// PCI SD Host Controller Interface // // Copyright (C) 2014 Kevin O'Connor // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "block.h" // struct drive_s #include "malloc.h" // malloc_fseg #include "output.h" // znprintf #include "pcidevice.h" // foreachpci #include "pci_ids.h" // PCI_CLASS_SYSTEM_SDHCI #include "pci_regs.h" // PCI_BASE_ADDRESS_0 #include "romfile.h" // romfile_findprefix #include "stacks.h" // yield #include "std/disk.h" // DISK_RET_SUCCESS #include "string.h" // memset #include "util.h" // boot_add_hd #include "x86.h" // writel // SDHCI MMIO registers struct sdhci_s { u32 sdma_addr; u16 block_size; u16 block_count; u32 arg; u16 transfer_mode; u16 cmd; u32 response[4]; u32 data; u32 present_state; u8 host_control; u8 power_control; u8 block_gap_control; u8 wakeup_control; u16 clock_control; u8 timeout_control; u8 software_reset; u16 irq_status; u16 error_irq_status; u16 irq_enable; u16 error_irq_enable; u16 irq_signal; u16 error_signal; u16 auto_cmd12; u16 host_control2; u32 cap_lo, cap_hi; u64 max_current; u16 force_auto_cmd12; u16 force_error; u8 adma_error; u8 pad_55[3]; u64 adma_addr; u8 pad_60[156]; u16 slot_irq; u16 controller_version; } PACKED; // SDHCI commands #define SCB_R0 0x00 // No response #define SCB_R48 0x1a // Response R1 (no data), R5, R6, R7 #define SCB_R48d 0x3a // Response R1 (with data) #define SCB_R48b 0x1b // Response R1b, R5b #define SCB_R48o 0x02 // Response R3, R4 #define SCB_R136 0x09 // Response R2 #define SC_GO_IDLE_STATE ((0<<8) | SCB_R0) #define SC_SEND_OP_COND ((1<<8) | SCB_R48o) #define SC_ALL_SEND_CID ((2<<8) | SCB_R136) #define SC_SEND_RELATIVE_ADDR ((3<<8) | SCB_R48) #define SC_SELECT_DESELECT_CARD ((7<<8) | SCB_R48b) #define SC_SEND_IF_COND ((8<<8) | SCB_R48) #define SC_SEND_EXT_CSD ((8<<8) | SCB_R48d) #define SC_SEND_CSD ((9<<8) | SCB_R136) #define SC_READ_SINGLE ((17<<8) | SCB_R48d) #define SC_READ_MULTIPLE ((18<<8) | SCB_R48d) #define SC_WRITE_SINGLE ((24<<8) | SCB_R48d) #define SC_WRITE_MULTIPLE ((25<<8) | SCB_R48d) #define SC_APP_CMD ((55<<8) | SCB_R48) #define SC_APP_SEND_OP_COND ((41<<8) | SCB_R48o) // SDHCI irqs #define SI_CMD_COMPLETE (1<<0) #define SI_TRANS_DONE (1<<1) #define SI_WRITE_READY (1<<4) #define SI_READ_READY (1<<5) #define SI_ERROR (1<<15) // SDHCI present_state flags #define SP_CMD_INHIBIT (1<<0) #define SP_DAT_INHIBIT (1<<1) #define SP_CARD_INSERTED (1<<16) // SDHCI transfer_mode flags #define ST_BLOCKCOUNT (1<<1) #define ST_AUTO_CMD12 (1<<2) #define ST_READ (1<<4) #define ST_MULTIPLE (1<<5) // SDHCI capabilities flags #define SD_CAPLO_V33 (1<<24) #define SD_CAPLO_V30 (1<<25) #define SD_CAPLO_V18 (1<<26) #define SD_CAPLO_BASECLOCK_SHIFT 8 #define SD_CAPLO_BASECLOCK_MASK 0xff // SDHCI clock control flags #define SCC_INTERNAL_ENABLE (1<<0) #define SCC_STABLE (1<<1) #define SCC_CLOCK_ENABLE (1<<2) #define SCC_SDCLK_MASK 0xff #define SCC_SDCLK_SHIFT 8 #define SCC_SDCLK_HI_MASK 0x300 #define SCC_SDCLK_HI_RSHIFT 2 // SDHCI power control flags #define SPC_POWER_ON (1<<0) #define SPC_V18 0x0a #define SPC_V30 0x0c #define SPC_V33 0x0e // SDHCI software reset flags #define SRF_ALL 0x01 #define SRF_CMD 0x02 #define SRF_DATA 0x04 // SDHCI result flags #define SR_OCR_CCS (1<<30) #define SR_OCR_NOTBUSY (1<<31) // SDHCI timeouts #define SDHCI_POWER_OFF_TIME 1 #define SDHCI_POWER_ON_TIME 5 #define SDHCI_CLOCK_ON_TIME 1 // 74 clock cycles #define SDHCI_POWERUP_TIMEOUT 1000 #define SDHCI_PIO_TIMEOUT 1000 // XXX - this is just made up // Internal 'struct drive_s' storage for a detected card struct sddrive_s { struct drive_s drive; struct sdhci_s *regs; int card_type; }; // SD card types #define SF_MMC (1<<0) #define SF_HIGHCAPACITY (1<<1) // Repeatedly read a u16 register until any bit in a given mask is set static int sdcard_waitw(u16 *reg, u16 mask) { u32 end = timer_calc(SDHCI_PIO_TIMEOUT); for (;;) { u16 v = readw(reg); if (v & mask) return v; if (timer_check(end)) { dprintf(1, "scard_waitw: %p %x %x\n", reg, mask, v); warn_timeout(); return -1; } yield(); } } // Send an sdhci reset static int sdcard_reset(struct sdhci_s *regs, int flags) { writeb(®s->software_reset, flags); u32 end = timer_calc(SDHCI_PIO_TIMEOUT); while (readb(®s->software_reset)) if (timer_check(end)) { warn_timeout(); return -1; } return 0; } // Send a command to the card. static int sdcard_pio(struct sdhci_s *regs, int cmd, u32 *param) { u32 state = readl(®s->present_state); dprintf(9, "sdcard_pio cmd %x %x %x\n", cmd, *param, state); if ((state & SP_CMD_INHIBIT) || ((cmd & 0x03) == 0x03 && state & SP_DAT_INHIBIT)) { dprintf(1, "sdcard_pio not ready %x\n", state); return -1; } // Send command writel(®s->arg, *param); writew(®s->cmd, cmd); int ret = sdcard_waitw(®s->irq_status, SI_ERROR|SI_CMD_COMPLETE); if (ret < 0) return ret; if (ret & SI_ERROR) { u16 err = readw(®s->error_irq_status); dprintf(3, "sdcard_pio command stop (code=%x)\n", err); sdcard_reset(regs, SRF_CMD|SRF_DATA); writew(®s->error_irq_status, err); return -1; } writew(®s->irq_status, SI_CMD_COMPLETE); // Read response memcpy(param, regs->response, sizeof(regs->response)); dprintf(9, "sdcard cmd %x response %x %x %x %x\n" , cmd, param[0], param[1], param[2], param[3]); return 0; } // Send an "app specific" command to the card. static int sdcard_pio_app(struct sdhci_s *regs, int cmd, u32 *param) { u32 aparam[4] = {}; int ret = sdcard_pio(regs, SC_APP_CMD, aparam); if (ret) return ret; return sdcard_pio(regs, cmd, param); } // Send a command to the card which transfers data. static int sdcard_pio_transfer(struct sddrive_s *drive, int cmd, u32 addr , void *data, int count) { // Send command writew(&drive->regs->block_size, DISK_SECTOR_SIZE); writew(&drive->regs->block_count, count); int isread = cmd != SC_WRITE_SINGLE && cmd != SC_WRITE_MULTIPLE; u16 tmode = ((count > 1 ? ST_MULTIPLE|ST_AUTO_CMD12|ST_BLOCKCOUNT : 0) | (isread ? ST_READ : 0)); writew(&drive->regs->transfer_mode, tmode); if (!(drive->card_type & SF_HIGHCAPACITY)) addr *= DISK_SECTOR_SIZE; u32 param[4] = { addr }; int ret = sdcard_pio(drive->regs, cmd, param); if (ret) return ret; // Read/write data u16 cbit = isread ? SI_READ_READY : SI_WRITE_READY; while (count--) { ret = sdcard_waitw(&drive->regs->irq_status, cbit); if (ret < 0) return ret; writew(&drive->regs->irq_status, cbit); int i; for (i=0; iregs->data); else writel(&drive->regs->data, *(u32*)data); data += 4; } } // Complete command ret = sdcard_waitw(&drive->regs->irq_status, SI_TRANS_DONE); if (ret < 0) return ret; writew(&drive->regs->irq_status, SI_TRANS_DONE); return 0; } // Read/write a block of data to/from the card. static int sdcard_readwrite(struct disk_op_s *op, int iswrite) { struct sddrive_s *drive = container_of( op->drive_fl, struct sddrive_s, drive); int cmd = iswrite ? SC_WRITE_SINGLE : SC_READ_SINGLE; if (op->count > 1) cmd = iswrite ? SC_WRITE_MULTIPLE : SC_READ_MULTIPLE; int ret = sdcard_pio_transfer(drive, cmd, op->lba, op->buf_fl, op->count); if (ret) return DISK_RET_EBADTRACK; return DISK_RET_SUCCESS; } int sdcard_process_op(struct disk_op_s *op) { if (!CONFIG_SDCARD) return 0; switch (op->command) { case CMD_READ: return sdcard_readwrite(op, 0); case CMD_WRITE: return sdcard_readwrite(op, 1); default: return default_process_op(op); } } /**************************************************************** * Setup ****************************************************************/ static int sdcard_set_power(struct sdhci_s *regs) { u32 cap = readl(®s->cap_lo); u32 volt, vbits; if (cap & SD_CAPLO_V33) { volt = 1<<20; vbits = SPC_V33; } else if (cap & SD_CAPLO_V30) { volt = 1<<18; vbits = SPC_V30; } else if (cap & SD_CAPLO_V18) { volt = 1<<7; vbits = SPC_V18; } else { dprintf(1, "SD controller unsupported volt range (%x)\n", cap); return -1; } writeb(®s->power_control, 0); msleep(SDHCI_POWER_OFF_TIME); writeb(®s->power_control, vbits | SPC_POWER_ON); msleep(SDHCI_POWER_ON_TIME); return volt; } static int sdcard_set_frequency(struct sdhci_s *regs, u32 khz) { u16 ver = readw(®s->controller_version); u32 cap = readl(®s->cap_lo); u32 base_freq = (cap >> SD_CAPLO_BASECLOCK_SHIFT) & SD_CAPLO_BASECLOCK_MASK; if (!base_freq) { dprintf(1, "Unknown base frequency for SD controller\n"); return -1; } // Set new frequency u32 divisor = DIV_ROUND_UP(base_freq * 1000, khz); u16 creg; if ((ver & 0xff) <= 0x01) { divisor = divisor > 1 ? 1 << __fls(divisor-1) : 0; creg = (divisor & SCC_SDCLK_MASK) << SCC_SDCLK_SHIFT; } else { divisor = DIV_ROUND_UP(divisor, 2); creg = (divisor & SCC_SDCLK_MASK) << SCC_SDCLK_SHIFT; creg |= (divisor & SCC_SDCLK_HI_MASK) >> SCC_SDCLK_HI_RSHIFT; } dprintf(3, "sdcard_set_frequency %d %d %x\n", base_freq, khz, creg); writew(®s->clock_control, 0); writew(®s->clock_control, creg | SCC_INTERNAL_ENABLE); // Wait for frequency to become active int ret = sdcard_waitw(®s->clock_control, SCC_STABLE); if (ret < 0) return ret; // Enable SD clock writew(®s->clock_control, creg | SCC_INTERNAL_ENABLE | SCC_CLOCK_ENABLE); return 0; } // Obtain the disk size of an SD card static int sdcard_get_capacity(struct sddrive_s *drive, u8 *csd) { // Original MMC/SD card capacity formula u16 C_SIZE = (csd[6] >> 6) | (csd[7] << 2) | ((csd[8] & 0x03) << 10); u8 C_SIZE_MULT = (csd[4] >> 7) | ((csd[5] & 0x03) << 1); u8 READ_BL_LEN = csd[9] & 0x0f; u32 count = (C_SIZE+1) << (C_SIZE_MULT + 2 + READ_BL_LEN - 9); // Check for newer encoding formats. u8 CSD_STRUCTURE = csd[14] >> 6; if ((drive->card_type & SF_MMC) && CSD_STRUCTURE >= 2) { // Get capacity from EXT_CSD register u8 ext_csd[512]; int ret = sdcard_pio_transfer(drive, SC_SEND_EXT_CSD, 0, ext_csd, 1); if (ret) return ret; count = *(u32*)&ext_csd[212]; } else if (!(drive->card_type & SF_MMC) && CSD_STRUCTURE >= 1) { // High capacity SD card u32 C_SIZE2 = csd[5] | (csd[6] << 8) | ((csd[7] & 0x3f) << 16); count = (C_SIZE2+1) << (19-9); } // Fill drive struct and return drive->drive.blksize = DISK_SECTOR_SIZE; drive->drive.sectors = count; return 0; } // Initialize an SD card static int sdcard_card_setup(struct sddrive_s *drive, int volt, int prio) { struct sdhci_s *regs = drive->regs; // Set controller to initialization clock rate int ret = sdcard_set_frequency(regs, 400); if (ret) return ret; msleep(SDHCI_CLOCK_ON_TIME); // Reset card u32 param[4] = { }; ret = sdcard_pio(regs, SC_GO_IDLE_STATE, param); if (ret) return ret; // Let card know SDHC/SDXC is supported and confirm voltage u32 hcs = 0, vrange = (volt >= (1<<15) ? 0x100 : 0x200) | 0xaa; param[0] = vrange; ret = sdcard_pio(regs, SC_SEND_IF_COND, param); if (!ret && param[0] == vrange) hcs = (1<<30); // Verify SD card (instead of MMC or SDIO) param[0] = 0x00; ret = sdcard_pio_app(regs, SC_APP_SEND_OP_COND, param); if (ret) { // Check for MMC card param[0] = 0x00; ret = sdcard_pio(regs, SC_SEND_OP_COND, param); if (ret) return ret; drive->card_type |= SF_MMC; hcs = (1<<30); } // Init card u32 end = timer_calc(SDHCI_POWERUP_TIMEOUT); for (;;) { param[0] = hcs | volt; // high-capacity support and voltage level if (drive->card_type & SF_MMC) ret = sdcard_pio(regs, SC_SEND_OP_COND, param); else ret = sdcard_pio_app(regs, SC_APP_SEND_OP_COND, param); if (ret) return ret; if (param[0] & SR_OCR_NOTBUSY) break; if (timer_check(end)) { warn_timeout(); return -1; } msleep(5); // Avoid flooding log when debugging } drive->card_type |= (param[0] & SR_OCR_CCS) ? SF_HIGHCAPACITY : 0; // Select card (get cid, set rca, get csd, select card) param[0] = 0x00; ret = sdcard_pio(regs, SC_ALL_SEND_CID, param); if (ret) return ret; u8 cid[16]; memcpy(cid, param, sizeof(cid)); param[0] = drive->card_type & SF_MMC ? 0x0001 << 16 : 0x00; ret = sdcard_pio(regs, SC_SEND_RELATIVE_ADDR, param); if (ret) return ret; u16 rca = drive->card_type & SF_MMC ? 0x0001 : param[0] >> 16; param[0] = rca << 16; ret = sdcard_pio(regs, SC_SEND_CSD, param); if (ret) return ret; u8 csd[16]; memcpy(csd, param, sizeof(csd)); param[0] = rca << 16; ret = sdcard_pio(regs, SC_SELECT_DESELECT_CARD, param); if (ret) return ret; // Set controller to data transfer clock rate ret = sdcard_set_frequency(regs, 25000); if (ret) return ret; // Register drive ret = sdcard_get_capacity(drive, csd); if (ret) return ret; char pnm[7] = {}; int i; for (i=0; i < (drive->card_type & SF_MMC ? 6 : 5); i++) pnm[i] = cid[11-i]; char *desc = znprintf(MAXDESCSIZE, "%s %s %dMiB" , drive->card_type & SF_MMC ? "MMC drive" : "SD card" , pnm, (u32)(drive->drive.sectors >> 11)); dprintf(1, "Found sdcard at %p: %s\n", regs, desc); boot_add_hd(&drive->drive, desc, prio); return 0; } // Setup and configure an SD card controller static void sdcard_controller_setup(struct sdhci_s *regs, int prio) { // Initialize controller u32 present_state = readl(®s->present_state); if (!(present_state & SP_CARD_INSERTED)) // No card present return; dprintf(3, "sdhci@%p ver=%x cap=%x %x\n", regs , readw(®s->controller_version) , readl(®s->cap_lo), readl(®s->cap_hi)); sdcard_reset(regs, SRF_ALL); writew(®s->irq_signal, 0); writew(®s->irq_enable, 0x01ff); writew(®s->irq_status, readw(®s->irq_status)); writew(®s->error_signal, 0); writew(®s->error_irq_enable, 0x01ff); writew(®s->error_irq_status, readw(®s->error_irq_status)); writeb(®s->timeout_control, 0x0e); // Set to max timeout int volt = sdcard_set_power(regs); if (volt < 0) return; // Initialize card struct sddrive_s *drive = malloc_fseg(sizeof(*drive)); if (!drive) { warn_noalloc(); goto fail; } memset(drive, 0, sizeof(*drive)); drive->drive.type = DTYPE_SDCARD; drive->regs = regs; int ret = sdcard_card_setup(drive, volt, prio); if (ret) { free(drive); goto fail; } return; fail: writeb(®s->power_control, 0); writew(®s->clock_control, 0); } static void sdcard_pci_setup(void *data) { struct pci_device *pci = data; // XXX - bars dependent on slot index register in pci config space struct sdhci_s *regs = pci_enable_membar(pci, PCI_BASE_ADDRESS_0); if (!regs) return; int prio = bootprio_find_pci_device(pci); sdcard_controller_setup(regs, prio); } static void sdcard_romfile_setup(void *data) { struct romfile_s *file = data; int prio = bootprio_find_named_rom(file->name, 0); u32 addr = romfile_loadint(file->name, 0); dprintf(1, "Starting sdcard controller check at addr %x\n", addr); sdcard_controller_setup((void*)addr, prio); } void sdcard_setup(void) { if (!CONFIG_SDCARD) return; struct romfile_s *file = NULL; int num_romfiles = 0; for (;;) { file = romfile_findprefix("etc/sdcard", file); if (!file) break; run_thread(sdcard_romfile_setup, file); num_romfiles++; } if (num_romfiles) // only scan for PCI controllers if etc/sdcard not used return; struct pci_device *pci; foreachpci(pci) { if (pci->class != PCI_CLASS_SYSTEM_SDHCI || pci->prog_if >= 2) // Not an SDHCI controller following SDHCI spec continue; run_thread(sdcard_pci_setup, pci); } }