and check the status of the watch.
+ */
+ status = __xive_regr(x, sreg, sregx, NULL);
+
+ /* Bits FULL and CONFLICT are in the same position in
+ * ENDC and NXC
+ */
+ if (!(status & VC_ENDC_WATCH_FULL) ||
+ !(status & VC_ENDC_WATCH_CONFLICT))
+ break;
+ if (!synchronous)
+ return OPAL_BUSY;
+
+ if (++retries == XIVE_CACHE_WATCH_MAX_RETRIES) {
+ xive_err(x, "Reached maximum retries %d when doing "
+ "a %s cache update\n", retries,
+ ctype == xive_cache_endc ? "ENDC" : "NXC");
+ return OPAL_BUSY;
+ }
+ }
+
+ /* Perform a scrub with "want_invalidate" set to false to push the
+ * cache updates to memory as well
+ */
+ return __xive_cache_scrub(x, ctype, block, idx, false, false);
+}
+
+#ifdef XIVE_DEBUG_INIT_CACHE_UPDATES
+static bool xive_check_endc_update(struct xive *x, uint32_t idx, struct xive_end *end)
+{
+ struct xive_end *end_p = xive_get_end(x, idx);
+ struct xive_end end2;
+
+ assert(end_p);
+ end2 = *end_p;
+ if (memcmp(end, &end2, sizeof(struct xive_end)) != 0) {
+ xive_err(x, "END update mismatch idx %d\n", idx);
+ xive_err(x, "want: %08x %08x %08x %08x\n",
+ end->w0, end->w1, end->w2, end->w3);
+ xive_err(x, " %08x %08x %08x %08x\n",
+ end->w4, end->w5, end->w6, end->w7);
+ xive_err(x, "got : %08x %08x %08x %08x\n",
+ end2.w0, end2.w1, end2.w2, end2.w3);
+ xive_err(x, " %08x %08x %08x %08x\n",
+ end2.w4, end2.w5, end2.w6, end2.w7);
+ return false;
+ }
+ return true;
+}
+
+static bool xive_check_nxc_update(struct xive *x, uint32_t idx, struct xive_nvp *vp)
+{
+ struct xive_nvp *vp_p = xive_get_vp(x, idx);
+ struct xive_nvp vp2;
+
+ assert(vp_p);
+ vp2 = *vp_p;
+ if (memcmp(vp, &vp2, sizeof(struct xive_nvp)) != 0) {
+ xive_err(x, "VP update mismatch idx %d\n", idx);
+ xive_err(x, "want: %08x %08x %08x %08x\n",
+ vp->w0, vp->w1, vp->w2, vp->w3);
+ xive_err(x, " %08x %08x %08x %08x\n",
+ vp->w4, vp->w5, vp->w6, vp->w7);
+ xive_err(x, "got : %08x %08x %08x %08x\n",
+ vp2.w0, vp2.w1, vp2.w2, vp2.w3);
+ xive_err(x, " %08x %08x %08x %08x\n",
+ vp2.w4, vp2.w5, vp2.w6, vp2.w7);
+ return false;
+ }
+ return true;
+}
+#else
+static inline bool xive_check_endc_update(struct xive *x __unused,
+ uint32_t idx __unused,
+ struct xive_end *end __unused)
+{
+ return true;
+}
+
+static inline bool xive_check_nxc_update(struct xive *x __unused,
+ uint32_t idx __unused,
+ struct xive_nvp *vp __unused)
+{
+ return true;
+}
+#endif
+
+static int64_t xive_escalation_ive_cache_update(struct xive *x, uint64_t block,
+ uint64_t idx, struct xive_eas *eas,
+ bool synchronous)
+{
+ return __xive_cache_watch(x, xive_cache_endc, block, idx,
+ 2, 1, &eas->w, true, synchronous);
+}
+
+static int64_t xive_endc_cache_update(struct xive *x, uint64_t block,
+ uint64_t idx, struct xive_end *end,
+ bool synchronous)
+{
+ int64_t ret;
+
+ ret = __xive_cache_watch(x, xive_cache_endc, block, idx,
+ 0, 4, (beint64_t *)end, false, synchronous);
+ xive_check_endc_update(x, idx, end);
+ return ret;
+}
+
+static int64_t xive_nxc_cache_update(struct xive *x, uint64_t block,
+ uint64_t idx, struct xive_nvp *vp,
+ bool synchronous)
+{
+ int64_t ret;
+
+ ret = __xive_cache_watch(x, xive_cache_nxc, block, idx,
+ 0, 4, (beint64_t *)vp, false, synchronous);
+ xive_check_nxc_update(x, idx, vp);
+ return ret;
+}
+
+/*
+ * VSD
+ */
+static bool xive_set_vsd(struct xive *x, uint32_t tbl, uint32_t idx, uint64_t v)
+{
+ /* Set VC subengine */
+ xive_regw(x, VC_VSD_TABLE_ADDR,
+ SETFIELD(VC_VSD_TABLE_SELECT, 0ull, tbl) |
+ SETFIELD(VC_VSD_TABLE_ADDRESS, 0ull, idx));
+ if (x->last_reg_error)
+ return false;
+ xive_regw(x, VC_VSD_TABLE_DATA, v);
+ if (x->last_reg_error)
+ return false;
+
+ /* also set PC subengine if table is used */
+ if (tbl == VST_EAS || tbl == VST_ERQ || tbl == VST_IC)
+ return true;
+
+ xive_regw(x, PC_VSD_TABLE_ADDR,
+ SETFIELD(PC_VSD_TABLE_SELECT, 0ull, tbl) |
+ SETFIELD(PC_VSD_TABLE_ADDRESS, 0ull, idx));
+ if (x->last_reg_error)
+ return false;
+ xive_regw(x, PC_VSD_TABLE_DATA, v);
+ if (x->last_reg_error)
+ return false;
+ return true;
+}
+
+static bool xive_set_local_tables(struct xive *x)
+{
+ uint64_t base, i;
+
+ /* These have to be power of 2 sized */
+ assert(is_pow2(XIVE_ESB_SIZE));
+ assert(is_pow2(XIVE_EAT_SIZE));
+
+ /* All tables set as exclusive */
+ base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
+
+ /* ESB: direct mode */
+ if (!xive_set_vsd(x, VST_ESB, x->block_id, base |
+ (((uint64_t)x->sbe_base) & VSD_ADDRESS_MASK) |
+ SETFIELD(VSD_TSIZE, 0ull, ilog2(XIVE_ESB_SIZE) - 12)))
+ return false;
+
+ /* EAS: direct mode */
+ if (!xive_set_vsd(x, VST_EAS, x->block_id, base |
+ (((uint64_t)x->eat_base) & VSD_ADDRESS_MASK) |
+ SETFIELD(VSD_TSIZE, 0ull, ilog2(XIVE_EAT_SIZE) - 12)))
+ return false;
+
+ /* END: indirect mode with 64K subpages */
+ if (!xive_set_vsd(x, VST_END, x->block_id, base |
+ (((uint64_t)x->end_ind_base) & VSD_ADDRESS_MASK) |
+ VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull,
+ ilog2(x->end_ind_size) - 12)))
+ return false;
+
+ /* NVP: indirect mode with 64K subpages */
+ if (!xive_set_vsd(x, VST_NVP, x->block_id, base |
+ (((uint64_t)x->vp_ind_base) & VSD_ADDRESS_MASK) |
+ VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull,
+ ilog2(x->vp_ind_size) - 12)))
+ return false;
+
+ /* NVG: not used */
+ /* NVC: not used */
+
+ /* INT and SYNC: indexed with the Topology# */
+ if (!xive_set_vsd(x, VST_IC, x->chip_id, base |
+ (((uint64_t)x->ic_base) & VSD_ADDRESS_MASK) |
+ SETFIELD(VSD_TSIZE, 0ull, ilog2(x->ic_size) - 12)))
+ return false;
+
+ if (!xive_set_vsd(x, VST_SYNC, x->chip_id, base |
+ (((uint64_t)x->sync_inject) & VSD_ADDRESS_MASK) |
+ SETFIELD(VSD_TSIZE, 0ull, ilog2(x->sync_inject_size) - 12)))
+ return false;
+
+ /*
+ * ERQ: one 64K page for each queue overflow. Indexed with :
+ *
+ * 0:IPI, 1:HWD, 2:NxC, 3:INT, 4:OS-Queue, 5:Pool-Queue, 6:Hard-Queue
+ */
+ for (i = 0; i < VC_QUEUE_COUNT; i++) {
+ u64 addr = ((uint64_t)x->q_ovf) + i * PAGE_SIZE;
+ u64 cfg, sreg, sregx;
+
+ if (!xive_set_vsd(x, VST_ERQ, i, base |
+ (addr & VSD_ADDRESS_MASK) |
+ SETFIELD(VSD_TSIZE, 0ull, 4)))
+ return false;
+
+ sreg = VC_QUEUES_CFG_REM0 + i * 8;
+ sregx = X_VC_QUEUES_CFG_REM0 + i;
+ cfg = __xive_regr(x, sreg, sregx, NULL);
+ cfg |= VC_QUEUES_CFG_MEMB_EN;
+ cfg = SETFIELD(VC_QUEUES_CFG_MEMB_SZ, cfg, 4);
+ __xive_regw(x, sreg, sregx, cfg, NULL);
+ }
+
+ return true;
+}
+
+
+/*
+ * IC BAR layout
+ *
+ * Page 0: Internal CQ register accesses (reads & writes)
+ * Page 1: Internal PC register accesses (reads & writes)
+ * Page 2: Internal VC register accesses (reads & writes)
+ * Page 3: Internal TCTXT (TIMA) reg accesses (read & writes)
+ * Page 4: Notify Port page (writes only, w/data),
+ * Page 5: Reserved
+ * Page 6: Sync Poll page (writes only, dataless)
+ * Page 7: Sync Inject page (writes only, dataless)
+ * Page 8: LSI Trigger page (writes only, dataless)
+ * Page 9: LSI SB Management page (reads & writes dataless)
+ * Pages 10-255: Reserved
+ * Pages 256-383: Direct mapped Thread Context Area (reads & writes)
+ * covering the 128 threads in P10.
+ * Pages 384-511: Reserved
+ */
+
+#define XIVE_IC_CQ_PGOFF 0
+#define XIVE_IC_PC_PGOFF 1
+#define XIVE_IC_VC_PGOFF 2
+#define XIVE_IC_TCTXT_PGOFF 3
+#define XIVE_NOTIFY_PGOFF 4
+#define XIVE_SYNC_POLL_PGOFF 6
+#define XIVE_SYNC_INJECT_PGOFF 7
+#define XIVE_LSI_TRIGGER_PGOFF 8
+#define XIVE_LSI_MGMT_PGOFF 9
+#define XIVE_IC_TM_DIRECT_PGOFF 256
+
+static bool xive_configure_ic_bars(struct xive *x)
+{
+ uint64_t chip_id = x->chip_id;
+ uint64_t val;
+
+ /* Reset all bars to zero */
+ xive_regwx(x, CQ_RST_CTL, CQ_RST_PB_BAR_RESET);
+
+ /* IC BAR */
+ phys_map_get(chip_id, XIVE_IC, 0, (uint64_t *)&x->ic_base, &x->ic_size);
+ val = (uint64_t)x->ic_base | CQ_IC_BAR_VALID | CQ_IC_BAR_64K;
+ x->ic_shift = 16;
+
+ xive_regwx(x, CQ_IC_BAR, val);
+ if (x->last_reg_error)
+ return false;
+
+ /*
+ * TM BAR, same address for each chip. Hence we create a fake
+ * chip 0 and use that for all phys_map_get(XIVE_TM) calls.
+ */
+ phys_map_get(0, XIVE_TM, 0, (uint64_t *)&x->tm_base, &x->tm_size);
+ val = (uint64_t)x->tm_base | CQ_TM_BAR_VALID | CQ_TM_BAR_64K;
+ x->tm_shift = 16;
+
+ xive_regwx(x, CQ_TM_BAR, val);
+ if (x->last_reg_error)
+ return false;
+
+ /* IC BAR sub-pages shortcuts */
+ x->ic_tm_direct_base = x->ic_base +
+ (XIVE_IC_TM_DIRECT_PGOFF << x->ic_shift);
+
+ return true;
+}
+
+/*
+ * NVPG, NVC, ESB, END BARs have common attributes: 64k page and only
+ * one set covering the whole BAR.
+ */
+static bool xive_configure_bars(struct xive *x)
+{
+ uint64_t chip_id = x->chip_id;
+ uint64_t val;
+ uint64_t esb_size;
+ uint64_t end_size;
+ uint64_t nvp_size;
+
+ x->nvp_size = XIVE_VP_COUNT(x) << XIVE_NVP_SHIFT;
+ x->esb_size = XIVE_INT_COUNT << XIVE_ESB_SHIFT;
+ x->end_size = XIVE_END_COUNT << XIVE_END_SHIFT;
+
+ /*
+ * NVC BAR is not configured because we do not use the XIVE2
+ * Crowd capability.
+ */
+
+ /* NVPG BAR: two pages, even NVP, odd NVG */
+ phys_map_get(chip_id, XIVE_NVPG, 0, (uint64_t *)&x->nvp_base, &nvp_size);
+ if (x->nvp_size > nvp_size) {
+ xive_err(x, "NVP table is larger than default: "
+ "0x%012llx > 0x%012llx\n", x->nvp_size, nvp_size);
+ return false;
+ }
+
+ val = (uint64_t)x->nvp_base | CQ_BAR_VALID | CQ_BAR_64K |
+ SETFIELD(CQ_BAR_RANGE, 0ull, ilog2(x->nvp_size) - 24);
+ xive_regwx(x, CQ_NVPG_BAR, val);
+ if (x->last_reg_error)
+ return false;
+
+ /* ESB BAR */
+ phys_map_get(chip_id, XIVE_ESB, 0, (uint64_t *)&x->esb_base, &esb_size);
+ if (x->esb_size > esb_size) {
+ xive_err(x, "ESB table is larger than default: "
+ "0x%012llx > 0x%012llx\n", x->esb_size, esb_size);
+ return false;
+ }
+
+ val = (uint64_t)x->esb_base | CQ_BAR_VALID | CQ_BAR_64K |
+ SETFIELD(CQ_BAR_RANGE, 0ull, ilog2(x->esb_size) - 24);
+ xive_regwx(x, CQ_ESB_BAR, val);
+ if (x->last_reg_error)
+ return false;
+
+ /* END BAR */
+ phys_map_get(chip_id, XIVE_END, 0, (uint64_t *)&x->end_base, &end_size);
+ if (x->end_size > end_size) {
+ xive_err(x, "END table is larger than default: "
+ "0x%012llx > 0x%012llx\n", x->end_size, end_size);
+ return false;
+ }
+
+ val = (uint64_t)x->end_base | CQ_BAR_VALID | CQ_BAR_64K |
+ SETFIELD(CQ_BAR_RANGE, 0ull, ilog2(x->end_size) - 24);
+ xive_regwx(x, CQ_END_BAR, val);
+ if (x->last_reg_error)
+ return false;
+
+ xive_dbg(x, "IC: %14p [0x%012llx]\n", x->ic_base, x->ic_size);
+ xive_dbg(x, "TM: %14p [0x%012llx]\n", x->tm_base, x->tm_size);
+ xive_dbg(x, "NVP: %14p [0x%012llx]\n", x->nvp_base, x->nvp_size);
+ xive_dbg(x, "ESB: %14p [0x%012llx]\n", x->esb_base, x->esb_size);
+ xive_dbg(x, "END: %14p [0x%012llx]\n", x->end_base, x->end_size);
+
+ return true;
+}
+
+static void xive_dump_mmio(struct xive *x)
+{
+ prlog(PR_DEBUG, " CQ_CFG_PB_GEN = %016llx\n",
+ in_be64(x->ic_base + CQ_CFG_PB_GEN));
+ prlog(PR_DEBUG, " CQ_MSGSND = %016llx\n",
+ in_be64(x->ic_base + CQ_MSGSND));
+}
+
+static const struct {
+ uint64_t bitmask;
+ const char *name;
+} xive_capabilities[] = {
+};
+
+static void xive_dump_capabilities(struct xive *x, uint64_t cap_val)
+{
+ int i;
+
+ xive_dbg(x, "capabilities: %016llx\n", cap_val);
+ xive_dbg(x, "\tVersion: %lld\n",
+ GETFIELD(CQ_XIVE_CAP_VERSION, cap_val));
+ xive_dbg(x, "\tUser interrupt priorities: [ 1 - %d ]\n",
+ 1 << GETFIELD(CQ_XIVE_CAP_USER_INT_PRIO, cap_val));
+ xive_dbg(x, "\tVP interrupt priorities: [ %d - 8 ]\n",
+ 1 << GETFIELD(CQ_XIVE_CAP_VP_INT_PRIO, cap_val));
+ xive_dbg(x, "\tExtended Blockid bits: %lld\n",
+ 4 + GETFIELD(CQ_XIVE_CAP_BLOCK_ID_WIDTH, cap_val));
+
+ for (i = 0; i < ARRAY_SIZE(xive_capabilities); i++) {
+ if (xive_capabilities[i].bitmask & cap_val)
+ xive_dbg(x, "\t%s\n", xive_capabilities[i].name);
+ }
+}
+
+static const struct {
+ uint64_t bitmask;
+ const char *name;
+} xive_configs[] = {
+ { CQ_XIVE_CFG_GEN1_TIMA_OS, "Gen1 mode TIMA OS" },
+ { CQ_XIVE_CFG_GEN1_TIMA_HYP, "Gen1 mode TIMA Hyp" },
+ { CQ_XIVE_CFG_GEN1_TIMA_HYP_BLK0, "Gen1 mode TIMA General Hypervisor Block0" },
+ { CQ_XIVE_CFG_GEN1_TIMA_CROWD_DIS, "Gen1 mode TIMA Crowd disable" },
+ { CQ_XIVE_CFG_GEN1_END_ESX, "Gen1 mode END ESx" },
+};
+
+static void xive_dump_configuration(struct xive *x, const char *prefix,
+ uint64_t cfg_val)
+{
+ int i ;
+
+ xive_dbg(x, "%s configuration: %016llx\n", prefix, cfg_val);
+ xive_dbg(x, "\tHardwired Thread Id range: %lld bits\n",
+ 7 + GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, cfg_val));
+ xive_dbg(x, "\tUser Interrupt priorities: [ 1 - %d ]\n",
+ 1 << GETFIELD(CQ_XIVE_CFG_USER_INT_PRIO, cfg_val));
+ xive_dbg(x, "\tVP Interrupt priorities: [ 0 - %d ]\n", xive_max_prio(x));
+ xive_dbg(x, "\tBlockId bits: %lld bits\n",
+ 4 + GETFIELD(CQ_XIVE_CFG_BLOCK_ID_WIDTH, cfg_val));
+ if (CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE & cfg_val)
+ xive_dbg(x, "\tHardwired BlockId: %lld\n",
+ GETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, cfg_val));
+
+ for (i = 0; i < ARRAY_SIZE(xive_configs); i++) {
+ if (xive_configs[i].bitmask & cfg_val)
+ xive_dbg(x, "\t%s\n", xive_configs[i].name);
+ }
+}
+
+/*
+ * Default XIVE configuration
+ */
+#define XIVE_CONFIGURATION \
+ (SETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, 0ull, CQ_XIVE_CFG_THREADID_8BITS) | \
+ SETFIELD(CQ_XIVE_CFG_VP_INT_PRIO, 0ull, CQ_XIVE_CFG_INT_PRIO_8))
+
+/*
+ * Gen1 configuration for tests (QEMU)
+ */
+#define XIVE_CONFIGURATION_GEN1 \
+ (SETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, 0ull, CQ_XIVE_CFG_THREADID_7BITS) | \
+ SETFIELD(CQ_XIVE_CFG_VP_INT_PRIO, 0ull, CQ_XIVE_CFG_INT_PRIO_8) | \
+ CQ_XIVE_CFG_GEN1_TIMA_OS | \
+ CQ_XIVE_CFG_GEN1_TIMA_HYP | \
+ CQ_XIVE_CFG_GEN1_TIMA_HYP_BLK0 | \
+ CQ_XIVE_CFG_GEN1_TIMA_CROWD_DIS | \
+ CQ_XIVE_CFG_GEN1_END_ESX)
+
+static void xive_config_reduced_priorities_fixup(struct xive *x)
+{
+ if (xive_cfg_vp_prio_shift(x) < CQ_XIVE_CFG_INT_PRIO_8 &&
+ x->quirks & XIVE_QUIRK_BROKEN_PRIO_CHECK) {
+ uint64_t val = xive_regr(x, PC_ERR1_CFG1);
+
+ val &= ~PC_ERR1_CFG1_INTERRUPT_INVALID_PRIO;
+ xive_dbg(x, "workaround for reduced priorities. "
+ "PC_ERR1_CFG1=%016llx\n", val);
+ xive_regw(x, PC_ERR1_CFG1, val);
+ }
+}
+
+static bool xive_config_init(struct xive *x)
+{
+ uint64_t cap_val;
+
+ cap_val = xive_regr(x, CQ_XIVE_CAP);
+ xive_dump_capabilities(x, cap_val);
+
+ x->generation = GETFIELD(CQ_XIVE_CAP_VERSION, cap_val);
+
+ /*
+ * Allow QEMU to override version for tests
+ */
+ if (x->generation != XIVE_GEN2 && !chip_quirk(QUIRK_QEMU)) {
+ xive_err(x, "Invalid XIVE controller version %d\n",
+ x->generation);
+ return false;
+ }
+
+ x->config = xive_regr(x, CQ_XIVE_CFG);
+ xive_dump_configuration(x, "default", x->config);
+
+ /* Start with default settings */
+ x->config = x->generation == XIVE_GEN1 ? XIVE_CONFIGURATION_GEN1 :
+ XIVE_CONFIGURATION;
+
+ if (x->quirks & XIVE_QUIRK_THREADID_7BITS)
+ x->config = SETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, x->config,
+ CQ_XIVE_CFG_THREADID_7BITS);
+
+ /*
+ * Hardwire the block ID. The default value is the topology ID
+ * of the chip which is different from the block.
+ */
+ x->config |= CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE |
+ SETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, 0ull, x->block_id);
+
+ xive_dump_configuration(x, "new", x->config);
+ xive_regw(x, CQ_XIVE_CFG, x->config);
+ if (xive_regr(x, CQ_XIVE_CFG) != x->config) {
+ xive_err(x, "configuration setting failed\n");
+ }
+
+ /*
+ * Disable error reporting in the FIR for info errors from the VC.
+ */
+ xive_regw(x, CQ_FIRMASK_OR, CQ_FIR_VC_INFO_ERROR_0_2);
+
+ /*
+ * Mask CI Load and Store to bad location, as IPI trigger
+ * pages may be mapped to user space, and a read on the
+ * trigger page causes a checkstop
+ */
+ xive_regw(x, CQ_FIRMASK_OR, CQ_FIR_PB_RCMDX_CI_ERR1);
+
+ /*
+ * VP space settings. P9 mode is 19bits.
+ */
+ x->vp_shift = x->generation == XIVE_GEN1 ?
+ VP_SHIFT_GEN1 : VP_SHIFT_GEN2;
+
+ /*
+ * VP ids for HW threads. These values are hardcoded in the
+ * CAM line of the HW context
+ *
+ * POWER10 |chip|0000000000000001|threadid|
+ * 28bits 4 16 8
+ *
+ * POWER9 |chip|000000000001|thrdid |
+ * 23bits 4 12 7
+ */
+
+ /* TODO (cosmetic): set VP ids for HW threads only once */
+ xive_threadid_shift = 7 + GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE,
+ x->config);
+
+ xive_hw_vp_base = 1 << xive_threadid_shift;
+ xive_hw_vp_count = 1 << xive_threadid_shift;
+
+ xive_dbg(x, "store EOI is %savailable\n",
+ XIVE_CAN_STORE_EOI(x) ? "" : "not ");
+
+ xive_config_reduced_priorities_fixup(x);
+
+ return true;
+}
+
+/* Set Translation tables : 1 block per chip */
+static bool xive_setup_set_xlate(struct xive *x)
+{
+ unsigned int i;
+
+ /* Configure ESBs */
+ xive_regw(x, CQ_TAR,
+ CQ_TAR_AUTOINC | SETFIELD(CQ_TAR_SELECT, 0ull, CQ_TAR_ESB));
+ if (x->last_reg_error)
+ return false;
+ for (i = 0; i < XIVE_MAX_BLOCKS; i++) {
+ xive_regw(x, CQ_TDR, CQ_TDR_VALID |
+ SETFIELD(CQ_TDR_BLOCK_ID, 0ull, x->block_id));
+ if (x->last_reg_error)
+ return false;
+ }
+
+ /* Configure ENDs */
+ xive_regw(x, CQ_TAR,
+ CQ_TAR_AUTOINC | SETFIELD(CQ_TAR_SELECT, 0ull, CQ_TAR_END));
+ if (x->last_reg_error)
+ return false;
+ for (i = 0; i < XIVE_MAX_BLOCKS; i++) {
+ xive_regw(x, CQ_TDR, CQ_TDR_VALID |
+ SETFIELD(CQ_TDR_BLOCK_ID, 0ull, x->block_id));
+ if (x->last_reg_error)
+ return false;
+ }
+
+ /* Configure NVPs */
+ xive_regw(x, CQ_TAR,
+ CQ_TAR_AUTOINC | SETFIELD(CQ_TAR_SELECT, 0ull, CQ_TAR_NVPG));
+ if (x->last_reg_error)
+ return false;
+ for (i = 0; i < XIVE_MAX_BLOCKS; i++) {
+ xive_regw(x, CQ_TDR, CQ_TDR_VALID |
+ SETFIELD(CQ_TDR_BLOCK_ID, 0ull, x->block_id));
+ if (x->last_reg_error)
+ return false;
+ }
+ return true;
+}
+
+static bool xive_prealloc_tables(struct xive *x)
+{
+ uint32_t i;
+ uint32_t pbase, pend;
+
+ /* ESB has 4 entries per byte */
+ x->sbe_base = local_alloc(x->chip_id, XIVE_ESB_SIZE, XIVE_ESB_SIZE);
+ if (!x->sbe_base) {
+ xive_err(x, "Failed to allocate SBE\n");
+ return false;
+ }
+
+ /* PQs are initialized to 0b01 which corresponds to "ints off" */
+ memset(x->sbe_base, 0x55, XIVE_ESB_SIZE);
+ xive_dbg(x, "SBE at %p size 0x%lx\n", x->sbe_base, XIVE_ESB_SIZE);
+
+ /* EAS entries are 8 bytes */
+ x->eat_base = local_alloc(x->chip_id, XIVE_EAT_SIZE, XIVE_EAT_SIZE);
+ if (!x->eat_base) {
+ xive_err(x, "Failed to allocate EAS\n");
+ return false;
+ }
+
+ /*
+ * We clear the entries (non-valid). They will be initialized
+ * when actually used
+ */
+ memset(x->eat_base, 0, XIVE_EAT_SIZE);
+ xive_dbg(x, "EAT at %p size 0x%lx\n", x->eat_base, XIVE_EAT_SIZE);
+
+ /* Indirect END table. Limited to one top page. */
+ x->end_ind_size = ALIGN_UP(XIVE_END_TABLE_SIZE, PAGE_SIZE);
+ if (x->end_ind_size > PAGE_SIZE) {
+ xive_err(x, "END indirect table is too big !\n");
+ return false;
+ }
+ x->end_ind_base = local_alloc(x->chip_id, x->end_ind_size,
+ x->end_ind_size);
+ if (!x->end_ind_base) {
+ xive_err(x, "Failed to allocate END indirect table\n");
+ return false;
+ }
+ memset(x->end_ind_base, 0, x->end_ind_size);
+ xive_dbg(x, "ENDi at %p size 0x%llx #%ld entries\n", x->end_ind_base,
+ x->end_ind_size, XIVE_END_COUNT);
+ x->end_ind_count = XIVE_END_TABLE_SIZE / XIVE_VSD_SIZE;
+
+ /* Indirect VP table. Limited to one top page. */
+ x->vp_ind_size = ALIGN_UP(XIVE_VP_TABLE_SIZE(x), PAGE_SIZE);
+ if (x->vp_ind_size > PAGE_SIZE) {
+ xive_err(x, "VP indirect table is too big !\n");
+ return false;
+ }
+ x->vp_ind_base = local_alloc(x->chip_id, x->vp_ind_size,
+ x->vp_ind_size);
+ if (!x->vp_ind_base) {
+ xive_err(x, "Failed to allocate VP indirect table\n");
+ return false;
+ }
+ xive_dbg(x, "VPi at %p size 0x%llx #%ld entries\n", x->vp_ind_base,
+ x->vp_ind_size, XIVE_VP_COUNT(x));
+ x->vp_ind_count = XIVE_VP_TABLE_SIZE(x) / XIVE_VSD_SIZE;
+ memset(x->vp_ind_base, 0, x->vp_ind_size);
+
+ /* Allocate pages for the VP ids representing HW threads */
+ pbase = xive_hw_vp_base / VP_PER_PAGE;
+ pend = (xive_hw_vp_base + xive_hw_vp_count) / VP_PER_PAGE;
+
+ xive_dbg(x, "Allocating pages %d to %d of VPs (for %d VPs)\n",
+ pbase, pend, xive_hw_vp_count);
+ for (i = pbase; i <= pend; i++) {
+ void *page;
+ u64 vsd;
+
+ /* Indirect entries have a VSD format */
+ page = local_alloc(x->chip_id, PAGE_SIZE, PAGE_SIZE);
+ if (!page) {
+ xive_err(x, "Failed to allocate VP page\n");
+ return false;
+ }
+ xive_dbg(x, "VP%d at %p size 0x%x\n", i, page, PAGE_SIZE);
+ memset(page, 0, PAGE_SIZE);
+ vsd = ((uint64_t)page) & VSD_ADDRESS_MASK;
+
+ vsd |= SETFIELD(VSD_TSIZE, 0ull, 4);
+ vsd |= SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);
+ vsd |= VSD_FIRMWARE;
+ x->vp_ind_base[i] = cpu_to_be64(vsd);
+ }
+
+ /*
+ * Allocate page for cache and sync injection (512 * 128 hw
+ * threads) + one extra page for future use
+ */
+ x->sync_inject_size = PAGE_SIZE + PAGE_SIZE;
+ x->sync_inject = local_alloc(x->chip_id, x->sync_inject_size,
+ x->sync_inject_size);
+ if (!x->sync_inject) {
+ xive_err(x, "Failed to allocate sync pages\n");
+ return false;
+ }
+
+ /* Allocate the queue overflow pages */
+ x->q_ovf = local_alloc(x->chip_id, VC_QUEUE_COUNT * PAGE_SIZE, PAGE_SIZE);
+ if (!x->q_ovf) {
+ xive_err(x, "Failed to allocate queue overflow\n");
+ return false;
+ }
+ return true;
+}
+
+static void xive_add_provisioning_properties(void)
+{
+ beint32_t chips[XIVE_MAX_CHIPS];
+ uint32_t i, count;
+
+ dt_add_property_cells(xive_dt_node,
+ "ibm,xive-provision-page-size", PAGE_SIZE);
+
+ count = 1 << xive_chips_alloc_bits;
+ for (i = 0; i < count; i++)
+ chips[i] = cpu_to_be32(xive_block_to_chip[i]);
+ dt_add_property(xive_dt_node, "ibm,xive-provision-chips",
+ chips, 4 * count);
+}
+
+static void xive_create_mmio_dt_node(struct xive *x)
+{
+ uint64_t tb = (uint64_t)x->tm_base;
+ uint32_t stride = 1u << x->tm_shift;
+
+ xive_dt_node = dt_new_addr(dt_root, "interrupt-controller", tb);
+ assert(xive_dt_node);
+
+ dt_add_property_u64s(xive_dt_node, "reg",
+ tb + 0 * stride, stride,
+ tb + 1 * stride, stride,
+ tb + 2 * stride, stride,
+ tb + 3 * stride, stride);
+
+ dt_add_property_strings(xive_dt_node, "compatible",
+ "ibm,opal-xive-pe", "ibm,opal-intc");
+
+ dt_add_property_cells(xive_dt_node, "ibm,xive-eq-sizes",
+ 12, 16, 21, 24);
+
+ dt_add_property_cells(xive_dt_node, "ibm,xive-#priorities",
+ xive_cfg_vp_prio(x));
+
+ dt_add_property(xive_dt_node, "single-escalation-support", NULL, 0);
+
+ if (XIVE_CAN_STORE_EOI(x))
+ dt_add_property(xive_dt_node, "store-eoi", NULL, 0);
+
+ xive_add_provisioning_properties();
+
+}
+
+static void xive_setup_forward_ports(struct xive *x, struct proc_chip *remote_chip)
+{
+ struct xive *remote_xive = remote_chip->xive;
+ uint64_t base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_FORWARD);
+
+ if (!xive_set_vsd(x, VST_ESB, remote_xive->block_id,
+ base | ((uint64_t)remote_xive->esb_base) |
+ SETFIELD(VSD_TSIZE, 0ull, ilog2(x->esb_size) - 12)))
+ goto error;
+
+ /* EAS: No remote */
+
+ if (!xive_set_vsd(x, VST_END, remote_xive->block_id,
+ base | ((uint64_t)remote_xive->end_base) |
+ SETFIELD(VSD_TSIZE, 0ull, ilog2(x->end_size) - 12)))
+ goto error;
+
+ if (!xive_set_vsd(x, VST_NVP, remote_xive->block_id,
+ base | ((uint64_t)remote_xive->nvp_base) |
+ SETFIELD(VSD_TSIZE, 0ull, ilog2(x->nvp_size) - 12)))
+ goto error;
+
+ /* NVG: not used */
+ /* NVC: not used */
+
+ if (!xive_set_vsd(x, VST_IC, remote_xive->chip_id,
+ base | ((uint64_t)remote_xive->ic_base) |
+ SETFIELD(VSD_TSIZE, 0ull, ilog2(x->ic_size) - 12)))
+ goto error;
+
+ if (!xive_set_vsd(x, VST_SYNC, remote_xive->chip_id,
+ base | ((uint64_t)remote_xive->sync_inject) |
+ SETFIELD(VSD_TSIZE, 0ull, ilog2(x->sync_inject_size) - 12)))
+ goto error;
+
+ /* ERQ: No remote */
+
+ return;
+
+ error:
+ xive_err(x, "Failure configuring forwarding ports\n");
+}
+
+static void late_init_one_xive(struct xive *x)
+{
+ struct proc_chip *chip;
+
+ /* We need to setup the cross-chip forward ports. Let's
+ * iterate all chip and set them up accordingly
+ */
+ for_each_chip(chip) {
+ /* We skip ourselves or chips without a xive */
+ if (chip->xive == x || !chip->xive)
+ continue;
+
+ /* Setup our forward ports to that chip */
+ xive_setup_forward_ports(x, chip);
+ }
+}
+
+static bool xive_check_ipi_free(struct xive *x, uint32_t irq, uint32_t count)
+{
+ uint32_t i, idx = GIRQ_TO_IDX(irq);
+
+ for (i = 0; i < count; i++)
+ if (bitmap_tst_bit(*x->ipi_alloc_map, idx + i))
+ return false;
+ return true;
+}
+
+uint32_t xive2_alloc_hw_irqs(uint32_t chip_id, uint32_t count,
+ uint32_t align)
+{
+ struct proc_chip *chip = get_chip(chip_id);
+ struct xive *x;
+ uint32_t base, i;
+
+ assert(chip);
+ assert(is_pow2(align));
+
+ x = chip->xive;
+ assert(x);
+
+ lock(&x->lock);
+
+ /* Allocate the HW interrupts */
+ base = x->int_hw_bot - count;
+ base &= ~(align - 1);
+ if (base < x->int_ipi_top) {
+ xive_err(x,
+ "HW alloc request for %d interrupts aligned to %d failed\n",
+ count, align);
+ unlock(&x->lock);
+ return XIVE_IRQ_ERROR;
+ }
+ if (!xive_check_ipi_free(x, base, count)) {
+ xive_err(x, "HWIRQ boot allocator request overlaps dynamic allocator\n");
+ unlock(&x->lock);
+ return XIVE_IRQ_ERROR;
+ }
+
+ x->int_hw_bot = base;
+
+ /* Initialize the corresponding EAS entries to sane defaults,
+ * IE entry is valid, not routed and masked, EQ data is set
+ * to the GIRQ number.
+ */
+ for (i = 0; i < count; i++) {
+ struct xive_eas *eas = xive_get_eas(x, base + i);
+
+ eas->w = xive_set_field64(EAS_VALID, 0, 1) |
+ xive_set_field64(EAS_MASKED, 0, 1) |
+ xive_set_field64(EAS_END_DATA, 0, base + i);
+ }
+
+ unlock(&x->lock);
+ return base;
+}
+
+uint32_t xive2_alloc_ipi_irqs(uint32_t chip_id, uint32_t count,
+ uint32_t align)
+{
+ struct proc_chip *chip = get_chip(chip_id);
+ struct xive *x;
+ uint32_t base, i;
+
+ assert(chip);
+ assert(is_pow2(align));
+
+ x = chip->xive;
+ assert(x);
+
+ lock(&x->lock);
+
+ /* Allocate the IPI interrupts */
+ base = x->int_ipi_top + (align - 1);
+ base &= ~(align - 1);
+ if (base >= x->int_hw_bot) {
+ xive_err(x,
+ "IPI alloc request for %d interrupts aligned to %d failed\n",
+ count, align);
+ unlock(&x->lock);
+ return XIVE_IRQ_ERROR;
+ }
+ if (!xive_check_ipi_free(x, base, count)) {
+ xive_err(x, "IPI boot allocator request overlaps dynamic allocator\n");
+ unlock(&x->lock);
+ return XIVE_IRQ_ERROR;
+ }
+
+ x->int_ipi_top = base + count;
+
+ /* Initialize the corresponding EAS entries to sane defaults,
+ * IE entry is valid, not routed and masked, END data is set
+ * to the GIRQ number.
+ */
+ for (i = 0; i < count; i++) {
+ struct xive_eas *eas = xive_get_eas(x, base + i);
+
+ eas->w = xive_set_field64(EAS_VALID, 0, 1) |
+ xive_set_field64(EAS_MASKED, 0, 1) |
+ xive_set_field64(EAS_END_DATA, 0, base + i);
+ }
+
+ unlock(&x->lock);
+ return base;
+}
+
+void *xive2_get_trigger_port(uint32_t girq)
+{
+ uint32_t idx = GIRQ_TO_IDX(girq);
+ struct xive *x;
+
+ /* Find XIVE on which the EAS resides */
+ x = xive_from_isn(girq);
+ if (!x)
+ return NULL;
+
+ if (GIRQ_IS_ESCALATION(girq)) {
+ /* There is no trigger page for escalation interrupts */
+ return NULL;
+ } else {
+ /* Make sure it's an IPI on that chip */
+ if (girq < x->int_base ||
+ girq >= x->int_ipi_top)
+ return NULL;
+
+ return x->esb_base + idx * XIVE_ESB_PAGE_SIZE;
+ }
+}
+
+/*
+ * Notify Port page (writes only, w/data), separated into two
+ * categories, both sent to VC:
+ * - IPI queue (Addr bit 52 = 0) (for NPU)
+ * - HW queue (Addr bit 52 = 1)
+ */
+uint64_t xive2_get_notify_port(uint32_t chip_id, uint32_t ent)
+{
+ struct proc_chip *chip = get_chip(chip_id);
+ struct xive *x;
+ uint32_t offset = 0;
+
+ assert(chip);
+ x = chip->xive;
+ assert(x);
+
+ /* This is where we can assign a different HW queue to a different
+ * source by offsetting into the cache lines of the notify port
+ *
+ * For now we keep it very basic, this will have to be looked at
+ * again on real HW with some proper performance analysis.
+ *
+ * Here's what Florian says on the matter:
+ *
+ * <<
+ * The first 2k of the notify port page can all be used for PCIe triggers
+ *
+ * However the idea would be that we try to use the first 4 cache lines to
+ * balance the PCIe Interrupt requests to use the least used snoop buses
+ * (we went from 2 to 4 snoop buses for P9). snoop 0 is heavily used
+ * (I think TLBIs are using that in addition to the normal addresses),
+ * snoop 3 is used for all Int commands, so I think snoop 2 (CL 2 in the
+ * page) is the least used overall. So we probably should that one for
+ * the Int commands from PCIe.
+ *
+ * In addition, our EAS cache supports hashing to provide "private" cache
+ * areas for the PHBs in the shared 1k EAS cache. This allows e.g. to avoid
+ * that one "thrashing" PHB thrashes the EAS cache for everyone, or provide
+ * a PHB with a private area that would allow high cache hits in case of a
+ * device using very few interrupts. The hashing is based on the offset within
+ * the cache line. So using that, you can e.g. set the EAS cache up so that
+ * IPIs use 512 entries, the x16 PHB uses 256 entries and the x8 PHBs 128
+ * entries each - or IPIs using all entries and sharing with PHBs, so PHBs
+ * would use 512 entries and 256 entries respectively.
+ *
+ * This is a tuning we would probably do later in the lab, but as a "prep"
+ * we should set up the different PHBs such that they are using different
+ * 8B-aligned offsets within the cache line, so e.g.
+ * PH4_0 addr 0x100 (CL 2 DW0
+ * PH4_1 addr 0x108 (CL 2 DW1)
+ * PH4_2 addr 0x110 (CL 2 DW2)
+ * etc.
+ * >>
+ *
+ * I'm using snoop1 for PHB0 and snoop2 for everybody else.
+ */
+
+ /* Florian adds :
+ *
+ * we just set them up for a start to have different offsets
+ * within the cache line so that we could use the allocation
+ * restrictions that can be enforced in the interrupt
+ * controller
+ *
+ * P10 might now be randomizing the cache line bits in HW to
+ * balance snoop bus usage
+ *
+ * TODO (phb5) : implement "address based triggers" (DD2.0?)
+ *
+ * The PHBs would no longer target the notify port page but
+ * the "base ESB MMIO address" of the ESB/EAS range they are
+ * allocated. Needs a XIVE API change for the PHBs.
+ */
+ switch(ent) {
+ case XIVE_HW_SRC_PHBn(0):
+ offset = 0x800;
+ break;
+ case XIVE_HW_SRC_PHBn(1):
+ offset = 0x908;
+ break;
+ case XIVE_HW_SRC_PHBn(2):
+ offset = 0x910;
+ break;
+ case XIVE_HW_SRC_PHBn(3):
+ offset = 0x918;
+ break;
+ case XIVE_HW_SRC_PHBn(4):
+ offset = 0x920;
+ break;
+ case XIVE_HW_SRC_PHBn(5):
+ offset = 0x928;
+ break;
+ case XIVE_HW_SRC_PSI:
+ offset = 0x930;
+ break;
+ default:
+ assert(false);
+ return 0;
+ }
+
+ return ((uint64_t)x->ic_base) +
+ (XIVE_NOTIFY_PGOFF << x->ic_shift) + offset;
+}
+
+/* Manufacture the powerbus packet bits 32:63 */
+__attrconst uint32_t xive2_get_notify_base(uint32_t girq)
+{
+ return (GIRQ_TO_BLK(girq) << 28) | GIRQ_TO_IDX(girq);
+}
+
+static bool xive_get_irq_targetting(uint32_t isn, uint32_t *out_target,
+ uint8_t *out_prio, uint32_t *out_lirq)
+{
+ struct xive_eas *eas;
+ struct xive *x, *end_x;
+ struct xive_end *end;
+ uint32_t end_blk, end_idx;
+ uint32_t vp_blk, vp_idx;
+ uint32_t prio, server;
+ bool is_escalation = GIRQ_IS_ESCALATION(isn);
+
+ /* Find XIVE on which the EAS resides */
+ x = xive_from_isn(isn);
+ if (!x)
+ return false;
+ /* Grab the EAS */
+ eas = xive_get_eas(x, isn);
+ if (!eas)
+ return false;
+ if (!xive_get_field64(EAS_VALID, eas->w) && !is_escalation) {
+ xive_err(x, "ISN %x lead to invalid EAS !\n", isn);
+ return false;
+ }
+
+ if (out_lirq)
+ *out_lirq = xive_get_field64(EAS_END_DATA, eas->w);
+
+ /* Find the END and its xive instance */
+ end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
+ end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
+ end_x = xive_from_vc_blk(end_blk);
+
+ /* This can fail if the interrupt hasn't been initialized yet
+ * but it should also be masked, so fail silently
+ */
+ if (!end_x)
+ goto pick_default;
+ end = xive_get_end(end_x, end_idx);
+ if (!end)
+ goto pick_default;
+
+ /* XXX Check valid and format 0 */
+
+ /* No priority conversion, return the actual one ! */
+ if (xive_get_field64(EAS_MASKED, eas->w))
+ prio = 0xff;
+ else
+ prio = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
+ if (out_prio)
+ *out_prio = prio;
+
+ vp_blk = xive_get_field32(END_W6_VP_BLOCK, end->w6);
+ vp_idx = xive_get_field32(END_W6_VP_OFFSET, end->w6);
+ server = VP2PIR(vp_blk, vp_idx);
+
+ if (out_target)
+ *out_target = server;
+
+ xive_vdbg(end_x, "END info for ISN %x: prio=%d, server=0x%x (VP %x/%x)\n",
+ isn, prio, server, vp_blk, vp_idx);
+ return true;
+
+pick_default:
+ xive_vdbg(end_x, "END info for ISN %x: Using masked defaults\n", isn);
+
+ if (out_prio)
+ *out_prio = 0xff;
+ /* Pick a random default, me will be fine ... */
+ if (out_target)
+ *out_target = mfspr(SPR_PIR);
+ return true;
+}
+
+static inline bool xive_end_for_target(uint32_t target, uint8_t prio,
+ uint32_t *out_end_blk,
+ uint32_t *out_end_idx)
+{
+ struct xive *x;
+ struct xive_nvp *vp;
+ uint32_t vp_blk, vp_idx;
+ uint32_t end_blk, end_idx;
+
+ if (prio > xive_max_prio(one_xive))
+ return false;
+
+ /* Get the VP block/index from the target word */
+ if (!xive_decode_vp(target, &vp_blk, &vp_idx, NULL, NULL))
+ return false;
+
+ /* Grab the target VP's XIVE */
+ x = xive_from_pc_blk(vp_blk);
+ if (!x)
+ return false;
+
+ /* Find the VP structrure where we stashed the END number */
+ vp = xive_get_vp(x, vp_idx);
+ if (!vp)
+ return false;
+
+ end_blk = xive_get_field32(NVP_W5_VP_END_BLOCK, vp->w5);
+ end_idx = xive_get_field32(NVP_W5_VP_END_INDEX, vp->w5);
+
+ /* Currently the END block and VP block should be the same */
+ if (end_blk != vp_blk) {
+ xive_err(x, "end_blk != vp_blk (%d vs. %d) for target 0x%08x/%d\n",
+ end_blk, vp_blk, target, prio);
+ assert(false);
+ }
+
+ if (out_end_blk)
+ *out_end_blk = end_blk;
+ if (out_end_idx)
+ *out_end_idx = end_idx + prio;
+
+ return true;
+}
+
+static int64_t xive_set_irq_targetting(uint32_t isn, uint32_t target,
+ uint8_t prio, uint32_t lirq,
+ bool synchronous)
+{
+ struct xive *x;
+ struct xive_eas *eas, new_eas;
+ uint32_t end_blk, end_idx;
+ bool is_escalation = GIRQ_IS_ESCALATION(isn);
+ int64_t rc;
+
+ /* Find XIVE on which the EAS resides */
+ x = xive_from_isn(isn);
+ if (!x)
+ return OPAL_PARAMETER;
+ /* Grab the EAS */
+ eas = xive_get_eas(x, isn);
+ if (!eas)
+ return OPAL_PARAMETER;
+ if (!xive_get_field64(EAS_VALID, eas->w) && !is_escalation) {
+ xive_err(x, "ISN %x lead to invalid EAS !\n", isn);
+ return OPAL_PARAMETER;
+ }
+
+ lock(&x->lock);
+
+ /* Read existing EAS */
+ new_eas = *eas;
+
+ /* Are we masking ? */
+ if (prio == 0xff && !is_escalation) {
+ new_eas.w = xive_set_field64(EAS_MASKED, new_eas.w, 1);
+ xive_vdbg(x, "ISN %x masked !\n", isn);
+
+ /* Put prio 7 in the END */
+ prio = xive_max_prio(x);
+ } else {
+ /* Unmasking */
+ new_eas.w = xive_set_field64(EAS_MASKED, new_eas.w, 0);
+ xive_vdbg(x, "ISN %x unmasked !\n", isn);
+
+ /* For normal interrupt sources, keep track of which ones
+ * we ever enabled since the last reset
+ */
+ if (!is_escalation)
+ bitmap_set_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn));
+ }
+
+ /* If prio isn't 0xff, re-target the EAS. First find the END
+ * correponding to the target
+ */
+ if (prio != 0xff) {
+ if (!xive_end_for_target(target, prio, &end_blk, &end_idx)) {
+ xive_err(x, "Can't find END for target/prio 0x%x/%d\n",
+ target, prio);
+ unlock(&x->lock);
+ return OPAL_PARAMETER;
+ }
+
+ /* Try to update it atomically to avoid an intermediary
+ * stale state
+ */
+ new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
+ new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
+ }
+ new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, lirq);
+
+ xive_vdbg(x,"ISN %x routed to end %x/%x lirq=%08x EAS=%016llx !\n",
+ isn, end_blk, end_idx, lirq, new_eas.w);
+
+ /* Updating the cache differs between real EAS and escalation
+ * EAS inside an END
+ */
+ if (is_escalation) {
+ rc = xive_escalation_ive_cache_update(x, x->block_id,
+ GIRQ_TO_IDX(isn), &new_eas, synchronous);
+ } else {
+ sync();
+ *eas = new_eas;
+ rc = xive_easc_scrub(x, x->block_id, GIRQ_TO_IDX(isn));
+ }
+
+ unlock(&x->lock);
+ return rc;
+}
+
+static void xive_update_irq_mask(struct xive_src *s, uint32_t idx, bool masked)
+{
+ void *mmio_base = s->esb_mmio + (1ul << s->esb_shift) * idx;
+ uint32_t offset;
+
+ /* XXX FIXME: A quick mask/umask can make us shoot an interrupt
+ * more than once to a queue. We need to keep track better
+ */
+ if (s->flags & XIVE_SRC_EOI_PAGE1)
+ mmio_base += 1ull << (s->esb_shift - 1);
+ if (masked)
+ offset = XIVE_ESB_SET_PQ_01;
+ else
+ offset = XIVE_ESB_SET_PQ_00;
+
+ in_be64(mmio_base + offset);
+}
+
+#define XIVE_SYNC_IPI 0x000
+#define XIVE_SYNC_HW 0x080
+#define XIVE_SYNC_NxC 0x100
+#define XIVE_SYNC_INT 0x180
+#define XIVE_SYNC_OS_ESC 0x200
+#define XIVE_SYNC_POOL_ESC 0x280
+#define XIVE_SYNC_HARD_ESC 0x300
+
+static int64_t xive_sync(struct xive *x __unused)
+{
+ uint64_t r;
+ void *sync_base;
+
+ lock(&x->lock);
+
+ sync_base = x->ic_base + (XIVE_SYNC_POLL_PGOFF << x->ic_shift);
+
+ out_be64(sync_base + XIVE_SYNC_IPI, 0);
+ out_be64(sync_base + XIVE_SYNC_HW, 0);
+ out_be64(sync_base + XIVE_SYNC_NxC, 0);
+ out_be64(sync_base + XIVE_SYNC_INT, 0);
+ out_be64(sync_base + XIVE_SYNC_OS_ESC, 0);
+ out_be64(sync_base + XIVE_SYNC_POOL_ESC, 0);
+ out_be64(sync_base + XIVE_SYNC_HARD_ESC, 0);
+
+ /* XXX Add timeout */
+ for (;;) {
+ r = xive_regr(x, VC_ENDC_SYNC_DONE);
+ if ((r & VC_ENDC_SYNC_POLL_DONE) == VC_ENDC_SYNC_POLL_DONE)
+ break;
+ cpu_relax();
+ }
+ xive_regw(x, VC_ENDC_SYNC_DONE, r & ~VC_ENDC_SYNC_POLL_DONE);
+
+ /*
+ * Do a read after clearing the sync done bit to prevent any
+ * race between CI write and next sync command
+ */
+ xive_regr(x, VC_ENDC_SYNC_DONE);
+
+ unlock(&x->lock);
+ return 0;
+}
+
+static int64_t __xive_set_irq_config(struct irq_source *is, uint32_t girq,
+ uint64_t vp, uint8_t prio, uint32_t lirq,
+ bool update_esb, bool sync)
+{
+ struct xive_src *s = container_of(is, struct xive_src, is);
+ uint32_t old_target, vp_blk;
+ u8 old_prio;
+ int64_t rc;
+
+ /* Grab existing target */
+ if (!xive_get_irq_targetting(girq, &old_target, &old_prio, NULL))
+ return OPAL_PARAMETER;
+
+ /* Let XIVE configure the END. We do the update without the
+ * synchronous flag, thus a cache update failure will result
+ * in us returning OPAL_BUSY
+ */
+ rc = xive_set_irq_targetting(girq, vp, prio, lirq, false);
+ if (rc)
+ return rc;
+
+ /* Do we need to update the mask ? */
+ if (old_prio != prio && (old_prio == 0xff || prio == 0xff)) {
+ /* The source has special variants of masking/unmasking */
+ if (update_esb) {
+ /* Ensure it's enabled/disabled in the source
+ * controller
+ */
+ xive_update_irq_mask(s, girq - s->esb_base,
+ prio == 0xff);
+ }
+ }
+
+ /*
+ * Synchronize the source and old target XIVEs to ensure that
+ * all pending interrupts to the old target have reached their
+ * respective queue.
+ *
+ * WARNING: This assumes the VP and it's queues are on the same
+ * XIVE instance !
+ */
+ if (!sync)
+ return OPAL_SUCCESS;
+ xive_sync(s->xive);
+ if (xive_decode_vp(old_target, &vp_blk, NULL, NULL, NULL)) {
+ struct xive *x = xive_from_pc_blk(vp_blk);
+ if (x)
+ xive_sync(x);
+ }
+
+ return OPAL_SUCCESS;
+}
+
+static int64_t xive_set_irq_config(uint32_t girq, uint64_t vp, uint8_t prio,
+ uint32_t lirq, bool update_esb)
+{
+ struct irq_source *is = irq_find_source(girq);
+
+ return __xive_set_irq_config(is, girq, vp, prio, lirq, update_esb,
+ true);
+}
+
+static void xive_source_interrupt(struct irq_source *is, uint32_t isn)
+{
+ struct xive_src *s = container_of(is, struct xive_src, is);
+
+ if (!s->orig_ops || !s->orig_ops->interrupt)
+ return;
+ s->orig_ops->interrupt(is, isn);
+}
+
+static uint64_t xive_source_attributes(struct irq_source *is, uint32_t isn)
+{
+ struct xive_src *s = container_of(is, struct xive_src, is);
+
+ if (!s->orig_ops || !s->orig_ops->attributes)
+ return IRQ_ATTR_TARGET_LINUX;
+ return s->orig_ops->attributes(is, isn);
+}
+
+static char *xive_source_name(struct irq_source *is, uint32_t isn)
+{
+ struct xive_src *s = container_of(is, struct xive_src, is);
+
+ if (!s->orig_ops || !s->orig_ops->name)
+ return NULL;
+ return s->orig_ops->name(is, isn);
+}
+
+static const struct irq_source_ops xive_irq_source_ops = {
+ .interrupt = xive_source_interrupt,
+ .attributes = xive_source_attributes,
+ .name = xive_source_name,
+};
+
+static void __xive_register_source(struct xive *x, struct xive_src *s,
+ uint32_t base, uint32_t count,
+ uint32_t shift, void *mmio, uint32_t flags,
+ bool secondary, void *data,
+ const struct irq_source_ops *orig_ops)
+{
+ s->esb_base = base;
+ s->esb_shift = shift;
+ s->esb_mmio = mmio;
+ s->flags = flags;
+ s->orig_ops = orig_ops;
+ s->xive = x;
+ s->is.start = base;
+ s->is.end = base + count;
+ s->is.ops = &xive_irq_source_ops;
+ s->is.data = data;
+
+ __register_irq_source(&s->is, secondary);
+}
+
+void xive2_register_hw_source(uint32_t base, uint32_t count, uint32_t shift,
+ void *mmio, uint32_t flags, void *data,
+ const struct irq_source_ops *ops)
+{
+ struct xive_src *s;
+ struct xive *x = xive_from_isn(base);
+
+ assert(x);
+
+ s = malloc(sizeof(struct xive_src));
+ assert(s);
+ __xive_register_source(x, s, base, count, shift, mmio, flags,
+ false, data, ops);
+}
+
+void xive2_register_ipi_source(uint32_t base, uint32_t count, void *data,
+ const struct irq_source_ops *ops)
+{
+ struct xive_src *s;
+ struct xive *x = xive_from_isn(base);
+ uint32_t base_idx = GIRQ_TO_IDX(base);
+ void *mmio_base;
+ uint32_t flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE;
+
+ assert(x);
+ assert(base >= x->int_base && (base + count) <= x->int_ipi_top);
+
+ s = malloc(sizeof(struct xive_src));
+ assert(s);
+
+ if (XIVE_CAN_STORE_EOI(x))
+ flags |= XIVE_SRC_STORE_EOI;
+
+ /* Callbacks assume the MMIO base corresponds to the first
+ * interrupt of that source structure so adjust it
+ */
+ mmio_base = x->esb_base + (1ul << XIVE_ESB_SHIFT) * base_idx;
+ __xive_register_source(x, s, base, count, XIVE_ESB_SHIFT, mmio_base,
+ flags, false, data, ops);
+}
+
+static void xive_set_quirks(struct xive *x, struct proc_chip *chip __unused)
+{
+ uint64_t quirks = 0;
+
+ /* This extension is dropped for P10 */
+ if (proc_gen == proc_gen_p10)
+ quirks |= XIVE_QUIRK_THREADID_7BITS;
+
+ /* Broken check on invalid priority when reduced priorities is in use */
+ if (proc_gen == proc_gen_p10)
+ quirks |= XIVE_QUIRK_BROKEN_PRIO_CHECK;
+
+ xive_dbg(x, "setting XIVE quirks to %016llx\n", quirks);
+ x->quirks = quirks;
+}
+
+static struct xive *init_one_xive(struct dt_node *np)
+{
+ struct xive *x;
+ struct proc_chip *chip;
+ uint32_t flags;
+
+ x = zalloc(sizeof(struct xive));
+ assert(x);
+ x->x_node = np;
+ x->xscom_base = dt_get_address(np, 0, NULL);
+ x->chip_id = dt_get_chip_id(np);
+
+ /* "Allocate" a new block ID for the chip */
+ x->block_id = xive_block_count++;
+ assert (x->block_id < XIVE_MAX_CHIPS);
+ xive_block_to_chip[x->block_id] = x->chip_id;
+ init_lock(&x->lock);
+
+ chip = get_chip(x->chip_id);
+ assert(chip);
+
+ xive_notice(x, "Initializing XIVE block ID %d...\n", x->block_id);
+ chip->xive = x;
+
+ xive_set_quirks(x, chip);
+
+ list_head_init(&x->donated_pages);
+
+ /* Base interrupt numbers and allocator init */
+
+ x->int_base = BLKIDX_TO_GIRQ(x->block_id, 0);
+ x->int_count = x->int_base + XIVE_INT_COUNT;
+ x->int_hw_bot = x->int_count;
+ x->int_ipi_top = x->int_base;
+
+ if (x->int_ipi_top < XIVE_INT_FIRST)
+ x->int_ipi_top = XIVE_INT_FIRST;
+
+ /* Allocate a few bitmaps */
+ x->end_map = local_alloc(x->chip_id, BITMAP_BYTES(xive_end_bitmap_size(x)), PAGE_SIZE);
+ assert(x->end_map);
+ memset(x->end_map, 0, BITMAP_BYTES(xive_end_bitmap_size(x)));
+
+ /*
+ * Allocate END index 0 to make sure it can not be used as an
+ * END base for a VP. This is the criteria to know if a VP was
+ * allocated.
+ */
+ bitmap_set_bit(*x->end_map, 0);
+
+ x->int_enabled_map = local_alloc(x->chip_id, BITMAP_BYTES(XIVE_INT_COUNT), PAGE_SIZE);
+ assert(x->int_enabled_map);
+ memset(x->int_enabled_map, 0, BITMAP_BYTES(XIVE_INT_COUNT));
+ x->ipi_alloc_map = local_alloc(x->chip_id, BITMAP_BYTES(XIVE_INT_COUNT), PAGE_SIZE);
+ assert(x->ipi_alloc_map);
+ memset(x->ipi_alloc_map, 0, BITMAP_BYTES(XIVE_INT_COUNT));
+
+ xive_dbg(x, "Handling interrupts [%08x..%08x]\n",
+ x->int_base, x->int_count - 1);
+
+ /* Setup the IC BARs */
+ if (!xive_configure_ic_bars(x))
+ goto fail;
+
+ /* Some basic global inits such as page sizes etc... */
+ if (!xive_config_init(x))
+ goto fail;
+
+ /* Configure the set translations for MMIO */
+ if (!xive_setup_set_xlate(x))
+ goto fail;
+
+ /* Dump some MMIO registers for diagnostics */
+ xive_dump_mmio(x);
+
+ /* Pre-allocate a number of tables */
+ if (!xive_prealloc_tables(x))
+ goto fail;
+
+ /* Setup the XIVE structures BARs */
+ if (!xive_configure_bars(x))
+ goto fail;
+
+ /*
+ * Configure local tables in VSDs (forward ports will be
+ * handled later)
+ */
+ if (!xive_set_local_tables(x))
+ goto fail;
+
+ /* Register built-in source controllers (aka IPIs) */
+ flags = XIVE_SRC_EOI_PAGE1 | XIVE_SRC_TRIGGER_PAGE;
+ if (XIVE_CAN_STORE_EOI(x))
+ flags |= XIVE_SRC_STORE_EOI;
+ __xive_register_source(x, &x->ipis, x->int_base,
+ x->int_hw_bot - x->int_base, XIVE_ESB_SHIFT,
+ x->esb_base, flags, true, NULL, NULL);
+
+ /* Register escalation sources (ENDs)
+ *
+ * The ESe PQ bits are used for coalescing and the END ESB for
+ * interrupt management. The word 4&5 of the END is the EAS
+ * for the escalation source and the indexing is the same as
+ * the END.
+ *
+ * This is an OPAL primary source, IPIs are secondary.
+ */
+ __xive_register_source(x, &x->esc_irqs,
+ MAKE_ESCALATION_GIRQ(x->block_id, 0),
+ XIVE_END_COUNT, XIVE_END_SHIFT,
+ x->end_base, XIVE_SRC_EOI_PAGE1,
+ false, NULL, NULL);
+
+
+ return x;
+ fail:
+ xive_err(x, "Initialization failed...\n");
+
+ /* Should this be fatal ? */
+ //assert(false);
+ return NULL;
+}
+
+static void xive_reset_enable_thread(struct cpu_thread *c)
+{
+ struct proc_chip *chip = get_chip(c->chip_id);
+ struct xive *x = chip->xive;
+ uint32_t fc, bit;
+ uint64_t enable;
+
+ /* Get fused core number */
+ fc = (c->pir >> 3) & 0xf;
+
+ /* Get bit in register */
+ bit = c->pir & 0x3f;
+
+ /* Get which register to access */
+ if (fc < 8) {
+ xive_regw(x, TCTXT_EN0_RESET, PPC_BIT(bit));
+ xive_regw(x, TCTXT_EN0_SET, PPC_BIT(bit));
+
+ enable = xive_regr(x, TCTXT_EN0);
+ if (!(enable & PPC_BIT(bit)))
+ xive_cpu_err(c, "Failed to enable thread\n");
+ } else {
+ xive_regw(x, TCTXT_EN1_RESET, PPC_BIT(bit));
+ xive_regw(x, TCTXT_EN1_SET, PPC_BIT(bit));
+
+ enable = xive_regr(x, TCTXT_EN1);
+ if (!(enable & PPC_BIT(bit)))
+ xive_cpu_err(c, "Failed to enable thread\n");
+ }
+}
+
+void xive2_cpu_callin(struct cpu_thread *cpu)
+{
+ struct xive_cpu_state *xs = cpu->xstate;
+ uint8_t old_w2 __unused, w2 __unused;
+
+ if (!xs)
+ return;
+
+ /* Reset the HW thread context and enable it */
+ xive_reset_enable_thread(cpu);
+
+ /* Set VT to 1 */
+ old_w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2);
+ out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2, 0x80);
+ w2 = in_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2);
+
+ xive_cpu_vdbg(cpu, "Initialized TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n",
+ xs->vp_blk, xs->vp_idx,
+ in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS),
+ old_w2, w2);
+}
+
+#ifdef XIVE_EXTRA_CHECK_INIT_CACHE
+#define CHECK_INIT_CACHE_LOOP 0x100
+static void xive_special_cache_check(struct xive *x, uint32_t blk, uint32_t idx)
+{
+ struct xive_nvp vp = {0};
+ uint32_t i;
+
+ /*
+ * SIMICS checks the value of reserved fields
+ */
+ if (chip_quirk(QUIRK_SIMICS))
+ return;
+
+ for (i = 0; i < CHECK_INIT_CACHE_LOOP; i++) {
+ struct xive_nvp *vp_m = xive_get_vp(x, idx);
+
+ memset(vp_m, (~i) & 0xff, sizeof(*vp_m));
+ sync();
+ vp.w1 = (i << 16) | i;
+ assert(!xive_nxc_cache_update(x, blk, idx, &vp, true));
+ if (!xive_check_nxc_update(x, idx, &vp)) {
+ xive_dbg(x, "NXC update test failed at %d iterations\n", i);
+ return;
+ }
+ }
+ xive_dbg(x, "NXC update test passed for %d/0x%x\n", blk, idx);
+}
+#else
+static inline void xive_special_cache_check(struct xive *x __unused,
+ uint32_t blk __unused,
+ uint32_t idx __unused)
+{
+}
+#endif
+
+static void xive_init_cpu_exploitation(struct xive_cpu_state *xs)
+{
+ struct xive_end end;
+ struct xive_nvp vp;
+ struct xive *x_vp, *x_end;
+ int i;
+
+ /* Grab the XIVE where the VP resides. It could be different from
+ * the local chip XIVE if not using block group mode
+ */
+ x_vp = xive_from_pc_blk(xs->vp_blk);
+ assert(x_vp);
+
+ /* Grab the XIVE where the END resides. It should be the same
+ * as the VP.
+ */
+ x_end = xive_from_vc_blk(xs->end_blk);
+ assert(x_end);
+
+ xive_init_hw_end(&end);
+
+ /* Use the cache watch to update all ENDs reserved for HW VPs */
+ lock(&x_end->lock);
+ for (i = 0; i < xive_cfg_vp_prio(x_end); i++)
+ xive_endc_cache_update(x_end, xs->end_blk, xs->end_idx + i,
+ &end, true);
+ unlock(&x_end->lock);
+
+ /* Initialize/enable the VP */
+ xive_init_default_vp(&vp, xs->end_blk, xs->end_idx);
+
+ /* Use the cache watch to write it out */
+ lock(&x_vp->lock);
+ xive_special_cache_check(x_vp, xs->vp_blk, xs->vp_idx);
+ xive_nxc_cache_update(x_vp, xs->vp_blk, xs->vp_idx, &vp, true);
+ unlock(&x_vp->lock);
+}
+
+static void xive_configure_ex_special_bar(struct xive *x, struct cpu_thread *c)
+{
+ uint64_t xa, val;
+ int64_t rc;
+
+ xive_cpu_vdbg(c, "Setting up special BAR\n");
+ xa = XSCOM_ADDR_P10_NCU(pir_to_core_id(c->pir), P10_NCU_SPEC_BAR);
+ val = (uint64_t)x->tm_base | P10_NCU_SPEC_BAR_ENABLE;
+ if (x->tm_shift == 16)
+ val |= P10_NCU_SPEC_BAR_256K;
+ xive_cpu_vdbg(c, "NCU_SPEC_BAR_XA[%08llx]=%016llx\n", xa, val);
+ rc = xscom_write(c->chip_id, xa, val);
+ if (rc) {
+ xive_cpu_err(c, "Failed to setup NCU_SPEC_BAR\n");
+ /* XXXX what do do now ? */
+ }
+}
+
+void xive2_late_init(void)
+{
+ prlog(PR_INFO, "SLW: Configuring self-restore for NCU_SPEC_BAR\n");
+ /*
+ * TODO (p10): need P10 stop state engine and fix for STOP11
+ */
+}
+
+static void xive_provision_cpu(struct xive_cpu_state *xs, struct cpu_thread *c)
+{
+ struct xive *x;
+
+ /* VP ids for HW threads are pre-allocated */
+ xs->vp_blk = PIR2VP_BLK(c->pir);
+ xs->vp_idx = PIR2VP_IDX(c->pir);
+
+ /* For now we use identical block IDs for VC and PC but that might
+ * change. We allocate the ENDs on the same XIVE as the VP.
+ */
+ xs->end_blk = xs->vp_blk;
+
+ /* Grab the XIVE where the END resides. It could be different from
+ * the local chip XIVE if not using block group mode
+ */
+ x = xive_from_vc_blk(xs->end_blk);
+ assert(x);
+
+ /* Allocate a set of ENDs for that VP */
+ xs->end_idx = xive_alloc_end_set(x, true);
+ assert(!XIVE_ALLOC_IS_ERR(xs->end_idx));
+}
+
+static void xive_init_cpu(struct cpu_thread *c)
+{
+ struct proc_chip *chip = get_chip(c->chip_id);
+ struct xive *x = chip->xive;
+ struct xive_cpu_state *xs;
+
+ if (!x)
+ return;
+
+ /*
+ * Each core pair (EX) needs this special BAR setup to have the
+ * right powerbus cycle for the TM area (as it has the same address
+ * on all chips so it's somewhat special).
+ *
+ * Because we don't want to bother trying to figure out which core
+ * of a pair is present we just do the setup for each of them, which
+ * is harmless.
+ */
+ if (cpu_is_thread0(c))
+ xive_configure_ex_special_bar(x, c);
+
+ /* Initialize the state structure */
+ c->xstate = xs = local_alloc(c->chip_id, sizeof(struct xive_cpu_state), 1);
+ assert(xs);
+ memset(xs, 0, sizeof(struct xive_cpu_state));
+ xs->xive = x;
+
+ init_lock(&xs->lock);
+
+ /* Shortcut to TM HV ring */
+ xs->tm_ring1 = x->tm_base + (1u << x->tm_shift);
+
+ /* Provision a VP id and some ENDs for a HW thread */
+ xive_provision_cpu(xs, c);
+
+ xive_init_cpu_exploitation(xs);
+}
+
+static uint64_t xive_convert_irq_flags(uint64_t iflags)
+{
+ uint64_t oflags = 0;
+
+ if (iflags & XIVE_SRC_STORE_EOI)
+ oflags |= OPAL_XIVE_IRQ_STORE_EOI;
+
+ /* OPAL_XIVE_IRQ_TRIGGER_PAGE is only meant to be set if
+ * the interrupt has a *separate* trigger page.
+ */
+ if ((iflags & XIVE_SRC_EOI_PAGE1) &&
+ (iflags & XIVE_SRC_TRIGGER_PAGE))
+ oflags |= OPAL_XIVE_IRQ_TRIGGER_PAGE;
+
+ if (iflags & XIVE_SRC_LSI)
+ oflags |= OPAL_XIVE_IRQ_LSI;
+
+ return oflags;
+}
+
+static int64_t opal_xive_get_irq_info(uint32_t girq,
+ beint64_t *out_flags,
+ beint64_t *out_eoi_page,
+ beint64_t *out_trig_page,
+ beint32_t *out_esb_shift,
+ beint32_t *out_src_chip)
+{
+ struct irq_source *is = irq_find_source(girq);
+ struct xive_src *s = container_of(is, struct xive_src, is);
+ uint32_t idx;
+ uint64_t mm_base;
+ uint64_t eoi_page = 0, trig_page = 0;
+
+ if (xive_mode != XIVE_MODE_EXPL)
+ return OPAL_WRONG_STATE;
+ if (is == NULL || out_flags == NULL)
+ return OPAL_PARAMETER;
+ assert(is->ops == &xive_irq_source_ops);
+
+ if (out_flags)
+ *out_flags = cpu_to_be64(xive_convert_irq_flags(s->flags));
+
+ idx = girq - s->esb_base;
+
+ if (out_esb_shift)
+ *out_esb_shift = cpu_to_be32(s->esb_shift);
+
+ mm_base = (uint64_t)s->esb_mmio + (1ull << s->esb_shift) * idx;
+
+ /* The EOI page can either be the first or second page */
+ if (s->flags & XIVE_SRC_EOI_PAGE1) {
+ uint64_t p1off = 1ull << (s->esb_shift - 1);
+ eoi_page = mm_base + p1off;
+ } else
+ eoi_page = mm_base;
+
+ /* The trigger page, if it exists, is always the first page */
+ if (s->flags & XIVE_SRC_TRIGGER_PAGE)
+ trig_page = mm_base;
+
+ if (out_eoi_page)
+ *out_eoi_page = cpu_to_be64(eoi_page);
+ if (out_trig_page)
+ *out_trig_page = cpu_to_be64(trig_page);
+ if (out_src_chip)
+ *out_src_chip = cpu_to_be32(GIRQ_TO_CHIP(girq));
+
+ return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_get_irq_config(uint32_t girq,
+ beint64_t *out_vp,
+ uint8_t *out_prio,
+ beint32_t *out_lirq)
+{
+ uint32_t vp;
+ uint32_t lirq;
+ uint8_t prio;
+
+ if (xive_mode != XIVE_MODE_EXPL)
+ return OPAL_WRONG_STATE;
+
+ if (xive_get_irq_targetting(girq, &vp, &prio, &lirq)) {
+ *out_vp = cpu_to_be64(vp);
+ *out_prio = prio;
+ *out_lirq = cpu_to_be32(lirq);
+ return OPAL_SUCCESS;
+ } else
+ return OPAL_PARAMETER;
+}
+
+static int64_t opal_xive_set_irq_config(uint32_t girq,
+ uint64_t vp,
+ uint8_t prio,
+ uint32_t lirq)
+{
+ /*
+ * This variant is meant for a XIVE-aware OS, thus it will
+ * *not* affect the ESB state of the interrupt. If used with
+ * a prio of FF, the EAS will be masked. In that case the
+ * races have to be handled by the OS.
+ */
+ if (xive_mode != XIVE_MODE_EXPL)
+ return OPAL_WRONG_STATE;
+
+ return xive_set_irq_config(girq, vp, prio, lirq, false);
+}
+
+static int64_t opal_xive_get_queue_info(uint64_t vp, uint32_t prio,
+ beint64_t *out_qpage,
+ beint64_t *out_qsize,
+ beint64_t *out_qeoi_page,
+ beint32_t *out_escalate_irq,
+ beint64_t *out_qflags)
+{
+ uint32_t blk, idx;
+ struct xive *x;
+ struct xive_end *end;
+
+ if (xive_mode != XIVE_MODE_EXPL)
+ return OPAL_WRONG_STATE;
+
+ if (!xive_end_for_target(vp, prio, &blk, &idx))
+ return OPAL_PARAMETER;
+
+ x = xive_from_vc_blk(blk);
+ if (!x)
+ return OPAL_PARAMETER;
+
+ end = xive_get_end(x, idx);
+ if (!end)
+ return OPAL_PARAMETER;
+
+ if (out_escalate_irq) {
+ uint32_t esc_idx = idx;
+
+ /* If escalations are routed to a single queue, fix up
+ * the escalation interrupt number here.
+ */
+ if (xive_get_field32(END_W0_UNCOND_ESCALATE, end->w0))
+ esc_idx |= xive_escalation_prio(x);
+ *out_escalate_irq =
+ cpu_to_be32(MAKE_ESCALATION_GIRQ(blk, esc_idx));
+ }
+
+ /* If this is a single-escalation gather queue, that's all
+ * there is to return
+ */
+ if (xive_get_field32(END_W0_SILENT_ESCALATE, end->w0)) {
+ if (out_qflags)
+ *out_qflags = 0;
+ if (out_qpage)
+ *out_qpage = 0;
+ if (out_qsize)
+ *out_qsize = 0;
+ if (out_qeoi_page)
+ *out_qeoi_page = 0;
+ return OPAL_SUCCESS;
+ }
+
+ if (out_qpage) {
+ if (xive_get_field32(END_W0_ENQUEUE, end->w0))
+ *out_qpage = cpu_to_be64(
+ ((uint64_t)xive_get_field32(END_W2_EQ_ADDR_HI, end->w2) << 32) |
+ xive_get_field32(END_W3_EQ_ADDR_LO, end->w3));
+ else
+ *out_qpage = 0;
+ }
+ if (out_qsize) {
+ if (xive_get_field32(END_W0_ENQUEUE, end->w0))
+ *out_qsize = cpu_to_be64(xive_get_field32(END_W3_QSIZE, end->w3) + 12);
+ else
+ *out_qsize = 0;
+ }
+ if (out_qeoi_page) {
+ *out_qeoi_page = cpu_to_be64(
+ (uint64_t)x->end_base + idx * XIVE_ESB_PAGE_SIZE);
+ }
+ if (out_qflags) {
+ *out_qflags = 0;
+ if (xive_get_field32(END_W0_VALID, end->w0))
+ *out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ENABLED);
+ if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0))
+ *out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ALWAYS_NOTIFY);
+ if (xive_get_field32(END_W0_ESCALATE_CTL, end->w0))
+ *out_qflags |= cpu_to_be64(OPAL_XIVE_EQ_ESCALATE);
+ }
+
+ return OPAL_SUCCESS;
+}
+
+static void xive_cleanup_end(struct xive_end *end)
+{
+ end->w0 = xive_set_field32(END_W0_FIRMWARE1, 0, xive_end_is_firmware1(end));
+ end->w1 = xive_set_field32(END_W1_ESe_Q, 0, 1) |
+ xive_set_field32(END_W1_ESn_Q, 0, 1);
+ end->w2 = end->w3 = end->w4 = end->w5 = end->w6 = end->w7 = 0;
+}
+
+static int64_t opal_xive_set_queue_info(uint64_t vp, uint32_t prio,
+ uint64_t qpage,
+ uint64_t qsize,
+ uint64_t qflags)
+{
+ uint32_t blk, idx;
+ struct xive *x;
+ struct xive_end *old_end;
+ struct xive_end end;
+ uint32_t vp_blk, vp_idx;
+ bool group;
+ int64_t rc;
+
+ if (!xive_end_for_target(vp, prio, &blk, &idx))
+ return OPAL_PARAMETER;
+
+ x = xive_from_vc_blk(blk);
+ if (!x)
+ return OPAL_PARAMETER;
+
+ old_end = xive_get_end(x, idx);
+ if (!old_end)
+ return OPAL_PARAMETER;
+
+ /* If this is a silent escalation queue, it cannot be
+ * configured directly
+ */
+ if (xive_get_field32(END_W0_SILENT_ESCALATE, old_end->w0))
+ return OPAL_PARAMETER;
+
+ /* This shouldn't fail or xive_end_for_target would have
+ * failed already
+ */
+ if (!xive_decode_vp(vp, &vp_blk, &vp_idx, NULL, &group))
+ return OPAL_PARAMETER;
+
+ /*
+ * Make a local copy which we will later try to commit using
+ * the cache watch facility
+ */
+ end = *old_end;
+
+ if (qflags & OPAL_XIVE_EQ_ENABLED) {
+ switch(qsize) {
+ /* Supported sizes */
+ case 12:
+ case 16:
+ case 21:
+ case 24:
+ end.w3 = cpu_to_be32(qpage & END_W3_EQ_ADDR_LO);
+ end.w2 = cpu_to_be32((qpage >> 32) & END_W2_EQ_ADDR_HI);
+ end.w3 = xive_set_field32(END_W3_QSIZE, end.w3, qsize - 12);
+ end.w0 = xive_set_field32(END_W0_ENQUEUE, end.w0, 1);
+ break;
+ case 0:
+ end.w2 = end.w3 = 0;
+ end.w0 = xive_set_field32(END_W0_ENQUEUE, end.w0, 0);
+ break;
+ default:
+ return OPAL_PARAMETER;
+ }
+
+ /* Ensure the priority and target are correctly set (they will
+ * not be right after allocation
+ */
+ end.w6 = xive_set_field32(END_W6_VP_BLOCK, 0, vp_blk) |
+ xive_set_field32(END_W6_VP_OFFSET, 0, vp_idx);
+ end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0, prio);
+ /* XXX Handle group i bit when needed */
+
+ /* Always notify flag */
+ if (qflags & OPAL_XIVE_EQ_ALWAYS_NOTIFY)
+ end.w0 = xive_set_field32(END_W0_UCOND_NOTIFY, end.w0, 1);
+ else
+ end.w0 = xive_set_field32(END_W0_UCOND_NOTIFY, end.w0, 0);
+
+ /* Escalation flag */
+ if (qflags & OPAL_XIVE_EQ_ESCALATE)
+ end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 1);
+ else
+ end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 0);
+
+ /* Unconditionally clear the current queue pointer, set
+ * generation to 1 and disable escalation interrupts.
+ */
+ end.w1 = xive_set_field32(END_W1_GENERATION, 0, 1) |
+ xive_set_field32(END_W1_ES, 0, xive_get_field32(END_W1_ES, old_end->w1));
+
+ /* Enable. We always enable backlog for an enabled queue
+ * otherwise escalations won't work.
+ */
+ end.w0 = xive_set_field32(END_W0_VALID, end.w0, 1);
+ end.w0 = xive_set_field32(END_W0_BACKLOG, end.w0, 1);
+ } else
+ xive_cleanup_end(&end);
+
+ /* Update END, non-synchronous */
+ lock(&x->lock);
+ rc = xive_endc_cache_update(x, blk, idx, &end, false);
+ unlock(&x->lock);
+
+ return rc;
+}
+
+static int64_t opal_xive_get_queue_state(uint64_t vp, uint32_t prio,
+ beint32_t *out_qtoggle,
+ beint32_t *out_qindex)
+{
+ uint32_t blk, idx;
+ struct xive *x;
+ struct xive_end *end;
+ int64_t rc;
+
+ if (xive_mode != XIVE_MODE_EXPL)
+ return OPAL_WRONG_STATE;
+
+ if (!out_qtoggle || !out_qindex ||
+ !xive_end_for_target(vp, prio, &blk, &idx))
+ return OPAL_PARAMETER;
+
+ x = xive_from_vc_blk(blk);
+ if (!x)
+ return OPAL_PARAMETER;
+
+ end = xive_get_end(x, idx);
+ if (!end)
+ return OPAL_PARAMETER;
+
+ /* Scrub the queue */
+ lock(&x->lock);
+ rc = xive_endc_scrub(x, blk, idx);
+ unlock(&x->lock);
+ if (rc)
+ return rc;
+
+ /* We don't do disable queues */
+ if (!xive_get_field32(END_W0_VALID, end->w0))
+ return OPAL_WRONG_STATE;
+
+ *out_qtoggle = cpu_to_be32(xive_get_field32(END_W1_GENERATION, end->w1));
+ *out_qindex = cpu_to_be32(xive_get_field32(END_W1_PAGE_OFF, end->w1));
+
+ return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_set_queue_state(uint64_t vp, uint32_t prio,
+ uint32_t qtoggle, uint32_t qindex)
+{
+ uint32_t blk, idx;
+ struct xive *x;
+ struct xive_end *end, new_end;
+ int64_t rc;
+
+ if (xive_mode != XIVE_MODE_EXPL)
+ return OPAL_WRONG_STATE;
+
+ if (!xive_end_for_target(vp, prio, &blk, &idx))
+ return OPAL_PARAMETER;
+
+ x = xive_from_vc_blk(blk);
+ if (!x)
+ return OPAL_PARAMETER;
+
+ end = xive_get_end(x, idx);
+ if (!end)
+ return OPAL_PARAMETER;
+
+ /* We don't do disable queues */
+ if (!xive_get_field32(END_W0_VALID, end->w0))
+ return OPAL_WRONG_STATE;
+
+ new_end = *end;
+
+ new_end.w1 = xive_set_field32(END_W1_GENERATION, new_end.w1, qtoggle);
+ new_end.w1 = xive_set_field32(END_W1_PAGE_OFF, new_end.w1, qindex);
+
+ lock(&x->lock);
+ rc = xive_endc_cache_update(x, blk, idx, &new_end, false);
+ unlock(&x->lock);
+
+ return rc;
+}
+
+static int64_t opal_xive_donate_page(uint32_t chip_id, uint64_t addr)
+{
+ struct proc_chip *c = get_chip(chip_id);
+ struct list_node *n;
+
+ if (xive_mode != XIVE_MODE_EXPL)
+ return OPAL_WRONG_STATE;
+ if (!c)
+ return OPAL_PARAMETER;
+ if (!c->xive)
+ return OPAL_PARAMETER;
+ if (addr & 0xffff)
+ return OPAL_PARAMETER;
+
+ n = (struct list_node *)addr;
+ lock(&c->xive->lock);
+ list_add(&c->xive->donated_pages, n);
+ unlock(&c->xive->lock);
+ return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_get_vp_info(uint64_t vp_id,
+ beint64_t *out_flags,
+ beint64_t *out_cam_value,
+ beint64_t *out_report_cl_pair,
+ beint32_t *out_chip_id)
+{
+ struct xive *x;
+ struct xive_nvp *vp;
+ uint32_t blk, idx;
+ bool group;
+
+ if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
+ return OPAL_PARAMETER;
+ /* We don't do groups yet */
+ if (group)
+ return OPAL_PARAMETER;
+ x = xive_from_pc_blk(blk);
+ if (!x)
+ return OPAL_PARAMETER;
+ vp = xive_get_vp(x, idx);
+ if (!vp)
+ return OPAL_PARAMETER;
+
+ if (out_flags) {
+ uint32_t end_blk, end_idx;
+ struct xive_end *end;
+ struct xive *end_x;
+ *out_flags = 0;
+
+ /*
+ * We would like to a way to stash a SW bit in the VP
+ * to know whether silent escalation is enabled or
+ * not, but unlike what happens with ENDs, the PC
+ * cache watch doesn't implement the reserved bit in
+ * the VPs... so we have to go look at END 7 instead.
+ */
+
+ /* Grab END for prio 7 to check for silent escalation */
+ if (!xive_end_for_target(vp_id, xive_escalation_prio(x),
+ &end_blk, &end_idx))
+ return OPAL_PARAMETER;
+
+ end_x = xive_from_vc_blk(end_blk);
+ if (!end_x)
+ return OPAL_PARAMETER;
+
+ end = xive_get_end(x, end_idx);
+ if (!end)
+ return OPAL_PARAMETER;
+ if (xive_get_field32(NVP_W0_VALID, vp->w0))
+ *out_flags |= cpu_to_be64(OPAL_XIVE_VP_ENABLED);
+ if (xive_get_field32(END_W0_SILENT_ESCALATE, end->w0))
+ *out_flags |= cpu_to_be64(OPAL_XIVE_VP_SINGLE_ESCALATION);
+ }
+
+ if (out_cam_value) {
+ uint64_t cam_value;
+
+ cam_value = (blk << x->vp_shift) | idx;
+
+ *out_cam_value = cpu_to_be64(cam_value);
+ }
+
+ if (out_report_cl_pair) {
+ uint64_t report_cl_pair;
+
+ report_cl_pair = ((uint64_t)(be32_to_cpu(vp->w6) & 0x0fffffff)) << 32;
+ report_cl_pair |= be32_to_cpu(vp->w7) & 0xffffff00;
+
+ *out_report_cl_pair = cpu_to_be64(report_cl_pair);
+ }
+
+ if (out_chip_id)
+ *out_chip_id = cpu_to_be32(xive_block_to_chip[blk]);
+
+ return OPAL_SUCCESS;
+}
+
+static int64_t xive_setup_silent_gather(uint64_t vp_id, bool enable)
+{
+ uint32_t blk, idx, i;
+ struct xive_end *end_orig;
+ struct xive_end end;
+ struct xive *x;
+ int64_t rc;
+
+ /* Get base END block */
+ if (!xive_end_for_target(vp_id, 0, &blk, &idx)) {
+ prlog(PR_ERR, "%s: Invalid VP 0x%08llx\n", __func__, vp_id);
+ return OPAL_PARAMETER;
+ }
+ x = xive_from_vc_blk(blk);
+ if (!x) {
+ prlog(PR_ERR, "%s: VP 0x%08llx has invalid block %d\n", __func__,
+ vp_id, blk);
+ return OPAL_PARAMETER;
+ }
+
+ /* Grab prio 7 */
+ end_orig = xive_get_end(x, idx + xive_escalation_prio(x));
+ if (!end_orig) {
+ xive_err(x, "Failed to get silent gather END 0x%x for VP 0x%08llx\n",
+ idx + xive_escalation_prio(x), vp_id);
+ return OPAL_PARAMETER;
+ }
+
+ /* If trying to enable silent gather, make sure prio 7 is not
+ * already enabled as a normal queue
+ */
+ if (enable && xive_get_field32(END_W0_VALID, end_orig->w0) &&
+ !xive_get_field32(END_W0_SILENT_ESCALATE, end_orig->w0)) {
+ xive_err(x, "silent gather END 0x%x already in use\n",
+ idx + xive_escalation_prio(x));
+ return OPAL_PARAMETER;
+ }
+
+ end = *end_orig;
+
+ if (enable) {
+ /* W0: Enabled and "s" set, no other bit */
+ end.w0 = xive_set_field32(END_W0_FIRMWARE1, end.w0, 0);
+ end.w0 = xive_set_field32(END_W0_VALID, end.w0, 1);
+ end.w0 = xive_set_field32(END_W0_SILENT_ESCALATE, end.w0, 1);
+ end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 1);
+ end.w0 = xive_set_field32(END_W0_BACKLOG, end.w0, 1);
+
+ /* Set new "N" for END escalation (vs. ESB) */
+ end.w0 = xive_set_field32(END_W0_ESCALATE_END, end.w0, 1);
+
+ /* W1: Mark ESn as 01, ESe as 00 */
+ end.w1 = xive_set_field32(END_W1_ESn_P, end.w1, 0);
+ end.w1 = xive_set_field32(END_W1_ESn_Q, end.w1, 1);
+ end.w1 = xive_set_field32(END_W1_ESe, end.w1, 0);
+ } else if (xive_get_field32(END_W0_SILENT_ESCALATE, end.w0))
+ xive_cleanup_end(&end);
+
+ if (!memcmp(end_orig, &end, sizeof(end)))
+ rc = 0;
+ else
+ rc = xive_endc_cache_update(x, blk, idx + xive_escalation_prio(x),
+ &end, false);
+ if (rc)
+ return rc;
+
+ /* Mark/unmark all other prios with the new "u" bit and update
+ * escalation
+ */
+ for (i = 0; i < xive_cfg_vp_prio(x); i++) {
+ if (i == xive_escalation_prio(x))
+ continue;
+ end_orig = xive_get_end(x, idx + i);
+ if (!end_orig)
+ continue;
+ end = *end_orig;
+ if (enable) {
+ /* Set "u" bit */
+ end.w0 = xive_set_field32(END_W0_UNCOND_ESCALATE, end.w0, 1);
+
+ /* Set new "N" for END escalation (vs. ESB) */
+ /* TODO (Gen2+) : use ESB escalation configuration */
+ end.w0 = xive_set_field32(END_W0_ESCALATE_END, end.w0, 1);
+
+ /* Re-route escalation interrupt (previous
+ * route is lost !) to the gather queue
+ */
+ end.w4 = xive_set_field32(END_W4_END_BLOCK, end.w4, blk);
+ end.w4 = xive_set_field32(END_W4_ESC_END_INDEX,
+ end.w4, idx + xive_escalation_prio(x));
+ } else if (xive_get_field32(END_W0_UNCOND_ESCALATE, end.w0)) {
+ /* Clear the "u" bit, disable escalations if it was set */
+ end.w0 = xive_set_field32(END_W0_UNCOND_ESCALATE, end.w0, 0);
+ end.w0 = xive_set_field32(END_W0_ESCALATE_CTL, end.w0, 0);
+ }
+ if (!memcmp(end_orig, &end, sizeof(end)))
+ continue;
+ rc = xive_endc_cache_update(x, blk, idx + i, &end, false);
+ if (rc)
+ break;
+ }
+
+ return rc;
+}
+
+static int64_t opal_xive_set_vp_info(uint64_t vp_id,
+ uint64_t flags,
+ uint64_t report_cl_pair)
+{
+ struct xive *x;
+ struct xive_nvp *vp, vp_new;
+ uint32_t blk, idx;
+ bool group;
+ int64_t rc;
+
+ if (!xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
+ return OPAL_PARAMETER;
+ /* We don't do groups yet */
+ if (group)
+ return OPAL_PARAMETER;
+ if (report_cl_pair & 0xff)
+ return OPAL_PARAMETER;
+ x = xive_from_pc_blk(blk);
+ if (!x)
+ return OPAL_PARAMETER;
+ vp = xive_get_vp(x, idx);
+ if (!vp)
+ return OPAL_PARAMETER;
+
+ lock(&x->lock);
+
+ vp_new = *vp;
+ if (flags & OPAL_XIVE_VP_ENABLED) {
+ vp_new.w0 = xive_set_field32(NVP_W0_VALID, vp_new.w0, 1);
+ vp_new.w6 = cpu_to_be32(report_cl_pair >> 32);
+ vp_new.w7 = cpu_to_be32(report_cl_pair & 0xffffffff);
+
+ if (flags & OPAL_XIVE_VP_SINGLE_ESCALATION)
+ rc = xive_setup_silent_gather(vp_id, true);
+ else
+ rc = xive_setup_silent_gather(vp_id, false);
+ } else {
+ /*
+ * TODO (kvm): disabling a VP invalidates the associated ENDs.
+ *
+ * The loads then return all 1s which can be an issue for the
+ * Linux code to handle.
+ */
+
+ vp_new.w0 = vp_new.w6 = vp_new.w7 = 0;
+ rc = xive_setup_silent_gather(vp_id, false);
+ }
+
+ if (rc) {
+ if (rc != OPAL_BUSY)
+ xive_dbg(x, "Silent gather setup failed with err %lld\n", rc);
+ goto bail;
+ }
+
+ rc = xive_nxc_cache_update(x, blk, idx, &vp_new, false);
+ if (rc)
+ goto bail;
+
+ /* When disabling, we scrub clean (invalidate the entry) so
+ * we can avoid cache ops in alloc/free
+ */
+ if (!(flags & OPAL_XIVE_VP_ENABLED))
+ xive_nxc_scrub_clean(x, blk, idx);
+
+bail:
+ unlock(&x->lock);
+ return rc;
+}
+
+static int64_t opal_xive_get_vp_state(uint64_t vp_id, beint64_t *out_state)
+{
+ struct xive *x;
+ struct xive_nvp *vp;
+ uint32_t blk, idx;
+ int64_t rc;
+ bool group;
+
+ if (!out_state || !xive_decode_vp(vp_id, &blk, &idx, NULL, &group))
+ return OPAL_PARAMETER;
+ if (group)
+ return OPAL_PARAMETER;
+ x = xive_from_pc_blk(blk);
+ if (!x)
+ return OPAL_PARAMETER;
+ vp = xive_get_vp(x, idx);
+ if (!vp)
+ return OPAL_PARAMETER;
+
+ /* Scrub the vp */
+ lock(&x->lock);
+ rc = xive_nxc_scrub(x, blk, idx);
+ unlock(&x->lock);
+ if (rc)
+ return rc;
+
+ if (!xive_get_field32(NVP_W0_VALID, vp->w0))
+ return OPAL_WRONG_STATE;
+
+ /*
+ * return a state matching the layout of WORD 0-1 of the TIMA
+ * as this is expected by current implementation.
+ */
+ *out_state = cpu_to_be64(((uint64_t) 0x0) << 54 |
+ (uint64_t)xive_get_field32(NVP_W2_CPPR, vp->w2) << 48 |
+ (uint64_t)xive_get_field32(NVP_W2_IPB, vp->w2) << 40 |
+ (uint64_t)xive_get_field32(NVP_W2_LSMFB, vp->w2) << 32);
+
+ return OPAL_SUCCESS;
+}
+
+static void *xive_cpu_get_tima(struct cpu_thread *c)
+{
+ struct xive_cpu_state *xs = c->xstate;
+ struct xive *x = xs->xive;
+
+ return x->ic_tm_direct_base + ((c->pir & 0xff) << x->ic_shift);
+}
+
+static void xive_cleanup_cpu_tima(struct cpu_thread *c)
+{
+ struct xive_cpu_state *xs __unused = c->xstate;
+ void *cpu_tm_base = xive_cpu_get_tima(c);
+ uint8_t old_w2 __unused, w2 __unused;
+
+ /* Reset the HW context */
+ xive_reset_enable_thread(c);
+
+ /* Set VT to 1 */
+ old_w2 = in_8(cpu_tm_base + TM_QW3_HV_PHYS + TM_WORD2);
+ out_8(cpu_tm_base + TM_QW3_HV_PHYS + TM_WORD2, 0x80);
+ w2 = in_8(cpu_tm_base + TM_QW3_HV_PHYS + TM_WORD2);
+
+ /* Dump HV state */
+ xive_cpu_vdbg(c, "[reset] VP TIMA VP=%x/%x W01=%016llx W2=%02x->%02x\n",
+ xs->vp_blk, xs->vp_idx,
+ in_be64(cpu_tm_base + TM_QW3_HV_PHYS),
+ old_w2, w2);
+}
+
+static int64_t xive_vc_ind_cache_kill(struct xive *x, uint64_t type)
+{
+ uint64_t val;
+
+ /* We clear the whole thing */
+ xive_regw(x, VC_AT_MACRO_KILL_MASK, 0);
+ xive_regw(x, VC_AT_MACRO_KILL, VC_AT_MACRO_KILL_VALID |
+ SETFIELD(VC_AT_MACRO_KILL_VSD, 0ull, type));
+
+ /* XXX Add timeout */
+ for (;;) {
+ val = xive_regr(x, VC_AT_MACRO_KILL);
+ if (!(val & VC_AT_MACRO_KILL_VALID))
+ break;
+ }
+ return 0;
+}
+
+static int64_t xive_pc_ind_cache_kill(struct xive *x)
+{
+ uint64_t val;
+
+ /* We clear the whole thing */
+ xive_regw(x, PC_AT_KILL_MASK, 0);
+ xive_regw(x, PC_AT_KILL, PC_AT_KILL_VALID |
+ SETFIELD(VC_AT_MACRO_KILL_VSD, 0ull, VST_NVP));
+
+ /* XXX Add timeout */
+ for (;;) {
+ val = xive_regr(x, PC_AT_KILL);
+ if (!(val & PC_AT_KILL_VALID))
+ break;
+ }
+ return 0;
+}
+
+static void xive_cleanup_vp_ind(struct xive *x)
+{
+ int i;
+
+ xive_dbg(x, "Cleaning up %d VP ind entries...\n", x->vp_ind_count);
+ for (i = 0; i < x->vp_ind_count; i++) {
+ if (be64_to_cpu(x->vp_ind_base[i]) & VSD_FIRMWARE) {
+ xive_dbg(x, " %04x ... skip (firmware)\n", i);
+ continue;
+ }
+ if (x->vp_ind_base[i] != 0) {
+ x->vp_ind_base[i] = 0;
+ xive_dbg(x, " %04x ... cleaned\n", i);
+ }
+ }
+ xive_pc_ind_cache_kill(x);
+}
+
+static void xive_cleanup_end_ind(struct xive *x)
+{
+ int i;
+
+ xive_dbg(x, "Cleaning up %d END ind entries...\n", x->end_ind_count);
+ for (i = 0; i < x->end_ind_count; i++) {
+ if (be64_to_cpu(x->end_ind_base[i]) & VSD_FIRMWARE) {
+ xive_dbg(x, " %04x ... skip (firmware)\n", i);
+ continue;
+ }
+ if (x->end_ind_base[i] != 0) {
+ x->end_ind_base[i] = 0;
+ xive_dbg(x, " %04x ... cleaned\n", i);
+ }
+ }
+ xive_vc_ind_cache_kill(x, VST_END);
+}
+
+static void xive_reset_one(struct xive *x)
+{
+ struct cpu_thread *c;
+ bool end_firmware;
+ int i;
+
+ xive_notice(x, "Resetting one xive...\n");
+
+ lock(&x->lock);
+
+ /* Check all interrupts are disabled */
+ i = bitmap_find_one_bit(*x->int_enabled_map, 0, XIVE_INT_COUNT);
+ if (i >= 0)
+ xive_warn(x, "Interrupt %d (and maybe more) not disabled"
+ " at reset !\n", i);
+
+ /* Reset IPI allocation */
+ xive_dbg(x, "freeing alloc map %p/%p\n",
+ x->ipi_alloc_map, *x->ipi_alloc_map);
+ memset(x->ipi_alloc_map, 0, BITMAP_BYTES(XIVE_INT_COUNT));
+
+ xive_dbg(x, "Resetting ENDs...\n");
+
+ /* Reset all allocated ENDs and free the user ones */
+ bitmap_for_each_one(*x->end_map, xive_end_bitmap_size(x), i) {
+ struct xive_end end0;
+ struct xive_end *end;
+ int j;
+
+ if (i == 0)
+ continue;
+ end_firmware = false;
+ for (j = 0; j < xive_cfg_vp_prio(x); j++) {
+ uint32_t idx = (i << xive_cfg_vp_prio_shift(x)) | j;
+
+ end = xive_get_end(x, idx);
+ if (!end)
+ continue;
+
+ /* We need to preserve the firmware bit, otherwise
+ * we will incorrectly free the ENDs that are reserved
+ * for the physical CPUs
+ */
+ if (xive_get_field32(END_W0_VALID, end->w0)) {
+ if (!xive_end_is_firmware1(end))
+ xive_dbg(x, "END 0x%x:0x%x is valid at reset: %08x %08x\n",
+ x->block_id, idx, end->w0, end->w1);
+ end0 = *end;
+ xive_cleanup_end(&end0);
+ xive_endc_cache_update(x, x->block_id, idx, &end0, true);
+ }
+ if (xive_end_is_firmware1(end))
+ end_firmware = true;
+ }
+ if (!end_firmware)
+ bitmap_clr_bit(*x->end_map, i);
+ }
+
+ /* Take out all VPs from HW and reset all CPPRs to 0 */
+ for_each_present_cpu(c) {
+ if (c->chip_id != x->chip_id)
+ continue;
+ if (!c->xstate)
+ continue;
+ xive_cleanup_cpu_tima(c);
+ }
+
+ /* Reset all user-allocated VPs. This is inefficient, we should
+ * either keep a bitmap of allocated VPs or add an iterator to
+ * the buddy which is trickier but doable.
+ */
+ for (i = 0; i < XIVE_VP_COUNT(x); i++) {
+ struct xive_nvp *vp;
+ struct xive_nvp vp0 = {0};
+
+ /* Ignore the physical CPU VPs */
+ if (i >= xive_hw_vp_count &&
+ i < (xive_hw_vp_base + xive_hw_vp_count))
+ continue;
+
+ /* Is the VP valid ? */
+ vp = xive_get_vp(x, i);
+ if (!vp || !xive_get_field32(NVP_W0_VALID, vp->w0))
+ continue;
+
+ /* Clear it */
+ xive_dbg(x, "VP 0x%x:0x%x is valid at reset\n", x->block_id, i);
+ xive_nxc_cache_update(x, x->block_id, i, &vp0, true);
+ }
+
+ /* Forget about remaining donated pages */
+ list_head_init(&x->donated_pages);
+
+ /* And cleanup donated indirect VP and END pages */
+ xive_cleanup_vp_ind(x);
+ xive_cleanup_end_ind(x);
+
+ /* The rest must not be called with the lock held */
+ unlock(&x->lock);
+
+ /* Re-configure VPs */
+ for_each_present_cpu(c) {
+ struct xive_cpu_state *xs = c->xstate;
+
+ if (c->chip_id != x->chip_id || !xs)
+ continue;
+
+ xive_init_cpu_exploitation(xs);
+ }
+}
+
+static void xive_reset_mask_source_cb(struct irq_source *is,
+ void *data __unused)
+{
+ struct xive_src *s = container_of(is, struct xive_src, is);
+ struct xive *x;
+ uint32_t isn;
+
+ if (is->ops != &xive_irq_source_ops)
+ return;
+
+ /* Skip escalation sources */
+ if (GIRQ_IS_ESCALATION(is->start))
+ return;
+
+ x = s->xive;
+
+ /* Iterate all interrupts */
+ for (isn = is->start; isn < is->end; isn++) {
+ /* Has it ever been enabled ? */
+ if (!bitmap_tst_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn)))
+ continue;
+ /* Mask it and clear the enabled map bit */
+ xive_vdbg(x, "[reset] disabling source 0x%x\n", isn);
+ __xive_set_irq_config(is, isn, 0, 0xff, isn, true, false);
+ bitmap_clr_bit(*x->int_enabled_map, GIRQ_TO_IDX(isn));
+ }
+}
+
+void xive2_cpu_reset(void)
+{
+ struct cpu_thread *c = this_cpu();
+ struct xive_cpu_state *xs = c->xstate;
+
+ out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, 0);
+
+ in_be64(xs->tm_ring1 + TM_SPC_PULL_POOL_CTX);
+}
+
+static int64_t __xive_reset(uint64_t version)
+{
+ struct proc_chip *chip;
+
+ xive_mode = version;
+
+ /* Mask all interrupt sources */
+ irq_for_each_source(xive_reset_mask_source_cb, NULL);
+
+ /* For each XIVE do a sync... */
+ for_each_chip(chip) {
+ if (!chip->xive)
+ continue;
+ xive_sync(chip->xive);
+ }
+
+ /* For each XIVE reset everything else... */
+ for_each_chip(chip) {
+ if (!chip->xive)
+ continue;
+ xive_reset_one(chip->xive);
+ }
+
+ /* Cleanup global VP allocator */
+ buddy_reset(xive_vp_buddy);
+
+ /*
+ * We reserve the whole range of VP ids for HW threads.
+ */
+ assert(buddy_reserve(xive_vp_buddy, xive_hw_vp_base, xive_threadid_shift));
+
+ return OPAL_SUCCESS;
+}
+
+/* Called by fast reboot */
+int64_t xive2_reset(void)
+{
+ if (xive_mode == XIVE_MODE_NONE)
+ return OPAL_SUCCESS;
+ return __xive_reset(XIVE_MODE_EXPL);
+}
+
+static int64_t opal_xive_reset(uint64_t version)
+{
+ prlog(PR_DEBUG, "XIVE reset, version: %d...\n", (int)version);
+
+ if (version != XIVE_MODE_EXPL) {
+ prerror("ignoring version %lld at reset. "
+ "XIVE exploitation mode is the default\n", version);
+ }
+
+ return __xive_reset(XIVE_MODE_EXPL);
+}
+
+static int64_t opal_xive_free_vp_block(uint64_t vp_base)
+{
+ uint32_t blk, idx, i, j, count;
+ uint8_t order;
+ bool group;
+
+ if (xive_mode != XIVE_MODE_EXPL)
+ return OPAL_WRONG_STATE;
+
+ if (!xive_decode_vp(vp_base, &blk, &idx, &order, &group))
+ return OPAL_PARAMETER;
+ if (group)
+ return OPAL_PARAMETER;
+ if (blk)
+ return OPAL_PARAMETER;
+ if (order < (xive_chips_alloc_bits + 1))
+ return OPAL_PARAMETER;
+ if (idx & ((1 << (order - xive_chips_alloc_bits)) - 1))
+ return OPAL_PARAMETER;
+
+ count = 1 << order;
+ for (i = 0; i < count; i++) {
+ uint32_t vp_id = vp_base + i;
+ uint32_t blk, idx, end_blk, end_idx;
+ struct xive *x;
+ struct xive_nvp *vp;
+
+ if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) {
+ prerror("Couldn't decode VP id %u\n", vp_id);
+ return OPAL_INTERNAL_ERROR;
+ }
+ x = xive_from_pc_blk(blk);
+ if (!x) {
+ prerror("Instance not found for deallocated VP"
+ " block %d\n", blk);
+ return OPAL_INTERNAL_ERROR;
+ }
+ vp = xive_get_vp(x, idx);
+ if (!vp) {
+ prerror("VP not found for deallocation !");
+ return OPAL_INTERNAL_ERROR;
+ }
+
+ /* VP must be disabled */
+ if (xive_get_field32(NVP_W0_VALID, vp->w0)) {
+ prlog(PR_ERR, "freeing active VP %d\n", vp_id);
+ return OPAL_XIVE_FREE_ACTIVE;
+ }
+
+ /* Not populated */
+ if (vp->w5 == 0)
+ continue;
+
+ end_blk = xive_get_field32(NVP_W5_VP_END_BLOCK, vp->w5);
+ end_idx = xive_get_field32(NVP_W5_VP_END_INDEX, vp->w5);
+
+ lock(&x->lock);
+
+ /* Ensure ENDs are disabled and cleaned up. Ideally the caller
+ * should have done it but we double check it here
+ */
+ for (j = 0; j < xive_cfg_vp_prio(x); j++) {
+ struct xive *end_x = xive_from_vc_blk(end_blk);
+ struct xive_end end, *orig_end = xive_get_end(end_x, end_idx + j);
+
+ if (!xive_get_field32(END_W0_VALID, orig_end->w0))
+ continue;
+
+ prlog(PR_WARNING, "freeing VP %d with queue %d active\n",
+ vp_id, j);
+ end = *orig_end;
+ xive_cleanup_end(&end);
+ xive_endc_cache_update(x, end_blk, end_idx + j, &end, true);
+ }
+
+ /* Mark it not populated so we don't try to free it again */
+ vp->w5 = 0;
+
+ if (end_blk != blk) {
+ prerror("Block mismatch trying to free ENDs\n");
+ unlock(&x->lock);
+ return OPAL_INTERNAL_ERROR;
+ }
+
+ xive_free_end_set(x, end_idx);
+ unlock(&x->lock);
+ }
+
+ xive_free_vps(vp_base);
+
+ return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_alloc_vp_block(uint32_t alloc_order)
+{
+ uint32_t vp_base, ends, count, i;
+ int64_t rc;
+
+ if (xive_mode != XIVE_MODE_EXPL)
+ return OPAL_WRONG_STATE;
+
+ prlog(PR_TRACE, "opal_xive_alloc_vp_block(%d)\n", alloc_order);
+
+ vp_base = xive_alloc_vps(alloc_order);
+ if (XIVE_ALLOC_IS_ERR(vp_base)) {
+ if (vp_base == XIVE_ALLOC_NO_IND)
+ return OPAL_XIVE_PROVISIONING;
+ return OPAL_RESOURCE;
+ }
+
+ /* Allocate ENDs and initialize VPs */
+ count = 1 << alloc_order;
+ for (i = 0; i < count; i++) {
+ uint32_t vp_id = vp_base + i;
+ uint32_t blk, idx;
+ struct xive *x;
+ struct xive_nvp *vp;
+
+ if (!xive_decode_vp(vp_id, &blk, &idx, NULL, NULL)) {
+ prerror("Couldn't decode VP id %u\n", vp_id);
+ return OPAL_INTERNAL_ERROR;
+ }
+ x = xive_from_pc_blk(blk);
+ if (!x) {
+ prerror("Instance not found for allocated VP"
+ " block %d\n", blk);
+ rc = OPAL_INTERNAL_ERROR;
+ goto fail;
+ }
+ vp = xive_get_vp(x, idx);
+ if (!vp) {
+ prerror("VP not found after allocation !");
+ rc = OPAL_INTERNAL_ERROR;
+ goto fail;
+ }
+
+ /* Allocate ENDs, if fails, free the VPs and return */
+ lock(&x->lock);
+ ends = xive_alloc_end_set(x, false);
+ unlock(&x->lock);
+ if (XIVE_ALLOC_IS_ERR(ends)) {
+ if (ends == XIVE_ALLOC_NO_IND)
+ rc = OPAL_XIVE_PROVISIONING;
+ else
+ rc = OPAL_RESOURCE;
+ goto fail;
+ }
+
+ /* Initialize the VP structure. We don't use a cache watch
+ * as we have made sure when freeing the entries to scrub
+ * it out of the cache.
+ */
+ memset(vp, 0, sizeof(*vp));
+
+ /* Store the END base of the VP in W5 (new in p10) */
+ xive_vp_set_end_base(vp, blk, ends);
+ }
+ return vp_base;
+ fail:
+ opal_xive_free_vp_block(vp_base);
+
+ return rc;
+}
+
+static int64_t xive_try_allocate_irq(struct xive *x)
+{
+ int idx, base_idx, max_count, girq;
+ struct xive_eas *eas;
+
+ lock(&x->lock);
+
+ base_idx = x->int_ipi_top - x->int_base;
+ max_count = x->int_hw_bot - x->int_ipi_top;
+
+ idx = bitmap_find_zero_bit(*x->ipi_alloc_map, base_idx, max_count);
+ if (idx < 0) {
+ unlock(&x->lock);
+ return OPAL_RESOURCE;
+ }
+ bitmap_set_bit(*x->ipi_alloc_map, idx);
+ girq = x->int_base + idx;
+
+ /* Mark the EAS valid. Don't bother with the HW cache, it's
+ * still masked anyway, the cache will be updated when unmasked
+ * and configured.
+ */
+ eas = xive_get_eas(x, girq);
+ if (!eas) {
+ bitmap_clr_bit(*x->ipi_alloc_map, idx);
+ unlock(&x->lock);
+ return OPAL_PARAMETER;
+ }
+ eas->w = xive_set_field64(EAS_VALID, 0, 1) |
+ xive_set_field64(EAS_MASKED, 0, 1) |
+ xive_set_field64(EAS_END_DATA, 0, girq);
+ unlock(&x->lock);
+
+ return girq;
+}
+
+static int64_t opal_xive_allocate_irq(uint32_t chip_id)
+{
+ struct proc_chip *chip;
+ bool try_all = false;
+ int64_t rc;
+
+ if (xive_mode != XIVE_MODE_EXPL)
+ return OPAL_WRONG_STATE;
+
+ if (chip_id == OPAL_XIVE_ANY_CHIP) {
+ try_all = true;
+ chip_id = this_cpu()->chip_id;
+ }
+ chip = get_chip(chip_id);
+ if (!chip)
+ return OPAL_PARAMETER;
+
+ /* Try initial target chip */
+ if (!chip->xive)
+ rc = OPAL_PARAMETER;
+ else
+ rc = xive_try_allocate_irq(chip->xive);
+ if (rc >= 0 || !try_all)
+ return rc;
+
+ /* Failed and we try all... do so */
+ for_each_chip(chip) {
+ if (!chip->xive)
+ continue;
+ rc = xive_try_allocate_irq(chip->xive);
+ if (rc >= 0)
+ break;
+ }
+ return rc;
+}
+
+static int64_t opal_xive_free_irq(uint32_t girq)
+{
+ struct irq_source *is = irq_find_source(girq);
+ struct xive_src *s = container_of(is, struct xive_src, is);
+ struct xive *x = xive_from_isn(girq);
+ struct xive_eas *eas;
+ uint32_t idx;
+
+ if (xive_mode != XIVE_MODE_EXPL)
+ return OPAL_WRONG_STATE;
+ if (!x || !is)
+ return OPAL_PARAMETER;
+
+ idx = GIRQ_TO_IDX(girq);
+
+ lock(&x->lock);
+
+ eas = xive_get_eas(x, girq);
+ if (!eas) {
+ unlock(&x->lock);
+ return OPAL_PARAMETER;
+ }
+
+ /* Mask the interrupt source */
+ xive_update_irq_mask(s, girq - s->esb_base, true);
+
+ /* Mark the EAS masked and invalid */
+ eas->w = xive_set_field64(EAS_VALID, 0, 1) |
+ xive_set_field64(EAS_MASKED, 0, 1);
+ xive_easc_scrub(x, x->block_id, idx);
+
+ /* Free it */
+ if (!bitmap_tst_bit(*x->ipi_alloc_map, idx)) {
+ unlock(&x->lock);
+ return OPAL_PARAMETER;
+ }
+ bitmap_clr_bit(*x->ipi_alloc_map, idx);
+ bitmap_clr_bit(*x->int_enabled_map, idx);
+ unlock(&x->lock);
+
+ return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_dump_tm(uint32_t offset, const char *n, uint32_t pir)
+{
+ struct cpu_thread *c = find_cpu_by_pir(pir);
+ struct xive_cpu_state *xs;
+ struct xive *x;
+ void *cpu_tm_base;
+ uint64_t v0,v1;
+
+ if (!c)
+ return OPAL_PARAMETER;
+ xs = c->xstate;
+ if (!xs || !xs->tm_ring1)
+ return OPAL_INTERNAL_ERROR;
+ x = xs->xive;
+ cpu_tm_base = xive_cpu_get_tima(c);
+
+ lock(&x->lock);
+ v0 = in_be64(cpu_tm_base + offset);
+ if (offset == TM_QW3_HV_PHYS) {
+ v1 = in_8(cpu_tm_base + offset + 8);
+ v1 <<= 56;
+ } else {
+ v1 = in_be32(cpu_tm_base + offset + 8);
+ v1 <<= 32;
+ }
+ prlog(PR_INFO, "CPU[%04x]: TM state for QW %s\n", pir, n);
+ prlog(PR_INFO, "CPU[%04x]: NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
+ " W2 W3\n", pir);
+ prlog(PR_INFO, "CPU[%04x]: %02x %02x %02x %02x %02x "
+ "%02x %02x %02x %08x %08x\n", pir,
+ (uint8_t)(v0 >> 58) & 0xff, (uint8_t)(v0 >> 48) & 0xff,
+ (uint8_t)(v0 >> 40) & 0xff, (uint8_t)(v0 >> 32) & 0xff,
+ (uint8_t)(v0 >> 24) & 0xff, (uint8_t)(v0 >> 16) & 0xff,
+ (uint8_t)(v0 >> 8) & 0xff, (uint8_t)(v0 ) & 0xff,
+ (uint32_t)(v1 >> 32) & 0xffffffff,
+ (uint32_t)(v1 & 0xffffffff));
+ unlock(&x->lock);
+
+ return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_dump_vp(uint32_t vp_id)
+{
+ uint32_t blk, idx;
+ uint8_t order;
+ bool group;
+ struct xive *x;
+ struct xive_nvp *vp;
+ uint32_t *vpw;
+
+ if (!xive_decode_vp(vp_id, &blk, &idx, &order, &group))
+ return OPAL_PARAMETER;
+
+ x = xive_from_vc_blk(blk);
+ if (!x)
+ return OPAL_PARAMETER;
+ vp = xive_get_vp(x, idx);
+ if (!vp)
+ return OPAL_PARAMETER;
+ lock(&x->lock);
+
+ xive_nxc_scrub_clean(x, blk, idx);
+
+ vpw = ((uint32_t *)vp) + (group ? 8 : 0);
+ prlog(PR_INFO, "VP[%08x]: 0..3: %08x %08x %08x %08x\n", vp_id,
+ vpw[0], vpw[1], vpw[2], vpw[3]);
+ prlog(PR_INFO, "VP[%08x]: 4..7: %08x %08x %08x %08x\n", vp_id,
+ vpw[4], vpw[5], vpw[6], vpw[7]);
+ unlock(&x->lock);
+
+ return OPAL_SUCCESS;
+}
+
+static int64_t opal_xive_sync_irq_src(uint32_t girq)
+{
+ struct xive *x = xive_from_isn(girq);
+
+ if (!x)
+ return OPAL_PARAMETER;
+ return xive_sync(x);
+}
+
+static int64_t opal_xive_sync_irq_target(uint32_t girq)
+{
+ uint32_t target, vp_blk;
+ struct xive *x;
+
+ if (!xive_get_irq_targetting(girq, &target, NULL, NULL))
+ return OPAL_PARAMETER;
+ if (!xive_decode_vp(target, &vp_blk, NULL, NULL, NULL))
+ return OPAL_PARAMETER;
+ x = xive_from_pc_blk(vp_blk);
+ if (!x)
+ return OPAL_PARAMETER;
+ return xive_sync(x);
+}
+
+static int64_t opal_xive_sync(uint32_t type, uint32_t id)
+{
+ int64_t rc = OPAL_SUCCESS;;
+
+ if (type & XIVE_SYNC_EAS)
+ rc = opal_xive_sync_irq_src(id);
+ if (rc)
+ return rc;
+ if (type & XIVE_SYNC_QUEUE)
+ rc = opal_xive_sync_irq_target(id);
+ if (rc)
+ return rc;
+
+ /* Add more ... */
+
+ return rc;
+}
+
+static int64_t opal_xive_dump(uint32_t type, uint32_t id)
+{
+ switch (type) {
+ case XIVE_DUMP_TM_HYP:
+ return opal_xive_dump_tm(TM_QW3_HV_PHYS, "PHYS", id);
+ case XIVE_DUMP_TM_POOL:
+ return opal_xive_dump_tm(TM_QW2_HV_POOL, "POOL", id);
+ case XIVE_DUMP_TM_OS:
+ return opal_xive_dump_tm(TM_QW1_OS, "OS ", id);
+ case XIVE_DUMP_TM_USER:
+ return opal_xive_dump_tm(TM_QW0_USER, "USER", id);
+ case XIVE_DUMP_VP:
+ return opal_xive_dump_vp(id);
+ default:
+ return OPAL_PARAMETER;
+ }
+}
+
+static void xive_init_globals(void)
+{
+ uint32_t i;
+
+ for (i = 0; i < XIVE_MAX_CHIPS; i++)
+ xive_block_to_chip[i] = XIVE_INVALID_CHIP;
+}
+
+void xive2_init(void)
+{
+ struct dt_node *np;
+ struct proc_chip *chip;
+ struct cpu_thread *cpu;
+ bool first = true;
+
+ /* Look for xive nodes and do basic inits */
+ dt_for_each_compatible(dt_root, np, "ibm,power10-xive-x") {
+ struct xive *x;
+
+ /* Initialize some global stuff */
+ if (first)
+ xive_init_globals();
+
+ /* Create/initialize the xive instance */
+ x = init_one_xive(np);
+ if (first)
+ one_xive = x;
+ first = false;
+ }
+ if (first)
+ return;
+
+ /*
+ * P8 emulation is not supported on P10 anymore. Exploitation
+ * is the default XIVE mode. We might introduce a GEN2 mode.
+ */
+ xive_mode = XIVE_MODE_EXPL;
+
+ /* Init VP allocator */
+ xive_init_vp_allocator();
+
+ /* Create a device-tree node for Linux use */
+ xive_create_mmio_dt_node(one_xive);
+
+ /* Some inits must be done after all xive have been created
+ * such as setting up the forwarding ports
+ */
+ for_each_chip(chip) {
+ if (chip->xive)
+ late_init_one_xive(chip->xive);
+ }
+
+ /* Initialize per-cpu structures */
+ for_each_present_cpu(cpu) {
+ xive_init_cpu(cpu);
+ }
+
+ /* Calling boot CPU */
+ xive2_cpu_callin(this_cpu());
+
+ /* Register XIVE exploitation calls */
+ opal_register(OPAL_XIVE_RESET, opal_xive_reset, 1);
+ opal_register(OPAL_XIVE_GET_IRQ_INFO, opal_xive_get_irq_info, 6);
+ opal_register(OPAL_XIVE_GET_IRQ_CONFIG, opal_xive_get_irq_config, 4);
+ opal_register(OPAL_XIVE_SET_IRQ_CONFIG, opal_xive_set_irq_config, 4);
+ opal_register(OPAL_XIVE_GET_QUEUE_INFO, opal_xive_get_queue_info, 7);
+ opal_register(OPAL_XIVE_SET_QUEUE_INFO, opal_xive_set_queue_info, 5);
+ opal_register(OPAL_XIVE_DONATE_PAGE, opal_xive_donate_page, 2);
+ opal_register(OPAL_XIVE_ALLOCATE_IRQ, opal_xive_allocate_irq, 1);
+ opal_register(OPAL_XIVE_FREE_IRQ, opal_xive_free_irq, 1);
+ opal_register(OPAL_XIVE_ALLOCATE_VP_BLOCK, opal_xive_alloc_vp_block, 1);
+ opal_register(OPAL_XIVE_FREE_VP_BLOCK, opal_xive_free_vp_block, 1);
+ opal_register(OPAL_XIVE_GET_VP_INFO, opal_xive_get_vp_info, 5);
+ opal_register(OPAL_XIVE_SET_VP_INFO, opal_xive_set_vp_info, 3);
+ opal_register(OPAL_XIVE_SYNC, opal_xive_sync, 2);
+ opal_register(OPAL_XIVE_DUMP, opal_xive_dump, 2);
+ opal_register(OPAL_XIVE_GET_QUEUE_STATE, opal_xive_get_queue_state, 4);
+ opal_register(OPAL_XIVE_SET_QUEUE_STATE, opal_xive_set_queue_state, 4);
+ opal_register(OPAL_XIVE_GET_VP_STATE, opal_xive_get_vp_state, 2);
+}