// 16bit code to access floppy drives. // // Copyright (C) 2008,2009 Kevin O'Connor // Copyright (C) 2002 MandrakeSoft S.A. // // This file may be distributed under the terms of the GNU LGPLv3 license. #include "types.h" // u8 #include "disk.h" // DISK_RET_SUCCESS #include "config.h" // CONFIG_FLOPPY #include "biosvar.h" // SET_BDA #include "util.h" // dprintf #include "cmos.h" // inb_cmos #include "pic.h" // eoi_pic1 #include "bregs.h" // struct bregs #include "boot.h" // boot_add_floppy #include "pci.h" // pci_to_bdf #include "pci_ids.h" // PCI_CLASS_BRIDGE_ISA #define FLOPPY_SIZE_CODE 0x02 // 512 byte sectors #define FLOPPY_DATALEN 0xff // Not used - because size code is 0x02 #define FLOPPY_MOTOR_TICKS 37 // ~2 seconds #define FLOPPY_FILLBYTE 0xf6 #define FLOPPY_GAPLEN 0x1B #define FLOPPY_FORMAT_GAPLEN 0x6c #define FLOPPY_PIO_TIMEOUT 1000 // New diskette parameter table adding 3 parameters from IBM // Since no provisions are made for multiple drive types, most // values in this table are ignored. I set parameters for 1.44M // floppy here struct floppy_ext_dbt_s diskette_param_table2 VARFSEG = { .dbt = { .specify1 = 0xAF, // step rate 12ms, head unload 240ms .specify2 = 0x02, // head load time 4ms, DMA used .shutoff_ticks = FLOPPY_MOTOR_TICKS, // ~2 seconds .bps_code = FLOPPY_SIZE_CODE, .sectors = 18, .interblock_len = FLOPPY_GAPLEN, .data_len = FLOPPY_DATALEN, .gap_len = FLOPPY_FORMAT_GAPLEN, .fill_byte = FLOPPY_FILLBYTE, .settle_time = 0x0F, // 15ms .startup_time = 0x08, // 1 second }, .max_track = 79, // maximum track .data_rate = 0, // data transfer rate .drive_type = 4, // drive type in cmos }; struct floppy_dbt_s diskette_param_table VAR16FIXED(0xefc7); struct floppyinfo_s { struct chs_s chs; u8 floppy_size; u8 data_rate; }; #define FLOPPY_SIZE_525 0x01 #define FLOPPY_SIZE_350 0x02 #define FLOPPY_RATE_500K 0x00 #define FLOPPY_RATE_300K 0x01 #define FLOPPY_RATE_250K 0x02 #define FLOPPY_RATE_1M 0x03 struct floppyinfo_s FloppyInfo[] VARFSEG = { // Unknown { {0, 0, 0}, 0x00, 0x00}, // 1 - 360KB, 5.25" - 2 heads, 40 tracks, 9 sectors { {2, 40, 9}, FLOPPY_SIZE_525, FLOPPY_RATE_300K}, // 2 - 1.2MB, 5.25" - 2 heads, 80 tracks, 15 sectors { {2, 80, 15}, FLOPPY_SIZE_525, FLOPPY_RATE_500K}, // 3 - 720KB, 3.5" - 2 heads, 80 tracks, 9 sectors { {2, 80, 9}, FLOPPY_SIZE_350, FLOPPY_RATE_250K}, // 4 - 1.44MB, 3.5" - 2 heads, 80 tracks, 18 sectors { {2, 80, 18}, FLOPPY_SIZE_350, FLOPPY_RATE_500K}, // 5 - 2.88MB, 3.5" - 2 heads, 80 tracks, 36 sectors { {2, 80, 36}, FLOPPY_SIZE_350, FLOPPY_RATE_1M}, // 6 - 160k, 5.25" - 1 heads, 40 tracks, 8 sectors { {1, 40, 8}, FLOPPY_SIZE_525, FLOPPY_RATE_250K}, // 7 - 180k, 5.25" - 1 heads, 40 tracks, 9 sectors { {1, 40, 9}, FLOPPY_SIZE_525, FLOPPY_RATE_300K}, // 8 - 320k, 5.25" - 2 heads, 40 tracks, 8 sectors { {2, 40, 8}, FLOPPY_SIZE_525, FLOPPY_RATE_250K}, }; struct drive_s * init_floppy(int floppyid, int ftype) { if (ftype <= 0 || ftype >= ARRAY_SIZE(FloppyInfo)) { dprintf(1, "Bad floppy type %d\n", ftype); return NULL; } struct drive_s *drive_g = malloc_fseg(sizeof(*drive_g)); if (!drive_g) { warn_noalloc(); return NULL; } memset(drive_g, 0, sizeof(*drive_g)); drive_g->cntl_id = floppyid; drive_g->type = DTYPE_FLOPPY; drive_g->blksize = DISK_SECTOR_SIZE; drive_g->floppy_type = ftype; drive_g->sectors = (u64)-1; memcpy(&drive_g->lchs, &FloppyInfo[ftype].chs , sizeof(FloppyInfo[ftype].chs)); return drive_g; } static void addFloppy(int floppyid, int ftype) { struct drive_s *drive_g = init_floppy(floppyid, ftype); if (!drive_g) return; char *desc = znprintf(MAXDESCSIZE, "Floppy [drive %c]", 'A' + floppyid); struct pci_device *pci = pci_find_class(PCI_CLASS_BRIDGE_ISA); /* isa-to-pci bridge */ int prio = bootprio_find_fdc_device(pci, PORT_FD_BASE, floppyid); boot_add_floppy(drive_g, desc, prio); } void floppy_setup(void) { memcpy(&diskette_param_table, &diskette_param_table2 , sizeof(diskette_param_table)); SET_IVT(0x1E, SEGOFF(SEG_BIOS , (u32)&diskette_param_table2 - BUILD_BIOS_ADDR)); if (! CONFIG_FLOPPY) return; dprintf(3, "init floppy drives\n"); if (CONFIG_QEMU) { u8 type = inb_cmos(CMOS_FLOPPY_DRIVE_TYPE); if (type & 0xf0) addFloppy(0, type >> 4); if (type & 0x0f) addFloppy(1, type & 0x0f); } else { u8 type = romfile_loadint("etc/floppy0", 0); if (type) addFloppy(0, type); type = romfile_loadint("etc/floppy1", 0); if (type) addFloppy(1, type); } outb(0x02, PORT_DMA1_MASK_REG); enable_hwirq(6, FUNC16(entry_0e)); } // Find a floppy type that matches a given image size. int find_floppy_type(u32 size) { int i; for (i=1; icylinders * c->heads * c->spt * DISK_SECTOR_SIZE == size) return i; } return -1; } /**************************************************************** * Low-level floppy IO ****************************************************************/ static void floppy_disable_controller(void) { outb(inb(PORT_FD_DOR) & ~0x04, PORT_FD_DOR); } static int floppy_wait_irq(void) { u8 frs = GET_BDA(floppy_recalibration_status); SET_BDA(floppy_recalibration_status, frs & ~FRS_IRQ); for (;;) { if (!GET_BDA(floppy_motor_counter)) { floppy_disable_controller(); return DISK_RET_ETIMEOUT; } frs = GET_BDA(floppy_recalibration_status); if (frs & FRS_IRQ) break; // Could use yield_toirq() here, but that causes issues on // bochs, so use yield() instead. yield(); } SET_BDA(floppy_recalibration_status, frs & ~FRS_IRQ); return DISK_RET_SUCCESS; } struct floppy_pio_s { u8 cmdlen; u8 resplen; u8 waitirq; u8 data[9]; }; static int floppy_pio(struct floppy_pio_s *pio) { // Send command to controller. u64 end = calc_future_tsc(FLOPPY_PIO_TIMEOUT); int i = 0; for (;;) { u8 sts = inb(PORT_FD_STATUS); if (!(sts & 0x80)) { if (check_tsc(end)) { floppy_disable_controller(); return DISK_RET_ETIMEOUT; } continue; } if (sts & 0x40) { floppy_disable_controller(); return DISK_RET_ECONTROLLER; } outb(pio->data[i++], PORT_FD_DATA); if (i >= pio->cmdlen) break; } // Wait for command to complete. if (pio->waitirq) { int ret = floppy_wait_irq(); if (ret) return ret; } // Read response from controller. end = calc_future_tsc(FLOPPY_PIO_TIMEOUT); i = 0; for (;;) { u8 sts = inb(PORT_FD_STATUS); if (!(sts & 0x80)) { if (check_tsc(end)) { floppy_disable_controller(); return DISK_RET_ETIMEOUT; } continue; } if (i >= pio->resplen) break; if (!(sts & 0x40)) { floppy_disable_controller(); return DISK_RET_ECONTROLLER; } pio->data[i++] = inb(PORT_FD_DATA); } return DISK_RET_SUCCESS; } static int floppy_enable_controller(void) { outb(inb(PORT_FD_DOR) | 0x04, PORT_FD_DOR); int ret = floppy_wait_irq(); if (ret) return ret; struct floppy_pio_s pio; pio.cmdlen = 1; pio.resplen = 2; pio.waitirq = 0; pio.data[0] = 0x08; // 08: Check Interrupt Status return floppy_pio(&pio); } static int floppy_select_drive(u8 floppyid) { // reset the disk motor timeout value of INT 08 SET_BDA(floppy_motor_counter, FLOPPY_MOTOR_TICKS); // Enable controller if it isn't running. u8 dor = inb(PORT_FD_DOR); if (!(dor & 0x04)) { int ret = floppy_enable_controller(); if (ret) return ret; } // Turn on motor of selected drive, DMA & int enabled, normal operation dor = (floppyid ? 0x20 : 0x10) | 0x0c | floppyid; outb(dor, PORT_FD_DOR); return DISK_RET_SUCCESS; } /**************************************************************** * Floppy media sense ****************************************************************/ static inline void set_diskette_current_cyl(u8 floppyid, u8 cyl) { SET_BDA(floppy_track[floppyid], cyl); } static int floppy_drive_recal(u8 floppyid) { int ret = floppy_select_drive(floppyid); if (ret) return ret; // send Recalibrate command (2 bytes) to controller struct floppy_pio_s pio; pio.cmdlen = 2; pio.resplen = 0; pio.waitirq = 1; pio.data[0] = 0x07; // 07: Recalibrate pio.data[1] = floppyid; // 0=drive0, 1=drive1 ret = floppy_pio(&pio); if (ret) return ret; pio.cmdlen = 1; pio.resplen = 2; pio.waitirq = 0; pio.data[0] = 0x08; // 08: Check Interrupt Status ret = floppy_pio(&pio); if (ret) return ret; u8 frs = GET_BDA(floppy_recalibration_status); SET_BDA(floppy_recalibration_status, frs | (1<floppy_type), stype = ftype; u8 floppyid = GET_GLOBAL(drive_g->cntl_id); u8 data_rate = GET_GLOBAL(FloppyInfo[stype].data_rate); int ret = floppy_drive_readid(floppyid, data_rate, 0); if (ret) { // Attempt media sense. for (stype=1; ; stype++) { if (stype >= ARRAY_SIZE(FloppyInfo)) return DISK_RET_EMEDIA; if (stype==ftype || (GET_GLOBAL(FloppyInfo[stype].floppy_size) != GET_GLOBAL(FloppyInfo[ftype].floppy_size)) || (GET_GLOBAL(FloppyInfo[stype].chs.heads) > GET_GLOBAL(FloppyInfo[ftype].chs.heads)) || (GET_GLOBAL(FloppyInfo[stype].chs.cylinders) > GET_GLOBAL(FloppyInfo[ftype].chs.cylinders)) || (GET_GLOBAL(FloppyInfo[stype].chs.spt) > GET_GLOBAL(FloppyInfo[ftype].chs.spt))) continue; data_rate = GET_GLOBAL(FloppyInfo[stype].data_rate); ret = floppy_drive_readid(floppyid, data_rate, 0); if (!ret) break; } } u8 old_data_rate = GET_BDA(floppy_media_state[floppyid]) >> 6; SET_BDA(floppy_last_data_rate, (old_data_rate<<2) | (data_rate<<6)); u8 media = (stype == 1 ? 0x04 : (stype == 2 ? 0x05 : 0x07)); u8 fms = (data_rate<<6) | FMS_MEDIA_DRIVE_ESTABLISHED | media; if (GET_GLOBAL(FloppyInfo[stype].chs.cylinders) < GET_GLOBAL(FloppyInfo[ftype].chs.cylinders)) fms |= FMS_DOUBLE_STEPPING; SET_BDA(floppy_media_state[floppyid], fms); return DISK_RET_SUCCESS; } static int check_recal_drive(struct drive_s *drive_g) { u8 floppyid = GET_GLOBAL(drive_g->cntl_id); if ((GET_BDA(floppy_recalibration_status) & (1<drive_g); if (ret) return ret; // es:bx = pointer to where to place information from diskette u32 addr = (u32)op->buf_fl; int count = op->count * blocksize; // check for 64K boundary overrun u16 end = count - 1; u32 last_addr = addr + end; if ((addr >> 16) != (last_addr >> 16)) return DISK_RET_EBOUNDARY; u8 mode_register = 0x4a; // single mode, increment, autoinit disable, if (pio->data[0] == 0xe6) // read mode_register = 0x46; //DEBUGF("floppy dma c2\n"); outb(0x06, PORT_DMA1_MASK_REG); outb(0x00, PORT_DMA1_CLEAR_FF_REG); // clear flip-flop outb(addr, PORT_DMA_ADDR_2); outb(addr>>8, PORT_DMA_ADDR_2); outb(0x00, PORT_DMA1_CLEAR_FF_REG); // clear flip-flop outb(end, PORT_DMA_CNT_2); outb(end>>8, PORT_DMA_CNT_2); // port 0b: DMA-1 Mode Register // transfer type=write, channel 2 outb(mode_register, PORT_DMA1_MODE_REG); // port 81: DMA-1 Page Register, channel 2 outb(addr>>16, PORT_DMA_PAGE_2); outb(0x02, PORT_DMA1_MASK_REG); // unmask channel 2 ret = floppy_select_drive(pio->data[1] & 1); if (ret) return ret; pio->resplen = 7; pio->waitirq = 1; ret = floppy_pio(pio); if (ret) return ret; // Populate floppy_return_status in BDA int i; for (i=0; i<7; i++) SET_BDA(floppy_return_status[i], pio->data[i]); if (pio->data[0] & 0xc0) { if (pio->data[1] & 0x02) return DISK_RET_EWRITEPROTECT; dprintf(1, "floppy error: %02x %02x %02x %02x %02x %02x %02x\n" , pio->data[0], pio->data[1], pio->data[2], pio->data[3] , pio->data[4], pio->data[5], pio->data[6]); return DISK_RET_ECONTROLLER; } u8 track = (pio->cmdlen == 9 ? pio->data[3] : 0); set_diskette_current_cyl(pio->data[0] & 1, track); return DISK_RET_SUCCESS; } /**************************************************************** * Floppy handlers ****************************************************************/ static void lba2chs(struct disk_op_s *op, u8 *track, u8 *sector, u8 *head) { u32 lba = op->lba; u32 tmp = lba + 1; u16 nlspt = GET_GLOBAL(op->drive_g->lchs.spt); *sector = tmp % nlspt; tmp /= nlspt; u16 nlh = GET_GLOBAL(op->drive_g->lchs.heads); *head = tmp % nlh; tmp /= nlh; *track = tmp; } // diskette controller reset static int floppy_reset(struct disk_op_s *op) { u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id); SET_BDA(floppy_recalibration_status, 0); SET_BDA(floppy_media_state[0], 0); SET_BDA(floppy_media_state[1], 0); SET_BDA(floppy_track[0], 0); SET_BDA(floppy_track[1], 0); SET_BDA(floppy_last_data_rate, 0); floppy_disable_controller(); return floppy_select_drive(floppyid); } // Read Diskette Sectors static int floppy_read(struct disk_op_s *op) { u8 track, sector, head; lba2chs(op, &track, §or, &head); // send read-normal-data command (9 bytes) to controller u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id); struct floppy_pio_s pio; pio.cmdlen = 9; pio.data[0] = 0xe6; // e6: read normal data pio.data[1] = (head << 2) | floppyid; // HD DR1 DR2 pio.data[2] = track; pio.data[3] = head; pio.data[4] = sector; pio.data[5] = FLOPPY_SIZE_CODE; pio.data[6] = sector + op->count - 1; // last sector to read on track pio.data[7] = FLOPPY_GAPLEN; pio.data[8] = FLOPPY_DATALEN; int res = floppy_cmd(op, DISK_SECTOR_SIZE, &pio); if (res) goto fail; return DISK_RET_SUCCESS; fail: op->count = 0; // no sectors read return res; } // Write Diskette Sectors static int floppy_write(struct disk_op_s *op) { u8 track, sector, head; lba2chs(op, &track, §or, &head); // send write-normal-data command (9 bytes) to controller u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id); struct floppy_pio_s pio; pio.cmdlen = 9; pio.data[0] = 0xc5; // c5: write normal data pio.data[1] = (head << 2) | floppyid; // HD DR1 DR2 pio.data[2] = track; pio.data[3] = head; pio.data[4] = sector; pio.data[5] = FLOPPY_SIZE_CODE; pio.data[6] = sector + op->count - 1; // last sector to write on track pio.data[7] = FLOPPY_GAPLEN; pio.data[8] = FLOPPY_DATALEN; int res = floppy_cmd(op, DISK_SECTOR_SIZE, &pio); if (res) goto fail; return DISK_RET_SUCCESS; fail: op->count = 0; // no sectors read return res; } // Verify Diskette Sectors static int floppy_verify(struct disk_op_s *op) { int res = check_recal_drive(op->drive_g); if (res) goto fail; u8 track, sector, head; lba2chs(op, &track, §or, &head); // ??? should track be new val from return_status[3] ? u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id); set_diskette_current_cyl(floppyid, track); return DISK_RET_SUCCESS; fail: op->count = 0; // no sectors read return res; } // format diskette track static int floppy_format(struct disk_op_s *op) { u8 head = op->lba; // send format-track command (6 bytes) to controller u8 floppyid = GET_GLOBAL(op->drive_g->cntl_id); struct floppy_pio_s pio; pio.cmdlen = 6; pio.data[0] = 0x4d; // 4d: format track pio.data[1] = (head << 2) | floppyid; // HD DR1 DR2 pio.data[2] = FLOPPY_SIZE_CODE; pio.data[3] = op->count; // number of sectors per track pio.data[4] = FLOPPY_FORMAT_GAPLEN; pio.data[5] = FLOPPY_FILLBYTE; return floppy_cmd(op, 4, &pio); } int process_floppy_op(struct disk_op_s *op) { if (!CONFIG_FLOPPY) return 0; switch (op->command) { case CMD_RESET: return floppy_reset(op); case CMD_READ: return floppy_read(op); case CMD_WRITE: return floppy_write(op); case CMD_VERIFY: return floppy_verify(op); case CMD_FORMAT: return floppy_format(op); default: op->count = 0; return DISK_RET_EPARAM; } } /**************************************************************** * HW irqs ****************************************************************/ // INT 0Eh Diskette Hardware ISR Entry Point void VISIBLE16 handle_0e(void) { if (! CONFIG_FLOPPY) return; debug_isr(DEBUG_ISR_0e); // diskette interrupt has occurred u8 frs = GET_BDA(floppy_recalibration_status); SET_BDA(floppy_recalibration_status, frs | FRS_IRQ); eoi_pic1(); } // Called from int08 handler. void floppy_tick(void) { if (! CONFIG_FLOPPY) return; // time to turn off drive(s)? u8 fcount = GET_BDA(floppy_motor_counter); if (fcount) { fcount--; SET_BDA(floppy_motor_counter, fcount); if (fcount == 0) // turn motor(s) off outb(inb(PORT_FD_DOR) & 0xcf, PORT_FD_DOR); } }