1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
// PCI config space access functions.
//
// Copyright (C) 2008 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "pci.h" // pci_config_writel
#include "ioport.h" // outl
#include "util.h" // dprintf
#include "config.h" // CONFIG_*
#include "farptr.h" // CONFIG_*
#include "pci_regs.h" // PCI_VENDOR_ID
#include "pci_ids.h" // PCI_CLASS_DISPLAY_VGA
void pci_config_writel(u16 bdf, u32 addr, u32 val)
{
outl(0x80000000 | (bdf << 8) | (addr & 0xfc), PORT_PCI_CMD);
outl(val, PORT_PCI_DATA);
}
void pci_config_writew(u16 bdf, u32 addr, u16 val)
{
outl(0x80000000 | (bdf << 8) | (addr & 0xfc), PORT_PCI_CMD);
outw(val, PORT_PCI_DATA + (addr & 2));
}
void pci_config_writeb(u16 bdf, u32 addr, u8 val)
{
outl(0x80000000 | (bdf << 8) | (addr & 0xfc), PORT_PCI_CMD);
outb(val, PORT_PCI_DATA + (addr & 3));
}
u32 pci_config_readl(u16 bdf, u32 addr)
{
outl(0x80000000 | (bdf << 8) | (addr & 0xfc), PORT_PCI_CMD);
return inl(PORT_PCI_DATA);
}
u16 pci_config_readw(u16 bdf, u32 addr)
{
outl(0x80000000 | (bdf << 8) | (addr & 0xfc), PORT_PCI_CMD);
return inw(PORT_PCI_DATA + (addr & 2));
}
u8 pci_config_readb(u16 bdf, u32 addr)
{
outl(0x80000000 | (bdf << 8) | (addr & 0xfc), PORT_PCI_CMD);
return inb(PORT_PCI_DATA + (addr & 3));
}
void
pci_config_maskw(u16 bdf, u32 addr, u16 off, u16 on)
{
u16 val = pci_config_readw(bdf, addr);
val = (val & ~off) | on;
pci_config_writew(bdf, addr, val);
}
// Helper function for foreachbdf() macro - return next device
int
pci_next(int bdf, int bus)
{
if (pci_bdf_to_fn(bdf) == 0
&& (pci_config_readb(bdf, PCI_HEADER_TYPE) & 0x80) == 0)
// Last found device wasn't a multi-function device - skip to
// the next device.
bdf += 8;
else
bdf += 1;
for (;;) {
if (pci_bdf_to_bus(bdf) != bus)
return -1;
u16 v = pci_config_readw(bdf, PCI_VENDOR_ID);
if (v != 0x0000 && v != 0xffff)
// Device is present.
return bdf;
if (pci_bdf_to_fn(bdf) == 0)
bdf += 8;
else
bdf += 1;
}
}
struct pci_device *PCIDevices;
int MaxPCIBus VAR16VISIBLE;
// Find all PCI devices and populate PCIDevices linked list.
void
pci_probe(void)
{
dprintf(3, "PCI probe\n");
if (CONFIG_PCI_ROOT1 && CONFIG_PCI_ROOT1 > MaxPCIBus)
MaxPCIBus = CONFIG_PCI_ROOT1;
if (CONFIG_PCI_ROOT2 && CONFIG_PCI_ROOT2 > MaxPCIBus)
MaxPCIBus = CONFIG_PCI_ROOT2;
struct pci_device *busdevs[256];
memset(busdevs, 0, sizeof(busdevs));
struct pci_device **pprev = &PCIDevices;
int bus = -1, lastbus = 0, rootbuses = 0, count=0;
while (bus < MaxPCIBus) {
bus++;
int bdf;
foreachbdf(bdf, bus) {
// Create new pci_device struct and add to list.
struct pci_device *dev = malloc_tmp(sizeof(*dev));
if (!dev) {
warn_noalloc();
return;
}
memset(dev, 0, sizeof(*dev));
*pprev = dev;
pprev = &dev->next;
count++;
// Find parent device.
int rootbus;
struct pci_device *parent = busdevs[bus];
if (!parent) {
if (bus != lastbus)
rootbuses++;
lastbus = bus;
rootbus = rootbuses;
} else {
rootbus = parent->rootbus;
}
// Populate pci_device info.
dev->bdf = bdf;
dev->parent = parent;
dev->rootbus = rootbus;
u32 vendev = pci_config_readl(bdf, PCI_VENDOR_ID);
dev->vendor = vendev & 0xffff;
dev->device = vendev >> 16;
u32 classrev = pci_config_readl(bdf, PCI_CLASS_REVISION);
dev->class = classrev >> 16;
dev->prog_if = classrev >> 8;
dev->revision = classrev & 0xff;
dev->header_type = pci_config_readb(bdf, PCI_HEADER_TYPE);
u8 v = dev->header_type & 0x7f;
if (v == PCI_HEADER_TYPE_BRIDGE || v == PCI_HEADER_TYPE_CARDBUS) {
u8 secbus = pci_config_readb(bdf, PCI_SECONDARY_BUS);
dev->secondary_bus = secbus;
if (secbus > bus && !busdevs[secbus])
busdevs[secbus] = dev;
if (secbus > MaxPCIBus)
MaxPCIBus = secbus;
}
dprintf(4, "PCI device %02x:%02x.%x (vd=%04x:%04x c=%04x)\n"
, pci_bdf_to_bus(bdf), pci_bdf_to_dev(bdf)
, pci_bdf_to_fn(bdf)
, dev->vendor, dev->device, dev->class);
}
}
dprintf(1, "Found %d PCI devices (max PCI bus is %02x)\n", count, MaxPCIBus);
}
// Search for a device with the specified vendor and device ids.
struct pci_device *
pci_find_device(u16 vendid, u16 devid)
{
struct pci_device *pci;
foreachpci(pci) {
if (pci->vendor == vendid && pci->device == devid)
return pci;
}
return NULL;
}
// Search for a device with the specified class id.
struct pci_device *
pci_find_class(u16 classid)
{
struct pci_device *pci;
foreachpci(pci) {
if (pci->class == classid)
return pci;
}
return NULL;
}
int pci_init_device(const struct pci_device_id *ids
, struct pci_device *pci, void *arg)
{
while (ids->vendid || ids->class_mask) {
if ((ids->vendid == PCI_ANY_ID || ids->vendid == pci->vendor) &&
(ids->devid == PCI_ANY_ID || ids->devid == pci->device) &&
!((ids->class ^ pci->class) & ids->class_mask)) {
if (ids->func)
ids->func(pci, arg);
return 0;
}
ids++;
}
return -1;
}
struct pci_device *
pci_find_init_device(const struct pci_device_id *ids, void *arg)
{
struct pci_device *pci;
foreachpci(pci) {
if (pci_init_device(ids, pci, arg) == 0)
return pci;
}
return NULL;
}
void
pci_reboot(void)
{
u8 v = inb(PORT_PCI_REBOOT) & ~6;
outb(v|2, PORT_PCI_REBOOT); /* Request hard reset */
udelay(50);
outb(v|6, PORT_PCI_REBOOT); /* Actually do the reset */
udelay(50);
}
// helper functions to access pci mmio bars from real mode
u32 VISIBLE32FLAT
pci_readl_32(u32 addr)
{
dprintf(3, "32: pci read : %x\n", addr);
return readl((void*)addr);
}
u32 pci_readl(u32 addr)
{
if (MODESEGMENT) {
dprintf(3, "16: pci read : %x\n", addr);
extern void _cfunc32flat_pci_readl_32(u32 addr);
return call32(_cfunc32flat_pci_readl_32, addr, -1);
} else {
return pci_readl_32(addr);
}
}
struct reg32 {
u32 addr;
u32 data;
};
void VISIBLE32FLAT
pci_writel_32(struct reg32 *reg32)
{
dprintf(3, "32: pci write: %x, %x (%p)\n", reg32->addr, reg32->data, reg32);
writel((void*)(reg32->addr), reg32->data);
}
void pci_writel(u32 addr, u32 val)
{
struct reg32 reg32 = { .addr = addr, .data = val };
if (MODESEGMENT) {
dprintf(3, "16: pci write: %x, %x (%x:%p)\n",
reg32.addr, reg32.data, GET_SEG(SS), ®32);
void *flatptr = MAKE_FLATPTR(GET_SEG(SS), ®32);
extern void _cfunc32flat_pci_writel_32(struct reg32 *reg32);
call32(_cfunc32flat_pci_writel_32, (u32)flatptr, -1);
} else {
pci_writel_32(®32);
}
}
|